TPS75501KTTT [TI]

FAST-TRANSIENT RESPONSE 5-A LOW-DROPOUT VOLTAGE REGULATORS; 快速瞬态响应5 -A低压差稳压器
TPS75501KTTT
型号: TPS75501KTTT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

FAST-TRANSIENT RESPONSE 5-A LOW-DROPOUT VOLTAGE REGULATORS
快速瞬态响应5 -A低压差稳压器

稳压器
文件: 总29页 (文件大小:1074K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁ ꢂ ꢃ ꢄ ꢄ ꢅ ꢄꢆ ꢀꢁ ꢂꢃ ꢄ ꢄ ꢅ ꢇ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢄ ꢈ ꢄ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢄ ꢉ ꢉ ꢊ ꢋꢀ ꢌ ꢁꢍ ꢊ ꢎꢏ ꢐꢍ ꢍ ꢑ ꢒ ꢓꢑ  
ꢀꢁ ꢂ ꢃꢄ ꢄ ꢔ ꢅ ꢕꢒꢂ ꢀꢖꢀ ꢏꢒꢓꢂ ꢋꢎꢓꢀ ꢏꢎ ꢂꢁꢍ ꢓꢂꢎ ꢄ ꢖꢒ ꢗ ꢍ ꢊꢖꢑꢏ ꢍ ꢁꢍ ꢘ ꢀ  
ꢙꢍ ꢗꢀꢒꢐ ꢎ ꢏꢎꢐ ꢘ ꢗꢒꢀꢍ ꢏꢂ  
SLVS293D − NOVEMBER 2000 − REVISED MAY 2002  
TO−220 (KC) PACKAGE  
(TOP VIEW)  
D
D
D
D
D
D
D
D
D
5-A Low-Dropout Voltage Regulator  
Available in 1.5-V, 1.8-V, 2.5-V, and 3.3-V  
Fixed-Output and Adjustable Versions  
EN  
IN  
1
2
3
4
Open Drain Power-Good (PG) Status  
Output (Fixed Options Only)  
GND  
OUTPUT  
FB/PG  
5
Tab is GND  
Dropout Voltage Typically 250 mV at 5 A  
(TPS75533)  
TO−263 (KTT) PACKAGE  
(TOP VIEW)  
Low 125 µA Typical Quiescent Current  
Fast Transient Response  
1
2
EN  
IN  
3% Tolerance Over Specified Conditions for  
Fixed-Output Versions  
3
4
5
GND  
OUTPUT  
FB/PG  
Available in 5-Pin TO−220 and TO−263  
Surface-Mount Packages  
Tab is GND  
Thermal Shutdown Protection  
description  
The TPS755xx family of 5-A low dropout (LDO) regulators contains four fixed voltage option regulators with  
integrated power-good (PG) and an adjustable voltage option regulator. These devices are capable of supplying  
5 A of output current with a dropout of 250 mV (TPS75533). Therefore, the device is capable of performing a  
3.3-V to 2.5-V conversion. Quiescent current is 125 µA at full load and drops down to less than 1 µA when the  
device is disabled. The TPS755xx is designed to have fast transient response for large load current changes.  
TPS75533  
DROPOUT VOLTAGE  
TPS75515  
vs  
LOAD TRANSIENT RESPONSE  
JUNCTION TEMPERATURE  
150  
100  
50  
400  
350  
V
C
= 1.5 V  
= 100 µF  
I
V
= 5 A  
O
o
O
= 3.3 V  
O
300  
250  
200  
150  
0
−50  
−100  
−150  
di  
dt  
1.25 A  
ms  
+
5
0
100  
50  
0
0
20 40 60 80 100 120 140 160 180 200  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
t − Time − µs  
T
J
− Junction Temperature − °C  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢀꢦ  
Copyright 2001, Texas Instruments Incorporated  
ꢢ ꢦ ꢣ ꢢꢛ ꢜꢰ ꢞꢝ ꢡ ꢩꢩ ꢧꢡ ꢟ ꢡ ꢠ ꢦ ꢢ ꢦ ꢟ ꢣ ꢫ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢄ ꢅ ꢄ ꢆ ꢀ ꢁꢂ ꢃꢄ ꢄ ꢅ ꢇ ꢆ ꢀꢁ ꢂ ꢃ ꢄ ꢄ ꢈ ꢄꢆ ꢀꢁ ꢂ ꢃ ꢄꢄ ꢉ ꢉ ꢊ ꢋꢀ ꢌ ꢁꢍ ꢊ ꢎꢏ ꢐ ꢍ ꢍꢑ ꢒꢓꢑ  
ꢀ ꢁ ꢂ ꢃ ꢄꢄ ꢔ ꢅ ꢕꢒ ꢂꢀꢖꢀ ꢏꢒꢓ ꢂꢋ ꢎ ꢓꢀ ꢏꢎ ꢂ ꢁꢍ ꢓꢂꢎ ꢄ ꢖꢒ ꢗ ꢍ ꢊꢖꢑꢏꢍ ꢁꢍ ꢘꢀ  
ꢙ ꢍꢗꢀꢒ ꢐꢎ ꢏ ꢎꢐꢘ ꢗꢒꢀꢍ ꢏꢂ  
SLVS293D − NOVEMBER 2000 − REVISED MAY 2002  
description (continued)  
Because the PMOS device behaves as a low-value resistor, the dropout voltage is very low (typically 250 mV  
at an output current of 5 A for the TPS75533) and is directly proportional to the output current. Additionally, since  
the PMOS pass element is a voltage-driven device, the quiescent current is very low and independent of output  
loading (typically 125 µA over the full range of output current). These two key specifications yield a significant  
improvement in operating life for battery-powered systems.  
The device is enabled when EN is connected to a low-level voltage. This LDO family also features a sleep mode;  
applying a TTL high signal to EN (enable) shuts down the regulator, reducing the quiescent current to less than  
1 µA at T = 25°C. The power-good terminal (PG) is an active low, open drain output, which can be used to  
J
implement a power-on reset or a low-battery indicator.  
The TPS755xx is offered in 1.5-V, 1.8-V, 2.5-V, and 3.3-V fixed-voltage versions and in an adjustable version  
(programmable over the range of 1.22 V to 5 V). Output voltage tolerance is specified as a maximum of 3% over  
line, load, and temperature ranges. The TPS755xx family is available in a 5-pin TO−220 (KC) and TO−263 (KTT)  
packages.  
AVAILABLE OPTIONS  
OUTPUT VOLTAGE  
T
J
TO−220 (KC)  
TO−263(KTT)  
(TYP)  
3.3 V  
TPS75533KC  
TPS75525KC  
TPS75518KC  
TPS75515KC  
TPS75501KC  
TPS75533KTT  
TPS75525KTT  
TPS75518KTT  
TPS75515KTT  
TPS75501KTT  
2.5 V  
1.8 V  
40°C to 125°C  
1.5 V  
Adjustable 1.22 V to 5 V  
NOTE: The TPS75501 is programmable using an external resistor divider (see application  
information). The KTT package is available taped and reeled. Add an R suffix to the  
device type (e.g., TPS75501KTTR) to indicate tape and reel.  
2
1
5
4
V
IN  
PG  
PG  
I
OUT  
V
O
1 µF  
EN  
C
o
+
47 µF  
GND  
3
See application information section for capacitor selection details.  
Figure 1. Typical Application Configuration (For Fixed Output Options)  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃ ꢄ ꢄ ꢅ ꢄꢆ ꢀꢁ ꢂꢃ ꢄ ꢄ ꢅ ꢇ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢄ ꢈ ꢄ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢄ ꢉ ꢉ ꢊ ꢋꢀ ꢌ ꢁꢍ ꢊ ꢎꢏ ꢐ ꢍ ꢍ ꢑ ꢒ ꢓꢑ  
ꢀꢁ ꢂ ꢃꢄ ꢄ ꢔ ꢅ ꢕꢒꢂ ꢀꢖꢀ ꢏꢒꢓꢂ ꢋꢎꢓꢀ ꢏꢎ ꢂꢁꢍ ꢓꢂꢎ ꢄ ꢖꢒ ꢗ ꢍ ꢊꢖꢑꢏ ꢍ ꢁꢍ ꢘ ꢀ  
ꢙꢍ ꢗꢀꢒꢐ ꢎ ꢏꢎꢐ ꢘ ꢗꢒꢀꢍ ꢏꢂ  
SLVS293D − NOVEMBER 2000 − REVISED MAY 2002  
functional block diagram—adjustable version  
V
IN  
V
OUT  
Current  
Sense  
UVLO  
SHUTDOWN  
ILIM  
R1  
_
GND  
EN  
+
FB  
UVLO  
R2  
Thermal  
External to  
the Device  
Shutdown  
V
ref  
= 1.22 V  
Bandgap  
V
IN  
Reference  
functional block diagram—fixed version  
V
IN  
V
OUT  
UVLO  
Current  
Sense  
SHUTDOWN  
ILIM  
R1  
R2  
_
+
GND  
EN  
UVLO  
Thermal  
Shutdown  
V
ref  
= 1.22 V  
Bandgap  
Reference  
PG  
V
IN  
Falling  
Edge Delay  
Terminal Functions (TPS755xx)  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
EN  
NO.  
1
5
3
2
4
I
I
Enable input  
FB/PG  
GND  
Feedback input voltage for adjustable device/PG output for fixed options  
Regulator ground  
Input voltage  
IN  
I
OUTPUT  
O
Regulated output voltage  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢄ ꢔ ꢅ ꢕꢒ ꢂꢀꢖꢀ ꢏꢒꢓ ꢂꢋ ꢎ ꢓꢀ ꢏꢎ ꢂ ꢁꢍ ꢓꢂꢎ ꢄ ꢖꢒ ꢗ ꢍ ꢊꢖꢑꢏꢍ ꢁꢍ ꢘꢀ  
ꢍꢑ  
ꢙ ꢍꢗꢀꢒ ꢐꢎ ꢏ ꢎꢐꢘ ꢗꢒꢀꢍ ꢏꢂ  
SLVS293D − NOVEMBER 2000 − REVISED MAY 2002  
TPS755xx PG timing diagram  
V
IN1  
V
UVLO  
V
UVLO  
t
V
OUT  
V (see Note A)  
IT+  
Threshold  
Voltage  
V
IT−  
(see Note A)  
t
PG  
Output  
t
NOTE A: V −Trip voltage is typically 9% lower than the output voltage (91%V ). V  
to V  
is the hysteresis voltage.  
IT  
O
IT−  
IT+  
detailed description  
The TPS755xx family includes four fixed-output voltage regulators (1.5 V, 1.8 V, 2.5 V, and 3.3 V), and an  
adjustable regulator, the TPS75501 (adjustable from 1.22 V to 5 V). The bandgap voltage is typically 1.22 V.  
pin functions  
enable (EN)  
The EN terminal is an input which enables or shuts down the device. If EN is a logic high, the device will be in  
shutdown mode. When EN goes to logic low, the device will be enabled.  
power-good (PG)  
The PG terminal for the fixed voltage option devices is an open drain, active low output that indicates the status  
of V (output of the LDO). When V reaches approximately 91% of the regulated voltage, PG will go to a low  
O
O
impedance state. It will go to a high-impedance state when V falls below approximately 89% (i.e. over load  
O
condition) of the regulated voltage. The open drain output of the PG terminal requires a pullup resistor.  
feedback (FB)  
FB is an input terminal used for the adjustable-output option and must be connected to the output terminal either  
directly, in order to generate the minimum output voltage of 1.22 V, or through an external feedback resistor  
divider for other output voltages. The FB connection should be as short as possible. It is essential to route it in  
such a way to minimize/avoid noise pickup. Adding RC networks between FB terminal and V to filter noise is  
O
not recommended because it may cause the regulator to oscillate.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃ ꢄ ꢄ ꢅ ꢄꢆ ꢀꢁ ꢂꢃ ꢄ ꢄ ꢅ ꢇ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢄ ꢈ ꢄ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢄ ꢉ ꢉ ꢊ ꢋꢀ ꢌ ꢁꢍ ꢊ ꢎꢏ ꢐ ꢍ ꢍ ꢑ ꢒ ꢓꢑ  
ꢀꢁ ꢂ ꢃꢄ ꢄ ꢔ ꢅ ꢕꢒꢂ ꢀꢖꢀ ꢏꢒꢓꢂ ꢋꢎꢓꢀ ꢏꢎ ꢂꢁꢍ ꢓꢂꢎ ꢄ ꢖꢒ ꢗ ꢍ ꢊꢖꢑꢏ ꢍ ꢁꢍ ꢘ ꢀ  
ꢙꢍ ꢗꢀꢒꢐ ꢎ ꢏꢎꢐ ꢘ ꢗꢒꢀꢍ ꢏꢂ  
SLVS293D − NOVEMBER 2000 − REVISED MAY 2002  
detailed description (continued)  
input voltage (IN)  
The V terminal is an input to the regulator.  
IN  
output voltage (OUTPUT)  
The V  
terminal is an output to the regulator.  
OUTPUT  
Ĕ
absolute maximum ratings over operating junction temperature range (unless otherwise noted)  
Input voltage range , V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 6 V  
I
Voltage range at EN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 6 V  
Maximum PG voltage (fixed options only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
Peak output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internally limited  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Tables  
Output voltage, V (OUTPUT, FB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V  
O
Operating junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 150°C  
J
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
ESD rating, HBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 kV  
ESD rating, CDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 V  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
All voltage values are with respect to network terminal ground.  
DISSIPATION RATING TABLE  
§
PACKAGE  
TO−220  
R
(°C/W)  
R
(°C/W)  
θJC  
θJA  
58.7  
38.7  
2
#
TO−263  
2
§
For both packages, the R  
with 1 ounce internal copper plane and ground plane. There was no air flow across the  
packages.  
values were computed using JEDEC high K board (2S2P)  
θJA  
#
R
was computed assuming a vertical, free standing TO-220 package with pins  
θJA  
soldered to the board. There is no heatsink attached to the package.  
was computed assuming a horizontally mounted TO-263 package with pins  
R
θJA  
soldered to the board. There is no copper pad underneath the package.  
recommended operating conditions  
MIN  
2.8  
1.22  
0
MAX  
5.5  
5
UNIT  
V
||  
Input voltage, V  
I
Output voltage range, V  
V
O
Output current, I  
5
A
O
Operating virtual junction temperature, T  
40  
125  
°C  
J
||  
To calculate the minimum input voltage for your maximum output current, use the following equation: V  
= V  
+ V .  
DO(max load)  
I(min)  
O(max)  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢄ ꢅ ꢄ ꢆ ꢀ ꢁꢂ ꢃꢄ ꢄ ꢅ ꢇ ꢆ ꢀꢁ ꢂ ꢃ ꢄ ꢄ ꢈ ꢄꢆ ꢀꢁ ꢂ ꢃ ꢄꢄ ꢉ ꢉ ꢊ ꢋꢀ ꢌ ꢁꢍ ꢊ ꢎꢏ ꢐ ꢍ ꢍꢑ ꢒꢓꢑ  
ꢀ ꢁ ꢂ ꢃ ꢄꢄ ꢔ ꢅ ꢕꢒ ꢂꢀꢖꢀ ꢏꢒꢓ ꢂꢋ ꢎ ꢓꢀ ꢏꢎ ꢂ ꢁꢍ ꢓꢂꢎ ꢄ ꢖꢒ ꢗ ꢍ ꢊꢖꢑꢏꢍ ꢁꢍ ꢘꢀ  
ꢙ ꢍꢗꢀꢒ ꢐꢎ ꢏ ꢎꢐꢘ ꢗꢒꢀꢍ ꢏꢂ  
SLVS293D − NOVEMBER 2000 − REVISED MAY 2002  
electrical characteristics over recommended operating junction temperature range (T = −40°C to  
J
125°C), V = V  
+ 1 V, I = 1 mA, EN = 0 V, C = 100 µF (unless otherwise noted)  
I
O(typ)  
O
O
PARAMETER  
TEST CONDITIONS  
1.22 V V 5.5 V, T = 25°C  
MIN  
TYP  
MAX  
UNIT  
V
O
O
J
1.22 V V 5.5 V  
0.97 V  
1.03 V  
O
O
O
Adjustable voltage  
V
1.22 V V 5.5 V, T = 0 to 125°C  
O
J
0.98 V  
1.02 V  
O
O
(see Note 1)  
T = 25°C,  
2.8 V < V < 5.5 V  
1.5  
1.8  
J
I
1.5 V Output  
1.8 V Output  
2.5 V Output  
3.3 V Output  
2.8 V V 5.5 V  
1.455  
1.746  
2.425  
3.201  
1.545  
1.854  
2.575  
3.399  
200  
I
V
Output voltage (see Note 2)  
T = 25°C,  
J
2.8 V < V < 5.5 V  
I
2.8 V V 5.5 V  
I
T = 25°C,  
J
3.5 V < V < 5.5 V  
2.5  
I
V
V
3.5 V V 5.5 V  
I
T = 25°C,  
J
4.3 V < V < 5.5 V  
3.3  
I
4.3 V V 5.5 V  
I
T = 25°C  
125  
0.04  
J
Quiescent current (GND current) (see Notes 2 and 3)  
µA  
%/V  
V
V
+ 1 V V 5.5 V, T = 25°C  
I J  
O
Output voltage line regulation (V /V ) (see Note 3)  
O
O
+ 1 V V < 5.5 V  
0.1  
O
I
Load regulation (see Note 2)  
Output noise voltage  
0.35  
35  
%/V  
µVrms  
A
TPS75515  
BW = 300 Hz to 50 kHz, T = 25°C, V = 2.8 V  
J I  
Output current limit  
V
O
= 0 V  
5.5  
10  
14  
Thermal shutdown junction temperature  
150  
0.1  
°C  
EN = V ,  
T = 25°C  
µA  
I
J
Standby current  
EN = V  
10  
1
µA  
I
FB input current  
TPS75501  
FB = 1.5 V  
−1  
89  
µA  
f = 100 Hz,  
V = 2.8 V,  
I
T = 25°C,  
J
O
Power supply ripple rejection  
TPS75515  
60  
0
dB  
V
I
= 5 A  
Minimum input voltage for valid PG  
PG trip threshold voltage  
PG hysteresis voltage  
I
= 300 µA,  
V
(PG)  
0.8 V  
O(PG)  
decreasing  
Fixed options only  
Fixed options only  
Fixed options only  
Fixed options only  
V
93  
%V  
%V  
V
O
O
Measured at V  
0.5  
O
O
PG output low voltage  
V = 2.8 V,  
I
I
= 1 mA  
0.15  
0.4  
1
O(PG)  
PG leakage current  
V
(PG)  
= 5 V  
µA  
NOTES: 1. The adjustable option operates with a 2% tolerance over T = 0 to 125 °C.  
J
2.  
I
= 1 mA to 5 A  
O
3. If V 2.5 V then V  
= 2.8 V, V  
Imin Imax  
= 5.5 V:  
O
ǒVImax * 2.8 VǓ  
V
V
O
O
ǒ
Ǔ
Line regulation (mV) + %ńV   
  1000  
100  
If V > 2.5 V then V  
Imin  
= V + 1 V, V = 5.5 V:  
Imax  
O
O
* ǒVO  
Ǔ
ǒVImax  
) 1 V Ǔ  
ǒ
Ǔ
Line regulation (mV) + %ńV   
  1000  
100  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃ ꢄ ꢄ ꢅ ꢄꢆ ꢀꢁ ꢂꢃ ꢄ ꢄ ꢅ ꢇ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢄ ꢈ ꢄ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢄ ꢉ ꢉ ꢊ ꢋꢀ ꢌ ꢁꢍ ꢊ ꢎꢏ ꢐ ꢍ ꢍ ꢑ ꢒ ꢓꢑ  
ꢀꢁ ꢂ ꢃꢄ ꢄ ꢔ ꢅ ꢕꢒꢂ ꢀꢖꢀ ꢏꢒꢓꢂ ꢋꢎꢓꢀ ꢏꢎ ꢂꢁꢍ ꢓꢂꢎ ꢄ ꢖꢒ ꢗ ꢍ ꢊꢖꢑꢏ ꢍ ꢁꢍ ꢘ ꢀ  
ꢙꢍ ꢗꢀꢒꢐ ꢎ ꢏꢎꢐ ꢘ ꢗꢒꢀꢍ ꢏꢂ  
SLVS293D − NOVEMBER 2000 − REVISED MAY 2002  
electrical characteristics over recommended operating junction temperature range (T = −40°C to  
J
125°C), V = V  
+ 1 V, I = 1 mA, EN = 0 V, C = 100 µF (unless otherwise noted) (continued)  
I
O(typ)  
O
O
PARAMETER  
TEST CONDITIONS  
MIN  
−1  
−1  
2
TYP  
MAX  
UNIT  
µA  
µA  
V
EN = V  
1
1
I
Input current (EN)  
EN = 0 V  
0
High level EN input voltage  
Low level EN input voltage  
0.7  
500  
V
I
I
= 5 A,  
= 5 A,  
V = 3.2 V,  
I
T = 25°C  
J
250  
25  
O
Dropout voltage, (3.3 V output) (see Note 4)  
mV  
V = 3.2 V  
I
V
O
O
Discharge transistor current  
UVLO  
V
= 1.5 V, T = 25°C  
10  
mA  
V
O
J
T = 25°C,  
V rising  
I
2.2  
2.75  
J
V
I
UVLO hysteresis  
T = 25°C,  
V falling  
I
100  
mV  
J
NOTE 4: IN voltage equals V (typ) − 100 mV; TPS75515, TPS75518, and TPS75525 dropout voltage limited by input voltage range limitations  
O
(i.e., TPS75533 input voltage is set to 3.2 V for the purpose of this test).  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
vs Output current  
vs Junction temperature  
vs Junction temperature  
vs Frequency  
2, 3  
4, 5  
6
V
Output voltage  
O
Ground current  
Power supply ripple rejection  
Output spectral noise density  
Output impedance  
7
vs Frequency  
8
z
vs Frequency  
9
o
vs Input voltage  
10  
V
Dropout voltage  
DO  
I
vs Junction temperature  
vs Output voltage  
11  
V
Minimum required input voltage  
Line transient response  
12  
13, 15  
14, 16  
17  
Load transient response  
V
O
Output voltage and enable voltage  
Equivalent series resistance  
vs Time (start-up)  
vs Output current  
19, 20  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢄ ꢔ ꢅ ꢕꢒ ꢂꢀꢖꢀ ꢏꢒꢓ ꢂꢋ ꢎ ꢓꢀ ꢏꢎ ꢂ ꢁꢍ ꢓꢂꢎ ꢄ ꢖꢒ ꢗ ꢍ ꢊꢖꢑꢏꢍ ꢁꢍ ꢘꢀ  
ꢍꢑ  
ꢙ ꢍꢗꢀꢒ ꢐꢎ ꢏ ꢎꢐꢘ ꢗꢒꢀꢍ ꢏꢂ  
SLVS293D − NOVEMBER 2000 − REVISED MAY 2002  
TYPICAL CHARACTERISTICS  
TPS75533  
TPS75515  
OUTPUT VOLTAGE  
vs  
OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
3.345  
1.545  
1.530  
1.515  
V = 2.8 V  
V = 4.3 V  
I
J
I
T
= 25°C  
T
J
= 25°C  
3.330  
3.315  
3.3  
1.5  
1.485  
1.470  
1.455  
3.285  
3.270  
3.255  
0
1
2
3
4
5
0
1
2
3
4
5
I
O
− Output Current − A  
I
O
− Output Current − A  
Figure 2  
Figure 3  
TPS75515  
TPS75533  
OUTPUT VOLTAGE  
vs  
OUTPUT VOLTAGE  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
1.545  
3.345  
3.33  
V = 4.3 V  
I
V = 2.8 V  
I
1.530  
1.515  
3.315  
3.3  
1.5  
1.485  
3.285  
1.470  
1.455  
3.270  
3.255  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
−40 −25 10  
5
20 35 50 65 80 95 110 125  
T
J
− Junction Temperature − °C  
T
J
− Junction Temperature − °C  
Figure 4  
Figure 5  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃ ꢄ ꢄ ꢅ ꢄꢆ ꢀꢁ ꢂꢃ ꢄ ꢄ ꢅ ꢇ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢄ ꢈ ꢄ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢄ ꢉ ꢉ ꢊ ꢋꢀ ꢌ ꢁꢍ ꢊ ꢎꢏ ꢐ ꢍ ꢍ ꢑ ꢒ ꢓꢑ  
ꢀꢁ ꢂ ꢃꢄ ꢄ ꢔ ꢅ ꢕꢒꢂ ꢀꢖꢀ ꢏꢒꢓꢂ ꢋꢎꢓꢀ ꢏꢎ ꢂꢁꢍ ꢓꢂꢎ ꢄ ꢖꢒ ꢗ ꢍ ꢊꢖꢑꢏ ꢍ ꢁꢍ ꢘ ꢀ  
ꢙꢍ ꢗꢀꢒꢐ ꢎ ꢏꢎꢐ ꢘ ꢗꢒꢀꢍ ꢏꢂ  
SLVS293D − NOVEMBER 2000 − REVISED MAY 2002  
TYPICAL CHARACTERISTICS  
TPS755xx  
TPS75733  
GROUND CURRENT  
vs  
JUNCTION TEMPERATURE  
POWER SUPPLY RIPPLE REJECTION  
vs  
FREQUENCY  
90  
80  
70  
150  
125  
V = 4.3 V  
I
V = 5 V  
I
C
= 100 µF  
= 25°C  
I
O
= 5 A  
o
J
T
I
O
= 1 mA  
60  
50  
40  
30  
20  
10  
0
I
= 5 A  
O
100  
75  
10  
100  
1k  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
10k  
100k  
1M  
10M  
T
J
− Junction Temperature − °C  
f − Frequency − Hz  
Figure 6  
Figure 7  
TPS75533  
TPS75533  
OUTPUT SPECTRAL NOISE DENSITY  
OUTPUT IMPEDANCE  
vs  
vs  
FREQUENCY  
FREQUENCY  
2.5  
2
100  
V = 4.3 V  
I
O
V = 4.3 V  
I
V
= 3.3 V  
= 100 µF  
= 25°C  
C
= 100 µF  
o
J
C
T
o
J
T
= 25°C  
10  
I
O
= 5 A  
1.5  
1
I
O
= 1 mA  
I
O
= 1 mA  
1
0.1  
0.5  
I
O
= 5 A  
0.01  
0
10  
0.001  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
1M  
10M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 8  
Figure 9  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢄ ꢅ ꢄ ꢆ ꢀ ꢁꢂ ꢃꢄ ꢄ ꢅ ꢇ ꢆ ꢀꢁ ꢂ ꢃ ꢄ ꢄ ꢈ ꢄꢆ ꢀꢁ ꢂ ꢃ ꢄꢄ ꢉ ꢉ ꢊ ꢋꢀ ꢌ ꢁꢍ ꢊ ꢎꢏ ꢐ ꢍ ꢍꢑ ꢒꢓꢑ  
ꢀ ꢁ ꢂ ꢃ ꢄꢄ ꢔ ꢅ ꢕꢒ ꢂꢀꢖꢀ ꢏꢒꢓ ꢂꢋ ꢎ ꢓꢀ ꢏꢎ ꢂ ꢁꢍ ꢓꢂꢎ ꢄ ꢖꢒ ꢗ ꢍ ꢊꢖꢑꢏꢍ ꢁꢍ ꢘꢀ  
ꢙ ꢍꢗꢀꢒ ꢐꢎ ꢏ ꢎꢐꢘ ꢗꢒꢀꢍ ꢏꢂ  
SLVS293D − NOVEMBER 2000 − REVISED MAY 2002  
TYPICAL CHARACTERISTICS  
TPS75501  
TPS75533  
DROPOUT VOLTAGE  
vs  
DROPOUT VOLTAGE  
vs  
INPUT VOLTAGE  
JUNCTION TEMPERATURE  
450  
400  
400  
350  
I
O
= 5 A  
I
V
= 5 A  
O
= 3.3 V  
O
T
T
= 125°C  
= 25°C  
J
350  
300  
300  
250  
200  
150  
J
250  
200  
T
J
= −40°C  
150  
100  
100  
50  
0
50  
0
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
2.5  
3
3.5  
4
4.5  
5
V − Input Voltage − V  
I
T
J
− Junction Temperature − °C  
Figure 11  
Figure 10  
MINIMUM REQUIRED INPUT VOLTAGE  
TPS75515  
vs  
LINE TRANSIENT RESPONSE  
OUTPUT VOLTAGE  
4
V
= 1.5 V  
= 5 A  
= 100 µF  
O
I
O
= 5 A  
I
O
50  
0
T
= 125°C  
J
C
o
T
J
= 25°C  
T
J
= −40°C  
−50  
−100  
3
2.8  
3.8  
2.8  
2
0
50 100 150 200 250 300 350 400 450 500  
1.5 1.75  
2
2.25 2.5 2.75  
3
3.25 3.5  
t − Time − µs  
V
O
− Output Voltage − V  
Figure 12  
Figure 13  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃ ꢄ ꢄ ꢅ ꢄꢆ ꢀꢁ ꢂꢃ ꢄ ꢄ ꢅ ꢇ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢄ ꢈ ꢄ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢄ ꢉ ꢉ ꢊ ꢋꢀ ꢌ ꢁꢍ ꢊ ꢎꢏ ꢐ ꢍ ꢍ ꢑ ꢒ ꢓꢑ  
ꢀꢁ ꢂ ꢃꢄ ꢄ ꢔ ꢅ ꢕꢒꢂ ꢀꢖꢀ ꢏꢒꢓꢂ ꢋꢎꢓꢀ ꢏꢎ ꢂꢁꢍ ꢓꢂꢎ ꢄ ꢖꢒ ꢗ ꢍ ꢊꢖꢑꢏ ꢍ ꢁꢍ ꢘ ꢀ  
ꢙꢍ ꢗꢀꢒꢐ ꢎ ꢏꢎꢐ ꢘ ꢗꢒꢀꢍ ꢏꢂ  
SLVS293D − NOVEMBER 2000 − REVISED MAY 2002  
TYPICAL CHARACTERISTICS  
TPS75515  
TPS75533  
LOAD TRANSIENT RESPONSE  
LINE TRANSIENT RESPONSE  
150  
100  
50  
100  
V
= 3.3 V  
= 5 A  
= 100 µF  
O
V
C
= 1.5 V  
= 100 µF  
O
o
I
O
50  
0
C
o
0
−50  
−50  
−100  
−150  
−100  
di  
dt  
1.25 A  
ms  
+
5
0
5.3  
4.3  
0
20 40 60 80 100 120 140 160 180 200  
0
50 100 150 200 250 300 350 400 450 500  
t − Time − µs  
t − Time − µs  
Figure 14  
Figure 15  
TPS75533  
OUTPUT VOLTAGE AND ENABLE VOLTAGE  
TPS75533  
vs  
LOAD TRANSIENT RESPONSE  
TIME (START-UP)  
V
C
=3 .3 V  
= 100 µF  
O
o
V = 4.3 V  
I
3.3  
I
T
= 10 mA  
= 25°C  
O
J
200  
100  
0
0
4.3  
0
di  
dt  
1.25 A  
ms  
+
−100  
5
0
0
20 40 60 80 100 120 140 160 180 200  
0
0.2  
0.4  
0.6  
0.8  
1
t − Time − µs  
t − Time (Start-Up) − ms  
Figure 16  
Figure 17  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢄ ꢅ ꢄ ꢆ ꢀ ꢁꢂ ꢃꢄ ꢄ ꢅ ꢇ ꢆ ꢀꢁ ꢂ ꢃ ꢄ ꢄ ꢈ ꢄꢆ ꢀꢁ ꢂ ꢃ ꢄꢄ ꢉ ꢉ ꢊ ꢋꢀ ꢌ ꢁꢍ ꢊ ꢎꢏ ꢐ ꢍ ꢍꢑ ꢒꢓꢑ  
ꢀ ꢁ ꢂ ꢃ ꢄꢄ ꢔ ꢅ ꢕꢒ ꢂꢀꢖꢀ ꢏꢒꢓ ꢂꢋ ꢎ ꢓꢀ ꢏꢎ ꢂ ꢁꢍ ꢓꢂꢎ ꢄ ꢖꢒ ꢗ ꢍ ꢊꢖꢑꢏꢍ ꢁꢍ ꢘꢀ  
ꢙ ꢍꢗꢀꢒ ꢐꢎ ꢏ ꢎꢐꢘ ꢗꢒꢀꢍ ꢏꢂ  
SLVS293D − NOVEMBER 2000 − REVISED MAY 2002  
TYPICAL CHARACTERISTICS  
To Load  
IN  
V
I
OUT  
+
R
L
C
o
EN  
GND  
ESR  
Figure 18. Test Circuit for Typical Regions of Stability (Figures 19 and 20) (Fixed Output Options)  
TYPICAL REGION OF STABILITY  
EQUIVALENT SERIES RESISTANCE  
vs  
TYPICAL REGION OF STABILITY  
EQUIVALENT SERIES RESISTANCE  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
10  
10  
C
T
= 680 µF  
= 25°C  
C
T
= 47 µF  
= 25°C  
o
J
o
J
1
1
Region of Stability  
Region of Stability  
0.2  
0.1  
Region of Instability  
0.015  
0.01  
Region of Instability  
0.01  
0
1
2
3
4
5
0
1
2
3
4
5
I
O
− Output Current − A  
I
O
− Output Current − A  
Figure 19  
Figure 20  
Equivalent series resistance (ESR) refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally,  
and PWB trace resistance to C .  
o
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃ ꢄ ꢄ ꢅ ꢄꢆ ꢀꢁ ꢂꢃ ꢄ ꢄ ꢅ ꢇ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢄ ꢈ ꢄ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢄ ꢉ ꢉ ꢊ ꢋꢀ ꢌ ꢁꢍ ꢊ ꢎꢏ ꢐ ꢍ ꢍ ꢑ ꢒ ꢓꢑ  
ꢀꢁ ꢂ ꢃꢄ ꢄ ꢔ ꢅ ꢕꢒꢂ ꢀꢖꢀ ꢏꢒꢓꢂ ꢋꢎꢓꢀ ꢏꢎ ꢂꢁꢍ ꢓꢂꢎ ꢄ ꢖꢒ ꢗ ꢍ ꢊꢖꢑꢏ ꢍ ꢁꢍ ꢘ ꢀ  
ꢙꢍ ꢗꢀꢒꢐ ꢎ ꢏꢎꢐ ꢘ ꢗꢒꢀꢍ ꢏꢂ  
SLVS293D − NOVEMBER 2000 − REVISED MAY 2002  
THERMAL INFORMATION  
The amount of heat that an LDO linear regulator generates is directly proportional to the amount of power it  
dissipates during operation. All integrated circuits have a maximum allowable junction temperature (T max)  
J
above which normal operation is not assured. A system designer must design the operating environment so  
that the operating junction temperature (T ) does not exceed the maximum junction temperature (T max). The  
J
J
two main environmental variables that a designer can use to improve thermal performance are air flow and  
external heatsinks. The purpose of this information is to aid the designer in determining the proper operating  
environment for a linear regulator that is operating at a specific power level.  
In general, the maximum expected power (P  
) consumed by a linear regulator is computed as:  
D(max)  
(1)  
PDmax + ǒVI(avg)  
Ǔ
* V  
  I  
) V  
x I  
I(avg) (Q)  
O(avg)  
O(avg)  
Where:  
V
is the average input voltage.  
I(avg)  
O(avg)  
O(avg)  
V
is the average output voltage.  
is the average output current.  
I
I
is the quiescent current.  
(Q)  
For most TI LDO regulators, the quiescent current is insignificant compared to the average output current;  
therefore, the term V x I can be neglected. The operating junction temperature is computed by adding  
I(avg) (Q)  
the ambient temperature (T ) and the increase in temperature due to the regulator’s power dissipation. The  
A
temperature rise is computed by multiplying the maximum expected power dissipation by the sum of the thermal  
resistances between the junction and the case (R  
), the case to heatsink (R  
), and the heatsink to ambient  
θJC  
θCS  
(R  
). Thermal resistances are measures of how effectively an object dissipates heat. Typically, the larger the  
θSA  
device, the more surface area available for power dissipation and the lower the object’s thermal resistance.  
Figure 21 illustrates these thermal resistances for (a) a TO−220 package attached to a heatsink, and (b) a  
TO−263 package mounted on a JEDEC High-K board.  
C
B
T
J
A
R
R
θJC  
A
A
B
T
C
B
θCS  
C
R
θSA  
C
TO−263 Package  
(b)  
T
A
TO−220 Package  
(a)  
Figure 21. Thermal Resistances  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢄ ꢅ ꢄ ꢆ ꢀ ꢁꢂ ꢃꢄ ꢄ ꢅ ꢇ ꢆ ꢀꢁ ꢂ ꢃ ꢄ ꢄ ꢈ ꢄꢆ ꢀꢁ ꢂ ꢃ ꢄꢄ ꢉ ꢉ ꢊ ꢋꢀ ꢌ ꢁꢍ ꢊ ꢎꢏ ꢐ ꢍ ꢍꢑ ꢒꢓꢑ  
ꢀ ꢁ ꢂ ꢃ ꢄꢄ ꢔ ꢅ ꢕꢒ ꢂꢀꢖꢀ ꢏꢒꢓ ꢂꢋ ꢎ ꢓꢀ ꢏꢎ ꢂ ꢁꢍ ꢓꢂꢎ ꢄ ꢖꢒ ꢗ ꢍ ꢊꢖꢑꢏꢍ ꢁꢍ ꢘꢀ  
ꢙ ꢍꢗꢀꢒ ꢐꢎ ꢏ ꢎꢐꢘ ꢗꢒꢀꢍ ꢏꢂ  
SLVS293D − NOVEMBER 2000 − REVISED MAY 2002  
THERMAL INFORMATION  
Equation 2 summarizes the computation:  
) P max x ǒR  
Ǔ
(2)  
T
+ T  
) R  
) R  
D
J
A
θJC  
θCS  
θSA  
The R  
is specific to each regulator as determined by its package, lead frame, and die size provided in the  
θJC  
regulator’s datasheet. The R  
type heatsinks, like the one attached to the TO−220 package in Figure 21(a), can have R  
is a function of the type and size of heatsink. For example, black body radiator  
θSA  
values ranging  
is a function of how the  
θCS  
from 5°C/W for very large heatsinks to 50°C/W for very small heatsinks. The R  
θCS  
package is attached to the heatsink. For example, if a thermal compound is used to attach a heatsink to a  
TO−220 package, R of 1°C/W is reasonable.  
θCS  
Even if no external black body radiator type heatsink is attached to the package, the board on which the regulator  
is mounted will provide some heatsinking through the pin solder connections. Some packages, like the TO−263  
and TI’s TSSOP PowerPADpackages, use a copper plane underneath the package or the circuit board’s  
ground plane for additional heatsinking to improve their thermal performance. Computer aided thermal  
modeling can be used to compute very accurate approximations of an integrated circuit’s thermal performance  
in different operating environments (e.g., different types of circuit boards, different types and sizes of heatsinks,  
and different air flows, etc.). Using these models, the three thermal resistances can be combined into one  
thermal resistance between junction and ambient (R  
environment used in the computer model.  
). This R  
is valid only for the specific operating  
θJA  
θJA  
Equation 2 simplifies into equation 3:  
(3)  
T
+ T ) P max x R  
D
A
J
θJA  
Rearranging equation 3 gives equation 4:  
T –T  
J
A
(4)  
R
+
θJA  
P max  
D
Using equation 3 and the computer model generated curves shown in Figures 22 and 25, a designer can quickly  
compute the required heatsink thermal resistance/board area for a given ambient temperature, power  
dissipation, and operating environment.  
PowerPAD is a trademark of Texas Instruments.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃ ꢄ ꢄ ꢅ ꢄꢆ ꢀꢁ ꢂꢃ ꢄ ꢄ ꢅ ꢇ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢄ ꢈ ꢄ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢄ ꢉ ꢉ ꢊ ꢋꢀ ꢌ ꢁꢍ ꢊ ꢎꢏ ꢐ ꢍ ꢍ ꢑ ꢒ ꢓꢑ  
ꢀꢁ ꢂ ꢃꢄ ꢄ ꢔ ꢅ ꢕꢒꢂ ꢀꢖꢀ ꢏꢒꢓꢂ ꢋꢎꢓꢀ ꢏꢎ ꢂꢁꢍ ꢓꢂꢎ ꢄ ꢖꢒ ꢗ ꢍ ꢊꢖꢑꢏ ꢍ ꢁꢍ ꢘ ꢀ  
ꢙꢍ ꢗꢀꢒꢐ ꢎ ꢏꢎꢐ ꢘ ꢗꢒꢀꢍ ꢏꢂ  
SLVS293D − NOVEMBER 2000 − REVISED MAY 2002  
THERMAL INFORMATION  
TO−220 power dissipation  
The TO−220 package provides an effective means of managing power dissipation in through-hole applications.  
The TO−220 package dimensions are provided in the Mechanical Data section at the end of the data sheet. A  
heatsink can be used with the TO−220 package to effectively lower the junction-to-ambient thermal resistance.  
To illustrate, the TPS75525 in a TO−220 package was chosen. For this example, the average input voltage is  
3.3 V, the output voltage is 2.5 V, the average output current is 3 A, the ambient temperature 55°C, the air flow  
is 150 LFM, and the operating environment is the same as documented below. Neglecting the quiescent current,  
the maximum average power is:  
(5)  
(
)
P max + 3.3 – 2.5 V x 3 A + 2.4 W  
D
Substituting T max for T into equation 4 gives equation 6:  
J
J
(6)  
R
max + (125 – 55)°Cń2.4 W + 29°CńW  
θJA  
From Figure 22, R  
vs Heatsink Thermal Resistance, a heatsink with R  
= 22°C/W is required to dissipate  
θJA  
θSA  
2.4 W. The model operating environment used in the computer model to construct Figure 22 consisted of a  
standard JEDEC High-K board (2S2P) with a 1 oz. internal copper plane and ground plane. Since the package  
pins were soldered to the board, 450 mm of the board was modeled as a heatsink. Figure 23 shows the side  
2
view of the operating environment used in the computer model.  
THERMAL RESISTANCE  
vs  
HEATSINK THERMAL RESISTANCE  
65  
Natural Convection  
55  
Air Flow = 150 LFM  
45  
Air Flow = 250 LFM  
Air Flow = 500 LFM  
35  
25  
15  
No Heatsink  
5
25  
20  
15  
10  
5
0
R
− Heatsink Thermal Resistance − °C/W  
θSA  
Figure 22  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢄ ꢅ ꢄ ꢆ ꢀ ꢁꢂ ꢃꢄ ꢄ ꢅ ꢇ ꢆ ꢀꢁ ꢂ ꢃ ꢄ ꢄ ꢈ ꢄꢆ ꢀꢁ ꢂ ꢃ ꢄꢄ ꢉ ꢉ ꢊ ꢋꢀ ꢌ ꢁꢍ ꢊ ꢎꢏ ꢐ ꢍ ꢍꢑ ꢒꢓꢑ  
ꢀ ꢁ ꢂ ꢃ ꢄꢄ ꢔ ꢅ ꢕꢒ ꢂꢀꢖꢀ ꢏꢒꢓ ꢂꢋ ꢎ ꢓꢀ ꢏꢎ ꢂ ꢁꢍ ꢓꢂꢎ ꢄ ꢖꢒ ꢗ ꢍ ꢊꢖꢑꢏꢍ ꢁꢍ ꢘꢀ  
ꢙ ꢍꢗꢀꢒ ꢐꢎ ꢏ ꢎꢐꢘ ꢗꢒꢀꢍ ꢏꢂ  
SLVS293D − NOVEMBER 2000 − REVISED MAY 2002  
THERMAL INFORMATION  
TO−220 power dissipation (continued)  
0.21 mm  
0.21 mm  
1 oz. Copper  
Power Plane  
1 oz. Copper  
Ground Plane  
Figure 23  
From the data in Figure 22 and rearranging equation 4, the maximum power dissipation for a different heatsink  
R
and a specific ambient temperature can be computed (see Figure 24).  
θSA  
POWER DISSIPATION  
vs  
HEATSINK THERMAL RESISTANCE  
10  
T
A
= 55°C  
Air Flow = 500 LFM  
Air Flow = 250 LFM  
Air Flow = 150 LFM  
Natural Convection  
No Heatsink  
20  
1
10  
0
R
− Heatsink Thermal Resistance − °C/W  
θSA  
Figure 24  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃ ꢄ ꢄ ꢅ ꢄꢆ ꢀꢁ ꢂꢃ ꢄ ꢄ ꢅ ꢇ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢄ ꢈ ꢄ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢄ ꢉ ꢉ ꢊ ꢋꢀ ꢌ ꢁꢍ ꢊ ꢎꢏ ꢐ ꢍ ꢍ ꢑ ꢒ ꢓꢑ  
ꢀꢁ ꢂ ꢃꢄ ꢄ ꢔ ꢅ ꢕꢒꢂ ꢀꢖꢀ ꢏꢒꢓꢂ ꢋꢎꢓꢀ ꢏꢎ ꢂꢁꢍ ꢓꢂꢎ ꢄ ꢖꢒ ꢗ ꢍ ꢊꢖꢑꢏ ꢍ ꢁꢍ ꢘ ꢀ  
ꢙꢍ ꢗꢀꢒꢐ ꢎ ꢏꢎꢐ ꢘ ꢗꢒꢀꢍ ꢏꢂ  
SLVS293D − NOVEMBER 2000 − REVISED MAY 2002  
THERMAL INFORMATION  
TO−263 power dissipation  
The TO−263 package provides an effective means of managing power dissipation in surface mount  
applications. The TO−263 package dimensions are provided in the Mechanical Data section at the end of the  
data sheet. The addition of a copper plane directly underneath the TO−263 package enhances the thermal  
performance of the package.  
To illustrate, the TPS75525 in a TO−263 package was chosen. For this example, the average input voltage is  
3.3 V, the output voltage is 2.5 V, the average output current is 3 A, the ambient temperature 55°C, the air flow  
is 150 LFM, and the operating environment is the same as documented below. Neglecting the quiescent current,  
the maximum average power is:  
(7)  
(
)
P max + 3.3 – 2.5 V x 3 A + 2.4 W  
D
Substituting T max for T into equation 4 gives equation 8:  
J
J
(8)  
R
max + (125 – 55)°Cń2.4 W + 29°CńW  
θJA  
2
From Figure 25, R  
vs Copper Heatsink Area, the ground plane needs to be 2 cm for the part to dissipate  
θJA  
2.4 W. The model operating environment used in the computer model to construct Figure 25 consisted of a  
standard JEDEC High-K board (2S2P) with a 1 oz. internal copper plane and ground plane. The package is  
soldered to a 2 oz. copper pad. The pad is tied through thermal vias to the 1 oz. ground plane. Figure 26 shows  
the side view of the operating environment used in the computer model.  
THERMAL RESISTANCE  
vs  
COPPER HEATSINK AREA  
40  
No Air Flow  
35  
150 LFM  
30  
250 LFM  
25  
20  
15  
0
0.01  
0.1  
1
10  
100  
2
Copper Heatsink Area − cm  
Figure 25  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢄ ꢅ ꢄ ꢆ ꢀ ꢁꢂ ꢃꢄ ꢄ ꢅ ꢇ ꢆ ꢀꢁ ꢂ ꢃ ꢄ ꢄ ꢈ ꢄꢆ ꢀꢁ ꢂ ꢃ ꢄꢄ ꢉ ꢉ ꢊ ꢋꢀ ꢌ ꢁꢍ ꢊ ꢎꢏ ꢐ ꢍ ꢍꢑ ꢒꢓꢑ  
ꢀ ꢁ ꢂ ꢃ ꢄꢄ ꢔ ꢅ ꢕꢒ ꢂꢀꢖꢀ ꢏꢒꢓ ꢂꢋ ꢎ ꢓꢀ ꢏꢎ ꢂ ꢁꢍ ꢓꢂꢎ ꢄ ꢖꢒ ꢗ ꢍ ꢊꢖꢑꢏꢍ ꢁꢍ ꢘꢀ  
ꢙ ꢍꢗꢀꢒ ꢐꢎ ꢏ ꢎꢐꢘ ꢗꢒꢀꢍ ꢏꢂ  
SLVS293D − NOVEMBER 2000 − REVISED MAY 2002  
THERMAL INFORMATION  
TO−263 power dissipation (continued)  
2 oz. Copper Solder Pad  
with 25 Thermal Vias  
1 oz. Copper  
Power Plane  
1 oz. Copper  
Ground Plane  
Thermal Vias, 0.3 mm  
Diameter, 1.5 mm Pitch  
Figure 26  
From the data in Figure 25 and rearranging equation 4, the maximum power dissipation for a different ground  
plane area and a specific ambient temperature can be computed (see Figure 27).  
MAXIMUM POWER DISSIPATION  
vs  
COPPER HEATSINK AREA  
5
T
A
= 55°C  
250 LFM  
4
3
150 LFM  
No Air Flow  
2
1
0
0.01  
0.1  
1
10  
100  
2
Copper Heatsink Area − cm  
Figure 27  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃ ꢄ ꢄ ꢅ ꢄꢆ ꢀꢁ ꢂꢃ ꢄ ꢄ ꢅ ꢇ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢄ ꢈ ꢄ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢄ ꢉ ꢉ ꢊ ꢋꢀ ꢌ ꢁꢍ ꢊ ꢎꢏ ꢐ ꢍ ꢍ ꢑ ꢒ ꢓꢑ  
ꢀꢁ ꢂ ꢃꢄ ꢄ ꢔ ꢅ ꢕꢒꢂ ꢀꢖꢀ ꢏꢒꢓꢂ ꢋꢎꢓꢀ ꢏꢎ ꢂꢁꢍ ꢓꢂꢎ ꢄ ꢖꢒ ꢗ ꢍ ꢊꢖꢑꢏ ꢍ ꢁꢍ ꢘ ꢀ  
ꢙꢍ ꢗꢀꢒꢐ ꢎ ꢏꢎꢐ ꢘ ꢗꢒꢀꢍ ꢏꢂ  
SLVS293D − NOVEMBER 2000 − REVISED MAY 2002  
APPLICATION INFORMATION  
programming the TPS75501 adjustable LDO regulator  
The output voltage of the TPS75501 adjustable regulator is programmed using an external resistor divider as  
shown in Figure 28. The output voltage is calculated using:  
R1  
R2  
  ǒ1 )  
Ǔ
(9)  
V
+ V  
O
ref  
Where:  
V
= 1.224 V typ (the internal reference voltage)  
ref  
Resistors R1 and R2 should be chosen for approximately 40-µA divider current. Lower value resistors can be  
used but offer no inherent advantage and waste more power. Higher values should be avoided as leakage  
currents at FB increase the output voltage error. The recommended design procedure is to choose  
R2 = 30.1 kto set the divider current at 40 µA and then calculate R1 using:  
V
O
R1 +  
ǒ
* 1  
Ǔ
  R2  
(10)  
V
ref  
TPS75501  
OUTPUT VOLTAGE  
PROGRAMMING GUIDE  
V
I
IN  
1 µF  
OUTPUT  
VOLTAGE  
R1  
R2  
UNIT  
2 V  
EN  
OUT  
FB  
V
o
O
2.5 V  
3.3 V  
3.6 V  
31.6  
51  
30.1  
30.1  
30.1  
kΩ  
kΩ  
kΩ  
0.7 V  
R1  
C
58.3  
GND  
R2  
Figure 28. TPS75501 Adjustable LDO Regulator Programming  
regulator protection  
The TPS755xx PMOS-pass transistor has a built-in back diode that conducts reverse currents when the input  
voltage drops below the output voltage (e.g., during power down). Current is conducted from the output to the  
input and is not internally limited. When extended reverse voltage is anticipated, external limiting may be  
appropriate.  
The TPS755xx also features internal current limiting and thermal protection. During normal operation, the  
TPS755xx limits output current to approximately 10 A. When current limiting engages, the output voltage scales  
back linearly until the overcurrent condition ends. While current limiting is designed to prevent gross device  
failure, care should be taken not to exceed the power dissipation ratings of the package. If the temperature of  
the device exceeds 150°C(typ), thermal-protection circuitry shuts it down. Once the device has cooled below  
130°C(typ), regulator operation resumes.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢄ ꢅ ꢄ ꢆ ꢀ ꢁꢂ ꢃꢄ ꢄ ꢅ ꢇ ꢆ ꢀꢁ ꢂ ꢃ ꢄ ꢄ ꢈ ꢄꢆ ꢀꢁ ꢂ ꢃ ꢄꢄ ꢉ ꢉ ꢊ ꢋꢀ ꢌ ꢁꢍ ꢊ ꢎꢏ ꢐ ꢍ ꢍꢑ ꢒꢓꢑ  
ꢀ ꢁ ꢂ ꢃ ꢄꢄ ꢔ ꢅ ꢕꢒ ꢂꢀꢖꢀ ꢏꢒꢓ ꢂꢋ ꢎ ꢓꢀ ꢏꢎ ꢂ ꢁꢍ ꢓꢂꢎ ꢄ ꢖꢒ ꢗ ꢍ ꢊꢖꢑꢏꢍ ꢁꢍ ꢘꢀ  
ꢙ ꢍꢗꢀꢒ ꢐꢎ ꢏ ꢎꢐꢘ ꢗꢒꢀꢍ ꢏꢂ  
SLVS293D − NOVEMBER 2000 − REVISED MAY 2002  
APPLICATION INFORMATION  
input capacitor  
For a typical application, a ceramic input bypass capacitor (0.22 µF−1 µF) is recommended to ensure device  
stability. This capacitor should be as close as possible to the input pin. Due to the impedance of the input supply,  
large transient currents will cause the input voltage to droop. If this droop causes the input voltage to drop below  
the UVLO threshold, the device will turn off. Therefore, it is recommended that a larger capacitor be placed in  
parallel with the ceramic bypass capacitor at the regulator’s input. The size of this capacitor depends on the  
output current, response time of the main power supply, and the main power supply’s distance to the regulator.  
At a minimum, the capacitor should be sized to ensure that the input voltage does not drop below the minimum  
UVLO threshold voltage during normal operating conditions.  
output capacitor  
As with most LDO regulators, the TPS755xx requires an output capacitor connected between OUT and GND  
to stabilize the internal control loop. The minimum recommended capacitance value is 47 µF with an ESR  
(equivalent series resistance) of at least 200 m. As shown in Figure 29, most capacitor and ESR combinations  
with a product of 47e−6 x 0.2 = 9.4e−6 or larger will be stable, provided the capacitor value is at least 47 µF.  
Solid tantalum electrolytic and aluminum electrolytic capacitors are all suitable, provided they meet the  
requirements described in this section. Larger capacitors provide a wider range of stability and better load  
transient response.  
This information along with the ESR graphs, Figures 19, 20, and 29, is included to assist in selection of suitable  
capacitance for the user’s application. When necessary to achieve low height requirements along with high  
output current and/or high load capacitance, several higher ESR capacitors can be used in parallel to meet  
these guidelines.  
OUTPUT CAPACITANCE  
vs  
EQUIVALENT SERIES RESISTANCE  
1000  
Region of Stability  
ESR min x C = Constant  
o
100  
47  
Region of Instability  
10  
0.01  
0.1  
0.2  
ESR − Equivalent Series Resistance − Ω  
Figure 29  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Jan-2013  
PACKAGING INFORMATION  
Orderable Device  
TPS75501KC  
Status Package Type Package Pins Package Qty  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
(1)  
(2)  
(3)  
(4)  
ACTIVE  
TO-220  
TO-220  
KC  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
50  
50  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
Call TI  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
Call TI  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
Call TI  
N / A for Pkg Type  
N / A for Pkg Type  
Call TI  
-40 to 125 75501  
-40 to 125 75501  
-40 to 125  
TPS75501KCG3  
TPS75501KTT  
ACTIVE  
KC  
KTT  
KTT  
KTT  
KTT  
KTT  
KC  
Green (RoHS  
& no Sb/Br)  
OBSOLETE DDPAK/  
TO-263  
TBD  
TPS75501KTTR  
TPS75501KTTRG3  
TPS75501KTTT  
TPS75501KTTTG3  
TPS75515KC  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DDPAK/  
TO-263  
500  
500  
50  
Green (RoHS  
& no Sb/Br)  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
N / A for Pkg Type  
N / A for Pkg Type  
Call TI  
-40 to 125 75501  
-40 to 125 75501  
75501  
DDPAK/  
TO-263  
Green (RoHS  
& no Sb/Br)  
DDPAK/  
TO-263  
Green (RoHS  
& no Sb/Br)  
DDPAK/  
TO-263  
50  
Green (RoHS  
& no Sb/Br)  
75501  
TO-220  
50  
Green (RoHS  
& no Sb/Br)  
-40 to 125 75515  
-40 to 125 75515  
-40 to 125  
TPS75515KCG3  
TPS75515KTT  
TO-220  
KC  
50  
Green (RoHS  
& no Sb/Br)  
OBSOLETE DDPAK/  
TO-263  
KTT  
KTT  
KTT  
KTT  
KTT  
KC  
TBD  
TPS75515KTTR  
TPS75515KTTRG3  
TPS75515KTTT  
TPS75515KTTTG3  
TPS75518KC  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DDPAK/  
TO-263  
500  
500  
50  
Green (RoHS  
& no Sb/Br)  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
N / A for Pkg Type  
N / A for Pkg Type  
Call TI  
-40 to 125 75515  
-40 to 125 75515  
75515  
DDPAK/  
TO-263  
Green (RoHS  
& no Sb/Br)  
DDPAK/  
TO-263  
Green (RoHS  
& no Sb/Br)  
DDPAK/  
TO-263  
50  
Green (RoHS  
& no Sb/Br)  
75515  
TO-220  
50  
Green (RoHS  
& no Sb/Br)  
-40 to 125 75518  
-40 to 125 75518  
-40 to 125  
TPS75518KCG3  
TPS75518KTT  
TO-220  
KC  
50  
Green (RoHS  
& no Sb/Br)  
OBSOLETE DDPAK/  
TO-263  
KTT  
TBD  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Jan-2013  
Orderable Device  
Status Package Type Package Pins Package Qty  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
(1)  
(2)  
(3)  
(4)  
TPS75518KTTR  
TPS75518KTTRG3  
TPS75518KTTT  
TPS75518KTTTG3  
TPS75525KC  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DDPAK/  
TO-263  
KTT  
KTT  
KTT  
KTT  
KC  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
500  
500  
50  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
Call TI  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
Call TI  
CU SN  
CU SN  
CU SN  
CU SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
N / A for Pkg Type  
N / A for Pkg Type  
Call TI  
-40 to 125 75518  
-40 to 125 75518  
75518  
DDPAK/  
TO-263  
Green (RoHS  
& no Sb/Br)  
DDPAK/  
TO-263  
Green (RoHS  
& no Sb/Br)  
DDPAK/  
TO-263  
50  
Green (RoHS  
& no Sb/Br)  
75518  
TO-220  
50  
Green (RoHS  
& no Sb/Br)  
-40 to 125 75525  
-40 to 125 75525  
-40 to 125  
TPS75525KCG3  
TPS75525KTT  
TO-220  
KC  
50  
Green (RoHS  
& no Sb/Br)  
OBSOLETE DDPAK/  
TO-263  
KTT  
KTT  
KTT  
KTT  
KTT  
KC  
TBD  
TPS75525KTTR  
TPS75525KTTRG3  
TPS75525KTTT  
TPS75525KTTTG3  
TPS75533KC  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DDPAK/  
TO-263  
500  
500  
50  
Green (RoHS  
& no Sb/Br)  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
N / A for Pkg Type  
N / A for Pkg Type  
Call TI  
-40 to 125 75525  
-40 to 125 75525  
75525  
DDPAK/  
TO-263  
Green (RoHS  
& no Sb/Br)  
DDPAK/  
TO-263  
Green (RoHS  
& no Sb/Br)  
DDPAK/  
TO-263  
50  
Green (RoHS  
& no Sb/Br)  
75525  
TO-220  
50  
Green (RoHS  
& no Sb/Br)  
-40 to 125 75533  
-40 to 125 75533  
-40 to 125  
TPS75533KCG3  
TPS75533KTT  
TO-220  
KC  
50  
Green (RoHS  
& no Sb/Br)  
OBSOLETE DDPAK/  
TO-263  
KTT  
KTT  
KTT  
KTT  
KTT  
TBD  
TPS75533KTTR  
TPS75533KTTRG3  
TPS75533KTTT  
TPS75533KTTTG3  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DDPAK/  
TO-263  
500  
500  
50  
Green (RoHS  
& no Sb/Br)  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125 75533  
-40 to 125 75533  
75533  
DDPAK/  
TO-263  
Green (RoHS  
& no Sb/Br)  
DDPAK/  
TO-263  
Green (RoHS  
& no Sb/Br)  
DDPAK/  
TO-263  
50  
Green (RoHS  
& no Sb/Br)  
75533  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Jan-2013  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) Only one of markings shown within the brackets will appear on the physical device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Mar-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS75501KTTR  
TPS75515KTTR  
TPS75515KTTT  
TPS75518KTTR  
TPS75518KTTT  
TPS75525KTTR  
TPS75525KTTT  
TPS75533KTTR  
TPS75533KTTT  
DDPAK/  
TO-263  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
5
5
5
5
5
5
5
5
5
500  
500  
50  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
24.4  
24.4  
24.4  
24.4  
24.4  
24.4  
24.4  
24.4  
24.4  
10.6  
10.6  
10.6  
10.6  
10.6  
10.6  
10.6  
10.6  
10.6  
15.6  
15.6  
15.6  
15.6  
15.6  
15.6  
15.6  
15.6  
15.6  
4.9  
4.9  
4.9  
4.9  
4.9  
4.9  
4.9  
4.9  
4.9  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
24.0  
24.0  
24.0  
24.0  
24.0  
24.0  
24.0  
24.0  
24.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
DDPAK/  
TO-263  
DDPAK/  
TO-263  
DDPAK/  
TO-263  
500  
50  
DDPAK/  
TO-263  
DDPAK/  
TO-263  
500  
50  
DDPAK/  
TO-263  
DDPAK/  
TO-263  
500  
50  
DDPAK/  
TO-263  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Mar-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS75501KTTR  
TPS75515KTTR  
TPS75515KTTT  
TPS75518KTTR  
TPS75518KTTT  
TPS75525KTTR  
TPS75525KTTT  
TPS75533KTTR  
TPS75533KTTT  
DDPAK/TO-263  
DDPAK/TO-263  
DDPAK/TO-263  
DDPAK/TO-263  
DDPAK/TO-263  
DDPAK/TO-263  
DDPAK/TO-263  
DDPAK/TO-263  
DDPAK/TO-263  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
5
5
5
5
5
5
5
5
5
500  
500  
50  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
45.0  
45.0  
45.0  
45.0  
45.0  
45.0  
45.0  
45.0  
45.0  
500  
50  
500  
50  
500  
50  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

TPS75501KTTTG3

FAST-TRANSIENT RESPONSE 5-A LOW-DROPOUT VOLTAGE REGULATORS
TI

TPS75515

FAST-TRANSIENT RESPONSE 5-A LOW-DROPOUT VOLTAGE REGULATORS
TI

TPS75515KC

FAST-TRANSIENT RESPONSE 5-A LOW-DROPOUT VOLTAGE REGULATORS
TI

TPS75515KCG3

FAST-TRANSIENT RESPONSE 5-A LOW-DROPOUT VOLTAGE REGULATORS
TI

TPS75515KTT

FAST-TRANSIENT RESPONSE 5-A LOW-DROPOUT VOLTAGE REGULATORS
TI

TPS75515KTTR

FAST-TRANSIENT RESPONSE 5-A LOW-DROPOUT VOLTAGE REGULATORS
TI

TPS75515KTTRG3

FAST-TRANSIENT RESPONSE 5-A LOW-DROPOUT VOLTAGE REGULATORS
TI

TPS75515KTTT

FAST-TRANSIENT RESPONSE 5-A LOW-DROPOUT VOLTAGE REGULATORS
TI

TPS75515KTTTG3

FAST-TRANSIENT RESPONSE 5-A LOW-DROPOUT VOLTAGE REGULATORS
TI

TPS75515_16

FAST-TRANSIENT RESPONSE 5-A LOW-DROPOUT VOLTAGE REGULATORS
TI

TPS75518

FAST-TRANSIENT RESPONSE 5-A LOW-DROPOUT VOLTAGE REGULATORS
TI

TPS75518KC

FAST-TRANSIENT RESPONSE 5-A LOW-DROPOUT VOLTAGE REGULATORS
TI