TPS76330QDBVRG4Q1 [TI]

具有使能功能的汽车类 150mA、10V、低压降稳压器 | DBV | 5 | -40 to 125;
TPS76330QDBVRG4Q1
型号: TPS76330QDBVRG4Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有使能功能的汽车类 150mA、10V、低压降稳压器 | DBV | 5 | -40 to 125

电源电路 线性稳压器IC
文件: 总19页 (文件大小:337K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢈꢉ  
www.ti.com  
SGLS247A − JUNE 2004 − REVISED JUNE 2008  
DBV PACKAGE  
(TOP VIEW)  
D
D
D
D
Qualified for Automotive Applications  
150-mA Low-Dropout Regulator  
1
2
3
5
4
OUT  
IN  
Output Voltage: 5 V, 3.8 V, 3.3 V, 3 V, 2.8 V,  
2.7 V, 2.5 V, 1.8 V, 1.6 V and Variable  
GND  
EN  
Dropout Voltage, Typically 300 mV  
at 150 mA  
NC/FB  
D
D
D
Thermal Protection  
Overcurrent Limitation  
Less Than 2-µA Quiescent Current in  
Shutdown Mode  
D
D
−40°C to 125°C Operating Junction  
Temperature Range  
5-Pin SOT-23 (DBV) Package  
description  
The TPS763xx family of low-dropout (LDO) voltage regulators offers the benefits of low-dropout voltage, low-power  
operation, and miniaturized packaging. These regulators feature low dropout voltages and quiescent currents compared  
to conventional LDO regulators. Offered in a 5-terminal, small outline integrated-circuit SOT-23 package, the TPS763xx  
series devices are ideal for cost-sensitive designs and for applications where board space is at a premium.  
A combination of new circuit design and process innovation has enabled the usual pnp pass transistor to be replaced by  
a PMOS pass element. Because the PMOS pass element behaves as a low-value resistor, the dropout voltage is  
low—typically 300 mV at 150 mA of load current (TPS76333)—and is directly proportional to the load current. Since the  
PMOS pass element is a voltage-driven device, the quiescent current is low (140 µA maximum) and is stable over the entire  
range of output load current (0 mA to 150 mA). Intended for use in portable systems such as laptops and cellular phones,  
the low-dropout voltage feature and low-power operation result in a significant increase in system battery operating life.  
The TPS763xx also features a logic-enabled sleep mode to shut down the regulator, reducing quiescent current to 1 µA  
maximum at TJ = 25°C.The TPS763xx is offered in 1.6-V,1.8-V, 2.5-V, 2.7-V, 2.8-V, 3-V, 3.3-V, 3.8-V, and 5-V fixed-voltage  
versions and in a variable version (programmable over the range of 1.5 V to 6.5 V).  
{
AVAILABLE OPTIONS  
}
T
J
VOLTAGE  
Variable  
1.6 V  
PACKAGE  
PART NUMBER  
SYMBOL  
BAN  
TPS76301QDBVRQ1  
TPS76316QDBVRQ1  
TPS76318QDBVRQ1  
TPS76325QDBVRQ1  
BAD  
1.8 V  
BAP  
2.5 V  
BAQ  
§
2.7 V  
TPS76327QDBVRQ1  
SOT-23  
(DBV)  
−40°C to 125°C  
§
2.8 V  
TPS76328QDBVRQ1  
3 V  
TPS76330QDBVRQ1  
TPS76333QDBVRQ1  
BAT  
BAU  
3.3 V  
§
3.8 V  
TPS76338QDBVRQ1  
5.0 V  
TPS76350QDBVRQ1  
BAW  
For the most current package and ordering information, see the Package Option Addendum at  
the end of this document, or see the TI web site at http://www.ti.com.  
§
Package drawings, thermal data, and symbolization are available at http://www.ti.com/packaging.  
Product Preview. Contact Texas Instruments for availability.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
ꢣ ꢞꢜ ꢝꢞ ꢟ ꢓ ꢡ ꢞ ꢢ ꢦꢥ ꢣ ꢛ ꢝꢛ ꢣ ꢠ ꢡ ꢛꢞ ꢜꢢ ꢦ ꢥꢟ ꢡꢫ ꢥ ꢡꢥ ꢟ ꢓꢢ ꢞꢝ ꢀꢥꢬ ꢠ ꢢ ꢗꢜꢢ ꢡꢟ ꢤꢓ ꢥꢜꢡ ꢢ ꢢꢡ ꢠꢜ ꢩꢠꢟ ꢩ ꢭ ꢠꢟ ꢟ ꢠ ꢜꢡꢮꢪ  
Copyright 2008 Texas Instruments Incorporated  
ꢔꢀ  
ꢀꢁ  
www.ti.com  
SGLS247A − JUNE 2004 − REVISED JUNE 2008  
functional block diagram  
TPS76301  
OUT  
FB  
IN  
EN  
Current Limit/  
Thermal  
Protection  
V
REF  
GND  
TPS76316/ 18/ 25/ 27/ 28/ 30/ 33/ 38/ 50  
OUT  
IN  
EN  
Current Limit/  
Thermal  
Protection  
V
REF  
GND  
Terminal Functions  
TERMINAL  
NAME  
DESCRIPTION  
GND  
EN  
Ground  
Enable input  
FB  
Feedback voltage (TPS76301 only)  
Input supply voltage  
IN  
NC  
OUT  
No connection (fixed-voltage option only)  
Regulated output voltage  
2
ꢀꢁ  
ꢋꢈ  
www.ti.com  
SGLS247A − JUNE 2004 − REVISED JUNE 2008  
absolute maximum ratings over operating free-air temperature range (unless otherwise  
(
1)  
noted)  
(2)  
Input voltage range  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 10 V  
Voltage range at EN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to V + 0.3 V  
I
Voltage on OUT, FB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
Peak output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internally limited  
ESD rating, HBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 kV  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Tables  
Operating junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 150°C  
J
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
(1)  
(2)  
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only,  
and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
All voltage values are with respect to network ground terminal.  
DISSIPATION RATING TABLE  
DERATING FACTOR  
T
25°C  
T
= 70°C  
T = 85°C  
A
A
A
BOARD  
PACKAGE  
R
R
θJC  
θJA  
ABOVE T = 25°C  
POWER RATING POWER RATING POWER RATING  
A
(1)  
(2)  
Low K  
DBV  
DBV  
65.8°C/W  
65.8°C/W  
259°C/W  
180°C/W  
3.9 mW/°C  
5.6 mW/°C  
386 mW  
555 mW  
212 mW  
305 mW  
154 mW  
222 mW  
High K  
(1)  
The JEDEC Low K (1s) board design used to derive this data was a 3 inch x 3 inch, two layer board with 2 ounce copper traces on top of the  
board.  
The JEDEC High K (2s2p) board design used to derive this data was a 3 inch x 3 inch, multilayer board with 1 ounce internal power and ground  
planes and 2 ounce copper traces on top and bottom of the board.  
(2)  
recommended operating conditions  
MIN NOM  
MAX  
10  
UNIT  
V
(1)  
Input voltage, V  
2.7  
0
I
Continuous output current, I  
150  
125  
mA  
°C  
O
Operating junction temperature, T  
−40  
J
(1)  
To calculate the minimum input voltage for your maximum output current, use the following equation:  
= V + V  
V
I(min)  
O(max) DO(max load)  
3
ꢔꢀ  
ꢀꢁ  
ꢀꢁ  
www.ti.com  
SGLS247A − JUNE 2004 − REVISED JUNE 2008  
electrical characteristics over recommended operating free-air temperature range,  
V = V + 1 V, I = 1 mA, EN = IN, C = 4.7 µF (unless otherwise noted)  
I
O(typ)  
O
o
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.02V  
UNIT  
3.25 V > V 2.7 V, = 1 mA to 75 mA,  
I
I
O
0.98V  
V
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
2.5 V V 1.5 V,  
T = 25°C  
J
O
3.25 V > V 2.7 V,  
I
O
= 1 mA to 75 mA,  
I
0.97V  
0.98V  
V
V
V
V
V
1.03V  
1.02V  
2.5 V V 1.5 V  
O
V 3.25 V,  
I
= 1 mA to 100 mA,  
I
O
5 V V 1.5 V  
T = 25°C  
J
O
TPS76301  
V
V 3.25 V,  
I
O
= 1 mA to 100 mA,  
I
0.97V  
1.03V  
5 V V 1.5 V  
O
V 3.25 V,  
I
= 1 mA to 150 mA,  
I
O
0.975V  
0.9625V  
1.025V  
1.0375V  
5 V V 1.5 V  
T = 25°C  
J
O
V 3.25 V,  
I
O
= 1 mA to 150 mA,  
I
5 V V 1.5 V  
O
1 mA< I < 75 mA,  
T = 25°C  
J
O
V = 2.7 V,  
1.568  
1.552  
1.568  
1.552  
1.56  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.8  
1.8  
1.8  
1.8  
1.8  
1.632  
1.648  
1.632  
1.648  
1.640  
1.664  
1.836  
1.854  
1.836  
1.854  
1.845  
I
V = 2.7 V,  
I
1 mA< I < 75 mA  
O
1 mA < I < 100 mA,  
O
V = 3.25 V,  
I
T = 25°C  
J
TPS76316  
V
V = 3.25 V,  
I
1 mA < I < 100 mA  
O
1 mA < I < 150 mA,  
O
V = 3.25 V,  
I
T = 25°C  
J
V = 3.25 V,  
I
1 mA < I < 150 mA  
1.536  
1.764  
1.746  
1.764  
1.746  
1.755  
O
1 mA< I < 75 mA,  
O
V = 2.7 V,  
I
T = 25°C  
J
V = 2.7 V,  
I
1 mA< I < 75 mA  
O
V
O
Output voltage  
1 mA < I < 100 mA,  
O
V = 3.25 V,  
I
T = 25°C  
J
TPS76318  
V
V = 3.25 V,  
I
1 mA < I < 100 mA  
O
1 mA < I < 150 mA,  
O
V = 3.25 V,  
I
T = 25°C  
J
V = 3.25 V,  
1 mA < I < 150 mA  
1.733  
2.45  
1.8  
2.5  
2.5  
2.5  
2.5  
2.7  
2.7  
2.7  
2.7  
2.8  
2.8  
2.8  
2.8  
3
1.867  
2.55  
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
= 1 mA to 100 mA,  
= 1 mA to 100 mA  
= 1 mA to 150 mA,  
= 1 mA to 150 mA  
= 1 mA to 100 mA,  
= 1 mA to 100 mA  
= 1 mA to 150 mA,  
= 1 mA to 150 mA  
= 1 mA to 100 mA,  
= 1 mA to 100 mA  
= 1 mA to 150 mA,  
= 1 mA to 150 mA  
= 1 mA to 100 mA,  
= 1 mA to 100 mA  
= 1 mA to 150 mA,  
= 1 mA to 150 mA  
T = 25°C  
J
2.425  
2.438  
2.407  
2.646  
2.619  
2.632  
2.599  
2.744  
2.716  
2.73  
2.575  
2.562  
2.593  
2.754  
2.781  
2.767  
2.801  
2.856  
2.884  
2.87  
TPS76325  
TPS76327  
TPS76328  
TPS76330  
V
V
V
V
T = 25°C  
J
T = 25°C  
J
T = 25°C  
J
T = 25°C  
J
T = 25°C  
J
2.695  
2.94  
2.905  
3.06  
T = 25°C  
J
2.91  
3
3.09  
T = 25°C  
J
2.925  
2.888  
3
3.075  
3.112  
3
4
ꢀꢁ  
ꢋꢈ  
www.ti.com  
SGLS247A − JUNE 2004 − REVISED JUNE 2008  
electrical characteristics over recommended operating free-air temperature range,  
V = V + 1 V, I = 1 mA, EN = IN, C = 4.7 µF (unless otherwise noted) (continued)  
I
O(typ)  
O
o
PARAMETER  
TEST CONDITIONS  
MIN  
3.234  
3.201  
3.218  
3.177  
3.724  
3.705  
3.686  
3.667  
4.875  
4.825  
4.750  
4.80  
TYP  
3.3  
3.3  
3.3  
3.3  
3.8  
3.8  
3.8  
3.8  
5
MAX  
3.366  
3.399  
3.382  
3.423  
3.876  
3.895  
3.914  
3.933  
5.125  
5.175  
5.15  
5.20  
100  
UNIT  
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
= 1 mA to 100 mA,  
= 1 mA to 100 mA  
= 1 mA to 150 mA,  
= 1 mA to 150 mA  
= 1 mA to 100 mA,  
= 1 mA to 100 mA  
= 1 mA to 150 mA,  
= 1 mA to 150 mA  
= 1 mA to 100 mA,  
= 1 mA to 100 mA  
= 1 mA to 150 mA,  
= 1 mA to 150 mA  
= 0 to 150 mA,  
T = 25°C  
J
TPS76333  
TPS76338  
TPS76350  
V
T = 25°C  
J
T = 25°C  
J
V
Output voltage  
V
V
O
T = 25°C  
J
T = 25°C  
J
5
T = 25°C  
J
5
5
(1)  
T = 25°C  
J
85  
Quiescent current  
I
(Q)  
(2)  
(GND terminal current)  
= 0 to 150 mA see  
140  
µA  
µV  
EN < 0.5 V,  
EN < 0.5 V  
T = 25°C  
J
0.5  
1
Standby current  
2
BW = 300 Hz to 50 kHz,  
T = 25°C,  
(2)  
V
n
Output noise voltage  
C
= 10 µF  
o
140  
J
(2)  
PSRR Ripple rejection  
Current limit  
f = 1 kHz, C = 10 µF,  
T = 25°C  
60  
0.8  
dB  
A
o
J
(3)  
T = 25°C, see  
J
0.5  
0.5  
1.5  
0.07  
0.1  
2
V
+ 1 V < V 10 V,  
V 3.5 V, T = 25°C  
0.04  
Output voltage line regulation  
(3)  
O
O
I
I
J
%/V  
V
(V /V ), (see  
)
V
+ 1 V < V 10 V,  
V 3.5 V  
I
O
O
I
(2)  
V
V
EN high level input  
EN low level input  
See  
See  
1.4  
1.2  
IH  
(2)  
IL  
EN = 0 V  
EN = IN  
−0.01  
−0.01  
−0.5  
−0.5  
I
I
EN input current  
µA  
(1)  
(2)  
(3)  
Minimum IN operating voltage is 2.7 V or V  
O(typ)  
+ 1 V, whichever is greater.  
Test condition includes: output voltage V = 0 V (for variable device FB is shorted to V ) and pulse duration = 10 ms.  
O
O
If V < 2.5 V and V  
Imax  
= 10 V, V  
Imin  
= 3.5 V:  
O
OǒVImax * 3.5 VǓ  
V
ǒ
Ǔ
 
Line Reg. (mV) + %ńV  
  1000  
100  
If V > 2.5 V and V  
Imax  
= 10 V, V = V + 1 V:  
O
Imin  
O
* ǒVO  
100  
Ǔ
OǒVImax  
) 1 Ǔ  
V
ǒ
Ǔ
 
Line Reg. (mV) + %ńV  
  1000  
5
ꢔꢀ  
ꢀꢁ  
ꢀꢁ  
www.ti.com  
SGLS247A − JUNE 2004 − REVISED JUNE 2008  
electrical characteristics over recommended operating free-air temperature range,  
V = V  
+ 1 V, I = 1 mA, EN = IN, C = 4.7 µF (unless otherwise noted) (continued)  
I
O(typ)  
O
o
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.2  
3
MAX  
UNIT  
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
= 0 mA,  
T = 25°C  
J
= 1 mA,  
T = 25°C  
J
= 50 mA,  
= 50 mA  
= 75 mA,  
= 75 mA  
= 100 mA,  
= 100 mA  
= 150 mA,  
= 150 mA  
= 0 mA,  
T = 25°C  
J
120  
150  
200  
225  
300  
300  
400  
450  
600  
T = 25°C  
J
180  
240  
360  
TPS76325  
TPS76333  
TPS76350  
mV  
mV  
mV  
T = 25°C  
J
T = 25°C  
J
T = 25°C  
J
0.2  
3
= 1 mA,  
T = 25°C  
J
= 50 mA,  
= 50 mA  
= 75 mA,  
= 75 mA  
= 100 mA,  
= 100 mA  
= 150 mA,  
= 150 mA  
= 0 mA,  
T = 25°C  
J
100  
125  
166  
188  
250  
250  
333  
375  
500  
T = 25°C  
J
150  
200  
300  
V
DO  
Dropout voltage  
T = 25°C  
J
T = 25°C  
J
T = 25°C  
J
0.2  
2
= 1 mA,  
T = 25°C  
J
= 50 mA,  
= 50 mA  
= 75 mA,  
= 75 mA  
= 100 mA,  
= 100 mA  
= 150 mA,  
= 150 mA  
T = 25°C  
J
60  
75  
100  
113  
150  
150  
200  
225  
300  
T = 25°C  
J
90  
120  
180  
T = 25°C  
J
T = 25°C  
J
6
ꢀꢁ  
ꢋꢈ  
www.ti.com  
SGLS247A − JUNE 2004 − REVISED JUNE 2008  
TYPICAL CHARACTERISTICS  
TPS76325  
TPS76318  
OUTPUT VOLTAGE  
vs  
OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
2.505  
2.5  
1.805  
1.800  
1.795  
1.790  
1.785  
1.780  
V = 3.5 V  
I
V = 3.5 V  
I
C = C = 4.7 µF  
I
J
O
= 25°C  
C = C = 4.7 µF  
I
J
O
= 25°C  
T
T
2.495  
2.49  
2.485  
2.48  
1.775  
1.770  
2.475  
0
30  
60  
90  
120  
150  
180  
0
30  
60  
90  
120  
150  
180  
I
O
− Output Current − mA  
I
O
− Output Current − mA  
Figure 1  
Figure 2  
TPS76350  
OUTPUT VOLTAGE  
vs  
TPS76325  
OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT  
FREE-AIR TEMPERATURE  
5.01  
5
2.53  
2.52  
2.51  
2.5  
V = 6 V  
I
V = 3.5 V  
I
C = C = 4.7 µF  
I
J
O
= 25°C  
C = C = 4.7 µF  
I
O
T
4.99  
4.98  
4.97  
4.96  
I
= 1 mA  
O
I
= 150 mA  
2.49  
O
2.48  
2.47  
4.95  
0
30  
60  
90  
120  
150  
180  
−55 −35 −15  
5
25  
45  
65  
85 105 125  
I
O
− Output Current − mA  
T
J
− Junction Temperature − °C  
Figure 4  
Figure 3  
7
ꢔꢀ  
ꢀꢁ  
ꢀꢁ  
www.ti.com  
SGLS247A − JUNE 2004 − REVISED JUNE 2008  
TYPICAL CHARACTERISTICS  
TPS76318  
TPS76350  
OUTPUT VOLTAGE  
vs  
OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
1.82  
1.81  
1.8  
5.1  
5.08  
5.06  
5.04  
5.02  
5
V = 6 V  
I
C = C = 4.7 µF  
I
O
I
O
= 1 mA  
1.79  
1.78  
1.77  
1.76  
I
O
= 1 mA  
I
O
= 150 mA  
4.98  
4.96  
4.94  
I
= 150 mA  
O
V = 3.5 V  
I
1.75  
1.74  
C = C = 4.7 µF  
4.92  
4.9  
I
O
−55 −35 −15  
5
25  
45  
65  
85 105 125  
−55 −35 −15  
5
25  
45  
65  
85 105 125  
T
J
− Junction Temperature − °C  
T
J
− Junction Temperature − °C  
Figure 5  
Figure 6  
TPS76350  
OUTPUT NOISE  
vs  
FREQUENCY  
GROUND CURRENT  
vs  
FREE-AIR TEMPERATURE  
1000  
Ǹ
3mV Hz  
T
J
= 25°C  
V = 6 V  
I
Ǹ
C = C = 4.7 µF  
I
O
O
2.5mV Hz  
C = 10 µF  
O
O
I
= 0 mA and 150 mA  
I
= 150 mA  
Ǹ
2mV Hz  
C
= 4.7 µF  
= 150 mA  
O
I
O
Ǹ
1.5mV Hz  
100  
Ǹ
1mV Hz  
C
= 4.7 µF  
= 1 mA  
O
I
O
Ǹ
0.5mV Hz  
C
= 10 µF  
= 1 mA  
O
I
O
Ǹ
0mV Hz  
10  
−55 −35 −15  
1k  
10k  
100k  
5
25  
45  
65  
85 105 125  
250  
f − Frequency − Hz  
T
J
− Junction Temperature − °C  
Figure 7  
Figure 8  
8
ꢀꢁ  
www.ti.com  
SGLS247A − JUNE 2004 − REVISED JUNE 2008  
TYPICAL CHARACTERISTICS  
TPS76325  
DROPOUT VOLTAGE  
vs  
OUTPUT IMPEDANCE  
vs  
FREE-AIR TEMPERATURE  
FREQUENCY  
600  
500  
400  
300  
200  
10  
V = EN = 2.7 V  
I
C = C = 4.7 µF  
I
O
150 mA  
I
O
= 1 mA  
1
I
O
= 150 mA  
1 mA  
0 mA  
100  
0
C = C = 4.7 µF  
I
O
ESR = 1 Ω  
T
J
= 25°C  
0.1  
0.01  
−55 −35 −15  
5
25  
45  
65  
85 105 125  
0.1  
1
10  
100  
1000  
T
J
− Junction Temperature − °C  
f − Frequency − kHz  
Figure 9  
Figure 10  
TPS76325  
RIPPLE REJECTION  
vs  
FREQUENCY  
70  
60  
50  
I
O
= 1 mA  
I
O
= 150 mA  
40  
30  
20  
10  
0
C
= 4.7 µF  
O
ESR = 1 Ω  
T
J
= 25°C  
10  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
f − Frequency − Hz  
Figure 11  
9
ꢔꢀ  
ꢀꢁ  
ꢀꢁ  
www.ti.com  
SGLS247A − JUNE 2004 − REVISED JUNE 2008  
TYPICAL CHARACTERISTICS  
TPS76318  
LINE TRANSIENT RESPONSE  
TPS76318  
LOAD TRANSIENT RESPONSE  
5
4
3
2
1
200  
100  
0
C
= 4.7 µF  
O
ESR = 0.25 Ω  
= 25°C  
50  
0
T
J
C
= 4.7 µF  
O
ESR = 0.25 Ω  
= 25°C  
T
J
20  
0
−50  
dv  
dt  
1 V  
10 ms  
+
−100  
−150  
−20  
−30  
0
20 40 60 80 100 120 140 160 180 200  
0
20 40 60 80 100 120 140 160 180 200  
t − Time − µs  
t − Time − µs  
Figure 12  
Figure 13  
TPS76350  
LOAD TRANSIENT RESPONSE  
TPS76350  
LINE TRANSIENT RESPONSE  
200  
100  
0
8
7
6
5
C
= 4.7 µF  
O
ESR = 0.25 Ω  
= 25°C  
dv  
dt  
1 V  
10 ms  
+
T
J
C
= 4.7 µF  
O
150  
100  
0
ESR = 0.25 Ω  
= 25°C  
50  
0
T
J
−100  
−200  
−50  
−100  
0
20 40 60 80 100 120 140 160 180 200  
0
50 100 150 200 250 300 350 400 450 500  
t − Time − µs  
t − Time − µs  
Figure 14  
Figure 15  
10  
ꢀꢁ  
ꢋꢈ  
www.ti.com  
SGLS247A − JUNE 2004 − REVISED JUNE 2008  
TYPICAL CHARACTERISTICS  
TYPICAL REGIONS OF STABILITY  
TYPICAL REGIONS OF STABILITY  
COMPENSATION SERIES RESISTANCE (CSR)  
vs  
(1)  
(1)  
COMPENSATION SERIES RESISTANCE (CSR)  
vs  
OUTPUT CURRENT  
ADDED CERAMIC CAPACITANCE  
100  
100  
Region of Instability  
Region of Instability  
10  
1
10  
1
C
T
= 4.7 µF  
I = 150 mA  
C = 4.7 µF  
O
J
O
J
= 25°C  
T
= 25°C  
0.1  
0.1  
Region of Instability  
Region of Instability  
0.01  
0.01  
0
50  
100  
150  
200  
250  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
I
O
− Output Current − mA  
Added Ceramic Capacitance − µF  
Figure 16  
Figure 17  
TYPICAL REGIONS OF STABILITY  
TYPICAL REGIONS OF STABILITY  
(1)  
(1)  
COMPENSATION SERIES RESISTANCE (CSR)  
COMPENSATION SERIES RESISTANCE (CSR)  
vs  
vs  
OUTPUT CURRENT  
ADDED CERAMIC CAPACITANCE  
100  
100  
Region of Instability  
Region of Instability  
10  
1
10  
1
C
= 10 µF  
O
C
= 10 µF  
O
0.1  
0.1  
Region of Instability  
Region of Instability  
0.01  
0.01  
0
50  
100  
150  
200  
250  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
I
O
− Output Current − mA  
Added Ceramic Capacitance − µF  
Figure 19  
Figure 18  
(1)  
CSR refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace  
resistance to C  
.
O
11  
ꢔꢀ  
ꢀꢁ  
ꢀꢁ  
www.ti.com  
SGLS247A − JUNE 2004 − REVISED JUNE 2008  
APPLICATION INFORMATION  
The TPS763xx low-dropout (LDO) regulators are new families of regulators which have been optimized for use in  
battery-operated equipment and feature low dropout voltages, low quiescent current (140 µA), and an enable input to  
reduce supply currents to less than 2 µA when the regulator is turned off.  
device operation  
The TPS763xx uses a PMOS pass element to dramatically reduce both dropout voltage and supply current over more  
conventional PNP pass element LDO designs. The PMOS pass element is a voltage-controlled device that, unlike a PNP  
transistor, does not require increased drive current as output current increases. Supply current in the TPS763xx is  
essentially constant from no-load to maximum load.  
Current limiting and thermal protection prevent damage by excessive output current and/or power dissipation. The device  
switches into a constant-current mode at approximately 1 A; further load reduces the output voltage instead of increasing  
the output current. The thermal protection shuts the regulator off if the junction temperature rises above 165°C. Recovery  
is automatic when the junction temperature drops approximately 25°C below the high temperature trip point. The PMOS  
pass element includes a back diode that safely conducts reverse current when the input voltage level drops below the output  
voltage level.  
A logic low on the enable input, EN shuts off the output and reduces the supply current to less than 2 µA. EN should be  
tied high in applications where the shutdown feature is not used.  
A typical application circuit is shown in Figure 20.  
(1)  
TPS763xx  
1
3
V
IN  
I
4
5
NC/FB  
OUT  
V
O
C1  
1 µF  
EN  
+
4.7 µF  
GND  
CSR = 1 Ω  
2
(1)  
TPS76316, TPS76318, TPS76325, TPS76327, TPS76328,  
TPS7630 TPS76333, TPS76338, TPS76350 (fixed-voltage options).  
Figure 20. Typical Application Circuit  
12  
ꢀꢁ  
ꢋꢈ  
www.ti.com  
SGLS247A − JUNE 2004 − REVISED JUNE 2008  
APPLICATION INFORMATION  
external capacitor requirements  
Although not required, a 0.047 µF or larger ceramic bypass input capacitor, connected between IN and GND and located  
close to the TPS763xx, is recommended to improve transient response and noise rejection. A higher-value electrolytic input  
capacitor may be necessary if large, fast-rise-time load transients are anticipated and the device is located several inches  
from the power source.  
Like all low dropout regulators, the TPS763xx requires an output capacitor connected between OUT and GND to stabilize  
the internal loop control. The minimum recommended capacitance value is 4.7 µF and the ESR (equivalent series  
resistance) must be between 0.3 and 10 . Capacitor values of 4.7 µF or larger are acceptable, provided the ESR is less  
than 10 . Solid tantalum electrolytic, aluminum electrolytic, and multilayer ceramic capacitors are all suitable, provided  
they meet the requirements described above. Most of the commercially available 4.7-µF surface-mount solid tantalum  
capacitors, including devices from Sprague, Kemet, and Nichico, meet the ESR requirements stated above.  
CAPACITOR SELECTION  
(1)  
PART NO.  
T494B475K016AS  
195D106x0016x2T  
695D106x003562T  
MFR.  
KEMET  
SPRAGUE  
SPRAGUE  
AVX  
VALUE  
4.7 µF  
10 µF  
MAX ESR  
1.5 Ω  
SIZE (H L W)  
1.9 × 3.5 × 2.8  
1.3 × 7.0 × 2.7  
2.5 × 7.6 × 2.5  
2.6 × 6.0 × 3.2  
1.5 Ω  
10 µF  
1.3 Ω  
TPSC475K035R0600  
(1)  
4.7 µF  
0.6 Ω  
Size is in mm. ESR is maximum resistance in ohms at 100 kHz and T = 25°C. Listings are sorted by height.  
A
output voltage programming  
The output voltage of the TPS76301 adjustable regulator is programmed using an external resistor divider as shown in  
Figure 21. The output voltage is calculated using:  
R1  
R2  
  ǒ1 )  
Ǔ
(1)  
V
+ 0.995   V  
O
ref  
Where:  
ref = 1.192 V typ (the internal reference voltage)  
0.995 is a constant used to center the load regulator (1%)  
V
Resistors R1 and R2 should be chosen for approximately 7-µA divider current. Lower value resistors can be used, but offer  
no inherent advantage and waste more power. Higher values should be avoided as leakage currents at FB increase the  
output voltage error. The recommended design procedure is to choose R2 = 169 kto set the divider current at 7 µA and  
then calculate R1 using:  
V
O
R1 +  
ǒ
* 1  
Ǔ
  R2  
(2)  
0.995   V  
ref  
13  
ꢔꢀ  
ꢀꢁ  
ꢀꢁ  
www.ti.com  
SGLS247A − JUNE 2004 − REVISED JUNE 2008  
APPLICATION INFORMATION  
TPS76301  
OUTPUT VOLTAGE  
PROGRAMMING GUIDE  
DIVIDER RESISTANCE  
1
OUTPUT  
VOLTAGE  
(V)  
V
I
IN  
(1)  
(k)  
1 µF  
R1  
R2  
5
V
2.5  
3.3  
3.6  
4
187  
301  
348  
402  
549  
750  
169  
169  
169  
169  
169  
169  
OUT  
FB  
O
2 V  
3
R1  
R2  
EN  
0.5 V  
4
+
4.7 µF  
GND  
2
5
CSR = 1 Ω  
6.45  
(1)  
1% values shown.  
Figure 21. TPS76301 Adjustable LDO Regulator Programming  
power dissipation and junction temperature  
Specified regulator operation is assured to a junction temperature of 125°C; the maximum junction temperature allowable  
to avoid damaging the device is 150°C. This restriction limits the power dissipation the regulator can handle in any given  
application. To ensure the junction temperature is within acceptable limits, calculate the maximum allowable dissipation,  
PD(max) and the actual dissipation, PD, which must be less than or equal to PD(max)  
.
The maximum-power-dissipation limit is determined using the following equation:  
T max * T  
J
A
P
+
D(max)  
R
qJA  
Where:  
T max is the maximum allowable junction temperature  
J
R
is the thermal resistance junction-to-ambient for the package, see the dissipation rating table.  
θJA  
T is the ambient temperature.  
A
The regulator dissipation is calculated using:  
+ ǒVI * V  
Ǔ
P
  I  
D
O
O
Power dissipation resulting from quiescent current is negligible.  
regulator protection  
The TPS763xx pass element has a built-in back diode that safely conducts reverse currents when the input voltage drops  
below the output voltage (e.g., during power down). Current is conducted from the output to the input and is not internally  
limited. If extended reverse voltage is anticipated, external limiting might be appropriate.  
The TPS763xx also features internal current limiting and thermal protection. During normal operation, the TPS763xx limits  
output current to approximately 800 mA. When current limiting engages, the output voltage scales back linearly until the  
overcurrent condition ends. While current limiting is designed to prevent gross device failure, care should be taken not to  
exceed the power dissipation ratings of the package. If the temperature of the device exceeds 165°C, thermal-protection  
circuitry shuts it down. Once the device has cooled down to below 140°C, the regulator operation resumes.  
14  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Aug-2012  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
TPS76301QDBVRG4Q1  
TPS76301QDBVRQ1  
TPS76316QDBVRG4Q1  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
5
5
5
3000  
3000  
3000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
Green (RoHS  
& no Sb/Br)  
TPS76316QDBVRQ1  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
DBV  
DBV  
5
5
TBD  
Call TI  
Call TI  
TPS76318QDBVRG4Q1  
3000  
3000  
3000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
TPS76318QDBVRQ1  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
DBV  
DBV  
5
5
Green (RoHS  
& no Sb/Br)  
TPS76325QDBVRG4Q1  
Green (RoHS  
& no Sb/Br)  
TPS76325QDBVRQ1  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
DBV  
DBV  
5
5
TBD  
Call TI  
Call TI  
TPS76330QDBVRG4Q1  
3000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
TPS76330QDBVRQ1  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
DBV  
DBV  
5
5
TBD  
Call TI  
Call TI  
TPS76333QDBVRG4Q1  
3000  
3000  
3000  
3000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
TPS76333QDBVRQ1  
TPS76350QDBVRG4Q1  
TPS76350QDBVRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
5
5
5
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Aug-2012  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TPS76301-Q1, TPS76316-Q1, TPS76318-Q1, TPS76325-Q1, TPS76330-Q1, TPS76333-Q1, TPS76350-Q1 :  
Catalog: TPS76301, TPS76316, TPS76318, TPS76325, TPS76330, TPS76333, TPS76350  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All  
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time  
of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which  
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such  
components to meet such requirements.  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Medical  
Logic  
Security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

TPS76330QDBVRQ1

Low-Power 150-mA Low-Dropout Linear Regulators for Automotive 5-SOT-23 -40 to 125
TI

TPS76333

LOW-POWER 150-mA LOW-DROPOUT LINEAR REGULATORS
TI

TPS76333DBV

LOW-POWER 150-mA LOW-DROPOUT LINEAR REGULATORS
TI

TPS76333DBVR

LOW-POWER 150-mA LOW-DROPOUT LINEAR REGULATORS
TI

TPS76333DBVRG4

LOW-POWER 150-mA LOW-DROPOUT LINEAR REGULATORS
TI

TPS76333DBVT

LOW-POWER 150-mA LOW-DROPOUT LINEAR REGULATORS
TI

TPS76333DBVTG4

LOW-POWER 150-mA LOW-DROPOUT LINEAR REGULATORS
TI

TPS76333QDBVRG4Q1

具有使能功能的汽车类 150mA、10V、低压降稳压器 | DBV | 5 | -40 to 125
TI

TPS76333QDBVRQ1

具有使能功能的汽车类 150mA、10V、低压降稳压器 | DBV | 5 | -40 to 125
TI

TPS76338

LOW-POWER 150-mA LOW-DROPOUT LINEAR REGULATORS
TI

TPS76338DBV

LOW-POWER 150-mA LOW-DROPOUT LINEAR REGULATORS
TI

TPS76338DBVR

LOW-POWER 150-mA LOW-DROPOUT LINEAR REGULATORS
TI