TPS788 [TI]

具有使能功能的 150mA、10V、低 IQ、低压降稳压器;
TPS788
型号: TPS788
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有使能功能的 150mA、10V、低 IQ、低压降稳压器

电源电路 线性稳压器IC
文件: 总9页 (文件大小:174K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS78825, TPS78833  
SLVS382A – JUNE 2001 – REVISED JULY 2001  
150-mA LOW-NOISE LDO WITH IN-RUSH  
CURRENT CONTROL FOR USB APPLICATION  
FEATURES  
DESCRIPTION  
D
D
D
D
D
D
D
150-mA Low-Dropout Regulator  
The TPS78825 and TPS78833 are very small (SOT-23)  
Available in 2.5 V, 3.3 V  
package, low-noise LDOs that regulate the output  
voltage to 2.5 V and 3.3 V with input voltage ranging  
from 2.7 V to an absolute maximum of 13.5 V. These  
devices output 150 mA with a peak current of 350 mA  
(typ). The TPS788xx family uses the SR pin to program  
the output voltage slew rate to control the in-rush  
current. This is specifically used in the USB application  
where large load capacitance is present at start-up. The  
TPS788xx devices use only 17 µA of quiescent current  
Programmable Slew Rate Control  
Output Noise Typically 56 µV  
RMS  
Only 17 µA Quiescent Current at 150 mA  
1 µA Quiescent Current in Standby Mode  
Dropout Voltage Typically 150 mV at 150 mA  
(TPS78833)  
D
Over Current Limitation  
and exhibit only 56 µV  
a 10 µF output capacitor.  
of output voltage noise using  
RMS  
D
–40°C to 125°C Operating Junction  
Temperature Range  
The usual PNP pass transistor has been replaced by a  
PMOSpasselement. BecausethePMOSpasselement  
behaves as a low-value resistor, the dropout voltage is  
verylow, typically150mVat150mAofloadcurrent, and  
is directly proportional to the load current.  
D
5-Pin SOT-23 (DBV) Package  
DBV PACKAGE  
(TOP VIEW)  
1
2
3
5
OUT  
SR  
IN  
The TPS788xx also features a logic-enabled sleep  
mode to shut down the regulator, reducing quiescent  
GND  
current to 1 µA typical at T = 25°C.  
J
4
EN  
QUIESCENT CURRENT  
vs  
OUTPUT VOLTAGE, ENABLE VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
TIME (START-UP)  
25  
V
= 4.3 V  
CC  
I
O
= 150 mA  
5
0
20  
I
O
= 1 mA  
15  
10  
5
C
= 0.01 µF  
(SR)  
3
2
1
0
C
= 0.1 µF  
(SR)  
V = 4.3 V  
I
V
= 3.3 V  
O
I
C
T
= 150 mA  
= 10 µF  
= 25°C  
O
o
J
0
0
10 20 30 40 50 60 70 80 90 100  
–40 –25 –10 5 20 35 50 65 80 95 110 125  
– Free-Air Temperature – °C  
T
A
t – Time – ms  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
Copyright 2001, Texas Instruments Incorporated  
1
www.ti.com  
TPS78825, TPS78833  
SLVS382A JUNE 2001 REVISED JULY 2001  
AVAILABLE OPTIONS  
PACKAGE  
T
VOLTAGE  
2.5 V  
PART NUMBER  
SYMBOL  
PGZI  
J
TPS78825DBVR  
TPS78825DBVT  
SOT-23  
(DBV)  
40°C to 125°C  
3.3 V  
TPS78833DBVT  
TPS78833DBVR  
PGTI  
The DBVT indicates tape and reel of 250 parts.  
The DBVR indicates tape and reel of 3000 parts.  
functional block diagram  
OUT  
IN  
EN  
150 k  
Current Limit  
/ Thermal  
Protection  
V
ref  
GND  
SR  
Terminal Functions  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
3
EN  
I
Active low enable  
GND  
IN  
2
Regulator ground  
1
I
O
I
The IN terminal is the input to the device.  
OUT  
SR  
5
The OUT terminal is the regulated output of the device.  
The SR terminal is used to control the in-rush current.  
4
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)§  
Input voltage range ꢀ ꢁ ꢂꢂ ꢃ ꢄꢅꢂ ꢆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 13.5 V  
Voltage range at EN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V + 0.3 V  
I
Voltage on OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
Peak output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internally limited  
ESD rating, HBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 kV  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating virtual junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 150°C  
J
Operating ambient temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
A
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
§
Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values are with respect to network ground terminal.  
DISSIPATION RATING TABLE  
DERATING FACTOR  
T
A
25°C  
T
A
= 70°C  
T = 85°C  
A
BOARD  
PACKAGE  
R
R
θJA  
θJC  
ABOVE T = 25°C  
POWER RATING POWER RATING POWER RATING  
A
Low K  
DBV  
DBV  
65.8°C/W  
65.8°C/W  
259°C/W  
180°C/W  
3.9 mW/°C  
5.6 mW/°C  
386 mW  
555 mW  
212 mW  
305 mW  
154 mW  
222 mW  
#
High K  
#
The JEDEC Low K (1s) board design used to derive this data was a 3 inch x 3 inch, two layer board with 2 ounce copper traces on top of the board.  
The JEDEC High K (2s2p) board design used to derive this data was a 3 inch x 3 inch, multilayer board with 1 ounce internal power and ground  
planes and 2 ounce copper traces on top and bottom of the board.  
2
www.ti.com  
TPS78825, TPS78833  
SLVS382A JUNE 2001 REVISED JULY 2001  
electrical characteristics over recommended operating free-air temperature range EN = 0  
,
T = 40 to 125 °C, V = V  
+ 1 V, I = 1 mA, C = 4.7 µF, C  
= 0.01 µF (unless otherwise noted)  
J
I
O(typ)  
O
o
(SR)  
PARAMETER  
TEST CONDITIONS  
MIN  
2.7  
0
TYP  
MAX  
10  
UNIT  
V
V
I
Input voltage (see Note 2)  
I
O
Continuous output current (see Note 3)  
Operating junction temperature  
150  
125  
mA  
°C  
T
J
40  
T
= 25°C  
2.5  
3.3  
17  
J
TPS78825  
TPS78833  
10 µA< I < 150 mA, 3.5 V < V < 10 V  
2.425  
3.201  
2.575  
3.399  
28  
O
= 25°C  
I
Output voltage  
V
T
J
10 µA< I < 150 mA, 3.8 V < V < 10 V  
O
I
10 µA< I < 450 mA, T = 25°C  
O
J
Quiescent current (GND current)  
Load regulation  
µA  
mV  
%/V  
10 µA< I < 150 mA  
O
10 µA< I < 200 mA, T = 25°C  
12  
O
J
V
O
V
O
+ 1 V < V 10 V, T = 25°C  
0.04  
Output voltage line regulation (V /V  
(see Note 5)  
)
I
J
O
O
+ 1 V < V 10 V  
0.1  
I
BW = 200 Hz to 100 kHz,  
I
T
C
C
= 150 mA,  
= 25°C,  
= 10 µF,  
O
J
o
Output noise voltage (TPS78833)  
56  
µV  
RMS  
= 0.47 µF  
(SR)  
C
C
C
= 0.01 µF  
= 0.1 µF  
= 0.47 µF  
10  
50  
(byp)  
(byp)  
(byp)  
R
C
= 22 ,  
L
10 µF,  
= 25°C  
Time, start-up (TPS78833)  
Output current limit  
ms  
o =  
T
J
300  
V
O =  
0 V (see Note 4)  
350  
1
750  
2
mA  
Standby current  
EN = 0 V, 2.7 V < V < 10 V  
µA  
V
I
High level enable input voltage  
Low level enable input voltage  
Input current (EN)  
2.7 V < V < 10 V  
1.7  
I
2.7 V < V < 10 V  
I
0.9  
1
V
EN = 0  
1  
µA  
f = 1 kHz,  
C
= 0.01 µF,  
= 150 mA,  
(SL)  
Power supply ripple rejection  
Dropout voltage (see Note 6)  
TPS78833  
TPS78833  
T
J
= 25°C,  
= 10 µF  
I
O
70  
dB  
C
o
I
I
= 150 mA, T = 25°C  
150  
O
J
mV  
= 150 mA  
300  
O
NOTES: 2. To calculate the minimum input voltage for your maximum output current, use the following formula:  
V (min) = V (max) + V (max load)  
I
O
DO  
3. Continuous output current and operating junction temperature are limited by internal protection circuitry, but it is not recommended  
that the device operate under conditions beyond those specified in this table for extended periods of time.  
4. The minimum IN operating voltage is 2.7 V or V  
output current is 200 mA.  
+ 1 V, whichever is greater. The maximum IN voltage is 5.5 V. The maximum  
O(typ)  
5. If V 2.5 V then V  
= 2.7 V, V  
= 5.5 V:  
O
Imin  
Imax  
OǒVImax * 2.7 VǓ  
V
ǒ
Ǔ
 
Line regulation (mV) + %ńV  
  1000  
100  
If V > 2.5 V then V  
Imin  
= V + 1 V, V  
6. IN voltage equals V (typ) 100 mV  
= 5.5 V.  
Imax  
O
O
O
3
www.ti.com  
TPS78825, TPS78833  
SLVS382A JUNE 2001 REVISED JULY 2001  
TYPICAL CHARACTERISTICS  
OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
OUTPUT VOLTAGE  
QUIESCENT CURRENT  
vs  
FREE-AIR TEMPERATURE  
vs  
LOAD CURRENT  
3.315  
3.2  
25  
20  
V
= 4.3 V  
V
= 4.3 V  
CC  
CC  
V
= 4.3 V  
CC  
= 25°C  
3.315  
3.31  
I
O
= 150 mA  
T
J
3.31  
3.305  
3.3  
I
O
= 1 mA  
3.305  
3.3  
I
O
= 1 mA  
15  
10  
5
3.295  
3.29  
I
O
= 150 mA  
3.295  
3.285  
3.28  
3.29  
3.275  
3.27  
3.285  
0
40 25 10 5 20 35 50 65 80 95 110 125  
0
15 30 45 60 75 90 105 120 135 150  
Load Current mA  
40 25 10  
5 20 35 50 65 80 95 110 125  
Free-Air Temperature °C  
T
A
T
Free-Air Temperature °C  
I
L
A
Figure 1  
Figure 2  
Figure 3  
OUTPUT SPECTRAL NOISE DENSITY  
vs  
OUTPUT IMPEDANCE  
vs  
ROOT MEAN SQUARED OUTPUT NOISE  
vs  
SLEW RATE CAPACITANCE  
100  
FREQUENCY  
FREQUENCY  
400  
2
1.8  
1.6  
V = 4.3 V  
= 4.7 µF  
V = 4.3 V  
I
o
I
O
C
V
= 3.3 V  
I
O
= 150 mA  
I
O
= 150 mA  
300  
200  
C
= 10 µF  
80  
o
1.4  
1.2  
1
BW = 200Hz to 100 kHz  
I
O
= 1 mA  
60  
40  
0.8  
0.6  
0.4  
0.2  
0
100  
0
V = 4.3 V  
I
= 1 mA  
I
O
C
C
= 4.7 µF  
o
= 0.47 µF  
(SR)  
I
O
= 150 mA  
1 k  
20  
100  
1 k  
10 k  
100 k  
10  
100  
10 k  
100 k  
1 M  
0.001  
0.01  
0.1  
1
f Frequency Hz  
f Frequency Hz  
C
Slew Rate Capacitance µF  
(sr)  
Figure 4  
Figure 5  
Figure 6  
DROPOUT VOLTAGE  
vs  
RIPPLE REJECTION  
vs  
OUTPUT VOLTAGE, ENABLE VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
FREQUENCY  
TIME (START-UP)  
200  
120  
V = 4.3 V  
V
= 3.2 V  
I
CC  
110  
100  
90  
V
C
C
= 3.3 V  
= 10 µF  
O
o
5
0
I
O
= 150 mA  
= 0.47 µF  
150  
100  
(SR)  
80  
I
= 1 mA  
O
70  
60  
50  
3
V = 4.3 V  
I
O
O
2
1
0
V
I
= 3.3 V  
= 150 mA  
I
O
= 150 mA  
50  
0
40  
30  
20  
C
C
T
= 0.47 µF  
= 10 µF  
= 25°C  
(SR)  
o
J
I
= 1 mA  
O
40 25 10 5 20 35 50 65 80 95 110 125  
0
100 200 300 400 500 600 700 800 900 1000  
10  
100  
1 k  
10 k  
100 k  
1 M  
T
A
Free-Air Temperature °C  
f Frequency Hz  
t Time ms  
Figure 7  
Figure 8  
Figure 9  
4
www.ti.com  
TPS78825, TPS78833  
SLVS382A JUNE 2001 REVISED JULY 2001  
TYPICAL CHARACTERISTICS  
OUTPUT VOLTAGE, ENABLE VOLTAGE  
vs  
TIME (START-UP)  
LINE TRANSIENT RESPONSE  
LOAD TRANSIENT RESPONSE  
dI  
dt  
0.075 A  
µs  
V
C
= 3.3 V  
= 10 µF  
dv  
dt  
0.2 V  
µs  
O
o
5
0
=
=
200  
100  
0
20  
0
C
= 0.01 µF  
(SR)  
3
2
1
0
20  
5.3  
50  
0
C
= 0.1 µF  
(SR)  
V = 4.3 V  
I
V
= 3.3 V  
O
50  
100  
V = 4.3 V  
I
I
C
T
= 150 mA  
= 10 µF  
= 25°C  
O
o
J
V
= 3.3 V  
O
4.3  
C
= 10 µF  
o
0
10 20 30 40 50 60 70 80 90 100  
0
20 40 60 80 100 120 140 160 180 200  
0
20 40 60 80 100 120 140 160 180 200  
t Time ms  
t Time µs  
t Time µs  
Figure 10  
Figure 11  
Figure 12  
TYPICAL REGIONS OF STABILITY  
TYPICAL REGIONS OF STABILITY  
EQUIVALENT SERIES RESISTANCE (ESR)  
vs  
EQUIVALENT SERIES RESISTANCE (ESR)  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
100  
100  
V = 4.3 V  
I
V = 4.3 V  
I
V
= 3.3 V  
V
= 3.3 V  
O
O
C
= 10 µF  
C
= 4.7 µF  
o
o
Region of Instability  
Region of Instability  
10  
1
10  
1
Region of Stability  
Region of Stability  
0.1  
0.1  
0
60  
90  
120  
150  
0
60  
90  
120  
150  
I
O
Output Current mA  
I
O
Output Current mA  
Figure 14  
Figure 13  
5
www.ti.com  
TPS78825, TPS78833  
SLVS382A JUNE 2001 REVISED JULY 2001  
APPLICATION INFORMATION  
The TPS788xx family of low-dropout (LDO) regulators has been optimized for use in battery-operated  
equipment. It features extremely low dropout voltages, low output noise, low quiescent current (17 µA typically),  
and enable inputs to reduce supply currents to 1 µA when the regulator is turned off. A typical application circuit  
is shown in Figure 15.  
1
V
I
IN  
4
5
SR  
OUT  
V
O
3
1 µF  
0.01 µF  
EN  
+
4.7 µF  
GND  
2
ESR = 0.2 Ω  
Figure 15. Typical Application Circuit  
external capacitor requirements  
Although not required, a 0.047-µF or larger ceramic input bypass capacitor, connected between IN and GND  
and located close to the TPS788xx, is recommended to improve transient response and noise rejection. A  
higher-value electrolytic input capacitor may be necessary if large, fast-rise-time load transients are anticipated  
and the device is located several inches from the power source.  
Like all low dropout regulators, the TPS788xx requires an output capacitor connected between OUT and GND  
to stabilize the internal control loop. The minimum recommended capacitance is 4.7 µF. The ESR (equivalent  
series resistance) of the capacitor should be between 0.2and 10 . toensurestability. Capacitorvalueslarger  
than 4.7 µF are acceptable, and allow the use of smaller ESR values. Capacitances less than 4.7 µF are not  
recommended because they require careful selection of ESR to ensure stability. Solid tantalum electrolytic,  
aluminum electrolytic, and multilayer ceramic capacitors are all suitable, provided they meet the requirements  
described above. Most of the commercially available 4.7 µF surface-mount solid tantalum capacitors, including  
devices from Sprague, Kemet, and Nichico, meet the ESR requirements stated above. Multilayer ceramic  
capacitors may have very small equivalent series resistances and may thus require the addition of a low value  
series resistor to ensure stability.  
CAPACITOR SELECTION  
PART NO.  
T494B475K016AS  
195D106x0016x2T  
695D106x003562T  
TPSC475K035R0600  
MFR.  
Kemet  
Sprague  
Sprague  
AVX  
VALUE  
4.7 µF  
10 µF  
MAX ESR  
SIZE (H × L × W)  
1.9 × 3.5 × 2.8  
1.3 × 7.0 × 2.7  
2.5 × 7.6 × 2.5  
2.6 × 6.0 × 3.2  
1.5 Ω  
1.5 Ω  
1.3 Ω  
0.6 Ω  
10 µF  
4.7 µF  
Size is in mm. The ESR maximum resistance is in Ohms at 100 kHz and T = 25°C. Contact the  
manufacturer for the minimum ESR values.  
A
6
www.ti.com  
TPS78825, TPS78833  
SLVS382A JUNE 2001 REVISED JULY 2001  
APPLICATION INFORMATION  
external capacitor requirements (continued)  
The external bypass capacitor, used in conjunction with an internal resistor to form a low-pass filter, should be  
a low ESR ceramic capacitor. For example, the TPS78833 exhibits only 56 µV of output voltage noise using  
RMS  
a 0.01 µF ceramic bypass capacitor and a 10-µF ceramic output capacitor. Note that the output will start up  
slower as the bypass capacitance increases due to the RC time constant at the bypass pin that is created by  
the internal 150-kresistor and external capacitor.  
power dissipation and junction temperature  
Specified regulator operation is assured to a junction temperature of 125°C; the maximum junction temperature  
should be restricted to 125°C under normal operating conditions. This restriction limits the power dissipation  
the regulator can handle in any given application. To ensure the junction temperature is within acceptable limits,  
calculate the maximum allowable dissipation, P  
, and the actual dissipation, P , which must be less than  
D(max)  
D
or equal to P  
.
D(max)  
The maximum-power-dissipation limit is determined using the following equation:  
T max * T  
J
A
P
+
D(max)  
R
θJA  
Where:  
T max is the maximum allowable junction temperature.  
J
R
is the thermal resistance junction-to-ambient for the package, see the dissipation rating table.  
θJA  
T is the ambient temperature.  
A
The regulator dissipation is calculated using:  
+ ǒVI * V  
Ǔ
P
  I  
D
O
O
Power dissipation resulting from quiescent current is negligible. Excessive power dissipation will trigger the  
thermal protection circuit.  
regulator protection  
The TPS788xx PMOS-pass transistor has a built-in back diode that conducts reverse current when the input  
voltage drops below the output voltage (e.g., during power down). Current is conducted from the output to the  
input and is not internally limited. If extended reverse voltage operation is anticipated, external limiting might  
be appropriate.  
TheTPS788xxfeaturesinternalcurrentlimitingandthermalprotection. Duringnormaloperation, theTPS78833  
limits output current to approximately 350 mA. When current limiting engages, the output voltage scales back  
linearly until the overcurrent condition ends. While current limiting is designed to prevent gross device failure,  
care should be taken not to exceed the power dissipation ratings of the package. If the temperature of thedevice  
exceeds approximately 165°C, thermal-protection circuitry shuts it down. Once the device has cooled down to  
below approximately 140°C, regulator operation resumes.  
7
www.ti.com  
TPS78825, TPS78833  
SLVS382A JUNE 2001 REVISED JULY 2001  
DBV (R-PDSO-G5)  
MECHANICAL DATA  
PLASTIC SMALL-OUTLINE  
0,50  
0,30  
M
0,20  
0,95  
5
4
0,15 NOM  
1,70  
1,50  
3,00  
2,60  
1
3
Gage Plane  
3,00  
2,80  
0,25  
0°8°  
0,55  
0,35  
Seating Plane  
0,10  
1,45  
0,95  
0,05 MIN  
4073253-4/F 10/00  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion.  
D. Falls within JEDEC MO-178  
8
www.ti.com  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its products to the specifications applicable at the time of sale in accordance with  
TIsstandardwarranty. TestingandotherqualitycontroltechniquesareutilizedtotheextentTIdeemsnecessary  
to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except  
those mandated by government requirements.  
Customers are responsible for their applications using TI components.  
In order to minimize risks associated with the customers applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
products or services might be or are used. TIs publication of information regarding any third partys products  
or services does not constitute TIs approval, license, warranty or endorsement thereof.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation  
or reproduction of this information with alteration voids all warranties provided for an associated TI product or  
service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.  
Resale of TIs products or services with statements different from or beyond the parameters stated by TI for  
that product or service voids all express and any implied warranties for the associated TI product or service,  
is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.  
Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm  
Mailing Address:  
Texas Instruments  
Post Office Box 655303  
Dallas, Texas 75265  
Copyright 2001, Texas Instruments Incorporated  

相关型号:

TPS78825

150-mA LOW-NOISE LDO WITH IN-RUSH CURRENT CONTROL FOR USB APPLICATION
TI

TPS78825DBVR

Analog IC
TI

TPS78825DBVRG4

2.5V FIXED POSITIVE LDO REGULATOR, 0.3V DROPOUT, PDSO5, GREEN, PLASTIC, SOT-23, 5 PIN
TI

TPS78825DBVT

Analog IC
TI

TPS78833

150-mA LOW-NOISE LDO WITH IN-RUSH CURRENT CONTROL FOR USB APPLICATION
TI

TPS78833DBVR

Analog IC
TI

TPS78833DBVT

Analog IC
TI

TPS789

具有旁路和使能功能的 100mA、10V、低 IQ、低压降稳压器
TI

TPS78915

ULTRALOW-POWER LOW-NOISE 100-mA LOW-DROPOUT LINEAR REGULATORS
TI

TPS78915DBVR

ULTRALOW-POWER LOW-NOISE 100-mA LOW-DROPOUT LINEAR REGULATORS
TI

TPS78915DBVR

1.5V FIXED POSITIVE LDO REGULATOR, PDSO5, GREEN, PLASTIC, SOT-23, 5 PIN
ROCHESTER

TPS78915DBVRG4

1.5V FIXED POSITIVE LDO REGULATOR, PDSO5, GREEN, PLASTIC, SOT-23, 5 PIN
TI