TPS79118DBVRQ1 [TI]

具有使能功能的汽车类 100mA、低噪声、低压降稳压器 | DBV | 5 | -40 to 125;
TPS79118DBVRQ1
型号: TPS79118DBVRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有使能功能的汽车类 100mA、低噪声、低压降稳压器 | DBV | 5 | -40 to 125

PC 信息通信管理 光电二极管 输出元件 稳压器 调节器
文件: 总23页 (文件大小:1193K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢅ ꢇꢈ ꢅ ꢉ ꢀ ꢁꢂꢃ ꢄꢅꢅꢊ ꢇꢈ ꢅ  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢋ ꢋ ꢇꢈ ꢅ ꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢌ ꢃꢇꢈ ꢅ  
www.ti.com  
SGLS160B − APRIL 2003 − REVISED SEPTEMBER 2008  
ꢎ ꢑꢒ ꢇ ꢚ ꢏ ꢑꢁ ꢑꢍ ꢀ ꢎꢔ ꢓꢕ ꢐꢏ ꢏꢕ ꢗ ꢍꢎꢐꢀꢑ ꢏꢂ  
FEATURES  
DESCRIPTION  
D
Qualified for Automotive Applications  
ESD Protection Exceeds 2000 V Per  
MIL-STD-883, Method 3015; Exceeds 200 V  
Using Machine Model (C = 200 pF, R = 0)  
The TPS791xx family of low-dropout (LDO)  
low-power linear voltage regulators features high  
power supply rejection ratio (PSRR), ultralow  
noise, fast start-up, and excellent line and load  
transient responses in a small outline, SOT23,  
package. Each device in the family is stable with  
a small 1-µF ceramic capacitor on the output.  
D
D
D
D
D
D
D
D
D
100-mA Low-Dropout Regulator With EN  
Available in 1.8-V, 3.3-V, 4.7-V, and Adj.  
High PSRR (70 dB at 10 kHz)  
The family uses an advanced, proprietary  
BiCMOS fabrication process to yield extremely  
low dropout voltages (e.g., 38 mV at 100 mA,  
TPS79147). Each device achieves fast start-up  
times (approximately 63 µs with a 0.001 µF  
bypass capacitor) while consuming very low  
quiescent current (170 µA typical). Moreover,  
when the device is placed in standby mode, the  
supply current is reduced to less than 1 µA. The  
Ultralow Noise (15 µV  
)
RMS  
Fast Start-Up Time (63 µs)  
Stable With Any 1-µF Ceramic Capacitor  
Excellent Load/Line Transient  
Very Low Dropout Voltage  
(38 mV at Full Load, TPS79147)  
D
5-Pin SOT23 (DBV) Package  
TPS79118 exhibits approximately 15 µV  
of  
RMS  
D
TPS792xx Provides EN Options  
output voltage noise with a 0.1 µF bypass  
capacitor.  
APPLICATIONS  
Applications with analog components that are  
noise sensitive, such as portable RF electronics,  
benefit from the high PSRR and low noise  
features as well as the fast response time.  
D
D
D
VCOs  
RF  
Bluetooth, Wireless LAN  
ORDERING INFORMATION  
T
VOLTAGE  
1.2 to 5.5 V  
1.8 V  
PACKAGE  
PART NUMBER  
SYMBOL  
PEU1  
J
(1)  
TPS79101DBVRQ1  
(1)  
TPS79118DBVRQ1  
PER1  
SOT23  
(DBV)  
−40°C to 125°C  
(1)  
TPS79133DBVRQ1  
3.3 V  
PES1  
(1)(2)  
TPS79147DBVRQ1  
4.7 V  
PET1  
(1)  
(2)  
The DBVR indicates tape and reel of 3000 parts.  
This part is Product Preview.  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Bluetooth is a trademark owned by the Bluetooth SIG, Inc.  
ꢁꢏ ꢑ ꢚꢍ ꢛ ꢀꢔ ꢑꢓ ꢚ ꢐꢀꢐ ꢜꢝ ꢞꢟ ꢠ ꢙꢡ ꢢꢜꢟꢝ ꢜꢣ ꢤꢥ ꢠ ꢠ ꢦꢝꢢ ꢡꢣ ꢟꢞ ꢧꢥꢨ ꢩꢜꢤ ꢡꢢꢜ ꢟꢝ ꢪꢡ ꢢꢦꢫ ꢁꢠ ꢟꢪꢥ ꢤꢢꢣ  
ꢤ ꢟꢝ ꢞꢟꢠ ꢙ ꢢꢟ ꢣ ꢧꢦ ꢤ ꢜ ꢞꢜ ꢤ ꢡ ꢢꢜ ꢟꢝꢣ ꢧ ꢦꢠ ꢢꢬꢦ ꢢꢦ ꢠ ꢙꢣ ꢟꢞ ꢀꢦꢭ ꢡꢣ ꢔꢝꢣ ꢢꢠ ꢥꢙ ꢦꢝꢢ ꢣ ꢣꢢ ꢡꢝꢪ ꢡꢠ ꢪ ꢮ ꢡꢠ ꢠ ꢡ ꢝꢢꢯꢫ  
ꢁꢠ ꢟ ꢪꢥꢤ ꢢ ꢜꢟ ꢝ ꢧꢠ ꢟ ꢤ ꢦ ꢣ ꢣ ꢜꢝ ꢰ ꢪꢟ ꢦ ꢣ ꢝꢟꢢ ꢝꢦ ꢤꢦ ꢣꢣ ꢡꢠ ꢜꢩ ꢯ ꢜꢝꢤ ꢩꢥꢪ ꢦ ꢢꢦ ꢣꢢꢜ ꢝꢰ ꢟꢞ ꢡꢩ ꢩ ꢧꢡ ꢠ ꢡꢙ ꢦꢢꢦ ꢠ ꢣꢫ  
Copyright 2008, Texas Instruments Incorporated  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆ ꢅꢇ ꢈꢅꢉ ꢀꢁ ꢂ ꢃ ꢄ ꢅꢅ ꢊ ꢇꢈꢅ  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢋ ꢋ ꢇꢈꢅ ꢉ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢌ ꢃꢇ ꢈꢅ  
www.ti.com  
SGLS160B − APRIL 2003 − REVISED SEPTEMBER 2008  
TPS79133  
DBV PACKAGE  
(TOP VIEW)  
TPS79133  
RIPPLE REJECTION  
vs  
OUTPUT SPECTRAL NOISE DENSITY  
vs  
IN  
GND  
EN  
1
2
5
OUT  
FREQUENCY  
FREQUENCY  
100  
90  
0.4  
V
C
C
= 4.3 V  
= 10 µF  
I
o
V
= 4.3 V  
= 1 µF  
O
0.35  
0.3  
3
4
BYPASS  
C
o
= 0.01 µF  
(byp)  
80  
70  
60  
50  
40  
I
= 100 mA  
O
C
(byp)  
= 0.1 µF  
Fixed Option  
0.25  
0.2  
DBV PACKAGE  
(TOP VIEW)  
I
= 100 mA  
O
0.15  
0.1  
I
= 10 mA  
O
IN  
1
2
6
5
OUT  
I
= 1 mA  
O
GND  
FB  
0.05  
30  
20  
EN  
3
4
BYPASS  
0
100  
10  
100  
1 k  
10 k 100 k 1 M 10 M  
1 k  
10 k  
100 k  
Adjustable Option  
f − Frequency − Hz  
f − Frequency − Hz  
ABSOLUTE MAXIMUM RATINGS  
(1)  
over operating free-air temperature range unless otherwise noted  
TPS79101, TPS79118  
TPS79133, TPS79147  
(2)  
Input voltage range  
−0.3 V to 6 V  
Voltage range at EN  
−0.3 V to V + 0.3 V  
I
Voltage on OUT  
−0.3 V to 6 V  
Internally limited  
2 kV  
Peak output current  
ESD rating, HBM  
ESD rating, CDM  
500 V  
Continuous total power dissipation  
Operating virtual junction temperature range, T  
See Dissipation Rating Table  
−40°C to 150°C  
J
Operating ambient temperature range, T  
−40°C to 85°C  
A
Storage temperature range, T  
stg  
−65°C to 150°C  
(1)  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only,  
and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is  
not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
All voltage values are with respect to network ground terminal.  
(2)  
PACKAGE DISSIPATION RATING  
DERATING FACTOR  
T
25°C  
T
= 70°C  
T = 85°C  
A
A
A
BOARD  
PACKAGE  
R
θJC  
R
θJA  
ABOVE T = 25°C  
POWER RATING POWER RATING POWER RATING  
A
(1)  
Low K  
DBV  
DBV  
63.75°C/W  
63.75°C/W  
256°C/W  
3.906 mW/°C  
5.609 mW/°C  
391 mW  
561 mW  
215 mW  
308 mW  
156 mW  
224 mW  
(2)  
High K  
178.3°C/W  
(1)  
(2)  
The JEDEC low-K (1s) board design used to derive this data was a 3-inch × 3-inch, two-layer board with 2-ounce copper traces on top of the board.  
The JEDEC high-K (2s2p) board design used to derive this data was a 3-inch × 3-inch, multilayer board with 1-ounce internal power and ground  
planes and 2-ounce copper traces on top and bottom of the board.  
RECOMMENDED OPERATING CONDITIONS  
MIN NOM  
MAX  
5.5  
UNIT  
V
(1)  
Input voltage, V  
2.7  
0
I
(2)  
Continuous output current, I  
100  
125  
mA  
°C  
O
Operating junction temperature, T  
−40  
J
(1)  
To calculate the minimum input voltage for your maximum output current, use the following formula:  
V (min) = V (max) + V (max load)  
Continuous output current and operating junction temperature are limited by internal protection circuitry, but it is not recommended that the  
device operate under conditions beyond those specified in this table for extended periods of time.  
I
O
DO  
(2)  
2
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢅ ꢇꢈ ꢅ ꢉ ꢀ ꢁꢂꢃ ꢄꢅꢅꢊ ꢇꢈ ꢅ  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢋ ꢋ ꢇꢈ ꢅ ꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢌ ꢃꢇꢈ ꢅ  
www.ti.com  
SGLS160B − APRIL 2003 − REVISED SEPTEMBER 2008  
ELECTRICAL CHARACTERISTICS  
over recommended operating free-air temperature range, (T = −40 to 125 °C), V = V  
+ 1 V, I = 1 mA, EN = 0 V, C = 10 µF,  
O o  
J
I
O(typ)  
C = 0.01 µF (unless otherwise noted)  
o(byp)  
PARAMETER  
TEST CONDITIONS  
T = 25°C, 1.22 V V 5.2 V  
MIN  
TYP  
MAX  
UNIT  
V
O
J
O
(1)  
TPS79101  
0 µA< I < 100 mA  
,
O
0.98 V  
1.02 V  
O
O
1.22 V V 5.2 V  
O
T = 25°C  
1.8  
3.3  
4.7  
170  
J
TPS79118  
TPS79133  
TPS79147  
0 µA < I < 100 mA, 2.8 V < V < 5.5 V  
1.764  
3.234  
4.606  
1.836  
3.366  
4.794  
250  
Output voltage  
O
I
V
T = 25°C  
J
0 µA < I < 100 mA, 4.3 V < V < 5.5 V  
O
I
T = 25°C  
J
0 µA < I < 100 mA, 5.2 V < V < 5.5 V  
O
I
0 µA < I < 100 mA, T = 25°C  
O
J
Quiescent current (GND current)  
Load regulation  
µA  
0 µA < I < 100 mA  
O
0 µA < I < 100 mA, T = 25°C  
5
mV  
O
J
V
+ 1 V < V 5.5 V, T = 25°C  
0.05  
O
O
I
J
(2)  
Output voltage line regulation (V /V )  
%/V  
O
O
V
+ 1 V < V 5.5 V  
0.12  
I
C
(byp)  
C
(byp)  
C
(byp)  
C
(byp)  
C
(byp)  
C
(byp)  
C
(byp)  
= 0.001 µF  
32  
17  
16  
15  
53  
67  
98  
= 0.0047 µF  
= 0.01 µF  
= 0.1 µF  
BW = 100 Hz to 100 kHz,  
= 100 mA, T = 25°C  
Output noise voltage (TPS79118)  
µV  
RMS  
I
O
J
= 0.001 µF  
= 0.0047 µF  
= 0.01 µF  
R
= 33 ,  
C
o
= 1 µF,  
L
Time, start-up (TPS79133)  
µs  
T = 25°C  
J
(1)  
= 0 V  
Output current limit  
UVLO threshold  
UVLO hysteresis  
V
V
285  
600  
mA  
V
O
rising  
2.25  
2.65  
CC  
T = 25°C, V  
CC  
rising  
100  
mV  
J
(1)  
The minimum IN operating voltage is 2.7 V or V  
is 100 mA.  
+ 1 V, whichever is greater. The maximum IN voltage is 5.5 V. The maximum output current  
O(typ)  
(2)  
If V 1.8 V then V  
= 2.7 V, V = 5.5 V:  
O
Imin  
Imax  
OǒVImax * 2.7 VǓ  
V
ǒ
Ǔ
 
Line regulation (mV) + %ńV  
  1000  
100  
If V 2.5 V then V  
Imin  
= V + 1 V, V = 5.5 V:  
Imax  
O
O
OǒVImax * ǒVO ) 1 VǓǓ  
  1000  
V
ǒ
Ǔ
 
Line regulation (mV) + %ńV  
100  
3
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆ ꢅꢇ ꢈꢅꢉ ꢀꢁ ꢂ ꢃ ꢄ ꢅꢅ ꢊ ꢇꢈꢅ  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢋ ꢋ ꢇꢈꢅ ꢉ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢌ ꢃꢇ ꢈꢅ  
www.ti.com  
SGLS160B − APRIL 2003 − REVISED SEPTEMBER 2008  
ELECTRICAL CHARACTERISTICS continued  
over recommended operating free-air temperature range, (T = −40 to 125 °C), V = V  
+ 1 V, I = 1 mA, EN = 0 V, C = 10 µF,  
J
I
O(typ)  
O
o
C = 0.01 µF (unless otherwise noted)  
o(byp)  
PARAMETER  
TEST CONDITIONS  
MIN  
2
TYP  
MAX  
UNIT  
Standby current  
EN = V ,  
2.7 V < V < 5.5 V  
0.07  
1
µA  
V
I
I
High level enable input voltage  
Low level enable input voltage  
Input current (EN)  
2.7 V < V < 5.5 V  
I
2.7 V < V < 5.5 V  
0.7  
1
V
I
EN = V  
−1  
µA  
I
f = 100 Hz,  
f = 100 Hz,  
f = 10 kHz,  
T = 25°C,  
I
I
= 10 mA  
80  
75  
72  
45  
70  
75  
73  
37  
50  
J
O
O
O
O
T = 25°C,  
J
= 100 mA  
= 100 mA  
= 100 mA  
= 10 mA  
TPS79118  
TPS79133  
T = 25°C,  
J
I
I
f = 100 kHz, T = 25°C,  
J
Power supply ripple rejection  
dB  
f = 100 Hz,  
f = 100 Hz,  
f = 10 kHz,  
T = 25°C,  
J
I
O
O
O
O
T = 25°C,  
J
I
= 100 mA  
= 100 mA  
= 100 mA  
T = 25°C,  
J
I
I
f = 100 kHz, T = 25°C,  
J
I
O
I
O
I
O
I
O
= 100 mA, T = 25°C  
J
TPS79133  
TPS79147  
= 100 mA  
90  
70  
(1)  
Dropout voltage  
mV  
= 100 mA, T = 25°C  
38  
J
= 100 mA  
(1)  
IN voltage equals V (typ) − 100 mV; The TPS79118 dropout voltage is limited by the input voltage range limitations.  
O
4
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢅ ꢇꢈ ꢅ ꢉ ꢀ ꢁꢂꢃ ꢄꢅꢅꢊ ꢇꢈ ꢅ  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢋ ꢋ ꢇꢈ ꢅ ꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢌ ꢃꢇꢈ ꢅ  
www.ti.com  
SGLS160B − APRIL 2003 − REVISED SEPTEMBER 2008  
FUNCTIONAL BLOCK DIAGRAM—ADJUSTABLE VERSION  
V
OUT  
V
IN  
Current  
Sense  
UVLO  
SHUTDOWN  
ILIM  
R1  
R2  
_
GND  
EN  
+
FB  
UVLO  
Thermal  
External to  
the Device  
Shutdown  
250 kΩ  
V
ref  
Bandgap  
Reference  
Bypass  
V
IN  
FUNCTIONAL BLOCK DIAGRAM—FIXED VERSION  
V
OUT  
V
IN  
UVLO  
Current  
Sense  
GND  
EN  
SHUTDOWN  
ILIM  
R1  
R2  
_
+
UVLO  
Thermal  
Shutdown  
250 kΩ  
V
ref  
Bandgap  
Reference  
V
IN  
Bypass  
Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
ADJ  
FIXED  
BYPASS  
4
4
An external bypass capacitor, connected to this terminal, in conjunction with an internal resistor, creates  
a low-pass filter to further reduce regulator noise.  
EN  
3
3
I
I
The EN terminal is an input which enables or shuts down the device. When EN is a logic high, the device  
will be in shutdown mode. When EN is a logic low, the device will be enabled.  
FB  
5
2
1
6
N/A  
2
This terminal is the feedback input voltage for the adjustable device.  
Regulator ground  
GND  
IN  
1
I
The IN terminal is the input to the device.  
OUT  
5
O
The OUT terminal is the regulated output of the device.  
5
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆ ꢅꢇ ꢈꢅꢉ ꢀꢁ ꢂ ꢃ ꢄ ꢅꢅ ꢊ ꢇꢈꢅ  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢋ ꢋ ꢇꢈꢅ ꢉ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢌ ꢃꢇ ꢈꢅ  
www.ti.com  
SGLS160B − APRIL 2003 − REVISED SEPTEMBER 2008  
TYPICAL CHARACTERISTICS  
TPS79133  
OUTPUT VOLTAGE  
vs  
TPS79118  
TPS79118  
OUTPUT VOLTAGE  
vs  
OUTPUT VOLTAGE  
vs  
JUNCTION TEMPERATURE  
OUTPUT CURRENT  
OUTPUT CURRENT  
3.303  
1.82  
1.815  
1.81  
1.803  
V
C
= 2.8 V  
V
= 2.8 V  
= 10 µF  
= 25° C  
I
I
V
= 4.3 V  
= 10 µF  
= 25° C  
I
= 10 µF  
C
o
o
J
C
3.302  
3.301  
3.3  
o
J
1.802  
T
T
1.801  
1.8  
1.805  
I
= 1 mA  
O
1.8  
1.795  
3.299  
3.298  
3.297  
1.799  
I
= 100 mA  
O
1.79  
1.798  
1.797  
1.785  
1.78  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
T
J
− Junction Temperature − °C  
I
− Output Current − mA  
I
− Output Current − mA  
O
O
Figure 1  
Figure 2  
Figure 3  
TPS79133  
TPS79133  
TPS79118  
OUTPUT VOLTAGE  
vs  
JUNCTION TEMPERATURE  
GROUND CURRENT  
vs  
JUNCTION TEMPERATURE  
OUTPUT SPECTRAL NOISE DENSITY  
vs  
FREQUENCY  
260  
240  
220  
200  
3.32  
3.31  
0.2  
V
C
= 4.3 V  
= 10 µF  
V
C
= 4.3 V  
= 10 µF  
I
o
I
o
0.18  
0.16  
0.14  
0.12  
V
C
C
= 2.8 V  
I
= 1 µF  
o
= 0.1 µF  
(byp)  
I
= 1 mA  
O
I
= 1 mA  
O
3.3  
I
= 100 mA  
O
180  
160  
0.1  
3.29  
I
= 100 mA  
O
I
= 100 mA  
O
0.08  
I
= 1 mA  
O
0.06  
0.04  
0.02  
0
140  
3.28  
3.27  
120  
100  
−40 −25 −10 5 20 35 50 65 80 95 110 125  
−40 −2510 5 20 35 50 65 80 95 110 125  
100  
1 k  
10 k  
100 k  
T
J
− Junction Temperature − °C  
T
J
− Junction Temperature − °C  
f − Frequency − Hz  
Figure 4  
Figure 5  
Figure 6  
TPS79118  
TPS79133  
TPS79118  
OUTPUT SPECTRAL NOISE DENSITY  
OUTPUT SPECTRAL NOISE DENSITY  
vs  
OUTPUT SPECTRAL NOISE DENSITY  
vs  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
0.25  
0.2  
0.4  
1.2  
V
= 2.8 V  
= 100 mA  
I
= 0.001 µF  
I
O
V
= 2.8 V  
V
= 4.3 V  
I
I
0.35  
0.3  
I
O
C
o
= 10 µF  
C
o
= 1 µF  
1
0.8  
0.6  
C
o
= 10 µF  
C
(byp)  
= 0.1 µF  
C
(byp)  
= 0.1 µF  
I
= 1 mA  
O
I
= 0.0047 µF  
O
0.25  
0.2  
0.15  
0.1  
I
= 100 mA  
O
I
= 100 mA  
O
I
= 0.1 µF  
O
0.15  
0.1  
I
= 0.01 µF  
0.4  
O
I
= 1 mA  
O
0.05  
0.2  
0
0.05  
0
100  
0
100  
1 k  
10 k  
100 k  
1 k  
10 k  
100 k  
100  
1 k  
10 k  
100 k  
f − Frequency − Hz  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 7  
Figure 8  
Figure 9  
6
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢅ ꢇꢈ ꢅ ꢉ ꢀ ꢁꢂꢃ ꢄꢅꢅꢊ ꢇꢈ ꢅ  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢋ ꢋ ꢇꢈ ꢅ ꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢌ ꢃꢇꢈ ꢅ  
www.ti.com  
SGLS160B − APRIL 2003 − REVISED SEPTEMBER 2008  
TYPICAL CHARACTERISTICS  
TPS79133  
TPS79133  
OUTPUT SPECTRAL NOISE DENSITY  
vs  
OUTPUT SPECTRAL NOISE DENSITY  
vs  
ROOT MEAN SQUARED OUTPUT NOISE  
vs  
FREQUENCY  
BYPASS CAPACITANCE  
FREQUENCY  
70  
0.4  
2
BW = 100 Hz to 100  
kHz  
V
I
= 4.3 V  
= 100 mA  
I
O
1.8  
1.6  
1.4  
1.2  
V
= 4.3 V  
I
= 0.001 µF  
I
O
0.35  
0.3  
60  
C
o
= 10 µF  
C
o
= 10 µF  
C
(byp)  
= 0.1 µF  
50  
I
= 0.0047 µF  
O
0.25  
0.2  
V
= 3.3 V  
O
40  
30  
I
= 100 mA  
O
I
= 0.1 µF  
1
0.8  
0.6  
0.4  
O
0.15  
0.1  
I
= 0.01 µF  
O
I
= 1 mA  
O
V
= 1.8 V  
20  
10  
0
O
0.05  
0.2  
0
0
100  
0.1  
0.001  
0.01  
1 k  
10 k  
100 k  
100  
1 k  
10 k  
100 k  
C
− Bypass Capacitance − µF  
f − Frequency − Hz  
(bypass)  
f − Frequency − Hz  
Figure 10  
Figure 11  
Figure 12  
TPS79133  
TPS79133  
DROPOUT VOLTAGE  
vs  
TPS792133  
OUTPUT IMPEDANCE  
vs  
DROPOUT VOLTAGE  
vs  
OUTPUT CURRENT  
FREQUENCY  
JUNCTION TEMPERATURE  
3
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 4.3 V  
= 10 µF  
= 25°C  
I
V
= 3.2 V  
V
C
= 3.2 V,  
I
I
C
o
J
C
O
= 10 µF  
= 10 µF  
2.5  
o
T
T
J
= 125°C  
2
I
= 100 mA  
O
I
= 1 mA  
O
1.5  
T = 25°C  
J
1
I
= 100 mA  
O
0.5  
I
= 10 mA  
O
T
J
= −40°C  
0
10  
−4025 −10 5 20 35 50 65 80 95 110 125  
100  
1 k  
10 k 100 k 1 M  
10 M  
0
0.02  
0.04  
0.06  
0.08  
0.1  
T
J
− Junction Temperature − °C  
f − Frequency − Hz  
I
− Output Current − A  
O
Figure 13  
Figure 14  
Figure 15  
TPS79101  
DROPOUT VOLTAGE  
vs  
TPS79118  
RIPPLE REJECTION  
vs  
MINIMUM REQUIRED INPUT VOLTAGE  
vs  
OUTPUT VOLTAGE  
5.2  
INPUT VOLTAGE  
FREQUENCY  
120  
90  
80  
70  
60  
I
= 1 mA  
O
V
= 3.2 V  
I
I
= 100 mA  
O
C
o
= 10 µF  
4.7  
4.2  
100  
80  
T
J
= 125°C  
T
= 125°C  
J
I
= 100 mA  
50  
40  
O
3.7  
3.2  
60  
40  
T
= −40°C  
T
J
= 25°C  
J
30  
20  
T
= 25°C  
J
T
J
= −40°C  
V
C
C
= 2.8 V  
= 10 µF  
(byp)  
I
o
2.7  
2.2  
20  
0
10  
0
= 0.01 µF  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
2.5  
3
3.5  
4
4.5  
5
1.5  
2
2.5  
3
3.5  
4
4.5  
5
f − Frequency − Hz  
V − Input Voltage − V  
I
V
− Output Voltage − V  
O
Figure 16  
Figure 17  
Figure 18  
7
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆ ꢅꢇ ꢈꢅꢉ ꢀꢁ ꢂ ꢃ ꢄ ꢅꢅ ꢊ ꢇꢈꢅ  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢋ ꢋ ꢇꢈꢅ ꢉ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢌ ꢃꢇ ꢈꢅ  
www.ti.com  
SGLS160B − APRIL 2003 − REVISED SEPTEMBER 2008  
TYPICAL CHARACTERISTICS  
TPS79118  
RIPPLE REJECTION  
vs  
TPS79118  
RIPPLE REJECTION  
vs  
TPS79133  
RIPPLE REJECTION  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
100  
90  
90  
90  
V
C
C
= 4.3 V  
= 10 µF  
I
o
(byp)  
80  
80  
I
= 10 mA  
O
I
= 10 mA  
O
= 0.01 µF  
70  
60  
70  
60  
80  
I
= 100 mA  
O
70  
50  
40  
50  
40  
60  
50  
40  
I
= 10 mA  
O
I
= 100 mA  
O
30  
20  
30  
20  
I
= 100 mA  
O
V
C
C
= 2.8 V  
= 1 µF  
V
C
C
= 2.8 V  
= 1 µF  
I
o
(byp)  
I
o
(byp)  
30  
20  
10  
0
10  
0
= 0.1 µF  
= 0.01 µF  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
10  
100  
1 k  
10 k 100 k 1 M 10 M  
f − Frequency − Hz  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 21  
TPS79133  
Figure 19  
Figure 20  
TPS79133  
TPS79133  
OUTPUT VOLTAGE, ENABLE VOLTAGE  
vs  
RIPPLE REJECTION  
vs  
RIPPLE REJECTION  
vs  
TIME (START-UP)  
FREQUENCY  
FREQUENCY  
100  
90  
100  
90  
3
V
C
C
= 4.3 V  
= 1 µF  
V
V
I
= 4.3 V  
= 3.3 V  
O
V
C
C
= 4.3 V  
I
o
(byp)  
I
I
2
1
0
= 1 µF  
= 0.01 µF  
O
(byp)  
= 0.1 µF  
= 100 mA  
O
80  
70  
60  
50  
40  
80  
70  
60  
50  
40  
I
= 100 mA  
C
T
= 1 µF  
= 25°C  
I
= 100 mA  
O
o
J
O
C
= 0.001 µF  
(byp)  
I
= 10 mA  
I
= 10 mA  
O
O
3
2
1
0
C
= 0.0047 µF  
= 0.01 µF  
(byp)  
30  
20  
30  
20  
C
(byp)  
0
20 40 60 80 100 120 140 160 180 200  
10  
100  
1 k  
10 k 100 k 1 M 10 M  
10  
100  
1 k  
10 k 100 k 1 M 10 M  
t − Time − µs  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 24  
Figure 22  
Figure 23  
TPS79118  
TPS79118  
TPS79133  
LINE TRANSIENT RESPONSE  
LOAD TRANSIENT RESPONSE  
LINE TRANSIENT RESPONSE  
I
C
C
= 100 mA  
= 1 µF  
O
o
V
C
= 2.8 V  
I
20  
20  
= 10 µF  
o
= 0.01 µF  
(byp)  
10  
0
0
0
−20  
−40  
−20  
−10  
5.3  
4.3  
3.8  
2.8  
100  
0
I
C
C
= 100 mA  
= 1 µF  
O
o
dv  
dt  
0µ.4sV  
+
= 0.01 µF  
(byp)  
0
10 20 30 40 50 60 70 80 90 100  
0
200 400 600 800 1 k 12 k 14 k16 k 18 k 2 k  
0
5
10 15 20 25 30 35 40 45 50  
t − Time − µs  
t − Time − µs  
t − Time − µs  
Figure 25  
Figure 26  
Figure 27  
8
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢅ ꢇꢈ ꢅ ꢉ ꢀ ꢁꢂꢃ ꢄꢅꢅꢊ ꢇꢈ ꢅ  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢋ ꢋ ꢇꢈ ꢅ ꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢌ ꢃꢇꢈ ꢅ  
www.ti.com  
SGLS160B − APRIL 2003 − REVISED SEPTEMBER 2008  
TYPICAL CHARACTERISTICS  
TPS79118  
TYPICAL REGIONS OF STABILITY  
EQUIVALENT SERIES RESISTANCE (ESR)  
TPS79133  
vs  
OUTPUT CURRENT  
100  
LOAD TRANSIENT RESPONSE  
V
C
= 4.3 V  
C
o
= 0.47 µF  
I
20  
0
= 10 µF  
V
= 5.5 V  
o
I
T
J
= −40 °C to 125°C  
10  
1
Region of Instability  
−20  
−40  
100  
0.1  
0
Region of  
Instability  
0.01  
0
50 100 150200 250 300 350 400 450 500  
t − Time − µs  
0
0.02  
0.04  
0.06  
0.08  
0.1  
I
− Output Current − A  
O
Figure 28  
Figure 29  
TPS79118  
TPS79118  
TYPICAL REGIONS OF STABILITY  
EQUIVALENT SERIES RESISTANCE (ESR)  
vs  
TYPICAL REGIONS OF STABILITY  
EQUIVALENT SERIES RESISTANCE (ESR)  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
100  
100  
C
V
= 10 µF  
= 5.5 V  
o
I
C
V
= 1 µF  
= 5.5 V  
o
I
T
J
= −40 °C to 125°C  
T
J
= −40 °C to 125°C  
10  
10  
Region of Instability  
Region of Instability  
1
1
0.1  
0.1  
Region of Stability  
Region of Stability  
0.01  
0.01  
0
0.02  
0.04  
0.06  
0.08  
0.1  
0
0.02  
0.04  
0.06  
0.08  
0.1  
I
− Output Current − A  
O
I
− Output Current − A  
O
Figure 31  
Figure 30  
9
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆ ꢅꢇ ꢈꢅꢉ ꢀꢁ ꢂ ꢃ ꢄ ꢅꢅ ꢊ ꢇꢈꢅ  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢋ ꢋ ꢇꢈꢅ ꢉ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢌ ꢃꢇ ꢈꢅ  
www.ti.com  
SGLS160B − APRIL 2003 − REVISED SEPTEMBER 2008  
APPLICATION INFORMATION  
The TPS791xx family of low-dropout (LDO) regulators have been optimized for use in noise-sensitive  
battery-operated equipment. The device features extremely low dropout voltages, high PSRR, ultralow output  
noise, low quiescent current (170 µA typically), and enable-input to reduce supply currents to less than 1 µA  
when the regulator is turned off.  
A typical application circuit is shown in Figure 32.  
TPS791xx  
1
V
I
IN  
4
5
BYPASS  
OUT  
V
O
3
0.1 µF  
0.01 µF  
EN  
+
1 µF  
GND  
2
Figure 32. Typical Application Circuit  
EXTERNAL CAPACITOR REQUIREMENTS  
A 0.1-µF or larger ceramic input bypass capacitor, connected between IN and GND and located close to the  
TPS791xx, is required for stability and to improve transient response, noise rejection, and ripple rejection. A  
higher-value electrolytic input capacitor may be necessary if large, fast-rise-time load transients are anticipated  
and the device is located several inches from the power source.  
Like all low dropout regulators, the TPS791xx requires an output capacitor connected between OUT and GND  
to stabilize the internal control loop. The minimum recommended capacitance is1µF. Any 1 µF or larger ceramic  
capacitor is suitable. The device is also stable with a 0.47 µF ceramic capacitor with at least 75 mof ESR.  
The internal voltage reference is a key source of noise in an LDO regulator. The TPS791xx has a BYPASS pin  
which is connected to the voltage reference through a 250-kinternal resistor. The 250-kinternal resistor,  
in conjunction with an external bypass capacitor connected to the BYPASS pin, creates a low pass filter to  
reduce the voltage reference noise and, therefore, the noise at the regulator output. In order for the regulator  
to operate properly, the current flow out of the BYPASS pin must be at a minimum because any leakage current  
creates an IR drop across the internal resistor thus creating an output error. Therefore, the bypass capacitor  
must have minimal leakage current.  
For example, the TPS79118 exhibits approximately 15 µV  
of output voltage noise using a 0.1 µF ceramic  
RMS  
bypass capacitor and a 1 µF ceramic output capacitor. Note that the output starts up slower as the bypass  
capacitance increases due to the RC time constant at the bypass pin that is created by the internal 250 kΩ  
resistor and external capacitor.  
BOARD LAYOUT RECOMMENDATION TO  
IMPROVE PSRR AND NOISE  
PERFORMANCE  
To improve ac measurements like PSRR, output noise, and transient response, it is recommended that the  
board be designed with separate ground planes for V and V  
, with each ground plane connected only at  
IN  
OUT  
the ground pin of the device. In addition, the ground connection for the bypass capacitor should connect directly  
to the ground pin of the device.  
10  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢅ ꢇꢈ ꢅ ꢉ ꢀ ꢁꢂꢃ ꢄꢅꢅꢊ ꢇꢈ ꢅ  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢋ ꢋ ꢇꢈ ꢅ ꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢌ ꢃꢇꢈ ꢅ  
www.ti.com  
SGLS160B − APRIL 2003 − REVISED SEPTEMBER 2008  
POWER DISSIPATION AND JUNCTION TEMPERATURE  
Specified regulator operation is assured to a junction temperature of 125°C; the maximum junction temperature  
should be restricted to 125°C under normal operating conditions. This restriction limits the power dissipation  
the regulator can handle in any given application. To ensure the junction temperature is within acceptable limits,  
calculate the maximum allowable dissipation, P  
, and the actual dissipation, P , which must be less than  
D(max)  
D
or equal to P  
.
D(max)  
The maximum-power-dissipation limit is determined using the following equation:  
T max * T  
J
A
(1)  
P
+
D(max)  
R
qJA  
Where:  
T max is the maximum allowable junction temperature.  
J
R
is the thermal resistance junction-to-ambient for the package, see the dissipation rating table.  
θJA  
T is the ambient temperature.  
A
The regulator dissipation is calculated using:  
+ ǒVI * V  
Ǔ
P
  I  
(2)  
D
O
O
Power dissipation resulting from quiescent current is negligible. Excessive power dissipation triggers the  
thermal protection circuit.  
PROGRAMMING THE TPS79101 ADJUSTABLE LDO REGULATOR  
The output voltage of the TPS79101 adjustable regulator is programmed using an external resistor divider as  
shown in Figure 33. The output voltage is calculated using:  
R1  
R2  
  ǒ1 ) Ǔ  
(3)  
V
+ V  
O
ref  
Where:  
V
= 1.2246 V typ (the internal reference voltage)  
ref  
Resistors R1 and R2 should be chosen for approximately 50-µA divider current. Lower value resistors can be  
used for improved noise performance, but the solution consumes more power. Higher resistor values should  
be avoided as leakage current into/out of FB across R1/R2 creates an offset voltage that artificially  
increases/decreases the feedback voltage and thus erroneously decreases/increases V . The recommended  
O
design procedure is to choose R2 = 30.1 kto set the divider current at 50 µA, C1 = 15 pF for stability, and  
then calculate R1 using:  
V
O
R1 +  
* 1   R2  
ǒ Ǔ  
(4)  
V
ref  
In order to improve the stability of the adjustable version, it is suggested that a small compensation capacitor  
be placed between OUT and FB. For voltages <1.8 V, the value of this capacitor should be 100 pF. For voltages  
>1.8 V, the approximate value of this capacitor can be calculated as:  
*7  
(3   10 )   (R1 ) R2)  
C1 +  
(5)  
(R1   R2)  
The suggested value of this capacitor for several resistor ratios is shown in the table below. If this capacitor is  
not used (such as in a unity-gain configuration) or if an output voltage < 1.8 V is chosen, then the minimum  
recommended output capacitor is 2.2 µF instead of 1 µF.  
11  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆ ꢅꢇ ꢈꢅꢉ ꢀꢁ ꢂ ꢃ ꢄ ꢅꢅ ꢊ ꢇꢈꢅ  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢋ ꢋ ꢇꢈꢅ ꢉ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢌ ꢃꢇ ꢈꢅ  
www.ti.com  
SGLS160B − APRIL 2003 − REVISED SEPTEMBER 2008  
TPS79101  
OUTPUT VOLTAGE  
PROGRAMMING GUIDE  
V
I
IN  
1 µF  
OUTPUT  
R1  
R2  
C1  
VOLTAGE  
EN  
OUT  
V
O
2 V  
C1  
2.5 V  
3.3 V  
3.6 V  
31.6 k30.1 k22 pF  
51 k30.1 k15 pF  
59 k30.1 k15 pF  
R1  
R2  
1 µF  
0.7 V  
BYPASS FB  
GND  
0.01 µF  
Figure 33. TPS79101 Adjustable LDO Regulator Programming  
REGULATOR PROTECTION  
The TPS791xx PMOS-pass transistor has a built-in back diode that conducts reverse current when the input  
voltage drops below the output voltage (e.g., during power down). Current is conducted from the output to the  
input and is not internally limited. If extended reverse voltage operation is anticipated, external limiting might  
be appropriate.  
The TPS791xx features internal current limiting and thermal protection. During normal operation, the TPS791xx  
limits output current to approximately 400 mA. When current limiting engages, the output voltage scales back  
linearly until the overcurrent condition ends. While current limiting is designed to prevent gross device failure,  
care should be taken not to exceed the power dissipation ratings of the package or the absolute maximum  
voltage ratings of the device. If the temperature of the device exceeds approximately 165°C, thermal-protection  
circuitry shuts it down. Once the device has cooled down to below approximately 140°C, regulator operation  
resumes.  
12  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Apr-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS79101DBVRQ1  
TPS79118DBVRQ1  
TPS79133DBVRG4Q1  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
6
5
5
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
PEU1  
PER1  
PES1  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Apr-2022  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TPS791-Q1 :  
Catalog : TPS791  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Apr-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS79101DBVRQ1  
TPS79118DBVRQ1  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
6
5
5
3000  
3000  
3000  
180.0  
180.0  
180.0  
9.0  
9.0  
9.0  
3.15  
3.15  
3.15  
3.2  
3.2  
3.2  
1.4  
1.4  
1.4  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
TPS79133DBVRG4Q1 SOT-23  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Apr-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS79101DBVRQ1  
TPS79118DBVRQ1  
TPS79133DBVRG4Q1  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
6
5
5
3000  
3000  
3000  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
20.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

TPS79118DBVT

ULTRALOW NOISE, HIGH PSRR, FAST RF 100-MA LOW DROPOUT LINEAR REGULATORS
TI

TPS79118DBVTG4

ULTRALOW NOISE HIGH PSRR FAST RF 100-mA LOW- DROPOUT LINEAR REGUATORS
TI

TPS79133

ULTRALOW NOISE, HIGH PSRR, FAST RF 100-MA LOW DROPOUT LINEAR REGULATORS
TI

TPS79133-EP

ULTRALOW NOISE, HIGH PSRR, FAST RF, 100-mA LOW-DROPOUT LINEAR REGULATORS
TI

TPS79133DBVR

ULTRALOW NOISE, HIGH PSRR, FAST RF 100-MA LOW DROPOUT LINEAR REGULATORS
TI

TPS79133DBVREP

ULTRALOW NOISE, HIGH PSRR, FAST RF, 100-mA LOW-DROPOUT LINEAR REGULATORS
TI

TPS79133DBVRG4

ULTRALOW NOISE HIGH PSRR FAST RF 100-mA LOW- DROPOUT LINEAR REGUATORS
TI

TPS79133DBVRG4Q1

具有使能功能的汽车类 100mA、低噪声、低压降稳压器 | DBV | 5 | -40 to 125
TI

TPS79133DBVRQ1

3.3V FIXED POSITIVE LDO REGULATOR, 0.09V DROPOUT, PDSO5, GREEN, PLASTIC, SOT-23, 5 PIN
TI

TPS79133DBVT

ULTRALOW NOISE, HIGH PSRR, FAST RF 100-MA LOW DROPOUT LINEAR REGULATORS
TI

TPS79133DBVTG4

Ultralow Noise, High PSRR, Fast RF 100-mA Low-Dropout Linear Regulators 5-SOT-23 -40 to 125
TI

TPS79133MDBVTEP

ULTRALOW NOISE, HIGH PSRR, FAST RF, 100-mA LOW-DROPOUT LINEAR REGULATORS
TI