TPS7A0228PDQNR [TI]

具有使能功能的 200mA、毫微功耗 IQ (25nA)、低压降 (LDO) 稳压器 | DQN | 4 | -40 to 125;
TPS7A0228PDQNR
型号: TPS7A0228PDQNR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有使能功能的 200mA、毫微功耗 IQ (25nA)、低压降 (LDO) 稳压器 | DQN | 4 | -40 to 125

稳压器
文件: 总43页 (文件大小:3228K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS7A02  
SBVS277B JULY 2019REVISED MARCH 2020  
TPS7A02 Nanopower IQ, 25-nA, 200-mA, Low-Dropout Voltage Regulator With Fast  
Transient Response  
1 Features  
3 Description  
The TPS7A02 is an ultra-small, ultra-low quiescent  
current low-dropout linear regulator (LDO) that can  
source 200 mA with excellent transient performance.  
1
Ultra-low IQ: 25 nA (typ), even in dropout  
Shutdown IQ: 3 nA (typ)  
Excellent transient response (1 mA to 50 mA)  
The TPS7A02, with an ultra-low IQ of 25 nA, is  
designed specifically for applications where very-low  
quiescent current is a critical parameter. This device  
maintains low IQ consumption even in dropout mode  
to further increase the battery life. When in shutdown  
or disabled mode, the device consumes ultra-low,  
3-nA IQ that helps increase the shelf life of the  
battery. The TPS7A02 has an output range of 0.8 V  
to 5.0 V available in 50-mV steps to support the lower  
core voltages of modern microcontrollers (MCUs).  
< 10-µs settling time  
100-mV undershoot  
Packages:  
1.0-mm × 1.0-mm X2SON  
SOT23-5  
0.64-mm x 0.64-mm DSBGA (preview)  
Input voltage range: 1.5 V to 6.0 V  
Output voltage range: 0.8 V to 5.0 V (fixed)  
Output accuracy: 1.5% over temperature  
Smart enable pulldown  
The TPS7A02 features a smart enable circuit with an  
internally controlled pulldown resistor that keeps the  
LDO disabled even when the EN pin is left floating  
and helps minimize the external components used to  
pulldown the EN pin. This circuit also helps minimize  
the current drawn through the external pulldown  
circuit when the device is enabled.  
Very low dropout:  
270 mV (max) at 200 mA (VOUT = 3.3 V)  
Stable with a 1-µF or larger capacitor  
The TPS7A02 is fully specified for TJ = –40°C to  
+125°C operation.  
2 Applications  
Wearables electronics  
Device Information(1)  
Thermostats, smoke and heat detectors  
Gas, heat, and water meters  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
1.00 mm × 1.00 mm  
0.64 mm × 0.64 mm  
2.90 mm × 1.60 mm  
X2SON (4)  
Blood glucose monitors and pulse oximeters  
Residential circuit breakers and fault indicators  
Building security and video surveillance devices  
EPOS card readers  
TPS7A02  
DSBGA (4)(2)  
SOT-23 (5)  
(1) For all available packages, see the package option addendum  
at the end of the data sheet.  
(2) Preview package.  
Load Transient Response  
(VIN = VOUT + 1 V, COUT = 1 µF,  
IOUT = 1 mA to 50 mA in 1 µs)  
Ground Current Efficiency vs Output Current  
102  
100  
98  
400  
350  
300  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
96  
94  
0
-50  
92  
-100  
-150  
-200  
-250  
-300  
-350  
90  
0
-50  
88  
TJ  
-100  
-150  
-200  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
140°C  
100  
86  
84  
VOUT  
IOUT  
0.001  
0.01  
0.1 1  
Output Current (mA)  
10  
-200 -100  
0
100 200 300 400 500 600 700 800  
Time (µs)  
Curr  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
 
 
TPS7A02  
SBVS277B JULY 2019REVISED MARCH 2020  
www.ti.com  
Table of Contents  
7.4 Device Functional Modes........................................ 22  
Application and Implementation ........................ 23  
8.1 Application Information............................................ 23  
8.2 Typical Application .................................................. 26  
Power Supply Recommendations...................... 27  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Switching Characteristics.......................................... 7  
6.7 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 18  
7.1 Overview ................................................................. 18  
7.2 Functional Block Diagram ....................................... 18  
7.3 Feature Description................................................. 19  
8
9
10 Layout................................................................... 28  
10.1 Layout Guidelines ................................................. 28  
10.2 Layout Examples................................................... 28  
11 Device and Documentation Support ................. 29  
11.1 Device Support .................................................... 29  
11.2 Receiving Notification of Documentation Updates 29  
11.3 Community Resources.......................................... 29  
11.4 Trademarks........................................................... 29  
11.5 Electrostatic Discharge Caution............................ 29  
11.6 Glossary................................................................ 29  
7
12 Mechanical, Packaging, and Orderable  
Information ........................................................... 29  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision A (December 2019) to Revision B  
Page  
Changed DBV (SOT23-5) package from preview to production data .................................................................................... 1  
Changes from Original (July 2019) to Revision A  
Page  
Changed device status from advance information to production data ................................................................................... 1  
2
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
 
TPS7A02  
www.ti.com  
SBVS277B JULY 2019REVISED MARCH 2020  
5 Pin Configuration and Functions  
DQN Package  
1-mm × 1-mm, 4-pin X2SON  
Top View  
DBV Package  
5-Pin SOT-23  
Top View  
OUT  
1
4
IN  
IN  
GND  
EN  
1
2
3
5
OUT  
Thermal Pad  
4
NC  
GND  
2
3
EN  
Not to scale  
Not to scale  
Pin Functions: DQN, DBV  
PIN  
NAME  
EN  
DQN  
DBV  
I/O(1)  
Input  
DESCRIPTION  
Enable pin. Driving this pin to logic high enables the device; driving this pin to logic low  
or floating this pin disables the device. This pin features an internal pulldown resistor,  
which is disconnected when EN is driven high externally and the device has started up.  
3
2
3
2
GND  
IN  
Ground pin. This pin must be connected to ground on the board.  
Input pin. For best transient response and to minimize input impedance, use the  
recommended value or larger ceramic capacitor from IN to ground; see the  
Recommended Operating Conditions table. Place the input capacitor as close to the  
input of the device as possible.  
4
1
1
4
5
Input  
NC  
No connect pin. This pin is not internally connected. Connect to ground or leave floating.  
Regulated output pin. A 0.5-µF or greater effective capacitance is required from OUT to  
ground for stability. For best transient response, use a 1-µF or larger ceramic capacitor  
from OUT to ground. Place the output capacitor as close to output of the device as  
possible; see the Recommended Operating Conditions table.  
OUT  
Output  
Connect the thermal pad to a large-area ground plane. The thermal pad is internally  
connect to ground.  
Thermal pad  
––  
(1) NC = No internal connection.  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
TPS7A02  
SBVS277B JULY 2019REVISED MARCH 2020  
www.ti.com  
YCH Package (Preview)  
4-Pin DSBGA, 0.35-mm Pitch  
Top View  
YCH Package (Preview)  
4-Pin DSBGA, 0.35-mm Pitch  
Bottom View  
1
2
1
2
A
IN  
OUT  
B
EN  
GND  
B
EN  
GND  
A
IN  
OUT  
Not to scale  
Not to scale  
Pin Functions: YCH  
PIN  
NAME  
EN  
YCH  
B1  
I/O  
Input  
DESCRIPTION  
Enable pin. Driving this pin to logic high enables the device; driving this pin to logic low or floating  
this pin disables the device. This pin features an internal pulldown resistor, which is disconnected  
when EN is driven high externally and the device has started up.  
GND  
IN  
B2  
Ground pin. This pin must be connected to ground and the thermal pad.  
Input pin. For best transient response and to minimize input impedance, use the recommended  
value or larger ceramic capacitor from IN to ground; see the Recommended Operating  
Conditions table. Place the input capacitor as close to input of the device as possible.  
A1  
Input  
Regulated output pin. A 0.5-µF or greater effective capacitance is required from OUT to ground  
for stability. For best transient response, use a 1-µF or larger ceramic capacitor from OUT to  
ground. Place the output capacitor as close to output of the device as possible; see the  
Recommended Operating Conditions table.  
OUT  
A2  
Output  
4
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
TPS7A02  
www.ti.com  
SBVS277B JULY 2019REVISED MARCH 2020  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
VIN  
6.5  
6.5  
Voltage  
VEN  
V
VOUT  
VIN + 0.3 or 5.5(2)  
Current  
Maximum output  
Operating junction, TJ  
Storage, Tstg  
Internally limited  
A
–40  
–65  
150  
150  
Temperature  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Maximum is VIN + 0.3 V or 5.5 V, whichever is smaller.  
6.2 ESD Ratings  
VALUE  
±1000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safemanufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safemanufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating junction temperature range (unless otherwise noted)  
MIN  
1.5  
0
NOM  
MAX  
6.0  
UNIT  
VIN  
Input voltage  
V
V
VEN  
VOUT  
IOUT  
CIN  
Enable voltage  
Output voltage  
Output current  
Input capacitor  
Output capacitor(1)  
6.0  
0.8  
0
5.0  
V
200  
mA  
µF  
µF  
kHz  
°C  
1
1
(2)  
COUT  
FEN  
TJ  
1
22  
10  
EN toggle frequency  
Operating junction temperature  
–40  
125  
(1) Effective output capacitance of 0.5 µF minimum required for stability.  
(2) 22 µF is the maximum derated capacitance that can be used for stability.  
6.4 Thermal Information  
TPS7A02  
DBV (SOT-23-5)  
5 PINS  
181.9  
THERMAL METRIC(1)  
DQN (X2SON)  
4 PINS  
179.1  
YCH (DSBGA)  
UNIT  
4 PINS  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
137.6  
53.0  
116.3  
88.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
6.1  
27.1  
ψJB  
116.3  
52.7  
RθJC(bot)  
112.3  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
 
TPS7A02  
SBVS277B JULY 2019REVISED MARCH 2020  
www.ti.com  
6.5 Electrical Characteristics  
Specified at TJ = –40°C to +125°C, VIN = VOUT(nom) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and CIN  
COUT = 1 µF (unless otherwise noted). Typical values are at TJ = 25°C.  
=
PARAMETER  
TEST CONDITIONS  
TJ = 25°C, VOUT 1.5 V, 1 µA(1) IOUT 1 mA  
TJ = 25°C; VOUT < 1.5 V  
MIN  
–1  
TYP  
MAX UNIT  
1
15  
%
mV  
%
Nominal accuracy  
–15  
–1.5  
–20  
VOUT 1.5 V  
1.5  
20  
Accuracy over  
temperature  
TJ = –40°C to +125°C  
VOUT < 1.5 V  
mV  
VOUT(nom) + 0.5 V VIN 6.0 V(2)  
ΔVOUT(ΔVIN  
)
Line regulation  
TJ = –40°C to +125°C  
TJ = –40°C to +85°C  
TJ = –40°C to +125°C  
5
38  
50  
mV  
20  
25  
1 mA IOUT 200 mA,  
VIN = VOUT(nom) + 0.5 V(2)  
ΔVOUT(ΔIOUT  
)
Load regulation(3)  
mV  
TJ = 25°C  
46  
60  
IGND  
Ground current  
IOUT = 0 mA  
nA  
%
TJ = –40°C to +85°C  
5 µA IOUT < 1 mA  
1
0.25  
0.15  
Ground current vs  
load current  
IGND/IOUT  
1 mA IOUT < 100 mA  
TJ = 25°C  
IOUT 100 mA  
Ground current in  
dropout(1)  
IGND(DO)  
ISHDN  
IOUT = 0 mA, VIN = 95% x VOUT(NOM)  
TJ = 25°C  
25  
3
nA  
nA  
Shutdown current  
VEN = 0 V, 1.5 V VIN 5.0 V, TJ = 25°C  
10  
VOUT < 2.5V,  
240  
240  
450  
750  
mA  
VIN = VOUT(nom)  
VDO(max) + 1.0 V  
+
ICL  
Output current limit VOUT = 90% × VOUT(nom)  
VOUT 2.5V,  
450  
65  
750  
mA  
mA  
VIN = VOUT(nom)  
VDO(max) + 0.5 V  
+
Short-circuit current  
VOUT = 0 V  
limit  
ISC  
0.8 V VOUT < 1.0 V  
1.0 V VOUT < 1.2 V  
1.2 V VOUT < 1.5 V  
1.5 V VOUT < 1.8 V  
1.8 V VOUT < 2.5 V  
2.5 V VOUT < 3.3 V  
3.3 V VOUT 5.0 V  
0.8 V VOUT < 1.0 V  
1.0 V VOUT < 1.2 V  
1.2 V VOUT < 1.5 V  
1.5 V VOUT < 1.8 V  
1.8 V VOUT < 2.5 V  
2.5 V VOUT < 3.3 V  
3.3 V VOUT 5.0 V  
1050  
790  
650  
490  
400  
310  
270  
1100  
850  
700  
560  
450  
360  
310  
TJ = –40°C to +85°C  
VDO  
Dropout voltage(4)  
mV  
TJ = –40°C to +125°C  
Power-supply  
PSRR  
VN  
f = 1 kHz, IOUT = 30 mA  
rejection ratio  
55  
dB  
Output voltage  
noise  
BW = 10 Hz to 100 kHz, VOUT = 0.8 V, IOUT = 30 mA  
130  
µVRMS  
VIN rising  
VIN falling  
1.23  
1.0  
1.3  
1.47  
1.41  
VUVLO  
UVLO threshold  
V
1.12  
(1) Specified by design  
(2) VIN = 2.0 V for VOUT 1.5 V.  
(3) Load Regulation is normalized to the output voltage at IOUT = 1 mA.  
(4) Dropout is measured by ramping VIN down until VOUT = VOUT(nom) x 95%, with IOUT = 200 mA.  
6
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
TPS7A02  
www.ti.com  
SBVS277B JULY 2019REVISED MARCH 2020  
Electrical Characteristics (continued)  
Specified at TJ = –40°C to +125°C, VIN = VOUT(nom) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and CIN  
COUT = 1 µF (unless otherwise noted). Typical values are at TJ = 25°C.  
=
PARAMETER  
VUVLO(HYST) UVLO hysteresis  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VIN hysteresis  
180  
mV  
EN pin logic high  
voltage  
VEN(HI)  
VEN(LOW)  
IEN  
REN(PULLDOWN)  
RPULLDOWN  
1.1  
V
EN pin logic low  
voltage  
0.3  
V
EN pin leakage  
current  
VEN = VIN = 6.0 V  
VEN = 0.3 V  
10  
nA  
Smart enable  
pulldown resistor  
500  
60  
KΩ  
Pulldown resistor  
VIN = 3.3 V, device disabled  
Ω
Thermal shutdown  
temperature  
TSD(shutdown)  
Shutdown, temperature increasing  
170  
°C  
Thermal shutdown  
reset temperature  
TSD(reset)  
Reset, temperature decreasing  
145  
6.6 Switching Characteristics  
Specified at TJ = –40°C to +125°C, VIN = VOUT(nom) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and CIN  
COUT = 1 µF (unless otherwise noted). Typical values are at TJ = 25°C.  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
0.8V VOUT 1.5 V  
500  
800  
tSTR  
Start-up time  
From EN assertion to VOUT = 90% × VOUT(nom) 1.5V < VOUT 3.0 V  
3.0V < VOUT 5.0 V  
750  
1200  
1600  
µs  
1200  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
TPS7A02  
SBVS277B JULY 2019REVISED MARCH 2020  
www.ti.com  
6.7 Typical Characteristics  
at operating temperature range (TJ = –40°C to 125°C), VIN = VOUT(nom) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA,  
VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted)  
60  
50  
40  
30  
20  
10  
0
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
TJ  
0°C  
25°C  
TJ  
125°C  
140°C  
-55°C  
-40°C  
85°C  
0
1.5  
2
2.5  
3
3.5  
Input Voltage (V)  
4
4.5  
5
5.5  
6
1.5  
2
2.5  
3
3.5  
Input Voltage (V)  
4
4.5  
5
5.5  
6
IOUT = 0 mA, VEN = VIN  
IOUT = 0 mA, VEN = VIN  
Figure 1. IQ vs VIN and Temperature  
Figure 2. IQ vs VIN and Temperature  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500000  
100000  
TJ  
TJ  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
140°C  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
140°C  
10000  
1000  
100  
0
10  
0
20  
40  
60  
80 100 120 140 160 180 200  
Output Current (mA)  
0.001  
0.01  
0.1 1  
Output Current (mA)  
10  
100200  
VOUT = 1.8 V, VIN = VEN = 2.3 V  
VOUT = 1.8 V, VIN = VEN = 2.3 V  
Figure 4. IQ vs IOUT and Temperature Up to 200 mA  
Figure 3. IQ vs IOUT and Temperature up to 200 mA  
25  
20  
15  
10  
5
5000  
4000  
3000  
2000  
1000  
0
TJ  
TJ  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
140°C  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
140°C  
0
0
0.2  
0.4 0.6  
Output Current (mA)  
0.8  
1
1
3
5
Output Current (mA)  
7
9
10  
VOUT = 1.8 V, VIN = VEN = 2.3 V  
Figure 5. IQ vs IOUT and Temperature Up to 1 mA  
VOUT = 1.8 V, VIN = VEN = 2.3 V  
Figure 6. IQ vs IOUT and Temperature for 1 mA to 10 mA  
8
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
TPS7A02  
www.ti.com  
SBVS277B JULY 2019REVISED MARCH 2020  
Typical Characteristics (continued)  
at operating temperature range (TJ = –40°C to 125°C), VIN = VOUT(nom) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA,  
VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted)  
60  
50  
40  
30  
20  
10  
0
300  
250  
200  
150  
100  
50  
TJ  
0°C  
25°C  
TJ  
125°C  
140°C  
-55°C  
-40°C  
85°C  
0
1.5  
2
2.5  
3 3.5  
Input Voltage (V)  
4
4.5  
5
1.5  
2
2.5  
3 3.5  
Input Voltage (V)  
4
4.5  
5
VOUT = 5.0 V, VEN = VIN  
VOUT = 5.0 V, VEN = VIN  
Figure 7. IQ in Dropout vs VIN and Temperature  
Figure 8. IQ in Dropout vs VIN and Temperature  
4000  
3000  
2000  
1000  
0
6
5
4
3
2
1
0
TJ  
TJ  
-55°C  
-40°C  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
140°C  
0°C  
25°C  
1.5  
2
2.5  
3
3.5  
Input Voltage (V)  
4
4.5  
5
5.5  
6
1.5  
2
2.5  
3
3.5  
Input Voltage (V)  
4
4.5  
5
5.5  
6
IOUT = 0 mA, VEN = 1.1 V  
VEN = 0 V  
Figure 9. IQ vs VIN and Temperature  
Figure 10. ISHDN vs VIN and Temperature  
400  
350  
300  
250  
200  
150  
100  
50  
400  
250  
200  
150  
100  
50  
TJ  
85°C  
125°C  
350  
300  
250  
200  
150  
100  
50  
140°C  
0
-50  
-100  
-150  
-200  
-250  
-300  
-350  
0
-50  
-100  
-150  
-200  
VOUT  
IOUT  
0
1.5  
2
2.5  
3
3.5 4  
Input Voltage (V)  
4.5  
5
5.5  
6
-200 -100  
0
100 200 300 400 500 600 700 800  
Time (µs)  
VEN = 0 V  
VOUT = 1.8 V, VIN = 2.8 V, COUT = 1 µF, tr = tf = 1 µs  
Figure 11. ISHDN vs VIN and Temperature  
Figure 12. IOUT Transient From 1 mA to 50 mA  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
TPS7A02  
SBVS277B JULY 2019REVISED MARCH 2020  
www.ti.com  
Typical Characteristics (continued)  
at operating temperature range (TJ = –40°C to 125°C), VIN = VOUT(nom) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA,  
VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted)  
400  
350  
300  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
0
0
-50  
-50  
-100  
-150  
-200  
-250  
-300  
-350  
-100  
-150  
-200  
-250  
-300  
-350  
0
0
-50  
-50  
-100  
-150  
-200  
-100  
-150  
-200  
VOUT  
IOUT  
VOUT  
IOUT  
-200 -100  
0
100 200 300 400 500 600 700 800  
Time (µs)  
-200 -100  
0
100 200 300 400 500 600 700 800  
Time (µs)  
Load  
VOUT = 1.8 V, VIN = 2.8 V, COUT = 1 µF, tr = tf = 1 µs  
VOUT = 1.8 V, VIN = 2.8 V, COUT = 1 µF, tr = tf = 1 µs  
Figure 13. IOUT Transient From 1 mA to 100 mA  
Figure 14. IOUT Transient From 1 mA to 200 mA  
200  
100  
75  
280  
240  
200  
160  
120  
80  
100  
175  
150  
125  
100  
75  
75  
50  
50  
25  
25  
0
0
-25  
-50  
-75  
-100  
-125  
-150  
-175  
-200  
-25  
-50  
-75  
-100  
-125  
-150  
-175  
-200  
50  
40  
25  
0
0
-40  
-80  
-120  
-160  
-200  
-25  
-50  
-75  
VOUT  
IOUT  
VOUT  
IOUT  
-100  
80  
90 100 110 120 130 140 150 160 170 180  
Time (ms)  
Load  
-60 -40 -20  
0
20  
40  
Time (µs)  
60  
80 100 120 140  
VOUT = 1.8 V, VIN = 2.8 V, COUT = 1 µF, tr = tf = 1 µs  
Load  
VOUT = 1.8 V, VIN = 2.8 V, COUT = 1 µF, tr = tf = 1 µs  
Figure 16. IOUT Transient From 50 mA to 0 mA  
Figure 15. IOUT Transient From 0 mA to 50 mA  
420  
200  
150  
100  
50  
200  
200  
150  
100  
50  
360  
300  
240  
180  
120  
60  
175  
150  
125  
100  
75  
0
0
-50  
-50  
-100  
-150  
-200  
-250  
-300  
-350  
-400  
50  
-100  
-150  
-200  
-250  
-300  
-350  
-400  
0
25  
-60  
0
-120  
-180  
-240  
-300  
-25  
-50  
-75  
-100  
IOUT  
VOUT  
VOUT  
IOUT  
-80 -60 -40 -20  
0
20  
Time (µs)  
40  
60  
80 100 120  
-10  
0
10  
20  
30  
40  
Time (ms)  
50  
60  
70  
80  
90  
Load  
Load  
VOUT = 1.8 V, VIN = 2.8 V, COUT = 1 µF, tr = tf = 1 µs  
VOUT = 1.8 V, VIN = 2.8 V, COUT = 1 µF, tr = tf = 1 µs  
Figure 17. IOUT Transient From 0 mA to 100 mA  
Figure 18. IOUT Transient From 100 mA to 0 mA  
10  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
TPS7A02  
www.ti.com  
SBVS277B JULY 2019REVISED MARCH 2020  
Typical Characteristics (continued)  
at operating temperature range (TJ = –40°C to 125°C), VIN = VOUT(nom) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA,  
VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted)  
420  
360  
300  
240  
180  
120  
60  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
400  
300  
200  
100  
0
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
0
0
-50  
-60  
-100  
-150  
-200  
-250  
-300  
0
-120  
-180  
-240  
-300  
-50  
VOUT  
IOUT  
-100  
-150  
-200  
VOUT  
IOUT  
-30 -20 -10  
0
10  
20  
Time (µs)  
30  
40  
50  
60  
70  
Load  
-10  
0
10  
20  
30 40  
Time (ms)  
50  
60  
70  
80  
VOUT = 1.8 V, VIN = 2.8 V, COUT = 1 µF, tr = tf = 1 µs  
VOUT = 1.8 V, VIN = 2.8 V, COUT = 1 µF, tr = tf = 1 µs  
Figure 19. IOUT Transient From 0 mA to 200 mA  
Figure 20. IOUT Transient From 200 mA to 0 mA  
400  
10  
150  
6
350  
300  
250  
200  
150  
100  
50  
7.5  
5
125  
100  
75  
4.5  
3
2.5  
0
1.5  
0
-2.5  
-5  
50  
-7.5  
-10  
-12.5  
25  
-1.5  
-3  
0
-50  
0
-100  
-150  
-200  
-15  
-25  
-50  
-4.5  
-6  
VOUT  
VIN  
VOUT  
VIN  
-17.5  
-20  
-40  
0
40  
80 120 160 200 240 280 320 360  
Time (µs)  
-200 -100  
0
100 200 300 400 500 600 700  
Time (µs)  
Line  
Line  
VOUT = 1.8 V, IOUT = 200 mA, COUT = 1 µF, slew rate = 1 V/µs  
VOUT = 1.8 V, IOUT = 1 mA, COUT = 1 µF, slew rate = 1 V/µs  
Figure 21. VIN Transient From 2.8 V to 4.8 V  
Figure 22. VIN Transient From 2.8 V to 6.0 V  
5
4.5  
4
5
150  
125  
100  
75  
10  
7.5  
5
4.5  
4
3.5  
3
3.5  
3
2.5  
0
2.5  
2
2.5  
2
50  
25  
-2.5  
-5  
1.5  
1
1.5  
1
0
VOUT  
VIN  
-25  
-50  
-7.5  
-10  
VOUT  
VIN  
0.5  
0
0.5  
0
-40  
0
40  
80 120 160 200 240 280 320 360  
Time (µs)  
-40 -20  
0
20  
40  
60  
Time (µs)  
80 100 120 140 160  
Drop  
Line  
VOUT = 1.8 V, IOUT = 200 mA, COUT = 1 µF, slew rate = 1 V/µs  
VOUT = 1.8 V, IOUT = 100 mA, COUT = 1 µF, slew rate = 1 V/µs  
Figure 23. VIN Transient From 2.8 V to 6.0 V  
Figure 24. VIN Transient From 1.5 V to 4.5 V  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
TPS7A02  
SBVS277B JULY 2019REVISED MARCH 2020  
www.ti.com  
Typical Characteristics (continued)  
at operating temperature range (TJ = –40°C to 125°C), VIN = VOUT(nom) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA,  
VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted)  
10  
0.3  
TJ  
TJ  
8
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
140°C  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
140°C  
6
0.1  
4
2
0
-0.1  
-0.3  
-0.5  
-2  
-4  
-6  
-8  
-10  
2
2.5  
3
3.5  
4
Input Voltage (V)  
4.5  
5
5.5  
6
2
2.5  
3
3.5  
4
Input Voltage (V)  
4.5  
5
5.5  
6
VOUT = 1.8 V, IOUT = 1 mA  
VOUT = 1.8 V, IOUT = 1 mA  
Figure 25. Line Regulation vs VIN and Temperature  
Figure 26. Output Accuracy vs VIN and Temperature  
0.3  
0.1  
20  
15  
10  
5
VOUT %  
TJ  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
140°C  
-0.1  
-0.3  
-0.5  
0
-5  
-10  
-15  
-60 -40 -20  
0
20 40 60 80 100 120 140150  
Temperature (èC)  
5
5.2  
5.4 5.6  
Input Voltage (V)  
5.8  
6
VOUT = 1.8 V, IOUT = 1 mA  
VOUT = 5.0 V, IOUT = 1 mA  
Figure 27. Output Accuracy vs Temperature  
Figure 28. Line Regulation vs VIN and Temperature  
0.5  
0.3  
0.5  
0.3  
TJ  
VOUT %  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
140°C  
0.1  
0.1  
-0.1  
-0.3  
-0.5  
-0.1  
-0.3  
5
5.2  
5.4 5.6  
Input Voltage (V)  
5.8  
6
-60 -40 -20  
0
20 40 60 80 100 120 140150  
Temperature (èC)  
VOUT = 5.0 V, IOUT = 1 mA  
Figure 29. Output Accuracy vs VIN and Temperature  
VOUT = 5.0 V, IOUT = 1 mA  
Figure 30. Output Accuracy vs Temperature  
12  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
TPS7A02  
www.ti.com  
SBVS277B JULY 2019REVISED MARCH 2020  
Typical Characteristics (continued)  
at operating temperature range (TJ = –40°C to 125°C), VIN = VOUT(nom) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA,  
VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted)  
10  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
TJ  
TJ  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
140°C  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
140°C  
5
0
-5  
-10  
-15  
-20  
0
0
20  
40  
60  
80 100 120 140 160 180 200  
Output Current (mA)  
0
20  
40  
60  
80 100 120 140 160 180 200  
Output Current (mA)  
VOUT = 1.8 V  
VOUT = 1.8 V  
Figure 32. Dropout vs IOUT and Temperature  
Figure 31. Load Regulation vs VIN and Temperature  
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
600  
TJ  
TJ  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
140°C  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
140°C  
400  
200  
0
60  
40  
20  
0
0
20  
40  
60  
80 100 120 140 160 180 200  
Output Current (mA)  
2
2.5  
3
3.5  
Input Voltage (V)  
4
4.5  
5
VOUT = 5.0 V  
IOUT = 200 mA  
Figure 33. Dropout vs IOUT and Temperature  
Figure 34. Dropout vs VIN and Temperature  
300  
250  
200  
150  
100  
50  
1.2  
TJ  
TJ  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
140°C  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
140°C  
1
0.8  
0.6  
0.4  
0.2  
0
0
1.5  
2
2.5  
3
3.5  
Input Voltage (V)  
4
4.5  
5
0
50 100 150 200 250 300 350 400 450 500 550 600  
Output Current (mA)  
IOUT = 50 mA  
Figure 35. Dropout vs VIN and Temperature  
VOUT = 0.8 V  
Figure 36. Foldback Current Limit vs IOUT and Temperature  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
TPS7A02  
SBVS277B JULY 2019REVISED MARCH 2020  
www.ti.com  
Typical Characteristics (continued)  
at operating temperature range (TJ = –40°C to 125°C), VIN = VOUT(nom) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA,  
VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted)  
2.5  
0.9  
0.85  
0.8  
TJ  
0°C  
25°C  
VEN(LOW)  
VEN(HIGH)  
-55°C  
-40°C  
85°C  
125°C  
2
1.5  
1
0.75  
0.7  
0.5  
0
0.65  
0.6  
0
50 100 150 200 250 300 350 400 450 500 550 600  
Output Current (mA)  
-60 -40 -20  
0
20 40 60 80 100 120 140150  
Temperature (èC)  
VOUT = 1.8 V  
VOUT = 0.8 V  
Figure 37. Foldback Current Limit vs IOUT and Temperature  
Figure 38. EN High and Low Threshold vs Temperature  
1.5  
1.1  
VEN(LOW)  
VEN(HIGH)  
VUVLO(HIGH)  
VUVLO(LOW)  
1.05  
1.45  
1.4  
1
0.95  
0.9  
1.35  
1.3  
0.85  
0.8  
1.25  
1.2  
0.75  
0.7  
1.15  
1.1  
-60 -40 -20  
0
20 40 60 80 100 120 140150  
Temperature (èC)  
-60 -40 -20  
0
20 40 60 80 100 120 140150  
Temperature (èC)  
VOUT = 5.0 V  
VOUT = 5.0 V, IOUT = 1 mA  
Figure 39. EN High and Low Threshold vs Temperature  
Figure 40. UVLO Rising and Falling Threshold vs  
Temperature  
70  
65  
60  
55  
50  
45  
40  
580  
570  
560  
550  
540  
530  
520  
510  
500  
490  
480  
VOUT  
1.8V  
VOUT  
1.8V  
0.8V  
5.0V  
0.8V  
5.0V  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
Figure 41. Pulldown Resistor vs Temperature and VOUT  
Figure 42. Smart Enable Pulldown Resistor vs Temperature  
and VOUT  
14  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
TPS7A02  
www.ti.com  
SBVS277B JULY 2019REVISED MARCH 2020  
Typical Characteristics (continued)  
at operating temperature range (TJ = –40°C to 125°C), VIN = VOUT(nom) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA,  
VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IOUT  
10 mA  
20 mA  
VIN  
3.8 V  
4.8 V  
0 mA  
1 mA  
100 mA  
200 mA  
2.3 V  
2.8 V  
6.0 V  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
D001  
VIN = 2.8 V, VOUT = 1.8 V, COUT = 1 µF  
VOUT = 1.8 V, IOUT = 20 mA, COUT = 1 µF  
Figure 43. PSRR vs Frequency and IOUT  
Figure 44. PSRR vs Frequency and VIN  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN  
3.8 V  
4.8 V  
VIN  
2.8 V  
3.8 V  
2.3 V  
2.8 V  
6.0 V  
4.8 V  
6.0 V  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
D001  
D001  
VOUT = 1.8 V, IOUT = 100 mA, COUT = 1 µF  
VOUT = 1.8 V, IOUT = 200 mA, COUT = 1 µF  
Figure 45. PSRR vs Frequency and VIN  
Figure 46. PSRR vs Frequency and VIN  
100  
50  
50  
VOUT  
1.8 V, RMS Noise = 269.5 mVRMS  
5.0 V, RMS Noise = 710 mVRMS  
IOUT  
100 mA, RMS Noise = 117.5 mVRMS  
1 mA, RMS Noise = 269.5 mVRMS  
30  
20  
20  
10  
5
10  
5
3
2
2
1
1
0.5  
0.5  
0.3  
0.2  
0.2  
0.1  
0.1  
0.05  
0.05  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
VIN = VOUT+ 1.0 V, IOUT = 1 mA, COUT = 1 µF  
VOUT = 1.8 V, VIN = 2.8 V, COUT = 1 µF  
Figure 47. Output Noise vs Frequency and VOUT  
Figure 48. Output Noise vs Frequency and IOUT  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
TPS7A02  
SBVS277B JULY 2019REVISED MARCH 2020  
www.ti.com  
Typical Characteristics (continued)  
at operating temperature range (TJ = –40°C to 125°C), VIN = VOUT(nom) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA,  
VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted)  
50  
5
VOUT  
VEN = VIN  
COUT  
1 mF, RMS Noise = 269.5 mVRMS  
22 mF, RMS Noise = 301.1 mVRMS  
30  
20  
4
10  
3
5
2
3
2
1
1
0
0.5  
0.3  
0.2  
-1  
-2  
0.1  
-450 -300 -150  
0
150 300 450 600 750 900 1050  
Time (ms)  
0.05  
Star  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
VOUT = 1.8 V, IOUT = 200 mA, COUT = 1 µF  
VOUT = 1.8 V, VIN = 2.8 V, IOUT = 1 mA  
Figure 50. Startup With VEN = VIN  
Figure 49. Output Noise vs Frequency and COUT  
5
4
3
2
1
0
6
5
VOUT  
VEN  
VIN  
VOUT  
VEN  
VIN  
4
3
2
1
-1  
-2  
0
-1  
-450 -300 -150  
0
150 300 450 600 750 900 1050  
Time (ms)  
-600 -400 -200  
0
200 400 600 800 1000 1200 1400  
Time (ms)  
Star  
Star  
VOUT = 1.8 V, IOUT = 200 mA, COUT = 1 µF  
VOUT = 1.8 V, IOUT = 200 mA, COUT = 1 µF  
Figure 51. Startup With VEN Before VIN  
Figure 52. Startup With VEN After VIN  
5.5  
5
10  
9
VOUT  
VEN  
VIN  
VOUT  
VEN  
VIN  
4.5  
4
8
7
3.5  
3
6
5
2.5  
2
4
3
1.5  
1
2
1
0.5  
0
0
-0.5  
-1  
-450 -300 -150  
0
150 300 450 600 750 900 1050  
Time (ms)  
-800 -400  
0
400 800 1200 1600 2000 2400 2800 3200  
Time (ms)  
Star  
Star  
VOUT = 1.8 V, IOUT = 0 mA, COUT = 1 µF  
VOUT = 5.0 V, IOUT = 200 mA, COUT = 1 µF  
Figure 53. Startup With VEN After VIN  
Figure 54. Startup With VEN After VIN  
16  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
TPS7A02  
www.ti.com  
SBVS277B JULY 2019REVISED MARCH 2020  
Typical Characteristics (continued)  
at operating temperature range (TJ = –40°C to 125°C), VIN = VOUT(nom) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA,  
VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted)  
9
50  
40  
30  
20  
10  
0
9
400  
300  
200  
100  
0
VIN  
VIN  
8
8
VEN  
VOUT  
IIN  
VEN  
VOUT  
IIN  
7
7
6
6
5
5
4
4
-100  
-200  
-300  
-400  
-500  
-600  
3
-10  
-20  
-30  
-40  
-50  
3
2
2
1
1
0
0
-1  
-1  
-400 -200  
0
200  
400  
Time (ms)  
600  
800 1000 1200  
-400 -200  
0
200  
400  
Time (ms)  
600  
800 1000 1200  
Star  
VOUT = 1.8 V, IOUT = 0 mA  
Figure 55. Startup Inrush Current With COUT= 1 µF  
VOUT = 1.8 V, IOUT = 0 mA  
Figure 56. Startup Inrush Current With COUT= 22 µF  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
TPS7A02  
SBVS277B JULY 2019REVISED MARCH 2020  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The TPS7A02 is a ultra-low IQ linear voltage regulator that is optimized for excellent transient performance.  
These characteristics make the device ideal for most battery-powered applications.  
This low-dropout linear regulator (LDO) offers active discharge, foldback current limit, shutdown, and thermal  
protection capability.  
7.2 Functional Block Diagram  
Current  
Limit  
IN  
OUT  
1.2-V  
Bandgap  
+
Active Discharge  
P-Version Only  
œ
œ
Error  
Amp  
+
UVLO  
Internal  
Controller  
Thermal  
Shutdown  
EN  
Smart  
Enable  
Resistor  
GND  
18  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
TPS7A02  
www.ti.com  
SBVS277B JULY 2019REVISED MARCH 2020  
7.3 Feature Description  
7.3.1 Excellent Transient Response  
The TPS7A02 includes several innovative circuits to ensure excellent transient response. Dynamic biasing  
increases the IQ for a short duration during transients to extend the closed-loop bandwidth and improve the  
output response time to transients.  
Adaptive biasing increases the IQ as the DC load current increases, extending the bandwidth of the loop. The  
response time across the output voltage range is constant because a buffered reference topology is used, which  
keeps the control loop in unity gain at any output voltage.  
These features give the device a wide loop bandwidth during transients that ensures excellent transient response  
while maintaining low IQ in steady-state conditions.  
7.3.2 Active Discharge (P-Version Only)  
The device has an internal pulldown MOSFET that connects a RPULLDOWN resistor to ground when the device is  
disabled to actively discharge the output voltage. The active discharge circuit is activated by the enable pin or by  
the undervoltage lockout (UVLO).  
Do not rely on the active discharge circuit for discharging a large amount of output capacitance after the input  
supply has collapsed because reverse current can possibly flow from the output to the input. This reverse current  
flow can cause damage to the device. Limit reverse current to no more than 5% of the device rated current for a  
short period of time.  
7.3.3 Low IQ in Dropout  
In most LDOs the IQ significantly increases when the device is placed into dropout, which is especially true for  
low IQ LDOs. The TPS7A02 helps to reduce the battery discharge by detecting when the device is operating in  
dropout conditions and maintaining a low IQ.  
7.3.4 Smart Enable  
The enable pin for the device is an active-high pin. The output voltage is enabled when the voltage of the enable  
pin is greater than the high-level input voltage of the EN pin and disabled with the enable pin voltage is less than  
the low-level input voltage of the EN pin. If independent control of the output voltage is not needed, connect the  
enable pin to the input of the device.  
This device has a smart enable circuit to reduce quiescent current. When the voltage on the enable pin is driven  
above VEN(HI), as listed in the Electrical Characteristics table, the device is enabled and the smart enable internal  
pulldown resistor (REN(PULLDOWN)) is disconnected. When the enable pin is floating, the REN(PULLDOWN) is  
connected and pulls the enable pin low to disable the device. The REN(PULLDOWN) value is listed in the Electrical  
Characteristics table.  
This device has an internal pulldown circuit that activates when the device is disabled to actively discharge the  
output voltage.  
7.3.5 Dropout Voltage  
Dropout voltage (VDO) is defined as the input voltage minus the output voltage (VIN – VOUT) at the rated output  
current (IRATED), where the pass transistor is fully on. IRATED is the maximum IOUT listed in the Recommended  
Operating Conditions table. The pass transistor is in the ohmic or triode region of operation, and acts as a switch.  
The dropout voltage indirectly specifies a minimum input voltage greater than the nominal programmed output  
voltage at which the output voltage is expected to stay in regulation. If the input voltage falls to less than the  
nominal output regulation, then the output voltage falls as well.  
For a CMOS regulator, the dropout voltage is determined by the drain-source on-state resistance (RDS(ON)) of the  
pass transistor. Therefore, if the linear regulator operates at less than the rated current, the dropout voltage for  
that current scales accordingly. Use Equation 1 to calculate the RDS(ON) of the device.  
VDO  
RDS(ON)  
=
IRATED  
(1)  
19  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
 
TPS7A02  
SBVS277B JULY 2019REVISED MARCH 2020  
www.ti.com  
Feature Description (continued)  
7.3.6 Foldback Current Limit  
The device has an internal current limit circuit that protects the regulator during transient high-load current faults  
or shorting events. The current limit is a hybrid brickwall-foldback scheme. The current limit transitions from a  
brickwall scheme to a foldback scheme at the foldback voltage (VFOLDBACK). In a high-load current fault with the  
output voltage above VFOLDBACK, the brickwall scheme limits the output current to the current limit (ICL). When the  
voltage drops below VFOLDBACK, a foldback current limit activates that scales back the current as the output  
voltage approaches GND. When the output is shorted, the device supplies a typical current called the short-  
circuit current limit (ISC). ICL and ISC are listed in the Electrical Characteristics table.  
For this device, VFOLDBACK = 0.5 V.  
The output voltage is not regulated when the device is in current limit. When a current limit event occurs, the  
device begins to heat up because of the increase in power dissipation. When the device is in brickwall current  
limit, the pass transistor dissipates power [(VIN – VOUT) × ICL]. When the device output is shorted and the output  
is below VFOLDBACK, the pass transistor dissipates power [(VIN – VOUT) × ISC]. If thermal shutdown is triggered, the  
device turns off. After the device cools down, the internal thermal shutdown circuit turns the device back on. If  
the output current fault condition continues, the device cycles between current limit and thermal shutdown. For  
more information on current limits, see the Know Your Limits application report.  
Figure 57 shows a diagram of the foldback current limit.  
VOUT  
Brickwall  
VOUT(NOM)  
VFOLDBACK  
Foldback  
0 V  
IOUT  
IRATED  
0 mA  
ISC  
ICL  
Figure 57. Foldback Current Limit  
7.3.7 Undervoltage Lockout (UVLO)  
The device has an independent undervoltage lockout (UVLO) circuit that monitors the input voltage, allowing a  
controlled and consistent turn on and off of the output voltage. To prevent the device from turning off if the input  
drops during turn on, the UVLO has hysteresis as specified in the Electrical Characteristics table.  
7.3.8 Thermal Shutdown  
The device contains a thermal shutdown protection circuit to disable the device when the junction temperature  
(TJ) of the pass transistor rises to TSD(shutdown) (typical). Thermal shutdown hysteresis assures that the device  
resets (turns on) when the temperature falls to TSD(reset) (typical).  
20  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
 
TPS7A02  
www.ti.com  
SBVS277B JULY 2019REVISED MARCH 2020  
Feature Description (continued)  
The thermal time-constant of the semiconductor die is fairly short, thus the device may cycle on and off when  
thermal shutdown is reached until power dissipation is reduced. Power dissipation during startup can be high  
from large VIN – VOUT voltage drops across the device or from high inrush currents charging large output  
capacitors. Under some conditions, the thermal shutdown protection disables the device before startup  
completes.  
For reliable operation, limit the junction temperature to the maximum listed in the Recommended Operating  
Conditions table. Operation above this maximum temperature causes the device to exceed its operational  
specifications. Although the internal protection circuitry of the device is designed to protect against thermal  
overall conditions, this circuitry is not intended to replace proper heat sinking. Continuously running the device  
into thermal shutdown or above the maximum recommended junction temperature reduces long-term reliability.  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
TPS7A02  
SBVS277B JULY 2019REVISED MARCH 2020  
www.ti.com  
7.4 Device Functional Modes  
7.4.1 Device Functional Mode Comparison  
The Device Functional Mode Comparison table shows the conditions that lead to the different modes of  
operation. See the Electrical Characteristics table for parameter values.  
Table 1. Device Functional Mode Comparison  
PARAMETER  
OPERATING MODE  
VIN  
VEN  
IOUT  
TJ  
Normal operation  
Dropout operation  
VIN > VOUT(nom) + VDO and VIN > VIN(min)  
VIN(min) < VIN < VOUT(nom) + VDO  
VEN > VEN(HI)  
VEN > VEN(HI)  
IOUT < IOUT(max)  
IOUT < IOUT(max)  
TJ < TSD(shutdown)  
TJ < TSD(shutdown)  
Disabled  
(any true condition  
disables the device)  
VIN < VUVLO  
VEN < VEN(LOW)  
Not applicable  
TJ > TSD(shutdown)  
7.4.2 Normal Operation  
The device regulates to the nominal output voltage when the following conditions are met:  
The input voltage is greater than the nominal output voltage plus the dropout voltage (VOUT(nom) + VDO  
The output current is less than the current limit (IOUT < ICL  
The device junction temperature is less than the thermal shutdown temperature (TJ < TSD  
The enable voltage has previously exceeded the enable rising threshold voltage and has not yet decreased to  
less than the enable falling threshold  
)
)
)
7.4.3 Dropout Operation  
If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other  
conditions are met for normal operation, the device operates in dropout mode. In this mode, the output voltage  
tracks the input voltage. During this mode, the transient performance of the device becomes significantly  
degraded because the pass transistor is in the ohmic or triode region, and acts as a switch. Line or load  
transients in dropout can result in large output-voltage deviations.  
When the device is in a steady dropout state (defined as when the device is in dropout, VIN < VOUT(NOM) + VDO  
,
directly after being in a normal regulation state, but not during startup), the pass transistor is driven into the  
ohmic or triode region. When the input voltage returns to a value greater than or equal to the nominal output  
voltage plus the dropout voltage (VOUT(NOM) + VDO), the output voltage can overshoot for a short period of time  
while the device pulls the pass transistor back into the linear region.  
7.4.4 Disabled  
The output of the device can be shutdown by forcing the voltage of the enable pin to less than the maximum EN  
pin low-level input voltage (see the Electrical Characteristics table). When disabled, the pass transistor is turned  
off, internal circuits are shutdown, and the output voltage is actively discharged to ground by an internal  
discharge circuit from the output to ground.  
22  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
 
TPS7A02  
www.ti.com  
SBVS277B JULY 2019REVISED MARCH 2020  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Recommended Capacitor Types  
The device is designed to be stable using low equivalent series resistance (ESR) ceramic capacitors at the input  
and output. Multilayer ceramic capacitors have become the industry standard for these types of applications and  
are recommended, but must be used with good judgment. Ceramic capacitors that employ X7R-, X5R-, and  
C0G-rated dielectric materials provide relatively good capacitive stability across temperature, whereas the use of  
Y5V-rated capacitors is discouraged because of large variations in capacitance.  
Regardless of the ceramic capacitor type selected, the effective capacitance varies with operating voltage and  
temperature. As a rule of thumb, expect the effective capacitance to decrease by as much as 50%. The input  
and output capacitors recommended in the Recommended Operating Conditions table account for an effective  
capacitance of approximately 50% of the nominal value.  
8.1.2 Input and Output Capacitor Requirements  
Although an input capacitor is not required for stability, good analog design practice is to connect a capacitor  
from IN to GND. This capacitor counteracts reactive input sources and improves transient response, input ripple,  
and PSRR. An input capacitor is recommended if the source impedance is more than 0.5 Ω. A higher value  
capacitor may be necessary if large, fast rise-time load or line transients are anticipated or if the device is located  
several inches from the input power source.  
Dynamic performance of the device is improved with the use of an output capacitor. Use an output capacitor  
within the range specified in the Recommended Operating Conditions table for stability.  
8.1.3 Load Transient Response  
The load-step transient response is the output voltage response by the LDO to a step in load current, whereby  
output voltage regulation is maintained. There are two key transitions during a load transient response: the  
transition from a light to a heavy load and the transition from a heavy to a light load. The regions shown in  
Figure 58 are broken down as follows. Regions A, E, and H are where the output voltage is in steady-state.  
tAt  
tCt  
tDt  
tEt  
tGt  
tHt  
B
F
Figure 58. Load Transient Waveform  
During transitions from a light load to a heavy load, the:  
Initial voltage dip is a result of the depletion of the output capacitor charge and parasitic impedance to the  
output capacitor (region B)  
Recovery from the dip results from the LDO increasing its sourcing current, and leads to output voltage  
regulation (region C)  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
 
TPS7A02  
SBVS277B JULY 2019REVISED MARCH 2020  
www.ti.com  
Application Information (continued)  
During transitions from a heavy load to a light load, the:  
Initial voltage rise results from the LDO sourcing a large current, and leads to the output capacitor charge to  
increase (region F)  
Recovery from the rise results from the LDO decreasing its sourcing current in combination with the load  
discharging the output capacitor (region G)  
A larger output capacitance reduces the peaks during a load transient but slows down the response time of the  
device. A larger DC load also reduces the peaks because the amplitude of the transition is lowered and a higher  
current discharge path is provided for the output capacitor.  
8.1.4 Undervoltage Lockout (UVLO) Operation  
The UVLO circuit ensures that the device stays disabled before its input supply reaches the minimum operational  
voltage range, and ensures that the device shuts down when the input supply collapses. Figure 59 shows the  
UVLO circuit response to various input voltage events. The diagram can be separated into the following parts:  
Region A: The device does not start until the input reaches the UVLO rising threshold.  
Region B: Normal operation, regulating device.  
Region C: Brownout event above the UVLO falling threshold (UVLO rising threshold – UVLO hysteresis). The  
output may fall out of regulation but the device remains enabled.  
Region D: Normal operation, regulating device.  
Region E: Brownout event below the UVLO falling threshold. The device is disabled in most cases and the  
output falls because of the load and active discharge circuit. The device is reenabled when the UVLO rising  
threshold is reached by the input voltage and a normal start-up follows.  
Region F: Normal operation followed by the input falling to the UVLO falling threshold.  
Region G: The device is disabled when the input voltage falls below the UVLO falling threshold to 0 V. The  
output falls because of the load and active discharge circuit.  
UVLO Rising Threshold  
UVLO Hysteresis  
VIN  
C
VOUT  
tAt  
tBt  
tDt  
tEt  
tFt  
tGt  
Figure 59. Typical UVLO Operation  
8.1.5 Power Dissipation (PD)  
Circuit reliability demands that proper consideration be given to device power dissipation, location of the circuit  
on the printed circuit board (PCB), and correct sizing of the thermal plane. The PCB area around the regulator  
must be as free as possible of other heat-generating devices that cause added thermal stresses.  
As a first-order approximation, power dissipation in the regulator depends on the input-to-output voltage  
difference and load conditions. Use Equation 2 to approximate PD:  
PD = (VIN – VOUT) × IOUT  
(2)  
Power dissipation can be minimized, and thus greater efficiency achieved, by proper selection of the system  
voltage rails. Proper selection allows the minimum input-to-output voltage differential to be obtained. The low  
dropout of the TPS7A02 allows for maximum efficiency across a wide range of output voltages.  
The main heat conduction path for the device is through the thermal pad on the package. As such, the thermal  
pad must be soldered to a copper pad area under the device. This pad area contains an array of plated vias that  
conduct heat to any inner plane areas or to a bottom-side copper plane.  
24  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
 
 
TPS7A02  
www.ti.com  
SBVS277B JULY 2019REVISED MARCH 2020  
Application Information (continued)  
The maximum power dissipation determines the maximum allowable junction temperature (TJ) for the device.  
According to Equation 3, power dissipation and junction temperature are most often related by the junction-to-  
ambient thermal resistance (RθJA) of the combined PCB and device package and the temperature of the ambient  
air (TA). Equation 4 rearranges Equation 3 for output current.  
TJ = TA + (RθJA × PD)  
(3)  
(4)  
IOUT = (TJ – TA) / [RθJA × (VIN – VOUT)]  
Unfortunately, this thermal resistance (RθJA) is highly dependent on the heat-spreading capability built into the  
particular PCB design, and therefore varies according to the total copper area, copper weight, and location of the  
planes. The RθJA recorded in the Thermal Information table is determined by the JEDEC standard, PCB, and  
copper-spreading area, and is only used as a relative measure of package thermal performance. For a well-  
designed thermal layout, RθJA is actually the sum of the X2SON package junction-to-case (bottom) thermal  
resistance (RθJC(bot)) plus the thermal resistance contribution by the PCB copper.  
8.1.5.1 Estimating Junction Temperature  
The JEDEC standard now recommends the use of psi (Ψ) thermal metrics to estimate the junction temperatures  
of the LDO when in-circuit on a typical PCB board application. These metrics are not strictly speaking thermal  
resistances, but rather offer practical and relative means of estimating junction temperatures. These psi metrics  
are determined to be significantly independent of the copper-spreading area. The key thermal metrics (ΨJT and  
ΨJB) are used in accordance with Equation 5 and are given in the Thermal Information table.  
ΨJT : TJ = TT + ΨJT × PD and ΨJB : TJ = TB + ΨJB × PD  
where:  
PD is the power dissipated as explained in Equation 2  
TT is the temperature at the center-top of the device package, and  
TB is the PCB surface temperature measured 1 mm from the device package and centered on the package  
edge  
(5)  
8.1.5.2 Recommended Area for Continuous Operation  
The operational area of an LDO is limited by the dropout voltage, output current, junction temperature, and input  
voltage. The recommended area for continuous operation for a linear regulator is given in Figure 60 and can be  
separated into the following parts:  
Dropout voltage limits the minimum differential voltage between the input and the output (VIN – VOUT) at a  
given output current level. See the Dropout Operation section for more details.  
The rated output currents limits the maximum recommended output current level. Exceeding this rating  
causes the device to fall out of specification.  
The rated junction temperature limits the maximum junction temperature of the device. Exceeding this rating  
causes the device to fall out of specification and reduces long-term reliability.  
The shape of the slope is given by Equation 4. The slope is nonlinear because the maximum rated  
junction temperature of the LDO is controlled by the power dissipation across the LDO; thus when VIN  
VOUT increases the output current must decrease.  
The rated input voltage range governs both the minimum and maximum of VIN – VOUT  
.
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
 
 
 
TPS7A02  
SBVS277B JULY 2019REVISED MARCH 2020  
www.ti.com  
Application Information (continued)  
Figure 60 shows the recommended area of operation for this device on a JEDEC-standard high-K board with a  
θJA as given in the Thermal Information table.  
R
Output current limited by  
dropout  
Rated output  
current  
Output current limited by thermals  
Limited by  
minimum VIN  
Limited by  
maximum VIN  
VIN œ VOUT (V)  
Figure 60. Region Description of Continuous Operation Regime  
8.2 Typical Application  
IN  
OUT  
GND  
CIN  
COUT  
Device  
VBAT  
Load  
EN  
Figure 61. Operation From a Battery Input Supply  
Table 2. Design Parameters  
8.2.1 Design Requirements  
PARAMETER  
DESIGN REQUIREMENT  
1.8 V to 3.0 V (two 1.5-V batteries)  
1.0 V, ±1%  
Input voltage  
Output voltage  
Input current  
200 mA, maximum  
10-mA DC  
Output load  
Maximum ambient temperature  
70°C  
8.2.2 Detailed Design Procedure  
For this design example, the 1.0-V, fixed-version TPS7A0210 is selected. A dual AA Alkaline battery was used,  
thus a 1.0-µF input capacitor is recommended to minimize transient currents drawn from the battery. A 1.0-µF  
output capacitor is also recommended for excellent load transient response. The dropout voltage (VDO) is kept  
within the TPS7A02 dropout voltage specification for the 1.0-V output voltage option to keep the device in  
regulation under all load and temperature conditions for this design. Use the recommend 1-µF input and output  
capacitor because the input source has a high equivalent series resistor (ESR) of 600 mΩ (typ). The very small  
ground current consumed by the regulator maintains a high current efficiency as compared to the load current  
consumed by the system, as shown in Figure 62 which allows for long battery life. Equation 6 can be used to  
calculate the current efficiency (Iη) of this system.  
Iη(%) = IOUT / (IOUT + IQ) × 100  
(6)  
26  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
 
 
TPS7A02  
www.ti.com  
SBVS277B JULY 2019REVISED MARCH 2020  
8.2.3 Application Curve  
102  
100  
98  
96  
94  
92  
90  
88  
86  
84  
TJ  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
140°C  
100  
0.001  
0.01  
0.1 1  
Output Current (mA)  
10  
Curr  
Figure 62. Current Efficiency vs IOUT and Temperature  
9 Power Supply Recommendations  
This device is designed to operate from an input supply voltage range of 1.5 V to 6.0 V. The input supply must  
be well regulated and free of spurious noise. To ensure that the output voltage is well regulated and dynamic  
performance is optimum, the input supply must be at least VOUT(nom) + 0.5 V. TI highly recommends using a 1-µF  
or greater input capacitor to reduce the impedance of the input supply, especially during transients.  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
TPS7A02  
SBVS277B JULY 2019REVISED MARCH 2020  
www.ti.com  
10 Layout  
10.1 Layout Guidelines  
Place input and output capacitors as close to the device as possible.  
Use copper planes for device connections to optimize thermal performance.  
Place thermal vias around the device to distribute the heat.  
Do not place a thermal via directly beneath the thermal pad of the DQN package. A via can wick solder or  
solder paste away from the thermal pad joint during the soldering process, leading to a compromised solder  
joint on the thermal pad.  
10.2 Layout Examples  
VOUT  
VIN  
1
4
COUT  
CIN  
3
2
GND PLANE  
Represents via used for  
application specific connections  
Figure 63. Layout Example for the DQN Package  
VOUT  
VIN  
5
1
CIN  
COUT  
2
3
4
GND PLANE  
Represents via used for  
application specific connections  
Figure 64. Layout Example for the DBV Package  
IN  
OUT  
A2  
A1  
COUT  
CIN  
Via  
B1  
B2  
EN  
GND  
Figure 65. Layout Example for the YCH Package  
28  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
TPS7A02  
www.ti.com  
SBVS277B JULY 2019REVISED MARCH 2020  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Device Nomenclature  
Table 3. Device Nomenclature(1)(2)  
PRODUCT  
VOUT  
XX(X) is the nominal output voltage. For output voltages with a resolution of 100 mV, two digits are used  
in the ordering number; otherwise, three digits are used (for example, 28 = 2.8 V; 125 = 1.25 V).  
P indicates an active output discharge feature. All members of the TPS7A02 family actively discharge  
the output when the device is disabled.  
TPS7A02xx(x)Pyyyz  
YYY is the package designator.  
Z is the package quantity. R is for reel (3000 pieces), T is for tape (250 pieces).  
(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or visit the  
device product folder on www.ti.com.  
(2) Output voltages from 1.0 V to 3.3 V in 50-mV increments are available. Contact the factory for details and availability.  
11.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.3 Community Resources  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 Trademarks  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Jun-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTPS7A0218PYCHR  
PTPS7A0233PYCHR  
ACTIVE  
DSBGA  
DSBGA  
YCH  
4
4
12000  
12000  
Non-RoHS &  
Non-Green  
Call TI  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
ACTIVE  
YCH  
Non-RoHS &  
Non-Green  
Call TI  
TPS7A0210PDQNR  
TPS7A0212PDBVR  
TPS7A0215PDBVR  
TPS7A0215PDQNR  
TPS7A02175PYCHR  
TPS7A02185PDQNR  
TPS7A0218PDBVR  
TPS7A0218PDQNR  
TPS7A0218PYCHR  
TPS7A0220PDBVR  
TPS7A0220PDQNR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
X2SON  
SOT-23  
SOT-23  
X2SON  
DSBGA  
X2SON  
SOT-23  
X2SON  
DSBGA  
SOT-23  
X2SON  
DQN  
DBV  
DBV  
DQN  
YCH  
DQN  
DBV  
DQN  
YCH  
DBV  
DQN  
4
5
5
4
4
4
5
4
4
5
4
3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
GH  
21GF  
21KF  
F3  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU | SN  
NIPDAU | SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
12000 RoHS & Green SNAGCU Level-1-260C-UNLIM  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
3000 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
S
HO  
21LF  
F4  
12000 RoHS & Green  
3000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
B
NIPDAU | SN  
22MT  
F5  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
TPS7A0222DQNR  
TPS7A0222PDBVR  
PREVIEW  
ACTIVE  
X2SON  
SOT-23  
DQN  
DBV  
4
5
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
IN  
NIPDAU | SN  
21HF  
TPS7A0222PDQNR  
TPS7A0223PDBVR  
TPS7A0223PDQNR  
TPS7A0225PDBVR  
TPS7A0225PDQNR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
X2SON  
SOT-23  
X2SON  
SOT-23  
X2SON  
DQN  
DBV  
DQN  
DBV  
DQN  
4
5
4
5
4
3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
3000 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
3000 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
GI  
21IF  
F6  
21DF  
F7  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Jun-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7A0228DBVR  
TPS7A0228DQNR  
TPS7A0228PDBVR  
PREVIEW  
PREVIEW  
ACTIVE  
SOT-23  
X2SON  
SOT-23  
DBV  
DQN  
DBV  
5
4
5
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
29PT  
IE  
NIPDAU  
NIPDAU | SN  
21EF  
TPS7A0228PDQNR  
TPS7A0230PDBVR  
TPS7A0230PDQNR  
TPS7A0230PYCHR  
TPS7A0231PDQNR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
X2SON  
SOT-23  
X2SON  
DSBGA  
X2SON  
DQN  
DBV  
DQN  
YCH  
DQN  
4
5
4
4
4
3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
3000 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
12000 RoHS & Green SNAGCU Level-1-260C-UNLIM  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
F8  
21MF  
F9  
F
GJ  
TPS7A0233DBVR  
TPS7A0233DQNR  
TPS7A0233PDBVR  
PREVIEW  
PREVIEW  
ACTIVE  
SOT-23  
X2SON  
SOT-23  
DBV  
DQN  
DBV  
5
4
5
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
29QT  
IF  
NIPDAU  
NIPDAU | SN  
21FF  
TPS7A0233PDQNR  
ACTIVE  
X2SON  
DQN  
4
3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
-40 to 125  
FA  
G
TPS7A0233PYCHR  
TPS7A0236PDBVR  
PREVIEW  
ACTIVE  
DSBGA  
SOT-23  
YCH  
DBV  
4
5
12000 RoHS & Green  
3000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
NIPDAU | SN  
(21FF, 21JF)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Jun-2021  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Jun-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS7A0210PDQNR  
TPS7A0210PDQNR  
TPS7A0212PDBVR  
TPS7A0215PDBVR  
TPS7A0215PDQNR  
TPS7A0215PDQNR  
TPS7A02175PYCHR  
TPS7A02185PDQNR  
TPS7A02185PDQNR  
TPS7A0218PDBVR  
TPS7A0218PDQNR  
TPS7A0218PDQNR  
TPS7A0218PYCHR  
TPS7A0220PDBVR  
TPS7A0220PDQNR  
TPS7A0220PDQNR  
TPS7A0222PDBVR  
TPS7A0222PDQNR  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
X2SON  
DSBGA  
X2SON  
X2SON  
SOT-23  
X2SON  
X2SON  
DSBGA  
SOT-23  
X2SON  
X2SON  
SOT-23  
X2SON  
DQN  
DQN  
DBV  
DBV  
DQN  
DQN  
YCH  
DQN  
DQN  
DBV  
DQN  
DQN  
YCH  
DBV  
DQN  
DQN  
DBV  
DQN  
4
4
5
5
4
4
4
4
4
5
4
4
4
5
4
4
5
4
3000  
3000  
3000  
3000  
3000  
3000  
12000  
3000  
3000  
3000  
3000  
3000  
12000  
3000  
3000  
3000  
3000  
3000  
178.0  
180.0  
178.0  
178.0  
178.0  
180.0  
180.0  
180.0  
178.0  
178.0  
178.0  
180.0  
180.0  
178.0  
178.0  
180.0  
178.0  
178.0  
8.4  
9.5  
9.0  
9.0  
8.4  
9.5  
8.4  
9.5  
8.4  
9.0  
8.4  
9.5  
8.4  
9.0  
8.4  
9.5  
9.0  
8.4  
1.13  
1.16  
3.3  
1.13  
1.16  
3.2  
0.53  
0.5  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
2.0  
4.0  
4.0  
4.0  
4.0  
4.0  
2.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q3  
Q3  
Q2  
Q2  
Q1  
Q2  
Q2  
Q3  
Q2  
Q2  
Q1  
Q3  
Q2  
Q2  
Q3  
Q2  
1.4  
3.3  
3.2  
1.4  
1.13  
1.16  
0.72  
1.16  
1.13  
3.3  
1.13  
1.16  
0.72  
1.16  
1.13  
3.2  
0.53  
0.5  
0.42  
0.5  
0.53  
1.4  
1.13  
1.16  
0.72  
3.3  
1.13  
1.16  
0.72  
3.2  
0.53  
0.5  
0.42  
1.4  
1.13  
1.16  
3.3  
1.13  
1.16  
3.2  
0.53  
0.5  
1.4  
1.13  
1.13  
0.53  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Jun-2021  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS7A0222PDQNR  
TPS7A0223PDBVR  
TPS7A0223PDQNR  
TPS7A0223PDQNR  
TPS7A0225PDBVR  
TPS7A0225PDQNR  
TPS7A0225PDQNR  
TPS7A0228PDBVR  
TPS7A0228PDQNR  
TPS7A0228PDQNR  
TPS7A0230PDBVR  
TPS7A0230PDQNR  
TPS7A0230PDQNR  
TPS7A0230PYCHR  
TPS7A0231PDQNR  
TPS7A0231PDQNR  
TPS7A0233PDBVR  
TPS7A0233PDQNR  
TPS7A0233PDQNR  
TPS7A0236PDBVR  
X2SON  
SOT-23  
X2SON  
X2SON  
SOT-23  
X2SON  
X2SON  
SOT-23  
X2SON  
X2SON  
SOT-23  
X2SON  
X2SON  
DSBGA  
X2SON  
X2SON  
SOT-23  
X2SON  
X2SON  
SOT-23  
DQN  
DBV  
DQN  
DQN  
DBV  
DQN  
DQN  
DBV  
DQN  
DQN  
DBV  
DQN  
DQN  
YCH  
DQN  
DQN  
DBV  
DQN  
DQN  
DBV  
4
5
4
4
5
4
4
5
4
4
5
4
4
4
4
4
5
4
4
5
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
12000  
3000  
3000  
3000  
3000  
3000  
3000  
180.0  
178.0  
178.0  
180.0  
178.0  
180.0  
178.0  
178.0  
178.0  
180.0  
178.0  
178.0  
180.0  
180.0  
178.0  
180.0  
178.0  
180.0  
178.0  
178.0  
9.5  
9.0  
8.4  
9.5  
9.0  
9.5  
8.4  
9.0  
8.4  
9.5  
9.0  
8.4  
9.5  
8.4  
8.4  
9.5  
9.0  
9.5  
8.4  
9.0  
1.16  
3.3  
1.16  
3.2  
0.5  
1.4  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
2.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q3  
Q2  
Q2  
Q3  
Q2  
Q2  
Q3  
Q2  
Q2  
Q3  
Q2  
Q2  
Q1  
Q2  
Q2  
Q3  
Q2  
Q2  
Q3  
1.13  
1.16  
3.3  
1.13  
1.16  
3.2  
0.53  
0.5  
1.4  
1.16  
1.13  
3.3  
1.16  
1.13  
3.2  
0.5  
0.53  
1.4  
1.13  
1.16  
3.3  
1.13  
1.16  
3.2  
0.53  
0.5  
1.4  
1.13  
1.16  
0.72  
1.13  
1.16  
3.3  
1.13  
1.16  
0.72  
1.13  
1.16  
3.2  
0.53  
0.5  
0.42  
0.53  
0.5  
1.4  
1.16  
1.13  
3.3  
1.16  
1.13  
3.2  
0.5  
0.53  
1.4  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Jun-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS7A0210PDQNR  
TPS7A0210PDQNR  
TPS7A0212PDBVR  
TPS7A0215PDBVR  
TPS7A0215PDQNR  
TPS7A0215PDQNR  
TPS7A02175PYCHR  
TPS7A02185PDQNR  
TPS7A02185PDQNR  
TPS7A0218PDBVR  
TPS7A0218PDQNR  
TPS7A0218PDQNR  
TPS7A0218PYCHR  
TPS7A0220PDBVR  
TPS7A0220PDQNR  
TPS7A0220PDQNR  
TPS7A0222PDBVR  
TPS7A0222PDQNR  
TPS7A0222PDQNR  
TPS7A0223PDBVR  
TPS7A0223PDQNR  
TPS7A0223PDQNR  
TPS7A0225PDBVR  
TPS7A0225PDQNR  
TPS7A0225PDQNR  
TPS7A0228PDBVR  
TPS7A0228PDQNR  
TPS7A0228PDQNR  
TPS7A0230PDBVR  
TPS7A0230PDQNR  
TPS7A0230PDQNR  
TPS7A0230PYCHR  
TPS7A0231PDQNR  
TPS7A0231PDQNR  
TPS7A0233PDBVR  
TPS7A0233PDQNR  
TPS7A0233PDQNR  
TPS7A0236PDBVR  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
X2SON  
DSBGA  
X2SON  
X2SON  
SOT-23  
X2SON  
X2SON  
DSBGA  
SOT-23  
X2SON  
X2SON  
SOT-23  
X2SON  
X2SON  
SOT-23  
X2SON  
X2SON  
SOT-23  
X2SON  
X2SON  
SOT-23  
X2SON  
X2SON  
SOT-23  
X2SON  
X2SON  
DSBGA  
X2SON  
X2SON  
SOT-23  
X2SON  
X2SON  
SOT-23  
DQN  
DQN  
DBV  
DBV  
DQN  
DQN  
YCH  
DQN  
DQN  
DBV  
DQN  
DQN  
YCH  
DBV  
DQN  
DQN  
DBV  
DQN  
DQN  
DBV  
DQN  
DQN  
DBV  
DQN  
DQN  
DBV  
DQN  
DQN  
DBV  
DQN  
DQN  
YCH  
DQN  
DQN  
DBV  
DQN  
DQN  
DBV  
4
4
5
5
4
4
4
4
4
5
4
4
4
5
4
4
5
4
4
5
4
4
5
4
4
5
4
4
5
4
4
4
4
4
5
4
4
5
3000  
3000  
3000  
3000  
3000  
3000  
12000  
3000  
3000  
3000  
3000  
3000  
12000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
12000  
3000  
3000  
3000  
3000  
3000  
3000  
205.0  
184.0  
180.0  
180.0  
205.0  
184.0  
182.0  
184.0  
205.0  
180.0  
205.0  
184.0  
182.0  
180.0  
205.0  
184.0  
180.0  
205.0  
184.0  
180.0  
205.0  
184.0  
180.0  
184.0  
205.0  
180.0  
205.0  
184.0  
180.0  
205.0  
184.0  
182.0  
205.0  
184.0  
180.0  
184.0  
205.0  
180.0  
200.0  
184.0  
180.0  
180.0  
200.0  
184.0  
182.0  
184.0  
200.0  
180.0  
200.0  
184.0  
182.0  
180.0  
200.0  
184.0  
180.0  
200.0  
184.0  
180.0  
200.0  
184.0  
180.0  
184.0  
200.0  
180.0  
200.0  
184.0  
180.0  
200.0  
184.0  
182.0  
200.0  
184.0  
180.0  
184.0  
200.0  
180.0  
33.0  
19.0  
18.0  
18.0  
33.0  
19.0  
20.0  
19.0  
33.0  
18.0  
33.0  
19.0  
20.0  
18.0  
33.0  
19.0  
18.0  
33.0  
19.0  
18.0  
33.0  
19.0  
18.0  
19.0  
33.0  
18.0  
33.0  
19.0  
18.0  
33.0  
19.0  
20.0  
33.0  
19.0  
18.0  
19.0  
33.0  
18.0  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
2X 0.95  
1.9  
3.05  
2.75  
1.9  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/E 09/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/E 09/2019  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/E 09/2019  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
X2SON - 0.4 mm max height  
DQN0004A  
PLASTIC SMALL OUTLINE - NO LEAD  
1.05  
0.95  
A
B
1
1.05  
0.95  
PIN 1  
INDEX AREA  
C
0.4 MAX  
SEATING PLANE  
0.08  
NOTE 6  
+0.12  
-0.1  
0.05  
0.00  
0.48  
(0.05) TYP  
NOTE 6  
2
1
3
EXPOSED  
THERMAL PAD  
5
2X 0.65  
(0.07) TYP  
NOTE 5  
4
0.28  
PIN 1 ID  
(OPTIONAL)  
NOTE 4  
4X  
0.15  
(0.11)  
0.3  
0.2  
0.1  
C A B  
0.05  
C
0.30  
0.15  
3X  
4215302/E 12/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
4. Features may not exist. Recommend use of pin 1 marking on top of package for orientation purposes.  
5. Shape of exposed side leads may differ.  
6. Number and location of exposed tie bars may vary.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
X2SON - 0.4 mm max height  
DQN0004A  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.86)  
SYMM  
SEE DETAIL  
4X  
4X (0.36)  
(0.03)  
4
4X (0.21)  
1
5
SYMM  
(0.65)  
4X (0.18)  
2
3
(
0.48)  
(0.22) TYP  
EXPOSED METAL  
CLEARANCE  
LAND PATTERN EXAMPLE  
SCALE: 40X  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAIL  
4215302/E 12/2016  
NOTES: (continued)  
7. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271)  
.
8. If any vias are implemented, it is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
X2SON - 0.4 mm max height  
DQN0004A  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
SYMM  
4X (0.4)  
4X (0.03)  
4
1
4X (0.21)  
5
SYMM  
(0.65)  
SOLDER MASK  
EDGE  
4X (0.22)  
2
3
(
0.45)  
4X (0.235)  
SOLDER PASTE EXAMPLE  
BASED ON 0.075 - 0.1mm THICK STENCIL  
EXPOSED PAD  
88% PRINTED SOLDER COVERAGE BY AREA  
SCALE: 60X  
4215302/E 12/2016  
NOTES: (continued)  
9. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

TPS7A0228PYCHR

TPS7A02 Nanopower IQ, 25-nA, 200-mA, Low-Dropout Voltage Regulator With Fast Transient Response

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A0230PDBVR

具有使能功能的 200mA、毫微功耗 IQ (25nA)、低压降 (LDO) 稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A0230PDQNR

具有使能功能的 200mA、毫微功耗 IQ (25nA)、低压降 (LDO) 稳压器 | DQN | 4 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A0230PYCHR

TPS7A02 Nanopower IQ, 25-nA, 200-mA, Low-Dropout Voltage Regulator With Fast Transient Response

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A0231PDQNR

具有使能功能的 200mA、毫微功耗 IQ (25nA)、低压降 (LDO) 稳压器 | DQN | 4 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A0233DBVR

TPS7A02 Nanopower IQ, 25-nA, 200-mA, Low-Dropout Voltage Regulator With Fast Transient Response

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A0233DQNR

TPS7A02 Nanopower IQ, 25-nA, 200-mA, Low-Dropout Voltage Regulator With Fast Transient Response

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A0233PDBVR

具有使能功能的 200mA、毫微功耗 IQ (25nA)、低压降 (LDO) 稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A0233PDQNR

具有使能功能的 200mA、毫微功耗 IQ (25nA)、低压降 (LDO) 稳压器 | DQN | 4 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A0233PYCHR

TPS7A02 Nanopower IQ, 25-nA, 200-mA, Low-Dropout Voltage Regulator With Fast Transient Response

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A0236PDBVR

具有使能功能的 200mA、毫微功耗 IQ (25nA)、低压降 (LDO) 稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A02_V06

TPS7A02 Nanopower IQ, 25-nA, 200-mA, Low-Dropout Voltage Regulator With Fast Transient Response

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI