TPS7A0510PYKAR [TI]

具有使能功能的 200mA、超低 IQ、高精度、低压降稳压器 | YKA | 4 | -40 to 125;
TPS7A0510PYKAR
型号: TPS7A0510PYKAR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有使能功能的 200mA、超低 IQ、高精度、低压降稳压器 | YKA | 4 | -40 to 125

稳压器
文件: 总55页 (文件大小:4431K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS7A05  
ZHCSHN3D FEBRUARY 2018REVISED AUGUST 2019  
采用小型封装的 TPS7A05 1µA 超低 IQ 200mA  
低压降稳压器  
1 特性  
3 说明  
1
超低 IQ1µA(典型值)、3µA(最大值)  
GND:在 200mA 下为 6µA(典型值)  
TPS7A05 是一款超小型低静态电流低压降稳压器  
(LDO),可提供 200mA 的电流以及出色的瞬态性能。  
该器件的输出范围为 0.8V 3.3V,典型精度为 1%。  
I
绝佳的瞬态响应  
封装:  
TPS7A05 具有超低 IQ (1µA),消耗的静态电流极低,  
从而能够在电池供电应用中延长电池 寿命提供了出色  
的功能性与安全性。该器件可由可再充电的锂离子电  
池、锂原电池化学物质(如 Li-SOCl2Li-MnO2)以  
及两到三节碱性电池供电。  
1.0mm × 1.0mm X2SON (4)  
0.65mm × 0.65mm DSBGA (4)  
SOT-23 (5)  
SOT-23 (3)  
输入电压范围:1.4V 5.5V  
输出精度:1% 典型值,3% 最大值  
可提供固定输出电压:  
TPS7A05 采用有源下拉电路,用于在器件处于禁用状  
态时对输出进行快速放电。  
0.8V 3.3V  
非常低的压降:  
200mA 时为 235mV(最大值)(3.3VOUT  
TPS7A05 的完整额定工作温度范围为 TJ = -40°C 至  
+125°C,采用标准的 X2SON (DQN)SOT-23DBV  
DBZ)以及 DSBGA (YKA) 封装。  
)
有源输出放电  
折返电流限制  
器件信息(1)  
器件型号  
封装  
X2SON (4)  
封装尺寸(标称值)  
1.00mm x 1.00mm  
0.65mm × 0.65mm  
2.90mm × 1.60mm  
2.90mm x 1.60mm  
0.47µF 或更大的电容器一起工作时保持稳定  
DSBGA (4)  
SOT-23 (5)  
SOT-23 (3)  
2 应用  
TPS7A05  
可穿戴电子产品  
超极本、平板电脑、电子阅读器  
始终通电型电源  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
机顶盒  
游戏控制器、遥控器、玩具、无人机  
无线手持终端和智能手机  
便携式和电池供电类设备  
典型应用电路  
接地电流与输出电流间的关系  
7
IN  
OUT  
6
5
4
3
2
1
0
TPS7A05  
COUT  
CIN  
EN  
GND  
ON  
OFF  
0
20  
40  
60  
80 100 120 140 160 180 200  
Output Current (mA)  
D043  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBVS254  
 
 
 
 
 
TPS7A05  
ZHCSHN3D FEBRUARY 2018REVISED AUGUST 2019  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 21  
Application and Implementation ........................ 22  
8.1 Application Information............................................ 22  
8.2 Typical Application .................................................. 27  
Power Supply Recommendations...................... 27  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ...................................... 6  
6.2 ESD Ratings.............................................................. 6  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 7  
6.6 Switching Characteristics.......................................... 9  
6.7 Typical Characteristics............................................ 10  
Detailed Description ............................................ 18  
7.1 Overview ................................................................. 18  
7.2 Functional Block Diagram ....................................... 18  
7.3 Feature Description................................................. 19  
8
9
10 Layout................................................................... 28  
10.1 Layout Guidelines ................................................. 28  
10.2 Layout Example .................................................... 28  
11 器件和文档支持 ..................................................... 29  
11.1 器件支持................................................................ 29  
11.2 文档支持................................................................ 29  
11.3 接收文档更新通知 ................................................. 29  
11.4 社区资源................................................................ 29  
11.5 ....................................................................... 29  
11.6 静电放电警告......................................................... 29  
11.7 Glossary................................................................ 29  
12 机械、封装和可订购信息....................................... 30  
7
4 修订历史记录  
Changes from Revision C (April 2019) to Revision D  
Page  
已更改 将 DBZ 封装从 APL 更改为生产数据 .......................................................................................................................... 1  
Added DBZ package to Load Regulation parameter in Electrical Characteristics table ....................................................... 7  
Added DBZ package to Dropout voltage parameter in Electrical Characteristics table ......................................................... 8  
已添加 condition statement to IQ vs VIN and Temperature figure ........................................................................................ 10  
Changes from Revision B (August 2018) to Revision C  
Page  
已添加 向文档添加了 DBZ 封装(作为 APL 发行版)............................................................................................................ 1  
Changes from Revision A (May 2018) to Revision B  
Page  
已更改 在文档标题中将 1mm × 1mm 更改成了小型............................................................................................................... 1  
已更改 将 YKA (DSBGA) 封装状态更改成了生产数据” ......................................................................................................... 1  
Added Accuracy for 1.825 V in Electrical Characteristics table ............................................................................................. 7  
Changed Output current limit in Electrical Characteristics table ............................................................................................ 7  
Added Output current limit for +85°C in Electrical Characteristics table................................................................................ 7  
Changed Short-circuit current limit in Electrical Characteristics table.................................................................................... 7  
Added Dropout voltage for 1.825 V in Electrical Characteristics table................................................................................... 8  
已更改 y-axis scaling and added conditions for IOUT Transient 0 mA to 100 mA figure ....................................................... 10  
已更改 y-axis scaling and added conditions for IOUT Transient 0 mA to 200 mA figure ...................................................... 11  
已添加 IOUT Transient 0 mA to 50 mA figure to IOUT Transient 3 µA to 3 mA figure............................................................. 11  
已添加 slew rate condition to VIN Transient figures (IOUT = 100 mA and IOUT = 200 mA)..................................................... 12  
已添加 VIN Transient figures (IOUT = 150 mA and IOUT = 20 mA).......................................................................................... 13  
已添加 VIN condition to PSRR vs Frequency and IOUT figure (VOUT = 1.8 V)........................................................................ 16  
2
版权 © 2018–2019, Texas Instruments Incorporated  
 
TPS7A05  
www.ti.com.cn  
ZHCSHN3D FEBRUARY 2018REVISED AUGUST 2019  
Changes from Original (February 2018) to Revision A  
Page  
已发布至生产 .......................................................................................................................................................................... 1  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
TPS7A05  
ZHCSHN3D FEBRUARY 2018REVISED AUGUST 2019  
www.ti.com.cn  
5 Pin Configuration and Functions  
DQN Package  
1-mm × 1-mm, 4-Pin X2SON  
Top View  
OUT  
1
4
IN  
Pad  
GND  
2
3
EN  
Not to scale  
DBV Package  
5-Pin SOT-23  
Top View  
DBZ Package  
3-Pin SOT-23  
Top View  
IN  
GND  
EN  
1
2
3
5
OUT  
GND  
OUT  
1
3
IN  
4
NC  
2
Not to scale  
Not to scale  
YKA Package  
YKA Package  
4-Pin DSBGA, 0.35-mm Pitch  
Top View  
4-Pin DSBGA, 0.35-mm Pitch  
Bottom View  
1
2
1
2
A
IN  
OUT  
B
EN  
GND  
B
EN  
GND  
A
IN  
OUT  
Not to scale  
Not to scale  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
TPS7A05  
www.ti.com.cn  
ZHCSHN3D FEBRUARY 2018REVISED AUGUST 2019  
Pin Functions  
PIN  
DBV  
NAME  
DQN  
DBZ  
YKA  
I/O  
DESCRIPTION  
Input pin. For best transient response and to minimize input  
impedance, use the recommended value or larger ceramic  
Input capacitor from IN to ground as listed in the Recommended  
Operating Conditions table. Place the input capacitor as close to  
input of the device as possible.  
IN  
4
1
3
A1  
Enable pin. Driving this pin to logic high enables the device;  
driving this pin to logic low disables the device. If enable  
functionality is not required, this pin must be connected to IN.  
EN  
3
2
3
2
1
B1  
B2  
Input  
VEN must not exceed VIN  
.
GND  
Ground pin. This pin must be connected to ground on the board.  
Regulated output pin. A capacitor is required from OUT to  
ground for stability. For best transient response, use the nominal  
recommended value or larger ceramic capacitor from OUT to  
ground. Follow the recommended capacitor value as listed in the  
Recommended Operating Conditions table. Place the output  
capacitor as close to output of the device as possible.  
OUT  
1
5
2
A2  
Output  
No connect pin. This pin is not internally connected. Connect to  
ground or leave floating.  
NC  
4
Connect the thermal pad to a large-area ground plane. This pad  
is not an electrical connection to the device ground.  
Thermal pad  
Pad  
Copyright © 2018–2019, Texas Instruments Incorporated  
5
TPS7A05  
ZHCSHN3D FEBRUARY 2018REVISED AUGUST 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
IN  
6.0  
VIN + 0.3  
VIN + 0.3 or 3.6(3)  
Voltage(2)  
EN  
V
OUT  
Current  
Maximum output current  
Operating junction temperature, TJ  
Storage temperature, Tstg  
Internally limited  
A
–40  
–65  
125  
150  
Temperature  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages with respect to GND.  
(3) VIN + 0.3 V or 3.6 V (whichever is smaller)  
6.2 ESD Ratings  
VALUE  
±1000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
1.4  
0
NOM  
MAX  
5.5  
UNIT  
VIN  
Input supply voltage  
Enable supply voltage  
Nominal output voltage range  
Output current(1)  
V
V
VEN  
VOUT  
IOUT  
CIN  
VIN  
0.8  
0
3.3  
V
200  
mA  
µF  
µF  
°C  
Input capacitor  
1
1
COUT  
TJ  
Output capacitor  
0.47  
–40  
22  
Operating junction temperature  
125  
(1) Output current of 10 µA minimum required to meet output voltage accuracy specification.  
6.4 Thermal Information  
TPS7A05  
DBZ  
(SOT-23)  
DBV  
(SOT-23)  
DQN  
YKA  
THERMAL METRIC(1)  
UNIT  
(X2SON)  
4 PINS  
144.1  
137.9  
83.5  
(DSBGA)  
4 PINS  
198.0  
2.1  
3 PINS  
267.3  
103.5  
98.0  
9.2  
5 PINS  
185.6  
104.3  
54.5  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
66.9  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
31.0  
5.3  
0.9  
YJB  
97.4  
n/a  
54.5  
83.8  
76.0  
RθJC(bot)  
n/a  
71.8  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
TPS7A05  
www.ti.com.cn  
ZHCSHN3D FEBRUARY 2018REVISED AUGUST 2019  
6.5 Electrical Characteristics  
specified at TJ = –40°C to +125°C, VIN = VOUT(nom) + 0.5 V or 1.4 V (whichever is greater), IOUT = 1 mA, VEN = VIN, CIN = 1 µF,  
and COUT = 1 µF (unless otherwise noted); typical values are at TJ = 25°C.  
PARAMETER  
TEST CONDITIONS  
OUT 1.0 V, TJ = 25°C  
VOUT < 1.0 V, TJ = 25°C  
MIN  
–1%  
–10  
TYP  
MAX  
1%  
10  
UNIT  
V
Nominal accuracy(1)  
mV  
V
OUT 1.0 V, TJ = –40°C to +85°C  
OUT 1.0 V  
–2%  
–3%  
–20  
2%  
3%  
20  
V
VOUT < 1.0 V, TJ = –40°C to +85°C  
VOUT < 1.0 V  
Accuracy over  
temperature(1)  
mV  
–30  
30  
VOUT = 1.825 V, TJ = +10to +45,  
IOUT = 100 µA  
–0.9%  
0.9%  
16.5  
VOUT(nom) + 0.5 V VIN 5.5 V(2)  
,
5
TJ = –40°C to +85°C  
ΔVOUT(ΔVIN)  
Line regulation  
mV  
mV  
VOUT(nom) + 0.5 V VIN 5.5 V(2)  
18  
43  
100 μA IOUT 200 mA,  
VIN = VOUT(nom) + VDO(max) + 0.1 V,  
TJ = –40°C to +85°C  
DBV, DQN, YKA  
DBZ  
20  
27  
50  
ΔVOUT(ΔIOUT) Load regulation(3)  
DBV, DQN, YKA  
DBZ  
55  
62  
100 μA IOUT 200 mA,  
VIN = VOUT(nom) + VDO(max) + 0.1 V  
TJ = 25°C, IOUT = 1 µA  
IOUT = 1 µA, TJ = –40°C to +85°C  
IOUT = 1 µA  
0.6  
1
1.3  
2
IGND  
Ground current  
µA  
3
ISHDN  
ICL  
Shutdown current  
Output current limit  
VEN = 0.4 V, 1.4 V VIN 5.5 V, TJ = 25°C  
100  
450  
300  
700  
nA  
VOUT = 90% × VOUT(nom), VIN = VOUT(nom) + VDO(max) + 0.5 V  
210  
250  
mA  
VOUT = 90% × VOUT(nom)  
,
ICL  
Output current limit  
VIN = VOUT(nom) + VDO(max) + 0.5 V,  
TJ = 0°C to +85°C  
450  
65  
700  
150  
mA  
mA  
Short-circuit current  
limit  
ISC  
VOUT = 0 V  
(1)  
IOUT 10 µA required to meet accuracy specifications.  
(2) VIN = 1.4 V for VOUT 0.9 V.  
(3) Load Regulation is normalized to the output voltage at IOUT = 1 mA.  
Copyright © 2018–2019, Texas Instruments Incorporated  
7
 
TPS7A05  
ZHCSHN3D FEBRUARY 2018REVISED AUGUST 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
specified at TJ = –40°C to +125°C, VIN = VOUT(nom) + 0.5 V or 1.4 V (whichever is greater), IOUT = 1 mA, VEN = VIN, CIN = 1 µF,  
and COUT = 1 µF (unless otherwise noted); typical values are at TJ = 25°C.  
PARAMETER  
TEST CONDITIONS  
0.8 V VOUT < 1.0 V  
MIN  
TYP  
MAX  
915  
758  
609  
469  
341  
275  
212  
1004  
837  
679  
525  
382  
308  
235  
351  
285  
222  
392  
318  
245  
UNIT  
1.0 V VOUT < 1.2 V  
1.2 V VOUT < 1.5 V  
1.5 V VOUT < 1.8 V  
1.8 V VOUT < 2.5 V  
2.5 V VOUT < 3.3 V  
VOUT = 3.3 V  
IOUT = 200 mA,  
TJ = –40°C to +85°C  
0.8 V VOUT < 1.0 V  
1.0 V VOUT < 1.2 V  
1.2 V VOUT < 1.5 V  
1.5 V VOUT < 1.8 V  
1.8 V VOUT < 2.5 V  
2.5 V VOUT < 3.3 V  
VOUT = 3.3 V  
IOUT = 200 mA  
VDO  
Dropout voltage(4)  
mV  
1.8 V VOUT < 2.5 V  
2.5 V VOUT < 3.3 V  
VOUT = 3.3 V  
IOUT = 200 mA,  
TJ = –40°C to +85°C,  
DBZ Package  
1.8 V VOUT < 2.5 V  
2.5 V VOUT < 3.3 V  
VOUT = 3.3 V  
IOUT = 200 mA,  
DBZ Package  
IOUT = 100 µA,  
TJ = +10to +45℃  
VOUT = 1.825 V  
20  
f = 1 kHz, IOUT = 30 mA  
f = 500 kHz, IOUT = 30 mA  
f = 1 MHz, IOUT = 30 mA  
40  
30  
40  
Power-supply  
rejection ratio  
PSRR  
VN  
dB  
BW = 10 Hz to 100 kHz, VOUT = 1.2 V,  
IOUT = 30 mA  
Output voltage noise  
180  
µVRMS  
VUVLO  
UVLO threshold  
UVLO hysteresis  
UVLO threshold  
VIN rising  
VIN falling  
VIN falling  
1.21  
1.3  
40  
1.37  
1.33  
V
mV  
V
VUVLO(HYST)  
VUVLO  
1.17  
0.9  
EN pin logic high  
voltage  
VEN(HI)  
VEN(LO)  
V
V
EN pin logic low  
voltage  
0.4  
IEN  
EN pin current  
VEN = VIN = 5.5 V  
10  
120  
160  
140  
nA  
RPULLDOWN  
Pulldown resistor  
VIN = 3.3 V, P version only  
Shutdown, temperature increasing  
Reset, temperature decreasing  
Ω
Thermal shutdown  
temperature  
Tsd  
°C  
(4) Dropout is measured by ramping VIN down until VOUT = VOUT(nom) – 5%.  
8
Copyright © 2018–2019, Texas Instruments Incorporated  
TPS7A05  
www.ti.com.cn  
ZHCSHN3D FEBRUARY 2018REVISED AUGUST 2019  
6.6 Switching Characteristics  
specified at TJ = –40 to +125°C, VIN = VOUT(nom) + VDO(max) + 0.5 V, IOUT = 10 mA, CIN = 1 µF, and COUT = 1 µF (unless  
otherwise noted); typical values are at TJ = 25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
From EN assertion to VOUT = 95% × VOUT(nom) , VOUT  
1.8 V  
=
tSTR  
Start-up time(1)  
1.5  
2.8  
ms  
(1) See the Special Considerations When Ramping Down IN and Enable section for details on minimum ramp down rates to ensure  
specified start-up time.  
版权 © 2018–2019, Texas Instruments Incorporated  
9
TPS7A05  
ZHCSHN3D FEBRUARY 2018REVISED AUGUST 2019  
www.ti.com.cn  
6.7 Typical Characteristics  
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA, VEN = VIN, CIN  
1 µF, and COUT = 1 µF (unless otherwise noted)  
=
2.25  
2
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
TJ  
25°C  
85°C  
TJ  
0°C  
-40°C  
0°C  
125°C  
-40°C  
25°C  
85°C  
1.75  
1.5  
1.25  
1
0.75  
0.5  
1
1.5  
2
2.5  
3 3.5  
Input Voltage (V)  
4
4.5  
5
5.5  
1.5  
2
2.5  
3
Input Voltage (V)  
3.5  
4
4.5  
5
5.5  
D001  
D002  
VOUT = 3.3 V, includes IQ in dropout  
VEN < 0.4 V  
1. IQ vs VIN and Temperature  
2. ISHDN vs VIN and Temperature  
3500  
3000  
2500  
2000  
1500  
1000  
4
3
2
1
0
TJ  
125°C  
1.5  
2
2.5  
3
Input Voltage (V)  
3.5  
4
4.5  
5
5.5  
0
1
2
3
4
Output Current (mA)  
5
6
7
8
9
10  
D044  
D042  
VEN < 0.4 V  
3. ISHDN vs VIN and Temperature  
4. IGND vs IOUT up to 10 mA  
7
6
5
4
3
2
1
0
300  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
VOUT  
IOUT  
200  
100  
0
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
-900  
0
-50  
0
20  
40  
60  
80 100 120 140 160 180 200  
Output Current (mA)  
0
100 200 300 400 500 600 700 800 900 1000  
Time (µs)  
D043  
D036  
Output current slew rate = 3.3 mA/µs  
5. IGND vs IOUT up to 200 mA  
6. IOUT Transient 0 mA to 100 mA  
10  
版权 © 2018–2019, Texas Instruments Incorporated  
 
TPS7A05  
www.ti.com.cn  
ZHCSHN3D FEBRUARY 2018REVISED AUGUST 2019  
Typical Characteristics (接下页)  
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA, VEN = VIN, CIN  
=
1 µF, and COUT = 1 µF (unless otherwise noted)  
300  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
300  
200  
550  
VOUT  
IOUT  
VOUT  
IOUT  
200  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
100  
100  
0
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
-900  
0
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
-900  
0
0
-50  
-50  
0
100 200 300 400 500 600 700 800 900 1000  
Time (µs)  
0
50 100 150 200 250 300 350 400 450 500  
Time (µs)  
D008  
D045  
Output current slew rate = 6.6 mA/µs  
Output current slew rate = 50 mA/µs  
7. IOUT Transient 0 mA to 200 mA  
8. IOUT Transient 0 mA to 50 mA  
300  
200  
550  
600  
400  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
VOUT  
IOUT  
VOUT  
IOUT  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
100  
200  
0
0
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
-900  
-200  
-400  
-600  
-800  
-1000  
-1200  
-1400  
-1600  
-1800  
0
0
-50  
-50  
0
50 100 150 200 250 300 350 400 450 500  
Time (µs)  
0
50 100 150 200 250 300 350 400 450 500  
Time (µs)  
D046  
D047  
Output current slew rate = 100 mA/µs  
Output current slew rate = 150 mA/µs  
9. IOUT Transient 0 mA to 100 mA  
10. IOUT Transient 0 mA to 150 mA  
600  
400  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
300  
200  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
VOUT  
IOUT  
VOUT  
IOUT  
200  
100  
0
0
-200  
-400  
-600  
-800  
-1000  
-1200  
-1400  
-1600  
-1800  
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
-900  
0
0
-50  
-50  
0
50 100 150 200 250 300 350 400 450 500  
Time (µs)  
0
50 100 150 200 250 300 350 400 450 500  
Time (µs)  
D048  
D049  
Output current slew rate = 200 mA/µs  
Output current slew rate = 50 mA/µs  
11. IOUT Transient 0 mA to 200 mA  
12. IOUT Transient 1 mA to 50 mA  
版权 © 2018–2019, Texas Instruments Incorporated  
11  
TPS7A05  
ZHCSHN3D FEBRUARY 2018REVISED AUGUST 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA, VEN = VIN, CIN  
1 µF, and COUT = 1 µF (unless otherwise noted)  
=
300  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
600  
550  
VOUT  
IOUT  
VOUT  
IOUT  
200  
400  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
100  
200  
0
0
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
-900  
-200  
-400  
-600  
-800  
-1000  
-1200  
-1400  
-1600  
-1800  
0
0
-50  
-50  
0
50 100 150 200 250 300 350 400 450 500  
Time (µs)  
0
50 100 150 200 250 300 350 400 450 500  
Time (µs)  
DE0x5ce0  
D051  
Output current slew rate = 100 mA/µs  
Output current slew rate = 150 mA/µs  
13. IOUT Transient 1 mA to 100 mA  
14. IOUT Transient 1 mA to 150 mA  
600  
400  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
30  
20  
70  
60  
50  
40  
30  
20  
10  
0
VOUT  
IOUT  
VOUT  
IOUT  
200  
0
10  
-200  
-400  
-600  
-800  
-1000  
-1200  
-1400  
-1600  
-1800  
0
-10  
-20  
-30  
-40  
-50  
0
-50  
-10  
0
50 100 150 200 250 300 350 400 450 500  
Time (µs)  
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (ms)  
D052  
D053  
Output current slew rate = 200 mA/µs  
CIN = COUT = 10 µF, output current slew rate = 3 mA/µs  
15. IOUT Transient 1 mA to 200 mA  
16. IOUT Transient 3 µA to 3 mA  
300  
200  
100  
0
2100  
1800  
1500  
1200  
900  
600  
300  
0
300  
2100  
VOUT  
VIN  
VOUT  
VIN  
200  
100  
0
1800  
1500  
1200  
900  
600  
300  
0
-100  
-200  
-300  
-400  
-500  
-100  
-200  
-300  
-400  
-500  
-300  
-300  
0
100 200 300 400 500 600 700 800 900 1000  
Time (µs)  
0
100 200 300 400 500 600 700 800 900 1000  
Time (µs)  
D012  
D011  
IOUT = 100 mA, input voltage slew rate = 0.6 V/µs  
IOUT = 200 mA, input voltage slew rate = 0.6 V/µs  
17. VIN Transient  
18. VIN Transient  
12  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS7A05  
www.ti.com.cn  
ZHCSHN3D FEBRUARY 2018REVISED AUGUST 2019  
Typical Characteristics (接下页)  
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA, VEN = VIN, CIN  
=
1 µF, and COUT = 1 µF (unless otherwise noted)  
300  
3500  
3000  
2500  
2000  
1500  
1000  
500  
150  
100  
50  
3500  
3000  
2500  
2000  
1500  
1000  
500  
VOUT  
VIN  
VOUT  
VIN  
200  
100  
0
0
-100  
-200  
-300  
-400  
-500  
-50  
-100  
-150  
-200  
-250  
0
0
-500  
-500  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
Time (µs)  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
Time (µs)  
D054  
D055  
IOUT = 150 mA, input voltage slew rate = 0.1 V/µs  
IOUT = 20 mA, input voltage slew rate = 0.01 V/µs  
19. VIN Transient  
20. VIN Transient  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
TJ  
25°C  
85°C  
TJ  
25°C  
85°C  
-40°C  
0°C  
125°C  
-40°C  
0°C  
125°C  
0
25  
50  
75  
Load Current (mA)  
100  
125  
150  
175  
200  
0
25  
50  
75  
Load Current (mA)  
100  
125  
150  
175  
200  
D013  
D014  
VOUT = 1.8 V  
VOUT = 3.3 V  
21. Dropout vs IOUT and Temperature  
22. Dropout vs IOUT and Temperature  
600  
500  
400  
300  
200  
100  
0
10  
9
TJ  
-40°C  
0°C  
25°C  
85°C  
125°C  
TJ  
25°C  
85°C  
-40°C  
0°C  
125°C  
8
7
6
5
4
3
2
1
0
-1  
1.6  
1.8  
2
2.2  
Input Voltage (V)  
2.4  
2.6  
2.8  
3
3.2  
1
1.5  
2
2.5  
3 3.5  
Input Voltage (V)  
4
4.5  
5
5.5  
D027  
D009  
VOUT = 0.8 V  
23. Dropout vs VIN and Temperature  
24. Line Regulation VIN and Temperature  
版权 © 2018–2019, Texas Instruments Incorporated  
13  
 
 
TPS7A05  
ZHCSHN3D FEBRUARY 2018REVISED AUGUST 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA, VEN = VIN, CIN  
1 µF, and COUT = 1 µF (unless otherwise noted)  
=
1.2  
14  
12  
10  
8
TJ  
25°C  
85°C  
TJ  
25°C  
85°C  
-40°C  
0°C  
125°C  
-40°C  
0°C  
125°C  
1
0.8  
0.6  
0.4  
0.2  
0
6
4
2
0
-0.2  
-2  
1
1.5  
2
2.5  
3 3.5  
Input Voltage (V)  
4
4.5  
5
5.5  
2
2.5  
3
3.5  
Input Voltage (V)  
4
4.5  
5
5.5  
D006  
D004  
VOUT = 0.8 V  
VOUT = 1.8 V  
25. Output Accuracy VIN and Temperature  
26. Line Regulation VIN and Temperature  
1
0.8  
0.6  
0.4  
0.2  
0
6
TJ  
25°C  
85°C  
-40°C  
0°C  
125°C  
0
-6  
-12  
-18  
-24  
-30  
TJ  
-40°C  
0°C  
25°C  
85°C  
125°C  
-0.2  
2
2.5  
3
3.5  
Input Voltage (V)  
4
4.5  
5
5.5  
0
20  
40  
60  
80 100 120 140 160 180 200  
Output Current (mA)  
D005  
VOUT = 1.8 V  
VOUT = 1.8 V  
28. Load Regulation vs IOUT and Temperature  
27. Output Accuracy VIN and Temperature  
2.5  
2
3
2.8  
2.6  
2.4  
2.2  
2
TJ  
-40°C  
0°C  
25°C  
85°C  
1.8  
1.6  
1.4  
1.2  
1
1.5  
1
0.8  
0.6  
0.4  
0.2  
0
VEN  
VIN  
VOUT  
0.5  
0
-0.2  
0
50 100 150 200 250 300 350 400 450 500  
Output Current (mA)  
0
0.5  
1
1.5  
2
2.5  
Time (ms)  
3
3.5  
4
4.5  
5
D003  
D029  
VOUT = 1.8 V  
29. Foldback Current Limit vs IOUT and Temperature  
VOUT = 0.8 V, IOUT = 1 mA  
30. Startup With VEN = VIN  
14  
版权 © 2018–2019, Texas Instruments Incorporated  
 
TPS7A05  
www.ti.com.cn  
ZHCSHN3D FEBRUARY 2018REVISED AUGUST 2019  
Typical Characteristics (接下页)  
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA, VEN = VIN, CIN  
=
1 µF, and COUT = 1 µF (unless otherwise noted)  
3
2.8  
2.6  
2.4  
2.2  
2
3
2.8  
2.6  
2.4  
2.2  
2
1.8  
1.6  
1.4  
1.2  
1
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
VEN  
VIN  
VOUT  
VEN  
VIN  
VOUT  
-0.2  
-0.2  
0
0
0
0.5  
1
1.5  
2
2.5  
Time (ms)  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
Time (ms)  
3
3.5  
4
4.5  
5
D030  
D031  
VOUT = 0.8 V, IOUT = 30 mA  
31. Startup With VEN = VIN  
VOUT = 1.8 V, IOUT = 30 mA  
32. Startup With VEN = VIN  
3
2.8  
2.6  
2.4  
2.2  
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
3
2.8  
2.6  
2.4  
2.2  
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
VEN  
VIN  
VOUT  
VEN  
VIN  
VOUT  
-0.2  
-0.2  
0.5  
1
1.5  
2
2.5  
Time (ms)  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
Time (ms)  
3
3.5  
4
4.5  
5
D032  
D033  
VOUT = 0.8 V, IOUT = 1 mA  
33. Startup With Separate VIN and VEN  
VOUT = 0.8 V, IOUT = 30 mA  
34. Startup With Separate VIN and VEN  
3
2.8  
2.6  
2.4  
2.2  
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
VIN  
1.4 V  
1.5 V  
1.6 V  
1.8 V  
VEN  
VIN  
VOUT  
-0.2  
0.5  
1
1.5  
2
2.5  
Time (ms)  
3
3.5  
4
4.5  
5
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
D034  
D022  
VOUT = 1.8 V, IOUT = 30 mA  
35. Startup With Separate VIN and VEN  
VOUT = 0.8 V, IOUT = 200 mA, COUT = 1 µF, CIN = 0 µF  
36. PSRR vs Frequency and VIN  
版权 © 2018–2019, Texas Instruments Incorporated  
15  
TPS7A05  
ZHCSHN3D FEBRUARY 2018REVISED AUGUST 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA, VEN = VIN, CIN  
1 µF, and COUT = 1 µF (unless otherwise noted)  
=
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
60  
50  
40  
30  
20  
10  
0
VIN  
2.2 V  
2.3 V  
2.4 V  
2.5 V  
VIN  
3.6 V  
3.8 V  
4.0 V  
2.8 V  
3.3 V  
3.6 V  
4.2 V  
4.6 V  
0
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
D016  
D020  
VOUT = 1.8 V, IOUT = 200 mA, COUT = 1 µF, CIN = 0 µF  
VOUT = 3.3 V, IOUT = 200 mA, COUT = 1 µF, CIN = 0 µF  
37. PSRR vs Frequency and VIN  
38. PSRR vs Frequency and VIN  
70  
65  
60  
55  
50  
45  
40  
35  
30  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
IOUT  
0 mA  
25  
10 mA  
50 mA  
100 mA  
150 mA  
200 mA  
IOUT  
0 mA  
10 mA  
50 mA  
100 mA  
20  
15  
10  
5
0
0
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
D021  
D015  
VOUT = 0.8 V, VIN = 1.4 V, COUT = 1 µF, CIN = 0 µF  
VOUT = 1.8 V, VIN = 2.8 V, COUT = 1 µF, CIN = 0 µF  
39. PSRR vs Frequency and IOUT  
40. PSRR vs Frequency and IOUT  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
20  
                                                                                                                                                                                  
10  
5
2
1
0.5  
IOUT  
0 mA  
0.2  
0.1  
10 mA  
50 mA  
100 mA  
150 mA  
200 mA  
0.05  
VIN  
2.2 V  
2.8 V  
3.3 V  
5.5 V  
0.02  
0.01  
0
0.005  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
D019  
D025  
VOUT = 3.3 V, VIN = 3.8 V, COUT = 1 µF, CIN = 0 µF  
VOUT = 1.8 V, IOUT = 200 mA, COUT = 1 µF  
41. PSRR vs Frequency and IOUT  
42. Output Noise vs Frequency and VIN  
16  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS7A05  
www.ti.com.cn  
ZHCSHN3D FEBRUARY 2018REVISED AUGUST 2019  
Typical Characteristics (接下页)  
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA, VEN = VIN, CIN  
=
1 µF, and COUT = 1 µF (unless otherwise noted)  
20  
IOUT  
10  
5
10  
50 mA  
100 mA  
150 mA  
200 mA  
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
COUT  
1.0 µF  
10 µF  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
D024  
D026  
VOUT = 1.8 V, VIN = 2.8 V, COUT = 1 µF  
VOUT = 1.8 V, VIN = 2.8 V, IOUT = 200 mA  
43. Output Noise vs Frequency and IOUT  
44. Output Noise vs Frequency and COUT  
20  
10  
5
1.3  
1.28  
1.26  
1.24  
1.22  
VUVLO, Rising  
VUVLO, Falling  
2
1
0.5  
0.2  
0.1  
0.05  
VOUT  
0.8 V  
1.8 V  
3.3 V  
0.02  
0.01  
0.005  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
D028  
D035  
VIN = VOUT + 1 V, IOUT = 200 mA, COUT = 1 µF  
45. Output Noise vs Frequency and VOUT  
46. UVLO VIN Rising and Falling Thresholds vs  
Temperature  
0.68  
0.66  
0.64  
0.62  
0.6  
VEN(HI)  
VEN(LO)  
0.58  
0.56  
0.54  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
D037  
47. Enable High and Low Thresholds vs  
Temperature  
版权 © 2018–2019, Texas Instruments Incorporated  
17  
 
TPS7A05  
ZHCSHN3D FEBRUARY 2018REVISED AUGUST 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS7A05 is a ultra-low IQ linear voltage regulator that is optimized for excellent transient performance.  
These characteristics make the TPS7A05 ideal for most battery-powered applications.  
This low-dropout regulator (LDO) offers foldback current limit, shutdown, thermal protection, and optional active  
discharge.  
7.2 Functional Block Diagram  
Current  
Limit  
IN  
OUT  
1.2-V  
Bandgap  
+
Active Discharge  
P-Version Only  
œ
œ
Error  
Amp  
+
UVLO  
Internal  
Controller  
Thermal  
Shutdown  
EN  
GND  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS7A05  
www.ti.com.cn  
ZHCSHN3D FEBRUARY 2018REVISED AUGUST 2019  
7.3 Feature Description  
7.3.1 Excellent Transient Response  
The device includes several innovative circuits to ensure excellent transient response. Dynamic biasing  
increases the IQ for a short duration during transients to extend the closed-loop bandwidth and improve the  
device response time during transients.  
Adaptive biasing increases the IQ as the dc load current increases, extending the bandwidth of the control loop.  
The device response time across the output voltage range is constant because of the use of a buffered reference  
topology, which keeps the control loop in unity gain at any output voltage.  
These features give the device a wide loop bandwidth during transients that ensure excellent transient response  
while maintaining the device low IQ in steady-state conditions; see the Application and Implementation section for  
more details.  
7.3.2 Active Discharge  
Devices with this option have an internal pulldown MOSFET that connects a 120-Ω resistor to ground when the  
device is disabled to actively discharge the output voltage. The active discharge circuit is activated when the  
device is disabled, in undervoltage lockout (UVLO), or in thermal shutdown.  
The discharge time after disabling depends on the output capacitance (COUT) and the load resistance (RL) in  
parallel with the 120-Ω pulldown resistor. 公式 1 calculates the time constant:  
120 · RL  
t =  
· COUT  
120 + RL  
(1)  
Do not rely on the active discharge circuit for discharging a large amount of output capacitance after the input  
supply has collapsed because reverse current can flow from the output to the input. This reverse current flow can  
cause damage to the device. Limit reverse current to no more than 5% of the device-rated current.  
7.3.3 Low IQ in Dropout  
In most LDOs the IQ significantly increases when the device is placed into dropout, which is especially true for  
low IQ LDOs with adaptive biasing. The TPS7A05 detects when operating in dropout and disables the adaptive  
biasing, minimizing the IQ increase.  
7.3.4 Undervoltage Lockout (UVLO)  
The undervoltage lockout (UVLO) circuit monitors the input voltage (VIN) to prevent the device from turning on  
before VIN rises above the lockout voltage. The UVLO circuit also disables the output of the device when VIN falls  
below the lockout voltage. If the device includes the optional active discharge, the output is connected to ground  
with a 120-Ω pulldown resistor when VIN is below the lockout voltage; see the Application and Implementation  
section for more details.  
7.3.5 Enable  
The enable pin for the device is active high. The output of the device is turned on when the enable pin voltage is  
greater than the EN pin logic high voltage, and the output of the device is turned off when the enable pin voltage  
is less than the EN pin logic low voltage. A voltage less than the EN pin logic low voltage on the enable pin  
disables all internal circuits.  
At the next turn-on, any voltage on the EN pin below the logic low voltage ensures a normal start-up waveform  
with start-up ramp rate control, provided there is enough time to discharge the output capacitance. If shutdown  
capability is not required, connect EN to IN. VEN must not exceed VIN.  
7.3.6 Internal Foldback Current Limit  
The internal foldback current-limit circuit is used to protect the LDO against high-load current faults or shorting  
events. The foldback mechanism lowers the current limit as the output voltage decreases, and limits power  
dissipation during short-circuit events while still allowing for the device to operate at its rated output current; see  
29.  
版权 © 2018–2019, Texas Instruments Incorporated  
19  
 
TPS7A05  
ZHCSHN3D FEBRUARY 2018REVISED AUGUST 2019  
www.ti.com.cn  
Feature Description (接下页)  
A foldback example for this device is that when VOUT is 90% of VOUT(nom) the current limit is ICL(typical); however,  
if VOUT is forced to 0 V the current limit is ISC (typical).  
In many LDOs the foldback current limit can prevent start-up into a constant-current load or a negatively-biased  
output. The foldback mechanism for this device goes into a brick-wall current limit when VOUT > 500 mV (typ),  
thus limiting current to ICL(typical) and, when VOUT is approximately 0 V, current is limited to ISC (typical) to  
ensure normal start-up into a variety of loads.  
The foldback current limit is disengaged when IOUT < 1 mA (typical) to reduce IQ. As such, the current-limit loop  
takes longer to respond to a current-limit event when IOUT < 1 mA (typ).  
Thermal shutdown can activate during a current-limit event because of the high power dissipation typically found  
in these conditions. To ensure proper operation of the current limit, minimize the inductances to the input and  
load. Continuous operation in current limit is not recommended.  
7.3.7 Thermal Shutdown  
The device contains a thermal shutdown protection circuit to disable the device when thermal junction  
temperature (TJ) of the main pass-FET rises to Tsd(Shutdown) (typical). Thermal shutdown hysteresis assures that  
the LDO resets again (turns on) when the temperature falls to Tsd(Reset) (typical).  
The thermal time-constant of the semiconductor die is fairly short, and thus the device may cycle on and off  
when thermal shutdown is reached until power dissipation is reduced.  
For reliable operation, limit the junction temperature to a maximum of 125°C. Operation above 125°C causes the  
device to exceed its operational specifications. Although the internal protection circuitry of the device is designed  
to protect against thermal overload conditions, this circuitry is not intended to replace proper heat sinking.  
Continuously running the device into thermal shutdown or above a junction temperature of 125°C reduces long-  
term reliability.  
A fast start-up when TJ > Tsd(Reset) (typical, outside of the specified operating range) causes the device thermal  
shutdown to assert at Tsd(Reset) and prevents the device from turning on until the junction temperature is reduced  
below Tsd(Shutdown)  
.
20  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS7A05  
www.ti.com.cn  
ZHCSHN3D FEBRUARY 2018REVISED AUGUST 2019  
7.4 Device Functional Modes  
The device has several modes of operation,:  
Normal operation: The device regulates to the nominal output voltage  
Dropout operation: The pass element operates as a resistor and the output voltage is set as VIN – VDO  
Shutdown: The output of the device is disabled and the discharge circuit is activated  
1 shows the conditions that lead to the different modes of operation. See the Electrical Characteristics table  
for parameter values.  
1. Device Functional Mode Comparison  
PARAMETER  
OPERATING MODE  
VIN  
VEN  
IOUT  
TJ  
Normal mode  
Dropout mode  
VIN > VOUT(nom) + VDO and VIN > VIN(min)  
VIN(min) < VIN < VOUT(nom) + VDO  
VEN > VEN(HI)  
VEN > VEN(HI)  
IOUT < IOUT(max)  
IOUT < IOUT(max)  
TJ < Tsd(Shutdown)  
TJ < Tsd(Shutdown)  
Disabled mode  
(any true condition  
disables the device)  
VIN < VUVLO  
VEN < VEN(LO)  
TJ > Tsd(Shutdown)  
7.4.1 Normal Mode  
The device regulates the output to the nominal output voltage when all normal mode conditions in 1 are met.  
7.4.2 Dropout Mode  
The device is not in regulation, and the output voltage tracks the input voltage minus the voltage drop across the  
pass transistor of the device. In this mode, the PSRR, noise, and transient performance of the device are  
significantly degraded.  
7.4.3 Disable Mode  
In this mode, the pass element is turned off, the internal circuits are shut down, and the output voltage is actively  
discharged to ground by an internal resistor.  
版权 © 2018–2019, Texas Instruments Incorporated  
21  
 
TPS7A05  
ZHCSHN3D FEBRUARY 2018REVISED AUGUST 2019  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Recommended Capacitor Types  
The device is designed to be stable using low equivalent series resistance (ESR) ceramic capacitors at the input  
and output. Multilayer ceramic capacitors have become the industry standard for these types of applications and  
are recommended, but must be used with good judgment. Ceramic capacitors that employ X7R-, X5R-, and  
COG-rated dielectric materials provide relatively good capacitive stability across temperature, whereas the use of  
Y5V-rated capacitors is discouraged because of large variations in capacitance.  
Regardless of the ceramic capacitor type selected, the effective capacitance varies with operating voltage and  
temperature. As a rule of thumb, assume effective capacitance to decrease by as much as 50%. The input and  
output capacitors recommended in the Recommended Operating Conditions table account for an effective  
capacitance of approximately 50% of the nominal value.  
8.1.2 Input and Output Capacitor Requirements  
Although an input capacitor is not required for stability, good analog design practice is to connect a capacitor  
from IN to GND. This capacitor counteracts reactive input sources and improves transient response, input ripple,  
and PSRR. An input capacitor is recommended if the source impedance is more than 0.5 Ω. A higher value  
capacitor may be necessary if large, fast rise-time load or line transients are anticipated or if the device is located  
several inches from the input power source.  
Dynamic performance of the device is improved with the use of an output capacitor. Use an output capacitor  
within the range specified in the Recommended Operating Conditions table for stability.  
8.1.3 Special Considerations When Ramping Down VIN and Enable  
Care must be taken when ramping down voltage on the IN and EN pins to power-down the device when the  
operating free-air temperature is less than 15°C. The minimum ramp-down time for the IN pin is 10 ms. The  
minimum ramp-down time for the EN pin is 100 µs. Ramping at faster rates can cause the regulator to exhibit  
undesired startup behavior on the next power-on.  
If VIN is ramped down faster than 10 ms, the next startup may exhibit a partial startup, shutoff, followed by a  
normal soft-start startup. 48 shows this response.  
4
VEN  
VIN  
3.5  
VOUT  
3
2.5  
2
1.5  
1
0.5  
0
-0.5  
-1  
0
1
2
3
4
5
Time (ms)  
6
7
8
9
10  
D040  
48. Partial Startup, Shutdown, Normal Startup With VEN = VIN  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
 
TPS7A05  
www.ti.com.cn  
ZHCSHN3D FEBRUARY 2018REVISED AUGUST 2019  
Application Information (接下页)  
If the EN pin is ramped down faster than 100 µs, the next startup may exhibit a delay time of up to 130 ms  
before the output ramps up with a normal soft-start startup. 49 shows this delay.  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
VOUT  
VIN  
0
-0.5  
-1  
0
100 200 300 400 500 600 700 800 900 1000  
Time (ms)  
D041  
49. Long Delay to Startup With VEN = VIN  
Fast ramp downs of VIN and the EN pin charge internal high-impedance nodes in the device, which take  
extended time to discharge below 15°C. To avoid these startup behaviors, follow the recommended minimum  
ramp down times for VIN and the EN pin.  
8.1.4 Load Transient Response  
The load-step transient response is the output voltage response by the LDO to a step in load current, whereby  
output voltage regulation is maintained. See 6 for typical load transient response. There are two key  
transitions during a load transient response: the transition from a light to a heavy load and the transition from a  
heavy to a light load. The regions in 50 are broken down as described in this section. Regions A, E, and H are  
where the output voltage is in steady-state.  
During transitions from a light load to a heavy load, the:  
Initial voltage dip is a result of the depletion of the output capacitor charge and parasitic impedance to the  
output capacitor (region B)  
Recovery from the dip results from the LDO increasing its sourcing current, and leads to output voltage  
regulation (region C)  
During transitions from a heavy load to a light load, the:  
Initial voltage rise results from the LDO sourcing a large current, and leads to the output capacitor charge to  
increase (region F)  
Recovery from the rise results from the LDO decreasing its sourcing current in combination with the load  
discharging the output capacitor (region G)  
A larger output capacitance reduces the peaks during a load transient but slows down the response time of the  
device. A larger dc load also reduces the peaks because the amplitude of the transition is lowered and a higher  
current discharge path is provided for the output capacitor.  
tAt  
tCt  
tDt  
tEt  
tGt  
tHt  
B
F
50. Load Transient Waveform  
版权 © 2018–2019, Texas Instruments Incorporated  
23  
 
 
TPS7A05  
ZHCSHN3D FEBRUARY 2018REVISED AUGUST 2019  
www.ti.com.cn  
Application Information (接下页)  
8.1.5 Dropout Voltage  
The device uses a PMOS pass transistor to achieve low dropout. When (VIN – VOUT) is less than the dropout  
voltage (VDO), the PMOS pass transistor is in the linear region of operation, and the input-to-output resistance of  
the device is the drain-to-source resistance of the PMOS pass transistor. VDO scales with the output current and  
changes with temperature because the PMOS pass transistor functions like a resistor in dropout mode. For a  
graph of dropout voltage, see 22. As with any linear regulator, PSRR and the transient response degrade as  
(VIN – VOUT) approaches dropout operation. See 23 for dropout performance.  
8.1.5.1 Behavior When Transitioning From Dropout Into Regulation  
Some applications may have transients that place the device into dropout, especially as this device can be  
powered from a battery with high ESR. A typical application with these conditions is using a stack of two 1.55-V  
coin-cell batteries with an ESR of 30 Ω to create a 2.5-V rail and experiencing a load transient from 1 µA to 25  
mA. This load transient causes the input supply to drop 750 mV, placing the device into dropout.  
The load transient saturates the output stage of the error amplifier when the pass element is driven fully on,  
making the pass element function like a resistor from VIN to VOUT. The error amplifier response time to this load  
transient is limited because the error amplifier must first recover from saturation and then place the pass element  
back into active mode. During this time VOUT overshoots because the pass element is functioning as a resistor  
from VIN to VOUT. This device uses a loop pulldown circuit to help mitigate the overshoot.  
If operating under these conditions, applying a higher dc load or increasing the output capacitance reduces the  
overshoot because these solutions provide a path to dissipate the excess charge.  
8.1.5.2 Behavior of Output Resulting From Line Transient When in Dropout  
The output deviation resulting from a line transient can be significantly higher when the device is operating in  
dropout. As explained in the Dropout Voltage section, the response time of the error amplifier is limited when in  
dropout, so the output deviation is larger and can exceed twice the regulated output voltage. Care must be taken  
in applications where line transients are expected when the device is operating in dropout.  
8.1.6 Undervoltage Lockout (UVLO) Operation  
The UVLO circuit ensures that the device stays disabled before its input supply reaches the minimum operational  
voltage range, and ensures that the device shuts down when the input supply collapses. See 46 for rising and  
falling thresholds. 51 depicts the UVLO circuit response to various input voltage events. The diagram can be  
separated into the following parts:  
Region A: The device does not start until the input reaches the UVLO rising threshold  
Region B: Normal operation, regulating device  
Region C: Brownout event above the UVLO falling threshold (UVLO rising threshold – UVLO hystersis). The  
output may fall out of regulation but the device is still enabled.  
Region D: Normal operation, regulating device  
Region E: Brownout event below the UVLO falling threshold. The device is disabled in most cases and the  
output falls as a result of the load and active discharge circuit. The device is re-enabled when the UVLO  
rising threshold is reached by the input voltage and a normal start-up follows.  
Region F: Normal operation followed by the input falling to the UVLO falling threshold  
Region G: The device is disabled as the input voltage falls below the UVLO falling threshold to 0 V. The  
output falls as a result of the load and active discharge circuit.  
24  
版权 © 2018–2019, Texas Instruments Incorporated  
 
TPS7A05  
www.ti.com.cn  
ZHCSHN3D FEBRUARY 2018REVISED AUGUST 2019  
Application Information (接下页)  
UVLO Rising Threshold  
UVLO Hysteresis  
VIN  
C
VOUT  
tAt  
tBt  
tDt  
tEt  
tFt  
tGt  
51. Typical UVLO Operation  
8.1.7 Power Dissipation (PD)  
Circuit reliability demands that proper consideration be given to device power dissipation, location of the circuit  
on the printed circuit board (PCB), and correct sizing of the thermal plane. The PCB area around the regulator  
must be as free as possible of other heat-generating devices that cause added thermal stresses.  
公式 2 calculates the maximum allowable power dissipation for the device in a given package:  
PD-MAX = ((TJ – TA) / RθJA  
)
(2)  
公式 3 represents the actual power being dissipated in the device:  
PD = (VIN - VOUT) × IOUT  
(3)  
An important note is that power dissipation can be minimized, and thus greater efficiency achieved, by proper  
selection of the system voltage rails. Proper selection allows the minimum input-to-output voltage differential to  
be obtained. The low dropout of the TPS7A05 allows for maximum efficiency across a wide range of output  
voltages.  
The main heat conduction path for the device depends on the ambient temperature and the thermal resistance  
across the various interfaces between the die junction and ambient air.  
The maximum power dissipation determines the maximum allowable junction temperature (TJ) for the device.  
According to 公式 4, maximum power dissipation and junction temperature are most often related by the junction-  
to-ambient thermal resistance (RθJA) of the combined PCB and device package and the temperature of the  
ambient air (TA). The equation is rearranged in 公式 5 for output current.  
TJ = TA + (RθJA × PD)  
(4)  
(5)  
IOUT = (TJ – TA) / [RθJA × (VIN – VOUT)]  
Unfortunately, this thermal resistance (RθJA) is highly dependent on the heat-spreading capability built into the  
particular PCB design, and therefore varies according to the total copper area, copper weight, and location of the  
planes. The RθJA recorded in the Thermal Information table is determined by the JEDEC standard, PCB, and  
copper-spreading area, and is only used as a relative measure of package thermal performance. For a well-  
designed thermal layout, RθJA is actually the sum of the DQN package junction-to-case (bottom) thermal  
resistance (RθJC(bot)) plus the thermal resistance contribution by the PCB copper.  
版权 © 2018–2019, Texas Instruments Incorporated  
25  
 
 
 
 
TPS7A05  
ZHCSHN3D FEBRUARY 2018REVISED AUGUST 2019  
www.ti.com.cn  
Application Information (接下页)  
8.1.7.1 Estimating Junction Temperature  
The JEDEC standard now recommends the use of psi (Ψ) thermal metrics to estimate the junction temperatures  
of the LDO when in-circuit on a typical PCB board application. These metrics are not strictly speaking thermal  
resistances, but rather offer practical and relative means of estimating junction temperatures. These psi metrics  
are determined to be significantly independent of the copper-spreading area. The key thermal metrics (ΨJT and  
ΨJB) are used in accordance with 公式 6 and are given in the Thermal Information table.  
ΨJT : TJ = TT + ΨJT × PD and ΨJB : TJ = TB + ΨJB × PD  
where:  
PD is the power dissipated as explained in 公式 3  
TT is the temperature at the center-top of the device package, and  
TB is the PCB surface temperature measured 1 mm from the device package and centered on the package  
edge  
(6)  
8.1.7.2 Recommended Area for Continuous Operation  
The operational area of an LDO is limited by the dropout voltage, output current, junction temperature, and input  
voltage. The recommended area for continuous operation for a linear regulator is shown in 52 and can be  
separated into the following regions:  
Dropout voltage limits the minimum differential voltage between the input and the output (VIN – VOUT) at a  
given output current level; see the Dropout Voltage section for more details.  
The rated output currents limits the maximum recommended output current level. Exceeding this rating  
causes the device to fall out of specification.  
The rated junction temperature limits the maximum junction temperature of the device. Exceeding this rating  
causes the device to fall out of specification and reduces long-term reliability.  
公式 5 provides the shape of the slope. The slope is nonlinear because the maximum rated junction  
temperature of the LDO is controlled by the power dissipation across the LDO, thus when VIN – VOUT  
increases the output current must decrease.  
The rated input voltage range governs both the minimum and maximum of VIN – VOUT  
.
Output Current Limited  
by Dropout  
Rated Output  
Current  
Output Current Limited  
by Thermals  
Limited by  
Minimum VIN  
Limited by  
Maximum VIN  
VIN œ VOUT (V)  
52. Region Description for Continuous Operation  
26  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
TPS7A05  
www.ti.com.cn  
ZHCSHN3D FEBRUARY 2018REVISED AUGUST 2019  
8.2 Typical Application  
IN  
OUT  
CIN  
COUT  
TPS7A05  
VBAT  
Load  
GND  
EN  
53. Operation From the Battery Input Supply  
8.2.1 Design Requirements  
2 summarizes the design requirements for 53.  
2. Design Parameters  
PARAMETER  
Input voltage  
Output voltage  
Output load  
DESIGN REQUIREMENT  
3.0 V to 2.0 V (CR2032 battery)  
1.0 V, ±2% (TJ from –40 to +85ºC)  
10 mA  
8.2.2 Design Considerations  
For this design example, the 1.0-V, fixed-version TPS7A0510 device is selected. A single CR2032 coin-cell  
battery was used, thus a 1.0-µF input capacitor is recommended to minimize transient currents drawn from the  
battery. A 1.0-µF output capacitor is also recommended for excellent load transient response. The dropout  
voltage (VDO) is kept within the TPS7A05 dropout voltage specification for the 1.0-V output voltage option to keep  
the device in regulation under all load and temperature conditions for this design. The very small ground current  
consumed by the regulator shown in 54 allows for long battery life.  
8.2.3 Application Curve  
4
3
2
1
0
0
1
2
3
4
5
6
Output Current (mA)  
7
8
9
10  
D042  
54. IGND vs IOUT at 25°C  
9 Power Supply Recommendations  
This device is designed to operate from an input supply voltage range of 1.4 V to 5.5 V. The input supply must  
be well regulated and free of spurious noise. To ensure that the output voltage is well regulated and dynamic  
performance is optimum, the input supply must be at least VOUT(nom) + 0.5 V. A 1 µF or greater input capacitor is  
recommended to be used to reduce the impedance of the input supply, especially during transients.  
版权 © 2018–2019, Texas Instruments Incorporated  
27  
 
 
 
TPS7A05  
ZHCSHN3D FEBRUARY 2018REVISED AUGUST 2019  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Place input and output capacitors as close to the device as possible  
Use copper planes for device connections to optimize thermal performance  
Place thermal vias around the device to distribute heat  
Do not place a thermal via directly beneath the thermal pad of the DQN package. A via can wick solder or  
solder paste away from the thermal pad joint during the soldering process, leading to a compromised solder  
joint on the thermal pad.  
10.2 Layout Example  
IN  
OUT  
A2  
A1  
COUT  
CIN  
Via  
B1  
B2  
EN  
GND  
55. Layout Example for the YKA Package  
VOUT  
VIN  
5
1
CIN  
COUT  
2
3
4
EN  
GND PLANE  
Represents via used for  
application specific connections  
56. Layout Example for the DBV Package  
VOUT  
VIN  
1
4
COUT  
CIN  
3
2
EN  
GND PLANE  
Represents via used for  
application specific connections  
57. Layout Example for the DQN Package  
28  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS7A05  
www.ti.com.cn  
ZHCSHN3D FEBRUARY 2018REVISED AUGUST 2019  
11 器件和文档支持  
11.1 器件支持  
11.1.1 Spice 模型  
您可以从产品文件夹中的工具与软件下获取 TPS7A05 SPICE 模型。  
11.1.2 器件命名规则  
3. 器件命名规则(1)(2)  
产品  
VOUT  
xx(x) 为标称输出电压。对于分辨率为 100mV 的输出电压,订货编号中使用两位数字;否则,使用三位数  
字(例如,28 = 2.8V125 = 1.25V)。  
TPS7A05xx(x)Pyyyz  
P 是可选的;P 表示有源输出放电功能。  
yyy 为封装标识符。  
z 为封装数量。R 表示卷(3000 片),T 表示带(250 片)。  
(1) 要获得最新的封装和订货信息,请参阅本文档末尾的封装选项附录,或者访问器件产品文件夹(www.ti.com.cn)。  
(2) 可提供 1.0V 3.3V 范围内的输出电压(以 50mV 为单位增量)。更多详细信息及可用性,请联系制造商。  
11.2 文档支持  
11.2.1 相关文档  
请参阅如下相关文档:  
《通用低压降 (LDO) 线性稳压器 MultiPkgLDOEVM-823 评估模块》  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2018–2019, Texas Instruments Incorporated  
29  
TPS7A05  
ZHCSHN3D FEBRUARY 2018REVISED AUGUST 2019  
www.ti.com.cn  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
30  
版权 © 2018–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7A0508PDBVR  
TPS7A0508PDBVT  
TPS7A0508PDBZR  
TPS7A0508PDBZT  
TPS7A0508PDQNR  
TPS7A0508PDQNT  
TPS7A0508PYKAR  
TPS7A0510PDBVR  
TPS7A0510PDBVT  
TPS7A0510PDQNR  
TPS7A0510PDQNT  
TPS7A0510PYKAR  
TPS7A0511PDQNR  
TPS7A0512PDBVR  
TPS7A0512PDBVT  
TPS7A0512PDBZR  
TPS7A0512PDBZT  
TPS7A0512PDQNR  
TPS7A0512PDQNT  
TPS7A0512PYKAR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
X2SON  
X2SON  
DSBGA  
SOT-23  
SOT-23  
X2SON  
X2SON  
DSBGA  
X2SON  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
X2SON  
X2SON  
DSBGA  
DBV  
DBV  
DBZ  
DBZ  
DQN  
DQN  
YKA  
DBV  
DBV  
DQN  
DQN  
YKA  
DQN  
DBV  
DBV  
DBZ  
DBZ  
DQN  
DQN  
YKA  
5
5
3
3
4
4
4
5
5
4
4
4
4
5
5
3
3
4
4
4
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1C6F  
1C6F  
NIPDAU  
SN  
1QMW  
1QMW  
6G  
SN  
NIPDAU  
NIPDAU  
SNAGCU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
SNAGCU  
NIPDAU  
NIPDAU  
NIPDAU  
SN  
6G  
12000 RoHS & Green  
3000 RoHS & Green  
3
1IKF  
1IKF  
C7  
250  
3000 RoHS & Green  
250 RoHS & Green  
RoHS & Green  
C7  
12000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
L
HK  
1ILF  
1ILF  
1QOW  
1QOW  
C8  
250  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
12000 RoHS & Green  
RoHS & Green  
SN  
NIPDAU  
NIPDAU  
SNAGCU  
C8  
M
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7A0515PDBVR  
TPS7A0515PDBVT  
TPS7A0515PDQNR  
TPS7A0515PDQNT  
TPS7A0515PYKAR  
TPS7A051825PYKAR  
TPS7A0518PDBVR  
TPS7A0518PDBVT  
TPS7A0518PDBZR  
TPS7A0518PDBZT  
TPS7A0518PDQNR  
TPS7A0518PDQNT  
TPS7A0518PYKAR  
TPS7A0520PDBZR  
TPS7A0520PDBZT  
TPS7A0520PDQNR  
TPS7A0522PDBVR  
TPS7A0522PDBVT  
TPS7A0522PDBZR  
TPS7A0522PDBZT  
TPS7A0525PDBVR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
X2SON  
X2SON  
DSBGA  
DSBGA  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
X2SON  
X2SON  
DSBGA  
SOT-23  
SOT-23  
X2SON  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DQN  
DQN  
YKA  
YKA  
DBV  
DBV  
DBZ  
DBZ  
DQN  
DQN  
YKA  
DBZ  
DBZ  
DQN  
DBV  
DBV  
DBZ  
DBZ  
DBV  
5
5
4
4
4
4
5
5
3
3
4
4
4
3
3
4
5
5
3
3
5
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1IMF  
1IMF  
C9  
NIPDAU  
NIPDAU  
NIPDAU  
SNAGCU  
SNAGCU  
NIPDAU  
NIPDAU  
SN  
C9  
12000 RoHS & Green  
12000 RoHS & Green  
3000 RoHS & Green  
N
P
1INF  
1INF  
250  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
RoHS & Green  
1QQW  
1QQW  
CA  
SN  
NIPDAU  
NIPDAU  
SNAGCU  
SN  
CA  
12000 RoHS & Green  
3000 RoHS & Green  
P
1U8W  
1U8W  
G1  
250  
RoHS & Green  
SN  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
SN  
1P3F  
1P3F  
1U9W  
1U9W  
1IOF  
250  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
RoHS & Green  
SN  
NIPDAU  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7A0525PDBVT  
TPS7A0525PDQNR  
TPS7A0525PDQNT  
TPS7A0525PYKAR  
TPS7A0527PDBZR  
TPS7A0527PDBZT  
TPS7A05285PDBVR  
TPS7A05285PDBVT  
TPS7A05285PDQNR  
TPS7A05285PDQNT  
TPS7A05285PYKAR  
TPS7A0528PDBZR  
TPS7A0528PDBZT  
TPS7A0528PDQNR  
TPS7A0528PDQNT  
TPS7A0530PDBVR  
TPS7A0530PDBVT  
TPS7A0530PDBZR  
TPS7A0530PDBZT  
TPS7A0530PDQNR  
TPS7A0530PDQNT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
X2SON  
X2SON  
DSBGA  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
X2SON  
X2SON  
DSBGA  
SOT-23  
SOT-23  
X2SON  
X2SON  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
X2SON  
X2SON  
DBV  
DQN  
DQN  
YKA  
DBZ  
DBZ  
DBV  
DBV  
DQN  
DQN  
YKA  
DBZ  
DBZ  
DQN  
DQN  
DBV  
DBV  
DBZ  
DBZ  
DQN  
DQN  
5
4
4
4
3
3
5
5
4
4
4
3
3
4
4
5
5
3
3
4
4
250  
RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1IOF  
CB  
CB  
Q
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
NIPDAU  
SNAGCU  
SN  
12000 RoHS & Green  
3000 RoHS & Green  
1UAW  
1UAW  
1IRF  
1IRF  
CC  
250  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
RoHS & Green  
SN  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
SNAGCU  
SN  
CC  
12000 RoHS & Green  
3000 RoHS & Green  
R
1QSW  
1QSW  
DH  
250  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
RoHS & Green  
SN  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
SN  
DH  
1QWF  
1QWF  
1QUW  
1QUW  
DG  
SN  
NIPDAU  
NIPDAU  
250  
RoHS & Green  
DG  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7A0530PYKAR  
TPS7A0531PDBVR  
TPS7A0531PDBVT  
TPS7A0531PDQNR  
TPS7A0533PDBVR  
TPS7A0533PDBVT  
TPS7A0533PDBZR  
TPS7A0533PDBZT  
TPS7A0533PDQNR  
TPS7A0533PDQNT  
TPS7A0533PYKAR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DSBGA  
SOT-23  
SOT-23  
X2SON  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
X2SON  
X2SON  
DSBGA  
YKA  
DBV  
DBV  
DQN  
DBV  
DBV  
DBZ  
DBZ  
DQN  
DQN  
YKA  
4
5
5
4
5
5
3
3
4
4
4
12000 RoHS & Green  
3000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
W
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
SN  
1P4F  
1P4F  
I6  
250  
RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
1IPF  
1IPF  
250  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
12000 RoHS & Green  
RoHS & Green  
1QVW  
1QVW  
CD  
SN  
NIPDAU  
NIPDAU  
SNAGCU  
CD  
S
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 4  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 5  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jul-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS7A0508PDBVR  
TPS7A0508PDBVT  
TPS7A0508PDBZR  
TPS7A0508PDBZT  
TPS7A0508PDQNR  
TPS7A0508PDQNT  
TPS7A0508PYKAR  
TPS7A0510PDBVR  
TPS7A0510PDBVT  
TPS7A0510PDQNR  
TPS7A0510PDQNT  
TPS7A0510PYKAR  
TPS7A0511PDQNR  
TPS7A0512PDBVR  
TPS7A0512PDBVT  
TPS7A0512PDBZR  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
X2SON  
X2SON  
DSBGA  
SOT-23  
SOT-23  
X2SON  
X2SON  
DSBGA  
X2SON  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBZ  
DBZ  
DQN  
DQN  
YKA  
DBV  
DBV  
DQN  
DQN  
YKA  
DQN  
DBV  
DBV  
DBZ  
5
5
3
3
4
4
4
5
5
4
4
4
4
5
5
3
3000  
250  
180.0  
180.0  
178.0  
178.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
178.0  
8.4  
8.4  
9.0  
9.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
9.0  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
2.0  
4.0  
4.0  
4.0  
4.0  
2.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q2  
Q2  
Q1  
Q3  
Q3  
Q2  
Q2  
Q1  
Q2  
Q3  
Q3  
Q3  
3000  
250  
3.15  
3.15  
1.16  
1.16  
0.76  
3.2  
2.77  
2.77  
1.16  
1.16  
0.76  
3.2  
1.22  
1.22  
0.5  
3000  
250  
0.5  
12000  
3000  
250  
0.46  
1.4  
3.2  
3.2  
1.4  
3000  
250  
1.16  
1.16  
0.76  
1.16  
3.2  
1.16  
1.16  
0.76  
1.16  
3.2  
0.5  
0.5  
12000  
3000  
3000  
250  
0.46  
0.5  
1.4  
3.2  
3.2  
1.4  
3000  
3.15  
2.77  
1.22  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jul-2023  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS7A0512PDBZT  
TPS7A0512PDQNR  
TPS7A0512PDQNT  
TPS7A0512PYKAR  
TPS7A0515PDBVR  
TPS7A0515PDBVT  
TPS7A0515PDQNR  
TPS7A0515PDQNT  
TPS7A0515PYKAR  
TPS7A051825PYKAR  
TPS7A0518PDBVR  
TPS7A0518PDBVT  
TPS7A0518PDBZR  
TPS7A0518PDBZT  
TPS7A0518PDQNR  
TPS7A0518PDQNT  
TPS7A0518PYKAR  
TPS7A0520PDBZR  
TPS7A0520PDBZT  
TPS7A0520PDQNR  
TPS7A0522PDBVR  
TPS7A0522PDBVT  
TPS7A0522PDBZR  
TPS7A0522PDBZT  
TPS7A0525PDBVR  
TPS7A0525PDBVT  
TPS7A0525PDQNR  
TPS7A0525PDQNT  
TPS7A0525PYKAR  
TPS7A0527PDBZR  
TPS7A0527PDBZT  
TPS7A05285PDBVR  
TPS7A05285PDBVT  
TPS7A05285PDQNR  
TPS7A05285PDQNT  
TPS7A05285PYKAR  
TPS7A0528PDBZR  
TPS7A0528PDBZT  
TPS7A0528PDQNR  
TPS7A0528PDQNT  
TPS7A0530PDBVR  
SOT-23  
X2SON  
X2SON  
DSBGA  
SOT-23  
SOT-23  
X2SON  
X2SON  
DSBGA  
DSBGA  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
X2SON  
X2SON  
DSBGA  
SOT-23  
SOT-23  
X2SON  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
X2SON  
X2SON  
DSBGA  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
X2SON  
X2SON  
DSBGA  
SOT-23  
SOT-23  
X2SON  
X2SON  
SOT-23  
DBZ  
DQN  
DQN  
YKA  
DBV  
DBV  
DQN  
DQN  
YKA  
YKA  
DBV  
DBV  
DBZ  
DBZ  
DQN  
DQN  
YKA  
DBZ  
DBZ  
DQN  
DBV  
DBV  
DBZ  
DBZ  
DBV  
DBV  
DQN  
DQN  
YKA  
DBZ  
DBZ  
DBV  
DBV  
DQN  
DQN  
YKA  
DBZ  
DBZ  
DQN  
DQN  
DBV  
3
4
4
4
5
5
4
4
4
4
5
5
3
3
4
4
4
3
3
4
5
5
3
3
5
5
4
4
4
3
3
5
5
4
4
4
3
3
4
4
5
250  
3000  
250  
178.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
178.0  
178.0  
180.0  
180.0  
180.0  
178.0  
178.0  
180.0  
180.0  
180.0  
178.0  
178.0  
180.0  
180.0  
180.0  
180.0  
180.0  
178.0  
178.0  
180.0  
180.0  
180.0  
180.0  
180.0  
178.0  
178.0  
180.0  
180.0  
180.0  
9.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
9.0  
9.0  
8.4  
8.4  
8.4  
9.0  
9.0  
8.4  
8.4  
8.4  
9.0  
9.0  
8.4  
8.4  
8.4  
8.4  
8.4  
9.0  
9.0  
8.4  
8.4  
8.4  
8.4  
8.4  
9.0  
9.0  
8.4  
8.4  
8.4  
3.15  
1.16  
1.16  
0.76  
3.2  
2.77  
1.16  
1.16  
0.76  
3.2  
1.22  
0.5  
4.0  
4.0  
4.0  
2.0  
4.0  
4.0  
4.0  
4.0  
2.0  
2.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
2.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
2.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
2.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q2  
Q2  
Q1  
Q3  
Q3  
Q2  
Q2  
Q1  
Q1  
Q3  
Q3  
Q3  
Q3  
Q2  
Q2  
Q1  
Q3  
Q3  
Q2  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q2  
Q2  
Q1  
Q3  
Q3  
Q3  
Q3  
Q2  
Q2  
Q1  
Q3  
Q3  
Q2  
Q2  
Q3  
0.5  
12000  
3000  
250  
0.46  
1.4  
3.2  
3.2  
1.4  
3000  
250  
1.16  
1.16  
0.76  
0.76  
3.2  
1.16  
1.16  
0.76  
0.76  
3.2  
0.5  
0.5  
12000  
12000  
3000  
250  
0.46  
0.46  
1.4  
3.2  
3.2  
1.4  
3000  
250  
3.15  
3.15  
1.16  
1.16  
0.76  
3.15  
3.15  
1.16  
3.2  
2.77  
2.77  
1.16  
1.16  
0.76  
2.77  
2.77  
1.16  
3.2  
1.22  
1.22  
0.5  
3000  
250  
0.5  
12000  
3000  
250  
0.46  
1.22  
1.22  
0.5  
3000  
3000  
250  
1.4  
3.2  
3.2  
1.4  
3000  
250  
3.15  
3.15  
3.2  
2.77  
2.77  
3.2  
1.22  
1.22  
1.4  
3000  
250  
3.2  
3.2  
1.4  
3000  
250  
1.16  
1.16  
0.76  
3.15  
3.15  
3.2  
1.16  
1.16  
0.76  
2.77  
2.77  
3.2  
0.5  
0.5  
12000  
3000  
250  
0.46  
1.22  
1.22  
1.4  
3000  
250  
3.2  
3.2  
1.4  
3000  
250  
1.16  
1.16  
0.76  
3.15  
3.15  
1.16  
1.16  
3.2  
1.16  
1.16  
0.76  
2.77  
2.77  
1.16  
1.16  
3.2  
0.5  
0.5  
12000  
3000  
250  
0.46  
1.22  
1.22  
0.5  
3000  
250  
0.5  
3000  
1.4  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jul-2023  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS7A0530PDBVT  
TPS7A0530PDBZR  
TPS7A0530PDBZT  
TPS7A0530PDQNR  
TPS7A0530PDQNT  
TPS7A0530PYKAR  
TPS7A0531PDBVR  
TPS7A0531PDBVT  
TPS7A0531PDQNR  
TPS7A0533PDBVR  
TPS7A0533PDBVT  
TPS7A0533PDBZR  
TPS7A0533PDBZT  
TPS7A0533PDQNR  
TPS7A0533PDQNT  
TPS7A0533PYKAR  
SOT-23  
SOT-23  
SOT-23  
X2SON  
X2SON  
DSBGA  
SOT-23  
SOT-23  
X2SON  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
X2SON  
X2SON  
DSBGA  
DBV  
DBZ  
DBZ  
DQN  
DQN  
YKA  
DBV  
DBV  
DQN  
DBV  
DBV  
DBZ  
DBZ  
DQN  
DQN  
YKA  
5
3
3
4
4
4
5
5
4
5
5
3
3
4
4
4
250  
3000  
250  
180.0  
178.0  
178.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
178.0  
178.0  
180.0  
180.0  
180.0  
8.4  
9.0  
9.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
9.0  
9.0  
8.4  
8.4  
8.4  
3.2  
3.15  
3.15  
1.16  
1.16  
0.76  
3.2  
3.2  
2.77  
2.77  
1.16  
1.16  
0.76  
3.2  
1.4  
1.22  
1.22  
0.5  
4.0  
4.0  
4.0  
4.0  
4.0  
2.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
2.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q2  
Q2  
Q1  
Q3  
Q3  
Q2  
Q3  
Q3  
Q3  
Q3  
Q2  
Q2  
Q1  
3000  
250  
0.5  
12000  
3000  
250  
0.46  
1.4  
3.2  
3.2  
1.4  
3000  
3000  
250  
1.16  
3.2  
1.16  
3.2  
0.5  
1.4  
3.2  
3.2  
1.4  
3000  
250  
3.15  
3.15  
1.16  
1.16  
0.76  
2.77  
2.77  
1.16  
1.16  
0.76  
1.22  
1.22  
0.5  
3000  
250  
0.5  
12000  
0.46  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jul-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS7A0508PDBVR  
TPS7A0508PDBVT  
TPS7A0508PDBZR  
TPS7A0508PDBZT  
TPS7A0508PDQNR  
TPS7A0508PDQNT  
TPS7A0508PYKAR  
TPS7A0510PDBVR  
TPS7A0510PDBVT  
TPS7A0510PDQNR  
TPS7A0510PDQNT  
TPS7A0510PYKAR  
TPS7A0511PDQNR  
TPS7A0512PDBVR  
TPS7A0512PDBVT  
TPS7A0512PDBZR  
TPS7A0512PDBZT  
TPS7A0512PDQNR  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
X2SON  
X2SON  
DSBGA  
SOT-23  
SOT-23  
X2SON  
X2SON  
DSBGA  
X2SON  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
X2SON  
DBV  
DBV  
DBZ  
DBZ  
DQN  
DQN  
YKA  
DBV  
DBV  
DQN  
DQN  
YKA  
DQN  
DBV  
DBV  
DBZ  
DBZ  
DQN  
5
5
3
3
4
4
4
5
5
4
4
4
4
5
5
3
3
4
3000  
250  
210.0  
210.0  
180.0  
180.0  
210.0  
210.0  
182.0  
210.0  
210.0  
210.0  
210.0  
182.0  
210.0  
210.0  
210.0  
180.0  
180.0  
210.0  
185.0  
185.0  
180.0  
180.0  
185.0  
185.0  
182.0  
185.0  
185.0  
185.0  
185.0  
182.0  
185.0  
185.0  
185.0  
180.0  
180.0  
185.0  
35.0  
35.0  
18.0  
18.0  
35.0  
35.0  
20.0  
35.0  
35.0  
35.0  
35.0  
20.0  
35.0  
35.0  
35.0  
18.0  
18.0  
35.0  
3000  
250  
3000  
250  
12000  
3000  
250  
3000  
250  
12000  
3000  
3000  
250  
3000  
250  
3000  
Pack Materials-Page 4  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jul-2023  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS7A0512PDQNT  
TPS7A0512PYKAR  
TPS7A0515PDBVR  
TPS7A0515PDBVT  
TPS7A0515PDQNR  
TPS7A0515PDQNT  
TPS7A0515PYKAR  
TPS7A051825PYKAR  
TPS7A0518PDBVR  
TPS7A0518PDBVT  
TPS7A0518PDBZR  
TPS7A0518PDBZT  
TPS7A0518PDQNR  
TPS7A0518PDQNT  
TPS7A0518PYKAR  
TPS7A0520PDBZR  
TPS7A0520PDBZT  
TPS7A0520PDQNR  
TPS7A0522PDBVR  
TPS7A0522PDBVT  
TPS7A0522PDBZR  
TPS7A0522PDBZT  
TPS7A0525PDBVR  
TPS7A0525PDBVT  
TPS7A0525PDQNR  
TPS7A0525PDQNT  
TPS7A0525PYKAR  
TPS7A0527PDBZR  
TPS7A0527PDBZT  
TPS7A05285PDBVR  
TPS7A05285PDBVT  
TPS7A05285PDQNR  
TPS7A05285PDQNT  
TPS7A05285PYKAR  
TPS7A0528PDBZR  
TPS7A0528PDBZT  
TPS7A0528PDQNR  
TPS7A0528PDQNT  
TPS7A0530PDBVR  
TPS7A0530PDBVT  
TPS7A0530PDBZR  
TPS7A0530PDBZT  
TPS7A0530PDQNR  
X2SON  
DSBGA  
SOT-23  
SOT-23  
X2SON  
X2SON  
DSBGA  
DSBGA  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
X2SON  
X2SON  
DSBGA  
SOT-23  
SOT-23  
X2SON  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
X2SON  
X2SON  
DSBGA  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
X2SON  
X2SON  
DSBGA  
SOT-23  
SOT-23  
X2SON  
X2SON  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
X2SON  
DQN  
YKA  
DBV  
DBV  
DQN  
DQN  
YKA  
YKA  
DBV  
DBV  
DBZ  
DBZ  
DQN  
DQN  
YKA  
DBZ  
DBZ  
DQN  
DBV  
DBV  
DBZ  
DBZ  
DBV  
DBV  
DQN  
DQN  
YKA  
DBZ  
DBZ  
DBV  
DBV  
DQN  
DQN  
YKA  
DBZ  
DBZ  
DQN  
DQN  
DBV  
DBV  
DBZ  
DBZ  
DQN  
4
4
5
5
4
4
4
4
5
5
3
3
4
4
4
3
3
4
5
5
3
3
5
5
4
4
4
3
3
5
5
4
4
4
3
3
4
4
5
5
3
3
4
250  
12000  
3000  
250  
210.0  
182.0  
210.0  
210.0  
210.0  
210.0  
182.0  
182.0  
210.0  
210.0  
180.0  
180.0  
210.0  
210.0  
182.0  
180.0  
180.0  
210.0  
210.0  
210.0  
180.0  
180.0  
210.0  
210.0  
210.0  
210.0  
182.0  
180.0  
180.0  
210.0  
210.0  
210.0  
210.0  
182.0  
180.0  
180.0  
210.0  
210.0  
210.0  
210.0  
180.0  
180.0  
210.0  
185.0  
182.0  
185.0  
185.0  
185.0  
185.0  
182.0  
182.0  
185.0  
185.0  
180.0  
180.0  
185.0  
185.0  
182.0  
180.0  
180.0  
185.0  
185.0  
185.0  
180.0  
180.0  
185.0  
185.0  
185.0  
185.0  
182.0  
180.0  
180.0  
185.0  
185.0  
185.0  
185.0  
182.0  
180.0  
180.0  
185.0  
185.0  
185.0  
185.0  
180.0  
180.0  
185.0  
35.0  
20.0  
35.0  
35.0  
35.0  
35.0  
20.0  
20.0  
35.0  
35.0  
18.0  
18.0  
35.0  
35.0  
20.0  
18.0  
18.0  
35.0  
35.0  
35.0  
18.0  
18.0  
35.0  
35.0  
35.0  
35.0  
20.0  
18.0  
18.0  
35.0  
35.0  
35.0  
35.0  
20.0  
18.0  
18.0  
35.0  
35.0  
35.0  
35.0  
18.0  
18.0  
35.0  
3000  
250  
12000  
12000  
3000  
250  
3000  
250  
3000  
250  
12000  
3000  
250  
3000  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
12000  
3000  
250  
3000  
250  
3000  
250  
12000  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
Pack Materials-Page 5  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jul-2023  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS7A0530PDQNT  
TPS7A0530PYKAR  
TPS7A0531PDBVR  
TPS7A0531PDBVT  
TPS7A0531PDQNR  
TPS7A0533PDBVR  
TPS7A0533PDBVT  
TPS7A0533PDBZR  
TPS7A0533PDBZT  
TPS7A0533PDQNR  
TPS7A0533PDQNT  
TPS7A0533PYKAR  
X2SON  
DSBGA  
SOT-23  
SOT-23  
X2SON  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
X2SON  
X2SON  
DSBGA  
DQN  
YKA  
DBV  
DBV  
DQN  
DBV  
DBV  
DBZ  
DBZ  
DQN  
DQN  
YKA  
4
4
5
5
4
5
5
3
3
4
4
4
250  
12000  
3000  
250  
210.0  
182.0  
210.0  
210.0  
210.0  
210.0  
210.0  
180.0  
180.0  
210.0  
210.0  
182.0  
185.0  
182.0  
185.0  
185.0  
185.0  
185.0  
185.0  
180.0  
180.0  
185.0  
185.0  
182.0  
35.0  
20.0  
35.0  
35.0  
35.0  
35.0  
35.0  
18.0  
18.0  
35.0  
35.0  
20.0  
3000  
3000  
250  
3000  
250  
3000  
250  
12000  
Pack Materials-Page 6  
PACKAGE OUTLINE  
DBZ0003A  
SOT-23 - 1.12 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
2.64  
2.10  
1.12 MAX  
1.4  
1.2  
B
A
0.1 C  
PIN 1  
INDEX AREA  
1
0.95  
(0.125)  
3.04  
2.80  
1.9  
3
(0.15)  
NOTE 4  
2
0.5  
0.3  
3X  
0.10  
0.01  
(0.95)  
TYP  
0.2  
C A B  
0.25  
GAGE PLANE  
0.20  
0.08  
TYP  
0.6  
0.2  
TYP  
SEATING PLANE  
0 -8 TYP  
4214838/D 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC registration TO-236, except minimum foot length.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBZ0003A  
SOT-23 - 1.12 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
3X (1.3)  
1
3X (0.6)  
SYMM  
3
2X (0.95)  
2
(R0.05) TYP  
(2.1)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214838/D 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBZ0003A  
SOT-23 - 1.12 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
3X (1.3)  
1
3X (0.6)  
SYMM  
3
2X(0.95)  
2
(R0.05) TYP  
(2.1)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214838/D 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
YKA0004  
DSBGA - 0.4 mm max height  
SCALE 14.000  
DIE SIZE BALL GRID ARRAY  
A
D
B
E
BALL A1  
CORNER  
0.4 MAX  
C
SEATING PLANE  
0.05 C  
0.18  
0.13  
BALL TYP  
0.35 TYP  
B
A
SYMM  
0.35  
TYP  
D: Max = 0.694 mm, Min =0.634 mm  
E: Max = 0.694 mm, Min =0.634 mm  
1
2
0.25  
0.15  
C A B  
4X  
0.015  
SYMM  
4221909/B 08/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YKA0004  
DSBGA - 0.4 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.35) TYP  
4X ( 0.2)  
(0.35) TYP  
2
1
A
B
SYMM  
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:60X  
(
0.2)  
0.0325 MIN  
0.0325 MAX  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
(
0.2)  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221909/B 08/2018  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YKA0004  
DSBGA - 0.4 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.35) TYP  
4X ( 0.21)  
(R0.05) TYP  
2
1
A
B
SYMM  
(0.35)  
TYP  
METAL  
TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.075 mm - 0.1 mm THICK STENCIL  
SCALE:60X  
4221909/B 08/2018  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
PACKAGE OUTLINE  
X2SON - 0.4 mm max height  
DQN0004A  
PLASTIC SMALL OUTLINE - NO LEAD  
1.05  
0.95  
A
B
1
1.05  
0.95  
PIN 1  
INDEX AREA  
C
0.4 MAX  
SEATING PLANE  
0.08  
NOTE 6  
+0.12  
-0.1  
0.05  
0.00  
0.48  
(0.05) TYP  
NOTE 6  
2
1
3
EXPOSED  
THERMAL PAD  
5
2X 0.65  
(0.07) TYP  
NOTE 5  
4
0.28  
PIN 1 ID  
(OPTIONAL)  
NOTE 4  
4X  
0.15  
(0.11)  
0.3  
0.2  
0.1  
C A B  
0.05  
C
0.30  
0.15  
3X  
4215302/E 12/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
4. Features may not exist. Recommend use of pin 1 marking on top of package for orientation purposes.  
5. Shape of exposed side leads may differ.  
6. Number and location of exposed tie bars may vary.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
X2SON - 0.4 mm max height  
DQN0004A  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.86)  
SYMM  
SEE DETAIL  
4X  
4X (0.36)  
(0.03)  
4
4X (0.21)  
1
5
SYMM  
(0.65)  
4X (0.18)  
2
3
(
0.48)  
(0.22) TYP  
EXPOSED METAL  
CLEARANCE  
LAND PATTERN EXAMPLE  
SCALE: 40X  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAIL  
4215302/E 12/2016  
NOTES: (continued)  
7. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271)  
.
8. If any vias are implemented, it is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
X2SON - 0.4 mm max height  
DQN0004A  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
SYMM  
4X (0.4)  
4X (0.03)  
4
1
4X (0.21)  
5
SYMM  
(0.65)  
SOLDER MASK  
EDGE  
4X (0.22)  
2
3
(
0.45)  
4X (0.235)  
SOLDER PASTE EXAMPLE  
BASED ON 0.075 - 0.1mm THICK STENCIL  
EXPOSED PAD  
88% PRINTED SOLDER COVERAGE BY AREA  
SCALE: 60X  
4215302/E 12/2016  
NOTES: (continued)  
9. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS7A0511PDQNR

具有使能功能的 200mA、超低 IQ、高精度、低压降稳压器 | DQN | 4 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A0512PDBVR

具有使能功能的 200mA、超低 IQ、高精度、低压降稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A0512PDBVT

具有使能功能的 200mA、超低 IQ、高精度、低压降稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A0512PDBZR

具有使能功能的 200mA、超低 IQ、高精度、低压降稳压器 | DBZ | 3 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A0512PDBZT

具有使能功能的 200mA、超低 IQ、高精度、低压降稳压器 | DBZ | 3 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A0512PDQNR

具有使能功能的 200mA、超低 IQ、高精度、低压降稳压器 | DQN | 4 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A0512PDQNT

具有使能功能的 200mA、超低 IQ、高精度、低压降稳压器 | DQN | 4 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A0512PYKAR

具有使能功能的 200mA、超低 IQ、高精度、低压降稳压器 | YKA | 4 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A0515PDBVR

具有使能功能的 200mA、超低 IQ、高精度、低压降稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A0515PDBVT

具有使能功能的 200mA、超低 IQ、高精度、低压降稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A0515PDQNR

具有使能功能的 200mA、超低 IQ、高精度、低压降稳压器 | DQN | 4 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A0515PDQNT

具有使能功能的 200mA、超低 IQ、高精度、低压降稳压器 | DQN | 4 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI