TPS7A11105PDRVR [TI]

具有使能功能的 500mA、低输入电压 (0.75V)、超低 IQ、低压降稳压器 | DRV | 6 | -40 to 125;
TPS7A11105PDRVR
型号: TPS7A11105PDRVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有使能功能的 500mA、低输入电压 (0.75V)、超低 IQ、低压降稳压器 | DRV | 6 | -40 to 125

光电二极管 输出元件 稳压器 调节器
文件: 总40页 (文件大小:5146K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS7A11
SBVS316B – SEPTEMBER 2018 – REVISED DECEMBER 2020  
TPS7A11 500-mA, Low VIN, Low VOUT, Ultra-Low Dropout Regulator  
1 Features  
3 Description  
Ultra-low input voltage range: 0.75 V to 3.3 V  
Ultra-low dropout for minimum power loss:  
– 140 mV (maximum) at 500-mA DRV package  
– 110 mV (maximum) at 500-mA YKA package  
Low quiescent current:  
The TPS7A11 is an ultra-small, low quiescent current,  
low-dropout regulator (LDO). This device can source  
500 mA with an outstanding ac performance (load and  
line transient responses). This device has an input  
range of 0.75 V to 3.3 V, and an output range of 0.5 V  
to 3.0 V with a very high accuracy of 1.5% over load,  
line, and temperature. This performance is ideal for  
supplying power to the lower core voltages of modern  
microcontrollers (MCUs) and analog sensors.  
– VIN IQ = 1.6 µA (typical)  
– VBIAS IQ = 6 µA (typical)  
1.5% accuracy over load, line, and temperature  
High PSRR: 64 dB at 1 kHz  
Available in fixed-output voltages:  
– 0.5 V to 3.0 V (in 50-mV steps)  
VBIAS range: 1.7 V to 5.5 V  
The primary power path is through the IN pin and can  
be connected to a power supply as low as 140 mV  
above the output voltage. This device supports very  
low input voltages with the use of an additional VBIAS  
rail that is used to power the internal circuitry of the  
LDO. The IN and BIAS pins consume very low  
quiescent current of 1.6 µA and 6 µA, respectively.  
The low IQ and ultra-low dropout features help to  
increase the efficiency of the solution in power-  
sensitive applications. For example, the supply  
voltage to the IN pin can be an output of a high-  
efficiency, DC/DC step-down regulator and the BIAS  
pin supply voltage can be a rechargeable battery.  
Packages:  
– 2.0-mm × 2.0-mm WSON (6)  
– 0.74-mm × 1.09-mm DSBGA (5)  
Active output discharge  
2 Applications  
Smart watches, fitness trackers  
Wireless headphones and earbuds  
Camera modules  
Smart phones and tablets  
Portable medical devices  
Solid state drives (SSDs)  
The TPS7A11 is equipped with an active pulldown  
circuit to quickly discharge the output when disabled,  
and provides a known start-up state.  
The TPS7A11 is available in a small 2.00-mm × 2.00-  
mm WSON, 6-pin (DRV) package and an ultra-small  
0.74-mm × 1.09-mm, 5-pin DSBGA (YKA) package  
that makes the device suitable for space-constrained  
applications.  
VBATTERY  
CBIAS  
Device Information (1)  
BIAS  
VOUT  
IN  
OUT  
Standalone  
IN  
OUT  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
CIN  
COUT  
DC/DC Converter  
Or PMU  
TPS7A11  
WSON (6)  
2.00 mm × 2.00 mm  
EN  
GND  
TPS7A11  
GND  
0.74 mm × 1.09 mm  
(0.35-mm pitch)  
DSBGA (5)  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Typical Application Circuit  
140  
TJ  
-40 èC  
0 èC  
25 èC  
85 èC  
105 èC  
125 èC  
120  
100  
80  
60  
40  
20  
0
0
50 100 150 200 250 300 350 400 450 500  
Output Current (mA)  
Dropout vs IOUT and Temperature, YKA Package  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
TPS7A11  
www.ti.com  
SBVS316B – SEPTEMBER 2018 – REVISED DECEMBER 2020  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings ....................................... 5  
6.2 ESD Ratings .............................................................. 5  
6.3 Recommended Operating Conditions ........................5  
6.4 Thermal Information ...................................................6  
6.5 Electrical Characteristics ............................................6  
6.6 Typical Characteristics................................................8  
7 Detailed Description......................................................14  
7.1 Overview...................................................................14  
7.2 Functional Block Diagram.........................................14  
7.3 Feature Description...................................................14  
7.4 Device Functional Modes..........................................17  
8 Application and Implementation..................................18  
8.1 Application Information............................................. 18  
8.2 Typical Application.................................................... 22  
9 Power Supply Recommendations................................23  
10 Layout...........................................................................24  
10.1 Layout Guidelines................................................... 24  
10.2 Layout Examples.................................................... 24  
11 Device and Documentation Support..........................25  
11.1 Device Support........................................................25  
11.2 Documentation Support.......................................... 25  
11.3 Receiving Notification of Documentation Updates..25  
11.4 Support Resources................................................. 25  
11.5 Trademarks............................................................. 26  
11.6 Electrostatic Discharge Caution..............................26  
11.7 Glossary..................................................................26  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision A (December 2018) to Revision B (December 2020)  
Page  
Updated the numbering format for tables and figures throughout the document............................................... 1  
Updated sequencing requirement to clarify differences between "A" and "non-A" versions.............................15  
Changed Device Nomenclature table...............................................................................................................25  
Changes from Revision * (September 2018) to Revision A (December 2018)  
Page  
Changed YKA (DSBGA) package status from Preview to Production Data ......................................................1  
Added Evaluation Module subsection ..............................................................................................................25  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS7A11  
 
TPS7A11  
www.ti.com  
SBVS316B – SEPTEMBER 2018 – REVISED DECEMBER 2020  
5 Pin Configuration and Functions  
OUT  
1
2
3
6
5
4
IN  
Thermal  
Pad  
NC  
EN  
GND  
BIAS  
Not to scale  
TI recommends connecting the SON (DRV) package thermal pad to ground.  
NC – No internal connection.  
Figure 5-1. DRV Package, 6-Pin SON With Exposed Thermal Pad, Top View  
Table 5-1. Pin Functions: DRV  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Input pin. A capacitor is required from IN to ground for stability. For best transient response, use  
the nominal recommended value or larger ceramic capacitor from IN to ground. Follow the  
recommended capacitor value as listed in the Recommended Operating Conditions table. Place  
the input capacitor as close to the input pin of the device as possible.  
IN  
6
Input  
Regulated output pin. A capacitor is required from OUT to ground for stability. For best transient  
response, use the nominal recommended value or larger ceramic capacitor from OUT to ground.  
Follow the recommended capacitor value as listed in the Recommended Operating Conditions  
table. Place the output capacitor as close to the output pin of the device as possible.  
OUT  
GND  
BIAS  
1
5
4
Output  
Ground pin. This pin must be connected to ground.  
BIAS pin. This pin enables the use of low-input voltage, low-output voltage (LILO) conditions. For  
best performance, use the nominal recommended value or larger ceramic capacitor from BIAS to  
ground. Follow the recommended capacitor value as listed in the Recommended Operating  
Conditions table. Place the bias capacitor as close to the bias pin of the device as possible.  
Input  
Enable pin. Driving this pin to logic high enables the device. Driving this pin to logic low disables  
the device. If enable functionality is not required, this pin must be connected to IN or BIAS;  
however, connecting EN to IN is only acceptable if the IN pin voltage is greater than 0.9 V.  
EN  
NC  
3
2
Input  
This pin is not internally connected. Connect to ground for better thermal dissipation or leave  
floating.  
Thermal pad  
Connect the thermal pad to a large-area ground plane.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS7A11  
 
TPS7A11  
www.ti.com  
SBVS316B – SEPTEMBER 2018 – REVISED DECEMBER 2020  
IN  
A1  
A3  
OUT  
GND  
BIAS  
B2  
C1  
C3  
EN  
Not to scale  
Figure 5-2. YKA Package, 5-Pin DSBGA, Top View  
Table 5-2. Pin Functions: YKA  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
Input pin. A capacitor is required from IN to ground for stability. For best transient response, use the  
nominal recommended value or larger ceramic capacitor from IN to ground. Follow the recommended  
capacitor value as listed in the Recommended Operating Conditions table. Place the input capacitor as  
close to the input pin of the device as possible.  
A1  
IN  
Input  
Regulated output pin. A capacitor is required from OUT to ground for stability. For best transient  
response, use the nominal recommended value or larger ceramic capacitor from OUT to ground. Follow  
the recommended capacitor value as listed in the Recommended Operating Conditions table. Place the  
output capacitor as close to the output pin of the device as possible.  
A3  
B2  
C1  
OUT  
GND  
BIAS  
Output  
Ground pin. This pin must be connected to ground.  
BIAS pin. This pin enables the use of low-input voltage, low-output voltage (LILO) conditions. For best  
performance, use the nominal recommended value or larger ceramic capacitor from BIAS to ground.  
Follow the recommended capacitor value as listed in the Recommended Operating Conditions table.  
Place the bias capacitor as close to the bias pin of the device as possible.  
Input  
Enable pin. Driving this pin to logic high enables the device. Driving this pin to logic low disables the  
C3  
EN  
Input device. If enable functionality is not required, this pin must be connected to IN or BIAS; however,  
connecting EN to IN is only acceptable if the IN pin voltage is greater than 0.9 V.  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS7A11  
TPS7A11  
www.ti.com  
SBVS316B – SEPTEMBER 2018 – REVISED DECEMBER 2020  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range unless otherwise noted.(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
MAX UNIT  
Input, VIN  
3.6  
Enable, VEN  
Voltage  
6.0  
V
6.0  
Bias, VBIAS  
Output, VOUT  
VIN + 0.3 (2)  
Current  
Maximum output  
Operating junction, TJ  
Storage, Tstg  
Internally limited  
A
–40  
–65  
150  
150  
°C  
°C  
Temperature  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) The absolute maximum rating is 3.6 V or (VIN + 0.3 V), whichever is less.  
6.2 ESD Ratings  
VALUE  
±3000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating junction temperature range (unless otherwise noted).  
MIN  
0.75  
1.7  
0.5  
0
NOM  
MAX  
3.3  
UNIT  
V
VIN  
Input voltage  
VBIAS  
VOUT  
IOUT  
CIN  
Bias voltage  
5.5  
V
Output voltage  
3.0  
V
Peak output current  
Input capacitor  
500  
mA  
µF  
µF  
µF  
2.2  
CBIAS  
COUT  
TJ  
Bias capacitor  
0.1  
(1)  
Output capacitor  
Operating junction temperature  
2.2  
22  
–40  
125  
(1) Maximum ESR must be lower than 250 mΩ  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS7A11  
 
 
 
 
 
 
 
 
 
TPS7A11  
www.ti.com  
UNIT  
SBVS316B – SEPTEMBER 2018 – REVISED DECEMBER 2020  
6.4 Thermal Information  
TPS7A11  
DRV (WSON)  
THERMAL METRIC(1)  
YKA (DSBGA)  
5 PINS  
169.4  
1.1  
6 PINS  
77.3  
91.6  
41.1  
4.3  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
55.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.7  
ψJB  
41.0  
18.6  
55.6  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
over TJ = –40°C to +125°C, VIN = VOUT(NOM) + 0.5 V, VBIAS = VOUT(NOM) + 1.4 V, IOUT = 1 mA, VEN = 1.0 V, CIN = 2.2 μF, COUT  
= 2.2 μF, and CBIAS = 0.1 μF ( unless otherwise noted); all typical values are at TJ = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Nominal accuracy  
TJ = 25°C  
-0.5  
0.5  
%
–20°C ≤ TJ ≤ 85, DRV package  
VOUT(NOM) + 0.5 V ≤ VIN ≤ 3.3 V,  
VOUT(NOM) + 1.4 V ≤ VBIAS ≤ 5.5 V,  
1 mA ≤ IOUT ≤ 500 mA  
-1.25  
-1.25  
-1.5  
1.25  
–40°C ≤ TJ ≤ 85, YKA package  
VOUT(NOM) + 0.5 V ≤ VIN ≤ 3.3 V,  
VOUT(NOM) + 1.4 V ≤ VBIAS ≤ 5.5 V,  
1 mA ≤ IOUT ≤ 500 mA  
Accuracy over temperature  
1.25  
1.5  
%
–40°C ≤ TJ ≤ 125,  
VOUT(NOM) + 0.5 V ≤ VIN ≤ 3.3 V,  
VOUT(NOM) + 1.4 V ≤ VBIAS ≤ 5.5 V,  
1 mA ≤ IOUT ≤ 500 mA  
ΔVOUT / ΔVIN  
ΔVOUT / ΔVBIAS  
ΔVOUT / ΔIOUT  
VIN line regulation  
VBIAS line regulation  
Load regulation  
VOUT(NOM) + 0.5 V ≤ VIN ≤ 3.3 V  
VOUT(NOM) + 1.4 V ≤ VBIAS ≤ 5.5 V  
0.1 mA ≤ IOUT ≤ 500 mA  
TJ = 25°C, IOUT = 0 mA  
–40°C < TJ < 85°C, IOUT = 0 mA  
IOUT = 0 mA  
0.001  
0.03  
0.2  
%/V  
%/V  
%/A  
3
6
8
11  
IQ(BIAS)  
Bias pin current  
µA  
14  
IOUT = 500 mA  
60  
TJ = 25°C, IOUT = 0 mA  
–40°C < TJ < 85°C, IOUT = 0 mA  
IOUT = 0 mA  
1.6  
2.1  
2.3  
2.6  
11  
IQ(IN)  
Input pin current(1)  
µA  
nA  
IOUT = 500 mA  
–40°C < TJ < 85°C,  
VIN = 3.3 V, VBIAS = 5.5 V, VEN ≤ 0.4 V  
400  
1200  
1
ISHDN(BIAS)  
VBIAS shutdown current  
–40°C < TJ < 125°C,  
VIN = 3.3 V, VBIAS = 5.5 V, VEN ≤ 0.4 V  
–40°C < TJ < 85°C,  
VIN = 3.3 V, VBIAS = 5.5 V, VEN ≤ 0.4 V  
ISHDN(IN)  
VIN shutdown current  
Output current limit  
µA  
–40°C < TJ < 125°C,  
VIN = 3.3 V, VBIAS = 5.5 V, VEN ≤ 0.4 V  
3
VOUT = 0.9 × VOUT(NOM), YKA Package  
VOUT = 0.9 × VOUT(NOM), DRV Package  
625  
700  
920  
990  
1175  
1250  
ICL  
mA  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS7A11  
 
 
 
TPS7A11  
www.ti.com  
SBVS316B – SEPTEMBER 2018 – REVISED DECEMBER 2020  
6.5 Electrical Characteristics (continued)  
over TJ = –40°C to +125°C, VIN = VOUT(NOM) + 0.5 V, VBIAS = VOUT(NOM) + 1.4 V, IOUT = 1 mA, VEN = 1.0 V, CIN = 2.2 μF, COUT  
= 2.2 μF, and CBIAS = 0.1 μF ( unless otherwise noted); all typical values are at TJ = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ISC  
Short circuit current limit  
VOUT = 0 V  
300  
mA  
VIN = VOUT(NOM) – 0.1 V, IOUT = 500 mA,  
YKA package  
70  
90  
110  
mV  
140  
VDO(IN)  
VIN dropout voltage(2)  
VIN = VOUT(NOM) – 0.1 V, IOUT = 500 mA,  
DRV package  
IOUT = 500 mA  
IOUT = 250 mA  
0.85  
0.75  
1.2  
V
1.0  
VDO(BIAS)  
VBIAS dropout voltage(2)  
f = 1 kHz,  
VOUT = 1.0 V, IOUT = 50 mA  
64  
37  
f = 100 kHz,  
VOUT = 1.0 V, IOUT = 50 mA  
VIN power-supply rejection  
ratio  
VIN PSRR  
dB  
f = 1 MHz,  
VOUT = 1.0 V, IOUT = 50 mA  
31  
f = 1.5 MHz,  
VOUT = 1.0 V, IOUT = 50 mA  
35  
f = 1 kHz,  
VOUT = 1.0 V, IOUT = 500 mA  
56  
VBIAS power-supply  
rejection ratio  
f = 100 kHz,  
VOUT = 1.0 V, IOUT = 500 mA  
VBIAS PSRR  
43  
dB  
f = 1 MHz,  
VOUT = 1.0 V, IOUT = 500 mA  
33  
Bandwidth = 10 Hz to 100 kHz,  
VOUT = 1.0 V, IOUT = 50 mA  
Vn  
Output voltage noise  
93.9  
µVRMS  
VBIAS rising  
VBIAS falling  
VBIAS hysteresis  
VIN rising  
1.46  
1.35  
1.54  
1.44  
80  
1.63  
V
VUVLO(BIAS)  
VUVLO_HYST(BIAS)  
VUVLO(IN)  
Bias supply UVLO  
Bias supply hysteresis  
Input supply UVLO  
1.55  
mV  
645  
565  
675  
600  
75  
710  
mV  
640  
VIN falling  
VUVLO_HYST(IN)  
tSTR  
Input supply hysteresis  
Start-up time(3)  
VIN hysteresis  
mV  
525  
1200  
0.4  
µs  
V
VHI(EN)  
EN pin logic high voltage  
EN pin logic low voltage  
EN pin current  
0.9  
VLO(EN)  
IEN  
V
EN = 5.5 V  
10  
120  
160  
145  
nA  
Ω
RPULLDOWN  
Pulldown resistor  
VBIAS = 3.3 V, P version only  
Shutdown, temperature rising  
Reset, temperature falling  
Thermal shutdown  
temperature  
TSD  
°C  
(1) This is the current flowing from VIN to GND.  
(2) Dropout is not measured for VOUT < 1.0 V.  
(3) Startup time = time from EN assertion to 0.95 × VOUT(NOM).  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS7A11  
 
 
 
TPS7A11  
www.ti.com  
SBVS316B – SEPTEMBER 2018 – REVISED DECEMBER 2020  
6.6 Typical Characteristics  
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 0.5 V, VBIAS = VOUT(NOM) + 1.4 V, IOUT = 1 mA, VEN = VIN, CIN = COUT  
= 2.2 µF, and CBIAS = 0.1 µF (unless otherwise noted)  
0.4  
0.3  
0.2  
0.1  
0
0.4  
0.3  
0.2  
0.1  
0
TJ  
-40 èC  
TJ  
-40 èC  
85 èC  
105 èC  
125 èC  
85 èC  
105 èC  
125 èC  
0 èC  
25 èC  
0 èC  
25 èC  
-0.1  
-0.2  
-0.3  
-0.4  
-0.1  
-0.2  
-0.3  
-0.4  
0
50 100 150 200 250 300 350 400 450 500  
Output Current (mA)  
1.4 1.6 1.8  
2
2.2 2.4 2.6 2.8  
Input Voltage (V)  
3
3.2 3.4  
DRV package  
YKA package  
Figure 6-1. Output Accuracy vs IOUT and Temperature  
Figure 6-2. Output Accuracy vs VIN and Temperature  
0.4  
140  
TJ  
TJ  
-40 èC  
0 èC  
25 èC  
85 èC  
105 èC  
125 èC  
-40èC  
0èC  
25èC  
85èC  
105èC  
125èC  
0.3  
0.2  
0.1  
0
120  
100  
80  
60  
40  
20  
0
-0.1  
-0.2  
-0.3  
-0.4  
0
50 100 150 200 250 300 350 400 450 500  
Output Current (mA)  
0
50 100 150 200 250 300 350 400 450 500  
Output Current (mA)  
YKA package  
DRV package  
Figure 6-3. Output Accuracy vs IOUT and Temperature  
Figure 6-4. VIN Dropout vs IOUT and Temperature  
140  
0.25  
TJ  
-40 èC  
TJ  
-40 èC  
0 èC  
0.2  
0.15  
0.1  
85 èC  
105 èC  
125 èC  
85 èC  
105 èC  
125 èC  
120  
100  
80  
60  
40  
20  
0
0 èC  
25 èC  
25 èC  
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
2
2.5  
3
3.5 4  
Bias Voltage (V)  
4.5  
5
5.5  
0
50 100 150 200 250 300 350 400 450 500  
Output Current (mA)  
YKA package  
Figure 6-6. Output Accuracy vs VBIAS and Temperature  
Figure 6-5. VIN Dropout vs IOUT and Temperature  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS7A11  
 
 
 
TPS7A11  
www.ti.com  
SBVS316B – SEPTEMBER 2018 – REVISED DECEMBER 2020  
6.6 Typical Characteristics (continued)  
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 0.5 V, VBIAS = VOUT(NOM) + 1.4 V, IOUT = 1 mA, VEN = VIN, CIN = COUT  
= 2.2 µF, and CBIAS = 0.1 µF (unless otherwise noted)  
1100  
1000  
900  
800  
700  
600  
500  
400  
16  
14  
12  
10  
8
TJ  
-40èC  
TJ  
25èC  
85èC  
85èC  
105èC  
125èC  
-40èC  
0èC  
105èC  
125èC  
0èC  
25èC  
6
4
2
0
0
50 100 150 200 250 300 350 400 450 500  
Output Current (mA)  
1.5  
2
2.5  
3
3.5  
4
Bias Voltage (V)  
4.5  
5
5.5  
IOUT = 0 mA  
Figure 6-7. VBIAS Dropout vs IOUT and Temperature  
Figure 6-8. IQ(BIAS) vs VBIAS and Temperature  
65  
3
TJ  
25èC  
85èC  
T
60  
2.8  
2.6  
2.4  
2.2  
2
-40èC  
0èC  
105èC  
125èC  
-40 èC  
85 èC  
105 èC  
125 èC  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0 èC  
25 èC  
1.8  
1.6  
1.4  
1.2  
1
0
1.5  
2
2.5  
3
Bias Voltage (V)  
3.5  
4
4.5  
5
5.5  
0.5  
1
1.5  
2
Input Voltage (V)  
2.5  
3
3.5  
IOUT = 500 mA  
IOUT = 0 mA  
Figure 6-9. IQ(BIAS) vs VBIAS and Temperature  
Figure 6-10. IQ(IN) vs VIN and Temperature  
18  
1.2  
1
TJ  
-40èC  
16  
14  
12  
10  
8
85èC  
105èC  
125èC  
0èC  
25èC  
TJ  
0.8  
0.6  
0.4  
0.2  
0
-40 èC  
0 èC  
25 èC  
85 èC  
105 èC  
125 èC  
6
4
2
0
1
1.5  
2 2.5  
Input Voltage (V)  
3
3.5  
100 200 300 400 500 600 700 800 900 1000 1100  
Output Current (mA)  
IOUT = 500 mA  
Figure 6-11. IQ(IN) vs VIN and Temperature  
Figure 6-12. Foldback Output Current Limit vs IOUT and  
Temperature  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS7A11  
 
 
TPS7A11  
www.ti.com  
SBVS316B – SEPTEMBER 2018 – REVISED DECEMBER 2020  
6.6 Typical Characteristics (continued)  
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 0.5 V, VBIAS = VOUT(NOM) + 1.4 V, IOUT = 1 mA, VEN = VIN, CIN = COUT  
= 2.2 µF, and CBIAS = 0.1 µF (unless otherwise noted)  
3.5  
3
3
2.5  
2
TJ  
-40 èC  
VIN  
VEN  
VBIAS  
VOUT  
85 èC  
105 èC  
125 èC  
0 èC  
25 èC  
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-0.5  
-0.5  
0.6  
0.9  
1.2  
1.5  
1.8 2.1  
Input Voltage (V)  
2.4  
2.7  
3
3.3  
0
100 200 300 400 500 600 700 800 900 1000  
Time (ms)  
VOUT = 1.0 V, VEN < 0.4 V  
Figure 6-13. ISHDN vs VIN and Temperature  
VOUT = 0.5 V  
Figure 6-14. Startup With VEN = VIN  
3
2.5  
2
3
2.5  
2
VIN  
VEN  
VBIAS  
VOUT  
VIN  
VEN  
VBIAS  
VOUT  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-0.5  
-0.5  
0
100 200 300 400 500 600 700 800 900 1000  
Time (ms)  
0
100 200 300 400 500 600 700 800 900 1000  
Time (ms)  
VOUT = 0.5 V  
VOUT = 0.5 V  
Figure 6-15. Startup With VEN and VBIAS Powering Up  
Simultaneously  
Figure 6-16. Startup With Separated VEN  
3
5
50  
25  
0
VIN  
VEN  
VBIAS  
VOUT  
4.5  
4
2.5  
2
3.5  
3
-25  
VIN  
VOUT  
-50  
1.5  
1
2.5  
2
-75  
-100  
-125  
-150  
-175  
0.5  
0
1.5  
1
0.5  
0
-0.5  
-200  
100 200 300 400 500 600 700 800 900 1000  
Time (ms)  
0
100 200 300 400 500 600 700 800 900 1000  
Time (ms)  
0
VOUT = 0.5 V  
VOUT = 1.0 V, IOUT = 1 mA  
Figure 6-17. Startup With VBIAS Powering Up After VIN and VEN  
Figure 6-18. VIN Transient  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS7A11  
TPS7A11  
www.ti.com  
SBVS316B – SEPTEMBER 2018 – REVISED DECEMBER 2020  
6.6 Typical Characteristics (continued)  
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 0.5 V, VBIAS = VOUT(NOM) + 1.4 V, IOUT = 1 mA, VEN = VIN, CIN = COUT  
= 2.2 µF, and CBIAS = 0.1 µF (unless otherwise noted)  
5
4.5  
4
50  
200  
100  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
0
-50  
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
-900  
-1000  
3.5  
3
-100  
-150  
-200  
-250  
-300  
-350  
-400  
-450  
VOUT  
IOUT  
VIN  
VOUT  
2.5  
2
1.5  
1
0
0.5  
0
-50  
-100  
0
100 200 300 400 500 600 700 800 900 1000  
Time (ms)  
0
100 200 300 400 500 600 700 800 900 1000  
Time (ms)  
VOUT = 1.0 V, IOUT = 500 mA  
VOUT = 1.0 V, IOUT = 0 mA to 250 mA  
Figure 6-19. VIN Transient  
Figure 6-20. IOUT Transient  
200  
100  
500  
200  
0
1250  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
1000  
750  
500  
250  
0
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
-900  
-1000  
-200  
-400  
-600  
-800  
-1000  
VOUT  
IOUT  
VOUT  
IOUT  
0
-50  
-100  
-250  
1000  
0
100 200 300 400 500 600 700 800 900 1000  
Time (ms)  
0
200  
400  
600  
800  
Time (ms)  
VOUT = 1.0 V, IOUT = 1 mA to 250 mA  
VOUT = 1.0 V, IOUT = 0 mA to 500 mA  
Figure 6-21. IOUT Transient  
Figure 6-22. IOUT Transient  
200  
0
1250  
1000  
750  
500  
250  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IOUT  
10 mA  
50 mA  
100 mA  
200 mA  
300 mA  
400 mA  
500 mA  
-200  
-400  
-600  
-800  
VOUT  
IOUT  
-1000  
0
-250  
1000  
200  
400  
Time (ms)  
600  
800  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
VOUT = 1.0 V, IOUT = 1 mA to 500 mA  
CIN = 0 μF, VOUT = 1.0 V  
Figure 6-24. VIN PSRR vs Frequency and IOUT  
Figure 6-23. IOUT Transient  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS7A11  
 
 
TPS7A11  
www.ti.com  
SBVS316B – SEPTEMBER 2018 – REVISED DECEMBER 2020  
6.6 Typical Characteristics (continued)  
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 0.5 V, VBIAS = VOUT(NOM) + 1.4 V, IOUT = 1 mA, VEN = VIN, CIN = COUT  
= 2.2 µF, and CBIAS = 0.1 µF (unless otherwise noted)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDO  
200 mV  
400 mV  
600 mV  
COUT  
10 mF  
800 mV  
1000 mV  
2.2 mF  
22 mF  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
CIN = 0 μF, VOUT = 1.0 V, IOUT = 500 mA, VDO = VIN – VOUT  
CIN = 0 μF, VOUT = 1.0 V, IOUT = 500 mA  
Figure 6-25. VIN PSRR vs Frequency and Dropout  
Figure 6-26. VIN PSRR vs Frequency and COUT  
100  
50  
IOUT, (mVRMS  
50 mA, (91.2)  
120 mA, (88.4)  
200 mA, (86.8)  
)
VBIAS  
20  
10  
5
90  
300 mA, (85.4)  
400 mA, (83.7)  
500 mA, (82.1)  
2.4 V  
3.0 V  
3.5 V  
4.0 V  
4.5 V  
5.0 V  
5.5 V  
80  
70  
60  
50  
40  
30  
20  
10  
0
2
1
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
0.005  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
VOUT = 1.0 V  
Figure 6-28. Output Noise vs Frequency and IOUT  
1.65  
CIN = 2.2 μF, VOUT = 1.0 V, IOUT = 500 mA, CBIAS = 0 μF  
Figure 6-27. VBIAS PSRR vs Frequency and VBIAS  
20  
VOUT = 0.5 V, 32.2 mVRMS  
10  
VOUT = 1.0 V, 82.2 mVRMS  
1.6  
1.55  
1.5  
5
VOUT = 3.0 V, 193.9 mVRMS  
2
1
0.5  
0.2  
0.1  
1.45  
1.4  
0.05  
0.02  
0.01  
1.35  
1.3  
VBIAS UVLO (Falling)  
VBIAS UVLO (Rising)  
0.005  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
IOUT = 500 mA  
Figure 6-29. Output Noise vs Frequency and VOUT  
Figure 6-30. VUVLO(BIAS) Rising and Falling Threshold vs  
Temperature  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS7A11  
TPS7A11  
www.ti.com  
SBVS316B – SEPTEMBER 2018 – REVISED DECEMBER 2020  
6.6 Typical Characteristics (continued)  
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 0.5 V, VBIAS = VOUT(NOM) + 1.4 V, IOUT = 1 mA, VEN = VIN, CIN = COUT  
= 2.2 µF, and CBIAS = 0.1 µF (unless otherwise noted)  
0.69  
0.68  
0.67  
0.66  
0.65  
0.64  
0.63  
0.62  
0.61  
0.6  
0.605  
0.595  
0.585  
0.575  
0.565  
0.555  
0.545  
0.535  
0.525  
0.515  
VEN(LO)  
VEN(HI)  
VIN UVLO (Falling)  
VIN UVLO (Rising)  
0.59  
0.58  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
Temperature (èC)  
Figure 6-32. Enable High and Low Threshold vs Temperature  
Figure 6-31. VUVLO(IN) Rising and Falling Threshold vs  
Temperature  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS7A11  
TPS7A11  
www.ti.com  
SBVS316B – SEPTEMBER 2018 – REVISED DECEMBER 2020  
7 Detailed Description  
7.1 Overview  
The TPS7A11 is a low-input, ultra-low dropout, and low quiescent current linear regulator that is optimized for  
excellent transient performance. These characteristics make the device ideal for most battery-powered  
applications. The implementation of the BIAS pin on the TPS7A11 vastly improves efficiency of low-voltage  
output applications by allowing the use of a pre-regulated, low-voltage input supply that offers sub-band-gap  
output voltages. This low-dropout regulator (LDO) offers foldback current limit, shutdown, thermal protection,  
high output voltage accuracy of 1.5% over the recommended junction temperature range, and optional active  
discharge.  
7.2 Functional Block Diagram  
Current  
Limit  
IN  
BIAS  
EN  
OUT  
Thermal  
Shutdown  
+
Global  
UVLO  
Active Discharge  
P-Version Only  
œ
Bandgap  
GND  
Internal  
Controller  
7.3 Feature Description  
7.3.1 Excellent Transient Response  
The TPS7A11 responds quickly to a transient on the input supply (line transient) or the output current (load  
transient) resulting from the device high input impedance and low output impedance across frequency. This  
same capability also means that the device has a high power-supply rejection ratio (PSRR) and low internal  
noise floor (en). The LDO approximates an ideal power supply with outstanding line and load transient  
performance.  
The choice of external component values optimizes the small- and large-signal response; see the Input and  
Output Capacitor Requirements section for proper capacitor selection.  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS7A11  
 
 
 
 
TPS7A11  
www.ti.com  
SBVS316B – SEPTEMBER 2018 – REVISED DECEMBER 2020  
7.3.1.1 Global Undervoltage Lockout (UVLO)  
The TPS7A11 uses two undervoltage lockout circuits: one on the BIAS pin and one on the IN pin to prevent the  
device from turning on before either VBIAS and VIN rise above their lockout voltages. The two UVLO signals are  
connected internally through an AND gate, as shown in Figure 7-1, that allows the device to be turned off when  
either of these rails are below the lockout voltage.  
UVLO(IN)  
Global UVLO  
UVLO(BIAS)  
Figure 7-1. Global UVLO circuit  
7.3.2 Active Discharge  
The active discharge option has an internal pulldown MOSFET that connects a 120-Ω resistor to ground when  
the device is disabled in order to actively discharge the output voltage. The active discharge circuit is activated  
by driving the enable pin to logic low to disable the device, or when the device is in thermal shutdown.  
The discharge time after disabling the device depends on the output capacitance (COUT) and the load resistance  
(RL ) in parallel with the 120-Ω pulldown resistor. Equation 1 calculates this time:  
120 · RL  
t =  
· COUT  
120 + RL  
(1)  
Do not rely on the active discharge circuit for discharging a large amount of output capacitance after the input  
supply has collapsed because reverse current can flow from the output to the input. This reverse current flow  
can cause damage to the device. Limit reverse current to no more than 5% of the device-rated current.  
7.3.3 Enable Pin  
The enable pin for the device is active high. The output of the device is turned on when the enable pin voltage is  
greater than the EN pin logic high voltage, and the output of the device is turned off when the enable pin voltage  
is less than the EN pin logic low voltage. A voltage less than the EN pin logic low voltage on the enable pin  
disables all internal circuits.  
7.3.4 Sequencing Requirement  
The IN, BIAS, and EN pin voltages can be sequenced in any order without causing damage to the device. The  
start up is always monotonic regardless of the sequencing order or the ramp rates of the IN, BIAS, and EN pins.  
For optimum device performance, VBIAS should be present before enabling the device because the device  
internal circuitry is powered by VBIAS. For part numbers with an A following the voltage digits (example:  
TPS7A11xxPA), the shutdown current is independent of sequencing. For part numbers without an A following the  
voltage digits (example: TPS7A11xxP), the shutdown current into the BIAS input may increase by approximately  
2 µA if the BIAS supply was present before the LDO was enabled and then disabled. This behavior can be  
avoided with part numbers without an A by applying a logic high enable signal before applying the BIAS supply.  
See the Recommended Operating Conditions table for proper voltage ranges of the IN, BIAS, and EN pins.  
7.3.5 Internal Foldback Current Limit  
The internal foldback current limit circuit is used to protect the LDO against high-load current faults or shorting  
events. The foldback mechanism lowers the current limit as the output voltage decreases and limits power  
dissipation during short-circuit events, while still allowing for the device to operate at the rated output current;  
see Figure 6-12.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS7A11  
 
 
 
TPS7A11  
www.ti.com  
SBVS316B – SEPTEMBER 2018 – REVISED DECEMBER 2020  
For example, when VOUT is 90% of VOUT(nom), the current limit is ICL (typical); however, if VOUT is forced to 0 V,  
the current limit is ISC (typical). In many LDOs, the foldback current limit can prevent start up into a constant-  
current load or a negatively-biased output. A brick-wall current limit is when there is an abrupt current stop after  
the current limit is reached. The foldback mechanism for this device goes into a brick-wall current limit when  
VOUT is 90% of VOUT(nom), thus limiting current to ICL (typical). When VOUT is approximately 0 V, current is limited  
to ISC (typical) in order to provide normal start up into a variety of loads. Thermal shutdown can be activated  
during a current-limit event because of the high power dissipation typically found in these conditions. To provide  
proper operation of the current limit, minimize the inductances to the input and load. Continuous operation in  
current limit is not recommended.  
7.3.6 Thermal Shutdown  
The device contains a thermal shutdown protection circuit to disable the device when the thermal junction  
temperature (TJ ) of the main pass-FET rises to the thermal shutdown temperature (TSD) for shutdown listed in  
the Electrical Characteristics table. Thermal shutdown hysteresis ensures that the LDO resets again (turns on)  
when the temperature falls to TSD for reset.  
The thermal time constant of the semiconductor die is fairly short, and thus the device may cycle on and off  
when thermal shutdown is reached until the power dissipation is reduced.  
For reliable operation, limit the junction temperature to a maximum of 125°C. Operation above 125°C causes the  
device to exceed the operational specifications. Although the internal protection circuitry of the device is  
designed to protect against thermal overload conditions, this circuitry is not intended to replace proper heat  
sinking. Continuously running the device into thermal shutdown or above a junction temperature of 125°C  
reduces long-term reliability.  
A fast start up when TJ > TSD for reset (typical, outside of the specified operation range) causes the device  
thermal shutdown to assert at TSD for reset, and prevents the device from turning on until the junction  
temperature is reduced below TSD for reset.  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS7A11  
TPS7A11  
www.ti.com  
SBVS316B – SEPTEMBER 2018 – REVISED DECEMBER 2020  
7.4 Device Functional Modes  
The device has the following modes of operation:  
Normal operation: The device regulates to the nominal output voltage  
Dropout operation: The pass element operates as a resistor and the output voltage is set as VIN – VDO  
Disabled: The output of the device is disabled and the discharge circuit is activated  
Table 7-1 shows the conditions that lead to the different modes of operation.  
Table 7-1. Device Functional Mode Comparison  
PARAMETER  
OPERATING MODE  
VIN  
VBIAS  
VEN  
IOUT  
TJ  
VIN > VOUT (nom) + VDO  
and VIN > VIN(min)  
TJ < TSD for  
shutdown  
Normal mode  
Dropout mode  
VBIAS > VOUT + VDO(BIAS)  
VEN > VHI(EN)  
IOUT < ICL  
VIN(min) < VIN < VOUT  
(nom) + VDO(IN)  
TJ < TSD for  
shutdown  
VBIAS < VOUT + VDO(BIAS)  
VEN > VHI(EN)  
IOUT < ICL  
Disabled mode  
(any true condition  
disables the device)  
TJ > TSD for  
shutdown  
VIN < VUVLO(IN)  
VBIAS < VBIAS(UVLO)  
VEN < VLO(EN)  
7.4.1 Normal Mode  
The device regulates the output to the nominal output voltage when all normal mode conditions in Table 7-1 are  
met.  
7.4.2 Dropout Mode  
The device is not in regulation, and the output voltage tracks the input voltage minus the voltage drop across the  
pass element of the device. In this mode, the PSRR, noise, and transient performance of the device are  
significantly degraded.  
7.4.3 Disable Mode  
In this mode the pass element is turned off, the internal circuits are shut down, and the output voltage is actively  
discharged to ground by an internal resistor.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS7A11  
 
 
TPS7A11  
www.ti.com  
SBVS316B – SEPTEMBER 2018 – REVISED DECEMBER 2020  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
Successfully implementing an LDO in an application depends on the application requirements. This section  
discusses key device features and how to best implement them to achieve a reliable design.  
8.1.1 Recommended Capacitor Types  
The device is designed to be stable using low equivalent series resistance (ESR) ceramic capacitors at the input,  
output, and bias pins. Multilayer ceramic capacitors are the industry standard for these types of applications, but  
must be used with good judgment. Ceramic capacitors that use X7R-, X5R-, and COG-rated dielectric materials  
provide relatively good capacitive stability across temperature. Avoid Y5V-rated capacitors because of large  
variations in capacitance. Regardless of the ceramic capacitor type selected, ceramic capacitance varies with  
operating voltage and temperature. As a rule of thumb, assume that effective capacitance decreases by as much  
as 50%. The input, output, and bias capacitors recommended in the Recommended Operating Conditions table  
account for an effective capacitance of approximately 50% of the nominal value.  
8.1.2 Input and Output Capacitor Requirements  
A minimum input ceramic capacitor is required for stability. A minimum output ceramic capacitor is also required  
for stability, refer to the Recommended Operating Conditions table for the minimum capacitors values.  
The input capacitor counteracts reactive input sources and improves transient response, input ripple, and PSRR.  
A higher-value input capacitor may be necessary if large, fast rise-time load or line transients are anticipated, or  
if the device is located several inches from the input power source. Dynamic performance of the device is  
improved with the use of an output capacitor larger than the minimum value specified in the Recommended  
Operating Conditions table.  
Although a bias capacitor is not required, connect a 0.1-µF ceramic capacitor from BIAS to GND for best analog  
design practice. This capacitor counteracts reactive bias sources if the source impedance is not sufficiently low.  
Place the input, output, and bias capacitors as close as possible to the device to minimize trace parasitics.  
8.1.3 Load Transient Response  
The load-step transient response is the output voltage response by the LDO to a step in load current while  
output voltage regulation is maintained. See Figure 6-20 to Figure 6-23 for typical load transient response. There  
are two key transitions during a load transient response: the transition from a light to a heavy load, and the  
transition from a heavy to a light load. The regions in Figure 8-1 are broken down as described in this section.  
Regions A, E, and H are where the output voltage is in steady-state operation.  
tAt  
tCt  
tDt  
tEt  
tGt  
tHt  
B
F
Figure 8-1. Load Transient Waveform  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS7A11  
 
 
 
 
TPS7A11  
www.ti.com  
SBVS316B – SEPTEMBER 2018 – REVISED DECEMBER 2020  
During transitions from a light load to a heavy load, the:  
Initial voltage dip is a result of the depletion of the output capacitor charge and parasitic impedance to the  
output capacitor (region B)  
Recovery from the dip results from the LDO increasing the sourcing current, and leads to output voltage  
regulation (region C)  
During transitions from a heavy load to a light load, the:  
Initial voltage rise results from the LDO sourcing a large current, and leads to an increase in the output  
capacitor charge (region F)  
Recovery from the rise results from the LDO decreasing its sourcing current in combination with the load  
discharging the output capacitor (region G)  
A larger output capacitance reduces the peaks during a load transient but slows down the response time of the  
device. A larger dc load also reduces the peaks because the amplitude of the transition is lowered and a higher  
current discharge path is provided for the output capacitor.  
8.1.4 Dropout Voltage  
Generally, the dropout voltage often refers to the minimum voltage difference between the input and output  
voltage (VDO = VIN – VOUT) that is required for regulation. When VIN – VOUT drops below the required VDO for the  
given load current, the device functions as a resistive switch and does not regulate output voltage. Dropout  
voltage is linearly proportional to the output current because the device is operating as a resistive switch, see  
Figure 6-4 and Figure 6-5.  
Dropout voltage is also affected by the drive strength for the gate of the pass element, which is nonlinear with  
respect to VBIAS on this device because of the inherited nonlinearity of the pass element gate capacitance, see  
Figure 6-7.  
8.1.5 Behavior During Transition From Dropout Into Regulation  
Some applications may have transients that place this device into dropout, especially when this device can be  
powered from a battery with relatively high ESR. The load transient saturates the output stage of the error  
amplifier when the pass element is driven fully on, making the pass element function like a resistor from VIN to  
VOUT. The error amplifier response time to this load transient is limited because the error amplifier must first  
recover from saturation and then places the pass element back into active mode. During this time, VOUT  
overshoots because the pass element is functioning as a resistor from VIN to VOUT  
.
When VIN ramps up slowly for start-up, the slow ramp-up voltage may place the device in dropout. As with many  
other LDOs, the output can overshoot on recovery from this condition. However, this condition is easily avoided  
through the use of the enable signal.  
If operating under these conditions, apply a higher dc load or increase the output capacitance to reduce the  
overshoot. These solutions provide a path to dissipate the excess charge.  
8.1.6 Undervoltage Lockout Circuit Operation  
The VIN UVLO circuit makes sure that the device remains disabled before the input supply reaches the minimum  
operational voltage range. The VIN UVLO circuit also makes sure that the device shuts down when the input  
supply collapses. Similarly, the VBIAS UVLO circuit makes sure that the device stays disabled before the bias  
supply reaches the minimum operational voltage range. The VBIAS UVLO circuit also makes sure that the device  
shuts down when the bias supply collapses.  
Figure 8-2 depicts the UVLO circuit response to various input or bias voltage events. The diagram can be  
separated into the following parts:  
Region A: The device does not start until the input or bias voltage reaches the UVLO rising threshold  
Region B: Normal operation, regulating device  
Region C: Brownout event above the UVLO falling threshold (UVLO rising threshold – UVLO hystersis). The  
output may fall out of regulation but the device is still enabled.  
Region D: Normal operation, regulating device  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS7A11  
 
TPS7A11  
www.ti.com  
SBVS316B – SEPTEMBER 2018 – REVISED DECEMBER 2020  
Region E: Brownout event below the UVLO falling threshold. The device is disabled in most cases and the  
output falls as a result of the load and active discharge circuit. The device is re-enabled when the UVLO  
rising threshold is reached and a normal start-up follows.  
Region F: Normal operation followed by the input or bias falling to the UVLO falling threshold  
Region G: The device is disabled when the input or bias voltages fall below the UVLO falling threshold to 0 V.  
The output falls as a result of the load and active discharge circuit.  
UVLO Rising Threshold  
UVLO Hysteresis  
VIN / VBIAS  
C
VOUT  
tAt  
tBt  
tDt  
tEt  
tFt  
tGt  
Figure 8-2. Typical VIN or VBIAS UVLO Circuit Operation  
8.1.7 Power Dissipation (PD)  
Circuit reliability demands that proper consideration be given to device power dissipation, location of the circuit  
on the printed circuit board (PCB), and correct sizing of the thermal plane. The PCB area around the regulator  
must be as free as possible of other heat-generating devices that cause added thermal stresses.  
Equation 2 calculates the maximum allowable power dissipation for the device in a given package:  
PD-MAX = [(TJ – TA) / RθJA  
]
(2)  
Equation 3 represents the actual power being dissipated in the device:  
PD = (IGND + IOUT) × (VIN – VOUT  
)
(3)  
Power dissipation can be minimized, and thus greater efficiency achieved, by proper selection of the system  
voltage rails. Proper selection allows the minimum input-to-output voltage differential to be obtained. The low  
dropout of the TPS7A11 allows for maximum efficiency across a wide range of output voltages.  
The main heat conduction path for the device depends on the ambient temperature and the thermal resistance  
across the various interfaces between the die junction and ambient air.  
The maximum power dissipation determines the maximum allowable junction temperature (TJ) for the device.  
According to Equation 4, maximum power dissipation and junction temperature are most often related by the  
junction-to-ambient thermal resistance (RθJA) of the combined PCB and device package and the temperature of  
the ambient air (TA). The equation is rearranged in Equation 5 for output current.  
TJ = TA + (RθJA × PD)  
(4)  
(5)  
IOUT = (TJ – TA) / [RθJA × (VIN – VOUT)]  
Unfortunately, this thermal resistance (RθJA) is highly dependent on the heat-spreading capability built into the  
particular PCB design, and therefore varies according to the total copper area, copper weight, and location of the  
planes. The RθJA recorded in the Electrical Characteristics table is determined by the JEDEC standard, PCB,  
and copper-spreading area, and is only used as a relative measure of package thermal performance. For a well-  
designed thermal layout, RθJA is actually the sum of the DRV package junction-to-case (bottom) thermal  
resistance (RθJC(bot)) plus the thermal resistance contribution by the PCB copper.  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS7A11  
 
 
 
 
 
TPS7A11  
www.ti.com  
SBVS316B – SEPTEMBER 2018 – REVISED DECEMBER 2020  
8.1.8 Estimating Junction Temperature  
The JEDEC standard now recommends the use of psi (Ψ) thermal metrics to estimate the junction temperatures  
of the LDO when in-circuit on a typical PCB board application. These metrics are not strictly speaking thermal  
resistances, but rather offer practical and relative means of estimating junction temperatures. These psi metrics  
are determined to be significantly independent of the copper-spreading area. The key thermal metrics (ΨJT and  
ΨJB) are used in accordance with Equation 6 and are given in the Electrical Characteristics table.  
ΨJT : TJ = TT + ΨJT × PD and ΨJB : TJ = TB + ΨJB × PD  
(6)  
where:  
PD is the power dissipated as explained in Equation 3  
TT is the temperature at the center-top of the device package  
TB is the PCB surface temperature measured 1 mm from the device package and centered on the package  
edge  
8.1.9 Recommended Area for Continuous Operation  
The operational area of an LDO is limited by the dropout voltage, output current, junction temperature, and input  
voltage. The recommended area for continuous operation for a linear regulator is shown in Figure 8-3 and can  
be separated into the following regions:  
Dropout voltage limits the minimum differential voltage between the input and the output (VIN – VOUT) at a  
given output current level; see the Dropout Voltage section for more details.  
The rated output current limits the maximum recommended output current level. Exceeding this rating causes  
the device to fall out of specification.  
The rated junction temperature limits the maximum junction temperature of the device. Exceeding this rating  
causes the device to fall out of specification and reduces long-term reliability.  
Equation 5 provides the shape of the slope. The slope is nonlinear because the maximum rated junction  
temperature of the LDO is controlled by the power dissipation across the LDO, thus when VIN – VOUT  
increases the output current must decrease.  
The rated input voltage range governs both the minimum and maximum of VIN – VOUT  
.
Output Current Limited  
by Dropout  
Rated Output  
Current  
Output Current Limited  
by Thermals  
Limited by  
Minimum VIN  
Limited by  
Maximum VIN  
VIN œ VOUT (V)  
Figure 8-3. Continuous Operation Diagram With Description of Regions  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS7A11  
 
 
TPS7A11  
www.ti.com  
SBVS316B – SEPTEMBER 2018 – REVISED DECEMBER 2020  
8.2 Typical Application  
2.4 V ~ 5.5 V  
CBIAS  
1.2 V  
CIN  
1.0 V  
COUT  
BIAS  
VOUT  
IN  
OUT  
IN  
OUT  
Low Iq  
DC/DC Converter  
GND  
Rechargeable  
Battery  
TPS7A11  
EN  
GND  
Figure 8-4. High Efficiency Supply From a Rechargeable Battery  
8.2.1 Design Requirements  
Table 8-1 lists the parameters for this design example.  
Table 8-1. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
VIN  
1.2 V  
2.4 V (min)  
VBIAS  
VOUT  
IOUT  
1.0 V  
150 mA (typical), 500 mA (peak)  
8.2.2 Detailed Design Procedures  
This design example is powered by a rechargeable battery that can be a building block in many portable  
applications. Noise-sensitive portable electronics require an efficient small-size solution for their power supply.  
Traditional LDOs are known for their low efficiency in contrast to the low-input, low-output voltage (LILO) LDOs  
such as the TPS7A11. The use of a bias rail in the TPS7A11 allows the device to operate at a lower input  
voltage, thus reducing the power dissipation across the die and maximizing device efficiency. Equation 7  
calculates the efficiency for this design.  
Efficiency = η = POUT/PIN ×100 % = (VOUT × IOUT) /(VIN × IIN + VBIAS × IBIAS) × 100 %  
(7)  
Equation 7 reduces to Equation 8 because the design example load current is much greater than the quiescent  
current of the bias rail.  
Efficiency = η = (VOUT × IOUT) / (VIN × IIN) × 100%  
(8)  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS7A11  
 
 
 
 
TPS7A11  
www.ti.com  
SBVS316B – SEPTEMBER 2018 – REVISED DECEMBER 2020  
8.2.3 Application Curve  
Figure 8-5 shows a plot of the calculated efficiency.  
100  
80  
60  
40  
20  
0
0.001  
0.01  
0.1  
1
Output Current (mA)  
10  
100  
1000  
VIN = VEN = 1.2 V, CIN = 2.2 µF, VOUT = 1.0 V, COUT = 2.2 µF, VBIAS = 2.4 V, CBIAS = 0.1 µF  
Figure 8-5. TPS7A11 Output Efficiency at 1.2 VIN and 1.0 VOUT  
9 Power Supply Recommendations  
This device is designed to operate from an input supply voltage range of 0.75 V to 3.3 V and a bias supply  
voltage range of 1.7 V to 5.5 V. The input and bias supplies must be well regulated and free of spurious noise. To  
make sure that the output voltage is well regulated and dynamic performance is optimum, the input supply must  
be at least VOUT(nom) + 0.5 V and VBIAS = VOUT(nom) + VDO(BIAS)  
.
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS7A11  
 
 
TPS7A11  
www.ti.com  
SBVS316B – SEPTEMBER 2018 – REVISED DECEMBER 2020  
10 Layout  
10.1 Layout Guidelines  
For correct printed circuit board (PCB) layout, follow these guidelines:  
Place input, output, and bias capacitors as close to the device as possible  
Use copper planes for device connections to optimize thermal performance  
Place thermal vias around the device to distribute heat  
10.2 Layout Examples  
OUT  
IN  
CIN  
COUT  
A1  
A3  
GND  
B2  
C3  
C1  
CBIAS  
BIAS  
EN  
Figure 10-1. Recommended Layout for YKA Package  
Ground Plane  
To Enable  
Signal  
To Bias Supply  
4
5
BIAS  
GND  
EN  
NC  
3
2
1
CBIAS  
COUT  
CIN  
6
IN  
OUT  
To Load  
To Input Supply  
Ground Plane  
Figure 10-2. Recommended Layout for DRV Package  
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS7A11  
 
 
 
TPS7A11  
www.ti.com  
SBVS316B – SEPTEMBER 2018 – REVISED DECEMBER 2020  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
11.1.1.1 Evaluation Module  
An evaluation module (EVM) is available to assist in the initial circuit performance evaluation using the  
TPS7A11. The TPS720xxDRVEVM evaluation module (and related user guide) can be requested at the Texas  
Instruments website through the product folders or purchased directly from the TI eStore.  
11.1.2 Spice Model  
Spice models for this device are available through the for the TPS7A11 product folder under the Tool and  
Software tab.  
11.1.3 Device Nomenclature  
Table 11-1. Device Nomenclature (1) (2)  
PRODUCT  
VOUT  
xx(x) is the nominal output voltage. For output voltages with a resolution of 50 mV, two digits are used in  
the ordering number; otherwise, three digits are used (for example, 28 = 2.8 V; 125 = 1.25 V).  
(P), when present, indicates the active discharge option.  
(A), when present, indicates the BIAS shutdown current is independent of sequencing. See the  
Sequencing Requirement section.  
TPS7A11xx(x)(P)(A)yyyz  
yyy is the package designator.  
z is the package quantity. R is for reel (3000 pieces), T is for tape (250 pieces).  
() indicates optional placeholders.  
(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or visit the  
device product folder on www.ti.com.  
(2) Output voltages from 0.5 V to 3.0 V in 50-mV increments are available. Contact the factory for details and availability.  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, TPS720xxDRVEVM Evaluation Module user's guide  
Texas Instruments, Using New Thermal Metrics application report  
Texas Instruments, AN-1112 DSBGA Wafer Level Chip Scale Package application report  
Texas Instruments, TIDA-01566 Light Load Efficient, Low Noise Power Supply Reference Design for  
Wearables and IoT design guide  
11.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
11.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS7A11  
 
 
 
 
 
 
 
 
 
TPS7A11  
www.ti.com  
SBVS316B – SEPTEMBER 2018 – REVISED DECEMBER 2020  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS7A11  
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7A1105PYKAR  
TPS7A1106PDRVR  
TPS7A1106PDRVT  
TPS7A1106PYKAR  
TPS7A11075PYKAR  
TPS7A1108PDRVR  
TPS7A1108PDRVT  
TPS7A1109PYKAR  
TPS7A11105PDRVR  
TPS7A11105PDRVT  
TPS7A11105PYKAR  
TPS7A1110PDRVR  
TPS7A1110PDRVT  
TPS7A1110PYKAR  
TPS7A1111PDRVR  
TPS7A1111PDRVT  
TPS7A1111PYKAR  
TPS7A1112PDRVR  
TPS7A1112PDRVT  
TPS7A1112PYKAR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DSBGA  
WSON  
WSON  
DSBGA  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
YKA  
DRV  
DRV  
YKA  
YKA  
DRV  
DRV  
YKA  
DRV  
DRV  
YKA  
DRV  
DRV  
YKA  
DRV  
DRV  
YKA  
DRV  
DRV  
YKA  
5
6
6
5
5
6
6
5
6
6
5
6
6
5
6
6
5
6
6
5
12000 RoHS & Green  
3000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
G
NIPDAU  
NIPDAU  
SNAGCU  
SNAGCU  
NIPDAU  
NIPDAU  
SNAGCU  
NIPDAU  
NIPDAU  
SNAGCU  
NIPDAU  
NIPDAU  
SNAGCU  
NIPDAU  
NIPDAU  
SNAGCU  
NIPDAU  
NIPDAU  
SNAGCU  
1R6H  
1R6H  
H
250  
RoHS & Green  
12000 RoHS & Green  
12000 RoHS & Green  
3000 RoHS & Green  
I
1R7H  
1R7H  
J
250  
RoHS & Green  
12000 RoHS & Green  
3000 RoHS & Green  
1R9H  
1R9H  
K
250  
RoHS & Green  
12000 RoHS & Green  
3000 RoHS & Green  
1R8H  
1R8H  
L
250  
RoHS & Green  
12000 RoHS & Green  
3000 RoHS & Green  
1RAH  
1RAH  
3
250  
RoHS & Green  
12000 RoHS & Green  
3000 RoHS & Green  
1RBH  
1RBH  
U
250  
RoHS & Green  
12000 RoHS & Green  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7A1115PDRVR  
TPS7A1115PDRVT  
TPS7A1118PDRVR  
TPS7A1118PDRVT  
TPS7A1118PYKAR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
WSON  
DSBGA  
DRV  
DRV  
DRV  
DRV  
YKA  
6
6
6
6
5
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1RCH  
1RCH  
1RDH  
1RDH  
M
NIPDAU  
NIPDAU  
NIPDAU  
SNAGCU  
12000 RoHS & Green  
TPS7A1119PYKAR  
TPS7A1125PDRVR  
PREVIEW  
ACTIVE  
DSBGA  
WSON  
YKA  
DRV  
5
6
12000 RoHS & Green  
3000 RoHS & Green  
SNAGCU  
NIPDAU  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
D
1REH  
TPS7A1125PDRVT  
TPS7A1128PDRVR  
TPS7A1128PDRVT  
TPS7A1128PYKAR  
TPS7A1130PDRVR  
TPS7A1130PDRVT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DRV  
DRV  
DRV  
YKA  
DRV  
DRV  
6
6
6
5
6
6
250  
3000 RoHS & Green  
250 RoHS & Green  
RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
SNAGCU  
NIPDAU  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1REH  
1RFH  
1RFH  
N
12000 RoHS & Green  
3000 RoHS & Green  
1RGH  
1RGH  
250  
RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Nov-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS7A1105PYKAR  
TPS7A1106PDRVR  
TPS7A1106PDRVT  
TPS7A1106PYKAR  
TPS7A11075PYKAR  
TPS7A1108PDRVR  
TPS7A1108PDRVT  
TPS7A1109PYKAR  
TPS7A11105PDRVR  
TPS7A11105PDRVT  
TPS7A11105PYKAR  
TPS7A1110PDRVR  
TPS7A1110PDRVT  
TPS7A1110PYKAR  
TPS7A1111PDRVR  
TPS7A1111PDRVT  
TPS7A1111PYKAR  
TPS7A1112PDRVR  
DSBGA  
WSON  
WSON  
DSBGA  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
YKA  
DRV  
DRV  
YKA  
YKA  
DRV  
DRV  
YKA  
DRV  
DRV  
YKA  
DRV  
DRV  
YKA  
DRV  
DRV  
YKA  
DRV  
5
6
6
5
5
6
6
5
6
6
5
6
6
5
6
6
5
6
12000  
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
0.9  
2.3  
2.3  
0.9  
0.9  
2.3  
2.3  
0.9  
2.3  
2.3  
0.9  
2.3  
2.3  
0.9  
2.3  
2.3  
0.9  
2.3  
1.25  
2.3  
0.48  
1.15  
1.15  
0.48  
0.48  
1.15  
1.15  
0.48  
1.15  
1.15  
0.48  
1.15  
1.15  
0.48  
1.15  
1.15  
0.48  
1.15  
2.0  
4.0  
4.0  
2.0  
2.0  
4.0  
4.0  
2.0  
4.0  
4.0  
2.0  
4.0  
4.0  
2.0  
4.0  
4.0  
2.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q2  
Q2  
Q1  
Q1  
Q2  
Q2  
Q1  
Q2  
Q2  
Q1  
Q2  
Q2  
Q1  
Q2  
Q2  
Q1  
Q2  
2.3  
12000  
12000  
3000  
250  
1.25  
1.25  
2.3  
2.3  
12000  
3000  
250  
1.25  
2.3  
2.3  
12000  
3000  
250  
1.25  
2.3  
2.3  
12000  
3000  
250  
1.25  
2.3  
2.3  
12000  
3000  
1.25  
2.3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Nov-2020  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS7A1112PDRVT  
TPS7A1112PYKAR  
TPS7A1115PDRVR  
TPS7A1115PDRVT  
TPS7A1118PDRVR  
TPS7A1118PDRVT  
TPS7A1118PYKAR  
TPS7A1125PDRVR  
TPS7A1125PDRVT  
TPS7A1128PDRVR  
TPS7A1128PDRVT  
TPS7A1128PYKAR  
TPS7A1130PDRVR  
TPS7A1130PDRVT  
WSON  
DSBGA  
WSON  
WSON  
WSON  
WSON  
DSBGA  
WSON  
WSON  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DRV  
YKA  
DRV  
DRV  
DRV  
DRV  
YKA  
DRV  
DRV  
DRV  
DRV  
YKA  
DRV  
DRV  
6
5
6
6
6
6
5
6
6
6
6
5
6
6
250  
12000  
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
2.3  
0.9  
2.3  
2.3  
2.3  
2.3  
0.9  
2.3  
2.3  
2.3  
2.3  
0.9  
2.3  
2.3  
2.3  
1.25  
2.3  
2.3  
2.3  
2.3  
1.25  
2.3  
2.3  
2.3  
2.3  
1.25  
2.3  
2.3  
1.15  
0.48  
1.15  
1.15  
1.15  
1.15  
0.48  
1.15  
1.15  
1.15  
1.15  
0.48  
1.15  
1.15  
4.0  
2.0  
4.0  
4.0  
4.0  
4.0  
2.0  
4.0  
4.0  
4.0  
4.0  
2.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q1  
Q2  
Q2  
Q2  
Q2  
Q1  
Q2  
Q2  
Q2  
Q2  
Q1  
Q2  
Q2  
3000  
250  
12000  
3000  
250  
3000  
250  
12000  
3000  
250  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS7A1105PYKAR  
TPS7A1106PDRVR  
TPS7A1106PDRVT  
DSBGA  
WSON  
WSON  
YKA  
DRV  
DRV  
5
6
6
12000  
3000  
250  
182.0  
210.0  
210.0  
182.0  
185.0  
185.0  
20.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Nov-2020  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS7A1106PYKAR  
TPS7A11075PYKAR  
TPS7A1108PDRVR  
TPS7A1108PDRVT  
TPS7A1109PYKAR  
TPS7A11105PDRVR  
TPS7A11105PDRVT  
TPS7A11105PYKAR  
TPS7A1110PDRVR  
TPS7A1110PDRVT  
TPS7A1110PYKAR  
TPS7A1111PDRVR  
TPS7A1111PDRVT  
TPS7A1111PYKAR  
TPS7A1112PDRVR  
TPS7A1112PDRVT  
TPS7A1112PYKAR  
TPS7A1115PDRVR  
TPS7A1115PDRVT  
TPS7A1118PDRVR  
TPS7A1118PDRVT  
TPS7A1118PYKAR  
TPS7A1125PDRVR  
TPS7A1125PDRVT  
TPS7A1128PDRVR  
TPS7A1128PDRVT  
TPS7A1128PYKAR  
TPS7A1130PDRVR  
TPS7A1130PDRVT  
DSBGA  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
DSBGA  
WSON  
WSON  
WSON  
WSON  
DSBGA  
WSON  
WSON  
WSON  
WSON  
DSBGA  
WSON  
WSON  
YKA  
YKA  
DRV  
DRV  
YKA  
DRV  
DRV  
YKA  
DRV  
DRV  
YKA  
DRV  
DRV  
YKA  
DRV  
DRV  
YKA  
DRV  
DRV  
DRV  
DRV  
YKA  
DRV  
DRV  
DRV  
DRV  
YKA  
DRV  
DRV  
5
5
6
6
5
6
6
5
6
6
5
6
6
5
6
6
5
6
6
6
6
5
6
6
6
6
5
6
6
12000  
12000  
3000  
250  
182.0  
182.0  
210.0  
210.0  
182.0  
210.0  
210.0  
182.0  
210.0  
210.0  
182.0  
210.0  
210.0  
182.0  
210.0  
210.0  
182.0  
210.0  
210.0  
210.0  
210.0  
182.0  
210.0  
210.0  
210.0  
210.0  
182.0  
210.0  
210.0  
182.0  
182.0  
185.0  
185.0  
182.0  
185.0  
185.0  
182.0  
185.0  
185.0  
182.0  
185.0  
185.0  
182.0  
185.0  
185.0  
182.0  
185.0  
185.0  
185.0  
185.0  
182.0  
185.0  
185.0  
185.0  
185.0  
182.0  
185.0  
185.0  
20.0  
20.0  
35.0  
35.0  
20.0  
35.0  
35.0  
20.0  
35.0  
35.0  
20.0  
35.0  
35.0  
20.0  
35.0  
35.0  
20.0  
35.0  
35.0  
35.0  
35.0  
20.0  
35.0  
35.0  
35.0  
35.0  
20.0  
35.0  
35.0  
12000  
3000  
250  
12000  
3000  
250  
12000  
3000  
250  
12000  
3000  
250  
12000  
3000  
250  
3000  
250  
12000  
3000  
250  
3000  
250  
12000  
3000  
250  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
DRV 6  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4206925/F  
PACKAGE OUTLINE  
DRV0006A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
2.1  
1.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
(0.2) TYP  
0.05  
0.00  
1
0.1  
EXPOSED  
THERMAL PAD  
3
4
6
2X  
7
1.3  
1.6 0.1  
1
4X 0.65  
0.35  
0.25  
6X  
PIN 1 ID  
(OPTIONAL)  
0.3  
0.2  
6X  
0.1  
C A  
C
B
0.05  
4222173/B 04/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRV0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
6X (0.45)  
6X (0.3)  
(1)  
1
7
6
SYMM  
(1.6)  
(1.1)  
4X (0.65)  
4
3
SYMM  
(1.95)  
(R0.05) TYP  
(
0.2) VIA  
TYP  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222173/B 04/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRV0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
7
6X (0.45)  
METAL  
1
6
6X (0.3)  
(0.45)  
SYMM  
4X (0.65)  
(0.7)  
4
3
(R0.05) TYP  
(1)  
(1.95)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD #7  
88% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:30X  
4222173/B 04/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
YKA0005  
DSBGA - 0.4 mm max height  
SCALE 13.000  
DIE SIZE BALL GRID ARRAY  
A
B
E
BALL A1  
INDEX AREA  
D
0.4 MAX  
C
SEATING PLANE  
0.05 C  
0.18  
0.13  
BALL  
TYP  
0.35  
C
B
A
0.7  
SYMM  
D: Max = 1.12 mm, Min = 1.06 mm  
E: Max = 0.77 mm, Min = 0.71 mm  
0.35  
0.24  
5X  
1
2
3
0.19  
0.015  
C A B  
SYMM  
4223737/B 05/2017  
NanoFree Is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. NanoFreeTM package configuration.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YKA0005  
DSBGA - 0.4 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.35)  
2
5X ( 0.2)  
1
3
A
B
(0.35)  
SYMM  
C
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:50X  
(
0.2)  
0.0325 MAX  
0.0325 MIN  
METAL  
UNDER  
METAL  
SOLDER MASK  
EXSPOSED  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
(
0.2)  
METAL  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4223737/B 05/2017  
NOTES: (continued)  
4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YKA0005  
DSBGA - 0.4 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.35)  
2
5X ( 0.21)  
(R0.05) TYP  
1
3
A
B
(0.35)  
SYMM  
METAL  
TYP  
C
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.075 mm - 0.1 mm THICK STENCIL  
SCALE:50X  
4223737/B 05/2017  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

TPS7A11105PDRVT

具有使能功能的 500mA、低输入电压 (0.75V)、超低 IQ、低压降稳压器 | DRV | 6 | -40 to 125
TI

TPS7A11105PYKAR

具有使能功能的 500mA、低输入电压 (0.75V)、超低 IQ、低压降稳压器 | YKA | 5 | -40 to 125
TI

TPS7A1110PDRVR

具有使能功能的 500mA、低输入电压 (0.75V)、超低 IQ、低压降稳压器 | DRV | 6 | -40 to 125
TI

TPS7A1110PDRVT

具有使能功能的 500mA、低输入电压 (0.75V)、超低 IQ、低压降稳压器 | DRV | 6 | -40 to 125
TI

TPS7A1110PYKAR

具有使能功能的 500mA、低输入电压 (0.75V)、超低 IQ、低压降稳压器 | YKA | 5 | -40 to 125
TI

TPS7A1111PDRVR

具有使能功能的 500mA、低输入电压 (0.75V)、超低 IQ、低压降稳压器 | DRV | 6 | -40 to 125
TI

TPS7A1111PDRVT

具有使能功能的 500mA、低输入电压 (0.75V)、超低 IQ、低压降稳压器 | DRV | 6 | -40 to 125
TI

TPS7A1111PYKAR

具有使能功能的 500mA、低输入电压 (0.75V)、超低 IQ、低压降稳压器 | YKA | 5 | -40 to 125
TI

TPS7A1112PDRVR

具有使能功能的 500mA、低输入电压 (0.75V)、超低 IQ、低压降稳压器 | DRV | 6 | -40 to 125
TI

TPS7A1112PDRVT

具有使能功能的 500mA、低输入电压 (0.75V)、超低 IQ、低压降稳压器 | DRV | 6 | -40 to 125
TI

TPS7A1112PYKAR

具有使能功能的 500mA、低输入电压 (0.75V)、超低 IQ、低压降稳压器 | YKA | 5 | -40 to 125
TI

TPS7A1115PDRVR

具有使能功能的 500mA、低输入电压 (0.75V)、超低 IQ、低压降稳压器 | DRV | 6 | -40 to 125
TI