TPS7A19 [TI]

具有电源正常指示和使能功能的 450mA、40V、低 IQ、可调节低压降稳压器;
TPS7A19
型号: TPS7A19
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有电源正常指示和使能功能的 450mA、40V、低 IQ、可调节低压降稳压器

稳压器
文件: 总24页 (文件大小:1096K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS7A19  
ZHCSFK0A MAY 2016REVISED SEPTEMBER 2016  
TPS7A19  
是具有电源正常指示功能的 40V450mA、宽 VIN、低 IQ、低压降稳压器  
1 特性  
3 说明  
1
宽输入电压范围:4V 40V  
TPS7A19 是具有高达 40V 宽输入电压 (VIN) 范围的低  
压降稳压器 (LDO),能够提供高达 450mA (IOUT) 的高  
输出电流。此稳压器非常适用于从宽输入电压轨生成低  
压电源。TPS7A19 不但能够提供一个充分稳压的电压  
轨,而且能够通过充当简单的浪涌保护电路承受电压瞬  
变并在其间保持稳压状态。  
可调节输出电压:1.5V 18V  
输出电流:450mA  
低静态电流 (IQ)15µA  
低压降电压:400mA 时为 450mV(最大值)  
具有可编程延迟的电源正常指示功能  
热关断及过流保护功能  
TPS7A19 在轻负载下仅消耗 15µA 的静态电流 (IQ),  
因此可降低常开系统或电池供电的功耗 应用的外部组  
件尺寸。  
与陶瓷输出电容搭配使用时可保持稳定:  
VOUT 2.5V 时,电容为 10µF 500µF  
VOUT < 2.5V 时,电容为 22µF 500µF  
TPS7A19 特性 集成热关断及过流保护。TPS7A19 还  
提供具有可编程延迟的电源正常指示输出 (PG),指示  
输出电压处于稳压状态。此特性对电源轨排序功能极为  
有用。  
工作温度:-40°C +125°C  
封装方式:3mm x 3mm 小外形尺寸无引线 (SON)-  
8
2 应用范围  
LDO 采用小型 3mm × 3mm 耐热增强型 8 引脚  
SON 封装。  
智能电网基础设施和计量  
电动工具  
器件信息(1)  
电机驱动  
器件型号  
TPS7A19  
封装  
SON (8)  
封装尺寸(标称值)  
访问控制系统  
测试和测量  
3.00mm × 3.00mm  
(1) 要了解所有可用封装,请参见数据表末尾的封装选项附录。  
典型应用电路原理图  
静态电流与输入电压间的关系  
VOUT = 1.5V 时  
25  
20  
15  
IO  
4 V to 40 V  
PG  
MSP430  
VIN  
IN  
VOUT  
OUT  
VDD  
EN  
TPS7A19  
FB  
DELAY  
GND  
10  
œ40°C  
5
25°C  
Copyright © 2016, Texas Instruments Incorporated  
125°C  
0
0
10  
20  
30  
40  
Input Voltage (V)  
C003  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBVS256  
 
 
 
 
TPS7A19  
ZHCSFK0A MAY 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 10  
Application and Implementation ........................ 11  
8.1 Application Information............................................ 11  
8.2 Typical Application .................................................. 11  
Power Supply Recommendations...................... 13  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements................................................ 5  
6.7 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 8  
7.1 Overview ................................................................... 8  
7.2 Functional Block Diagram ......................................... 8  
7.3 Feature Description................................................... 8  
8
9
10 Layout................................................................... 13  
10.1 Layout Guidelines ................................................. 13  
10.2 Layout Example .................................................... 13  
11 器件和文档支持 ..................................................... 14  
11.1 器件支持................................................................ 14  
11.2 文档支持 ............................................................... 14  
11.3 接收文档更新通知 ................................................. 14  
11.4 社区资源................................................................ 14  
11.5 ....................................................................... 14  
11.6 静电放电警告......................................................... 15  
11.7 Glossary................................................................ 15  
12 机械、封装和可订购信息....................................... 15  
7
4 修订历史记录  
Changes from Original (May 2016) to Revision A  
Page  
已从产品预览改为量产数据................................................................................................................................................ 1  
2
Copyright © 2016, Texas Instruments Incorporated  
 
TPS7A19  
www.ti.com.cn  
ZHCSFK0A MAY 2016REVISED SEPTEMBER 2016  
5 Pin Configuration and Functions  
DRB Package  
8-Pin SON With Thermal Pad  
Top View  
DELAY  
OUT  
FB  
1
2
3
4
8
7
6
5
PG  
IN  
Thermal  
Pad  
EN  
GND  
GND  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Delay pin. Connect a capacitor to GND to adjust the PG delay time; leave open if the PG function is not  
needed.  
DELAY  
1
I
Enable pin. This pin turns the regulator on or off. If VEN VEN_HI, the regulator is enabled. If VEN  
EN  
6
VEN_LO, the regulator is disabled. If not used, the EN pin can be connected to IN.  
FB  
3
4,5  
7
I
I
Feedback pin. The feedback pin is the input to the control-loop error amplifier.  
GND  
IN  
Ground pin.  
Regulator input supply pin.  
Regulator output pin. When the output voltage is larger than 2.5 V, connect a 10-μF to 500-μF ceramic  
capacitor with an equivalent series resistance (ESR) from 0.001 to 20 Ω to assure stability. When the  
output voltage is from 1.5 V to 2.5 V, the minimum, stable capacitor value should be 22 μF.  
OUT  
PG  
2
8
O
Power good. This open-drain pin must be connected to VOUT through an external resistor. PG is pulled  
low when the output voltage goes below threshold.  
O
Solder to printed-circuit-board (PCB) to enhance thermal performance. Although the thermal pad can be  
left floating, connect the thermal pad to the ground plane for optimal performance.  
Thermal pad  
Copyright © 2016, Texas Instruments Incorporated  
3
TPS7A19  
ZHCSFK0A MAY 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range –40°C to 125°C(unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Input  
IN, EN  
–0.3  
–0.3  
–0.3  
–0.3  
45  
OUT(3)  
DELAY(4)  
FB, PG  
VIN + 0.3  
Voltage(2)  
V
Output  
45  
22  
Internally limited  
150  
Current  
Peak output  
Operating junction, TJ  
Storage, Tstg  
–40  
–65  
Temperature  
°C  
150  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to GND.  
(3) The absolute maximum rating is VIN + 0.3 V or 22 V, whichever is lower.  
(4) The voltage at the DELAY pin must be lower than the VIN voltage.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
40  
UNIT  
VIN  
Input supply voltage  
Output voltage  
4
1.5  
0
V
V
VOUT  
VEN  
TJ  
18  
Enable voltage  
40  
V
Operating junction temperature  
–40  
125  
°C  
6.4 Thermal Information  
TPS7A19  
THERMAL METRIC(1)  
DRB (VSON)  
8 PINS  
48  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
56.3  
22.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.9  
ψJB  
22.5  
RθJC(bot)  
4.6  
(1) For information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.  
4
Copyright © 2016, Texas Instruments Incorporated  
TPS7A19  
www.ti.com.cn  
ZHCSFK0A MAY 2016REVISED SEPTEMBER 2016  
6.5 Electrical Characteristics  
at TJ = –40°C to +125°C, VIN = 14 V , VEN = VIN, IOUT = 200 μA, CIN = 22 μF, and COUT = 47 μF (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY VOLTAGE AND CURRENT  
V
OUT 3.5 V , IOUT = 0 mA to 450 mA  
OUT 3.5 V , IOUT = 0 mA to 450 mA  
4
40  
40  
V
V
VIN  
Input voltage  
V
VOUT + 0.5  
VIN = 4 V to 40 V, VOUT = 1.5 V, VEN = 5 V, IOUT = 0.2 mA  
VIN = 18.5 V to 40 V, VOUT = 18 V, VEN = 5 V, IOUT = 0.2 mA  
VEN = 0 V, IOUT = 0 mA , VIN = 18 V, VOUT = 1.5 V  
Reference voltage for FB pin  
15  
25  
25  
IQ  
Quiescent current  
µA  
40  
ISHDN  
Shutdown current  
Feedback voltage  
Undervoltage lockout  
4
µA  
V
VFB  
1.208  
1.233  
1
1.258  
2.6  
VIN_UVLO  
Ramp VIN down until output is turned off  
V
Undervoltage detection  
hysteresis  
UVLOHys  
VIN rising  
V
ENABLE INPUT (EN)  
VEN_LO  
VEN_HI  
IEN  
Logic input low level  
0
0.4  
1
V
V
Logic input high level  
EN pin current  
1.7  
VEN = 40 V , VIN = 14 V  
µA  
REGULATED OUTPUT  
VIN = VOUT + 1 V to 40 V and VIN 4 V,  
IOUT = 100 µA to 450 mA  
VOUT  
Regulated output(1)  
–2%  
2%  
ΔVO(ΔVI)  
ΔVO(ΔIL)  
Line regulation  
Load regulation  
VIN = VOUT + 1 V to 40 V and VIN 4 V, IOUT = 100 mA  
IOUT = 1 mA to 450 mA, VIN = VOUT + 1 V and VIN 4 V  
VIN – VOUT, IOUT = 400 mA  
10  
10  
mV  
mV  
240  
160  
450  
300  
450  
360  
850  
VDO  
IOUT  
ICL  
Dropout voltage  
Output current  
mV  
mA  
mA  
VIN – VOUT, IOUT = 200 mA  
VOUT in regulation  
0
140  
470  
VOUT short to ground  
Output current-limit  
VOUT = VOUT nominal × 0.9  
f = 100 Hz  
IOUT = 100 mA, COUT = 22 µF  
f = 100 kHz  
60  
40  
PSRR  
Power-supply ripple rejection(2)  
dB  
PG  
VOL  
PG output low voltage  
PG leakage current  
Power good threshold  
Hysteresis  
IOL = 0.5 mA  
0.4  
1
V
IOH  
PG pulled to VOUTwith 10-kΩ resistor  
VOUT power-up  
µA  
VT(PG)  
Vhys  
89.6  
5
91.6  
2
93.6 % of VOUT  
% of VOUT  
VOUT power-down  
PG DELAY  
IDelay  
Delay capacitor charging current  
9.5  
1
14  
µA  
V
Delay pin comparator threshold  
voltage  
VT(PG_DLY)  
TEMPERATURE  
Tsd  
Junction shutdown temperature  
Hysteresis of thermal shutdown  
Temperature increasing  
175  
24  
°C  
°C  
Thys  
(1) Accuracy specification does not apply on any application condition that exceeds the power dissipation limit of the package under test.  
External resistor divider variation is not considered for accuracy measurement.  
(2) Design information; not tested, specified by characterization.  
6.6 Timing Requirements  
MIN  
TYP  
MAX  
UNIT  
TIMING FOR PG  
tPG_DLY Power good delay  
tPG-fixed Power good delay  
C = delay-capacitor value capacitance = 100 nF(1)  
No capacitor on pin  
10.5  
325  
180  
ms  
µs  
µs  
tPG(HL)  
PG falling propagation delay VOUT low to PG low  
(1) Information only; not tested in production. The equation is based on: (C × 1) / (9.5 × 10–6) = tPG_DLY, where C = delay capacitor value  
capacitance; range = 100 pF to 500 nF.  
Copyright © 2016, Texas Instruments Incorporated  
5
TPS7A19  
ZHCSFK0A MAY 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
6.7 Typical Characteristics  
at TJ = –40°C to +125°C, VIN = 14 V , VEN = VIN, IOUT = 200 μA, CIN = 22 μF, and COUT = 47 μF (unless otherwise noted)  
1.60  
1.58  
1.56  
1.54  
1.52  
1.50  
1.48  
1.46  
1.44  
1.42  
1.40  
160  
140  
120  
100  
80  
60  
œ40°C  
25°C  
œ40°C  
25°C  
40  
20  
125°C  
125°C  
0
0
5
10  
15  
20  
25  
30  
35  
40  
0
50  
100 150 200 250 300 350 400 450  
C
Input Voltage (V)  
Output Current (mA)  
02  
0
VOUT = 1.5 V, IOUT = 100 mA  
Figure 1. Line Regulation  
VIN = 14 V, VOUT = 1.5 V  
Figure 2. Ground Current vs Output Current  
25  
20  
15  
10  
5
160  
140  
120  
100  
80  
60  
œ40°C  
25°C  
œ40°C  
25°C  
40  
20  
125°C  
125°C  
0
0
0
10  
20  
30  
40  
0
50  
100 150 200 250 300 350 400 450  
Input Voltage (V)  
C003  
Output Current (mA)  
C004  
VOUT = 1.5 V  
VIN = 24 V, VOUT = 18 V  
Figure 3. Quiescent Current vs Input Voltage  
Figure 4. Ground Current vs Output Current  
400  
350  
300  
250  
200  
150  
100  
50  
35  
30  
25  
20  
15  
10  
5
œ40°C  
œ40°C  
25°C  
25°C  
125°C  
125°C  
0
0
0
50  
100 150 200 250 300 350 400 450  
Output Current (mA)  
15  
20  
25  
30  
35  
40  
45  
Input Voltage (V)  
C005  
VOUT = 18 V  
Figure 5. Quiescent Current vs Input Voltage  
Figure 6. Dropout Voltage vs Output Current  
6
Copyright © 2016, Texas Instruments Incorporated  
TPS7A19  
www.ti.com.cn  
ZHCSFK0A MAY 2016REVISED SEPTEMBER 2016  
Typical Characteristics (continued)  
at TJ = –40°C to +125°C, VIN = 14 V , VEN = VIN, IOUT = 200 μA, CIN = 22 μF, and COUT = 47 μF (unless otherwise noted)  
1.60  
1.58  
1.56  
1.54  
1.52  
1.50  
1.48  
1.46  
1.44  
1.42  
1.40  
120  
100  
80  
60  
40  
20  
0
œ40°C  
25°C  
125°C  
10M  
10 100 1k  
1
10k  
100k  
1M  
0
50  
100 150 200 250 300 350 400 450  
000  
Frequency (Hz)  
Output Current (mA)  
C007  
VIN = 14 V, VOUT = 1.5 V  
VOUT = 5 V, COUT = 47 µF, IOUT = 10 mA  
Figure 7. Load Regulation  
Figure 8. Power-Supply Rejection Ratio vs Frequency  
220  
215  
210  
205  
200  
195  
190  
630  
620  
610  
600  
590  
580  
570  
560  
550  
540  
530  
520  
œ40 œ25 œ10  
5
20 35 50 65 80 95 110 125  
œ40 œ25 œ10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Temperature (°C)  
C013  
C014  
Figure 9. Short to GND Current-Limit vs Temperature  
Figure 10. Current-Limit vs Temperature  
Figure 11. Load Transient  
10-µF Ceramic Output Capacitor  
Copyright © 2016, Texas Instruments Incorporated  
7
TPS7A19  
ZHCSFK0A MAY 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS7A19 is a low-dropout linear regulator (LDO) combined with enable and power good functions. The  
power good pin initializes when the output voltage, VOUT, exceeds VT(PG). The power good delay is a function of  
the value set by an external capacitor on the DELAY pin before releasing the PG pin high.  
7.2 Functional Block Diagram  
IN  
OUT  
UVLO  
Pass  
Device  
Thermal  
Shutdown  
Current  
Limit  
Error  
Amp  
Enable  
FB  
EN  
PG  
Power  
Good  
Control  
DELAY  
Copyright © 2016, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 Enable Pin (EN)  
The enable pin is a high-voltage-tolerant pin. A logic-high input on EN actives the device and turns on the LDO.  
For self-bias applications, connect this input to the IN pin.  
7.3.2 Regulated Output Pin (OUT)  
The OUT pin is the regulated output based on the required voltage. The output is protected by internal current  
limiting. During initial power up, the LDO has a soft start feature incorporated to control the initial current through  
the pass element.  
In the event that the LDO drops out of regulation, the output tracks the input minus a voltage drop based on the  
load current. When the input voltage drops below the UVLO threshold, the LDO shuts down until the input  
voltage exceeds the minimum start-up level.  
7.3.3 Power-Good Pin (PG)  
The power good pin is an output with an external pullup resistor to the regulated supply. The output remains low  
until the regulated VOUT exceeds approximately 91.6% of the set value, and the power good delay has expired.  
The regulated output falling below the 89.6% level asserts this output low after a short deglitch time of  
approximately 180 µs (typical).  
8
Copyright © 2016, Texas Instruments Incorporated  
TPS7A19  
www.ti.com.cn  
ZHCSFK0A MAY 2016REVISED SEPTEMBER 2016  
Feature Description (continued)  
7.3.4 Delay Timer Pin (DELAY)  
An external capacitor on the DELAY pin sets the timer delay before the PG pin is asserted high. The constant  
output current charges an external capacitor until the voltage exceeds a threshold that trips an internal  
comparator. If this pin is open, the default delay time is 325 µs (typical).  
The pulse delay time, tPG_DLY, is defined with the charge time of an external capacitor DELAY, as shown in  
Equation 1.  
«
÷
CDELAY ì 1 V  
9.5 A  
tPG_DLY  
=
+ 325 s  
(1)  
The PG pin initializes when VOUT exceeds 91.6% of the programmed value. The delay is a function of the value  
set by an external capacitor on the DELAY pin before the PG pin is released high.  
VIN  
t < tPG(HL)  
VT(PG)  
VT(PG) œVhys  
VOUT  
VT(PG_DLY)  
VT(PG_DLY)  
VDELAY  
tPG_DLY  
tPG_DLY  
tPG(HL)  
tPG(HL)  
VPG  
Figure 12. Conditions to Activate PG  
7.3.5 Adjustable Output Voltage (ADJ for TPS7A1901)  
An output voltage between 1.5 V and 18 V can be selected by using the external resistor dividers. Use  
Equation 2 to calculate the output voltage, where VFB = 1.233 V. In order to avoid a large leakage current and to  
prevent a divider error, the value of (R1 + R2) must between 10 kΩ and 100 kΩ.  
R1  
R2  
VOUT = VFB ì 1 +  
÷
«
(2)  
7.3.6 Undervoltage Shutdown  
The TPS7A19 family of devices has an internally-fixed, undervoltage-shutdown threshold. Undervoltage  
shutdown activates when the input voltage on VIN drops below VIN_UVLO. This activation makes sure that the  
regulator is not latched in an unknown state when there is a low-input supply voltage. If the input voltage has a  
negative transient that drops below the UVLO threshold and recovers, the regulator shuts down and powers up,  
similar to a typical power-up sequence when the input voltage exceeds the required levels.  
Copyright © 2016, Texas Instruments Incorporated  
9
 
 
TPS7A19  
ZHCSFK0A MAY 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
Feature Description (continued)  
7.3.7 Thermal Shutdown  
The TPS7A19 incorporates a thermal shutdown (TSD) circuit as protection from overheating. For continuous  
standard operation, the junction temperature must not exceed the TSD trip point. If the junction temperature  
exceeds the TSD trip point, the output turns off. When the junction temperature falls below the TSD trip point  
minus the TSD hysteresis value, the output turns on again.  
Thermal protection disables the output when the junction temperature rises to approximately 175°C, and allows  
the device to cool. When the junction temperature cools to approximately 150°C, the output circuitry enables.  
Based on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may  
cycle on and off. This cycling limits the temperature of the regulator, and protects the device from damage as a  
result of overheating.  
Although the internal protection circuitry of the TPS7A19 device is designed to protect against overload  
conditions, the circuitry is not intended to replace proper heat-sink methods. Continuously running the TPS7A19  
device into thermal shutdown degrades device reliability.  
7.4 Device Functional Modes  
7.4.1 Operation With VIN < 4 V  
The devices operate with input voltages above 4 V. The devices do not operate at input voltages below the  
actual UVLO voltage.  
7.4.2 Operation With EN Control  
The enable rising edge threshold voltage is 1.7 V, maximum. When the EN pin is held above 1.7 V, and the input  
voltage is greater than the UVLO rising voltage, the device enables.  
The enable falling edge is 0.4 V, minimum. When the EN pin is held below 0.4 V, the device is disabled. The  
quiescent current is reduced in this state.  
10  
Copyright © 2016, Texas Instruments Incorporated  
TPS7A19  
www.ti.com.cn  
ZHCSFK0A MAY 2016REVISED SEPTEMBER 2016  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
Figure 13 shows a typical application circuit for the TPS7A1901. Based on the end-application, different values of  
external components can be used. Some applications may require a larger output capacitor during fast load  
steps in order to prevent a PG low from occurring. Use a low-ESR ceramic capacitor with a dielectric of type X5R  
or X7R for better load transient response.  
8.2 Typical Application  
VPG  
PG  
VIN  
IN  
VOUT  
OUT  
EN  
TPS7A19  
R1  
R2  
CIN  
FB  
COUT  
DELAY  
GND  
CDELAY  
Copyright © 2016, Texas Instruments Incorporated  
Figure 13. Adjustable Operation  
8.2.1 Design Requirements  
For this design example, use the parameters listed in Table 1.  
Table 1. Design Parameters  
DESIGN PARAMETER  
Input voltage  
EXAMPLE VALUE  
12 V, ±10%  
3.3 V  
Output voltage  
Output current  
50 mA (max)  
1 ms  
PG delay time  
8.2.2 Detailed Design Procedure  
To begin the design process:  
1. First, make sure that the combination of maximum current, maximum ambient temperature, maximum input  
voltage, and minimum output voltage does not exceed the maximum operating condition of TJ = 125°C. The  
Power Dissipation and Thermal Considerations section describes how to calculate the maximum ambient  
temperature and power dissipation.  
2. Next, set the feedback resistors to give the desired output voltage. See Equation 2 for the VOUT relationship  
to R1 and R2. A good nominal value for R2 is 10 kΩ.  
3. Then, calculate the required CDELAY capacitor to achieve the desired PG delay time using Equation 1. For 1  
ms of delay, the nearest standard value capacitor is 10 nF.  
4. Finally, select an output capacitor with a total effective capacitance between 22 µF and 500 µF, a sufficient  
voltage rating, and an ESR below 20 Ω. Higher capacitance gives improved transient response, but results in  
higher inrush current at startup.  
Copyright © 2016, Texas Instruments Incorporated  
11  
 
 
TPS7A19  
ZHCSFK0A MAY 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
8.2.2.1 Power Dissipation and Thermal Considerations  
Device power dissipation is calculated with Equation 3.  
PD = IOUT ì V - VOUT + I ì V  
IN  
(
)
IN  
Q
where  
PD = continuous power dissipation  
IOUT = output current  
VIN = input voltage  
VOUT = output voltage  
(3)  
As IQ « IOUT, the term IQ × VIN in Equation 3 can be ignored.  
For a device under operation at a given ambient air temperature (TA), calculate the junction temperature (TJ) with  
Equation 4.  
T = T + q ´ PD  
(
)
J
A
JA  
where  
θJA = junction-to-ambient air thermal impedance  
(4)  
(5)  
A rise in junction temperature because of power dissipation can be calculated with Equation 5.  
DT = T - T = q ´ PD  
(
)
J
A
JA  
For a given maximum junction temperature (TJM), the maximum ambient air temperature (TAM) at which the  
device can operate is calculated with Equation 6.  
TAM = TJM - (qJA ´ PD )  
(6)  
8.2.3 Application Curves  
VIN (10 V/div)  
VIN (5 V/div)  
VEN (10 V/div)  
VOUT (1 V/div)  
VEN (5 V/div)  
VPG (2 V/div)  
VOUT (1 V/div)  
VPG (2 V/div)  
Time (1ms/div)  
Time (1ms/div)  
VIN = 12 V, VEN step from 0 V to 12 V, CIN = 10 µF,  
VIN = 12 V, VEN step from 12 V to 0 V, CIN = 10 µF,  
COUT = 22 µF, RLOAD = 66 Ω  
COUT = 22 µF, RLOAD = 66 Ω  
Figure 14. Enable Startup  
Figure 15. Enable Shutdown  
12  
Copyright © 2016, Texas Instruments Incorporated  
 
 
 
 
TPS7A19  
www.ti.com.cn  
ZHCSFK0A MAY 2016REVISED SEPTEMBER 2016  
9 Power Supply Recommendations  
The device operates from an input voltage supply range between 4 V and 40 V. This input supply must be well  
regulated. If the input supply is located more than a few inches from the TPS7A19 device, add an electrolytic  
capacitor with a value of 47 µF and a ceramic bypass capacitor at the input.  
10 Layout  
10.1 Layout Guidelines  
To improve ac performance such as PSRR, output noise, and transient response, design the board with  
separate ground planes for VIN and VOUT, with each ground plane connected only at the GND pin of the  
device. In addition, connect the ground connection for the output capacitor directly to the GND pin of the  
device.  
Minimize equivalent series inductance (ESL) and equivalent series resistance (ESR) in order to maximize  
performance and stability. Place every capacitor as close to the device as possible, and on the same side of  
the PCB as the regulator.  
Do not place any of the capacitors on the opposite side of the PCB from where the regulator is installed. The  
use of vias and long traces are strongly discouraged because of the negative impact on system performance.  
Vias and long traces can also cause instability.  
If possible, and to maximize the performance listed in this data sheet, use the same layout pattern used for  
the TPS7A19 evaluation module, TPS7A1901EVM-760 (SBVU031).  
10.2 Layout Example  
Input Ground Plane  
VOUT  
CDELAY  
CIN  
1
2
3
4
8
7
6
5
PG  
IN  
DELAY  
OUT  
FB  
Thermal  
Pad  
COUT  
R1  
EN  
GND  
Sense Line  
VIN  
GND  
R2  
Output Ground Plane  
Notes: CIN and COUT are 1208 packages  
CDELAY, R1, and R2 are 0402 packages  
Denotes a via to a connection made on another layer  
Figure 16. TPS7A19 Layout Example  
版权 © 2016, Texas Instruments Incorporated  
13  
TPS7A19  
ZHCSFK0A MAY 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 评估模块  
评估模块 (EVM) 可与 TPS7A19 配套使用,帮助评估初始电路性能。有关此固定装置的相关摘要信息,请参见表  
2。  
2. 评估模块  
名称  
EVM 文件夹  
TPS7A19 40V450mA 高电压、超低 IQ、低压降稳压器评估模块  
TPS7A1901EVM-760  
11.1.1.2 Spice 模型  
分析模拟电路和系统的性能时,使用 SPICE 模型对电路性能进行计算机仿真非常有用。您可以从 TPS7A19 产品  
文件夹中的工具和软件选项卡下获取 TPS7A19 SPICE 模型。  
11.1.2 器件命名规则  
3. 订购信息(1)  
产品  
说明  
XX 为标称输出电压选项;01 表示可调节。  
YYY 为封装标识符。  
TPS7A19XXYYYZ  
Z 为封装数量。  
(1) 欲获得最新的封装和订货信息,请参阅本文档末尾的封装选项附录,或者访问 www.ti.com 查看器件产品文件夹。  
11.2 文档支持  
11.2.1 相关文档  
TPS7A1901EVM-760 评估模块用户指南》(文献编号:SBVU031)  
11.3 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
11.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
14  
版权 © 2016, Texas Instruments Incorporated  
 
TPS7A19  
www.ti.com.cn  
ZHCSFK0A MAY 2016REVISED SEPTEMBER 2016  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016, Texas Instruments Incorporated  
15  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7A1901DRBR  
TPS7A1901DRBT  
ACTIVE  
ACTIVE  
SON  
SON  
DRB  
DRB  
8
8
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
A1901  
A1901  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Jul-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS7A1901DRBR  
TPS7A1901DRBR  
TPS7A1901DRBT  
TPS7A1901DRBT  
SON  
SON  
SON  
SON  
DRB  
DRB  
DRB  
DRB  
8
8
8
8
3000  
3000  
250  
330.0  
330.0  
180.0  
180.0  
12.4  
12.4  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS7A1901DRBR  
TPS7A1901DRBR  
TPS7A1901DRBT  
TPS7A1901DRBT  
SON  
SON  
SON  
SON  
DRB  
DRB  
DRB  
DRB  
8
8
8
8
3000  
3000  
250  
346.0  
367.0  
210.0  
210.0  
346.0  
367.0  
185.0  
185.0  
33.0  
35.0  
35.0  
35.0  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DRB0008B  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
EXPOSED  
THERMAL PAD  
1.65 0.05  
(0.2) TYP  
4
5
2X  
1.95  
2.4 0.05  
8
1
6X 0.65  
0.35  
0.25  
8X  
PIN 1 ID  
0.1  
C A B  
C
0.5  
0.3  
8X  
(OPTIONAL)  
0.05  
4218876/A 12/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRB0008B  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.65)  
SYMM  
8X (0.6)  
1
8
8X (0.3)  
(2.4)  
(0.95)  
6X (0.65)  
4
5
(R0.05) TYP  
(0.575)  
(2.8)  
(
0.2) VIA  
TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218876/A 12/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRB0008B  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
METAL  
TYP  
8X (0.6)  
8X (0.3)  
1
8
(0.63)  
SYMM  
(1.06)  
6X (0.65)  
5
4
(R0.05) TYP  
(1.47)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
81% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4218876/A 12/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS7A1901DRBR

具有电源正常指示和使能功能的 450mA、40V、低 IQ、可调节低压降稳压器 | DRB | 8 | -40 to 125
TI

TPS7A1901DRBT

具有电源正常指示和使能功能的 450mA、40V、低 IQ、可调节低压降稳压器 | DRB | 8 | -40 to 125
TI

TPS7A20

具有高 PSRR 的 300mA、超低噪声、低 IQ、低压降 (LDO) 线性稳压器
TI

TPS7A2009PDBVR

TPS7A20 300-mA, Ultra-Low-Noise, Low-IQ, High PSRR LDO
TI

TPS7A2009PDQNR

TPS7A20 300-mA, Ultra-Low-Noise, Low-IQ, High PSRR LDO
TI

TPS7A20105PDQNR

TPS7A20 300-mA, Ultra-Low-Noise, Low-IQ, High PSRR LDO
TI

TPS7A2011PYCKR

具有高 PSRR 的 300mA、超低噪声、低 IQ、低压降 (LDO) 线性稳压器 | YCK | 4 | -40 to 125
TI

TPS7A2012PDBVR

TPS7A20 300-mA, Ultra-Low-Noise, Low-IQ, High PSRR LDO
TI

TPS7A2012PDQNR

TPS7A20 300-mA, Ultra-Low-Noise, Low-IQ, High PSRR LDO
TI

TPS7A2012PYCJR

具有高 PSRR 的 300mA、超低噪声、低 IQ、低压降 (LDO) 线性稳压器 | YCJ | 4 | -40 to 125
TI

TPS7A2015PDBVR

TPS7A20 300-mA, Ultra-Low-Noise, Low-IQ, High PSRR LDO
TI

TPS7A2015PDQNR

具有高 PSRR 的 300mA、超低噪声、低 IQ、低压降 (LDO) 线性稳压器 | DQN | 4 | -40 to 125
TI