TPS7A20285PDQNR [TI]

TPS7A20 300-mA, Ultra-Low-Noise, Low-IQ, High PSRR LDO;
TPS7A20285PDQNR
型号: TPS7A20285PDQNR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TPS7A20 300-mA, Ultra-Low-Noise, Low-IQ, High PSRR LDO

文件: 总51页 (文件大小:8881K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS7A20  
SBVS338E – MARCH 2020 – REVISED DECEMBER 2021  
TPS7A20 300-mA, Ultra-Low-Noise, Low-IQ, High PSRR LDO  
1 Features  
3 Description  
Low output voltage noise: 7 µVRMS  
– No noise-bypass capacitor required  
High PSRR: 95 dB at 1 kHz  
Very low IQ: 6.5 µA  
Input voltage range: 1.6 V to 6.0 V  
Output voltage range: 0.8 V to 5.5 V  
Output voltage tolerance: ±1.5% (max)  
Very low dropout:  
– 140 mV (max) at 300 mA (VOUT = 3.3 V)  
– 145 mV (max) at 300 mA (VOUT = 3.3 V, DBV)  
Low inrush current  
Smart enable pulldown  
Stable with 1-µF minimum ceramic output  
capacitor  
The TPS7A20 is an ultra-small, low-dropout (LDO)  
linear regulator that can source 300 mA of output  
current. The TPS7A20 is designed to provide low  
noise, high PSRR, and excellent load and line  
transient performance that can meet the requirements  
of RF and other sensitive analog circuits. Using  
innovative design techniques, the TPS7A20 offers an  
ultra-low noise performance without the addition of a  
noise bypass capacitor. The TPS7A20 also provides  
the advantage of low quiescent current, which can be  
ideal for battery-powered applications. With an input  
voltage range of 1.6 V to 6.0 V and an output range of  
0.8 V to 5.5 V, the TPS7A20 can be used for a wide  
variety of applications. The device uses a precision  
reference circuit to provide a maximum accuracy of  
1.5% over load, line, and temperature variations.  
Packages:  
– 1-mm × 1-mm X2SON  
– 0.603-mm × 0.603-mm DSBGA  
– 2.90-mm × 1.60-mm SOT23-5  
The TPS7A20 features an internal soft-start to lower  
the inrush current, thus minimizing the input voltage  
drop during start up. The device is stable with  
small ceramic capacitors, allowing for a small overall  
solution size.  
2 Applications  
Smartphones and tablets  
IP network cameras  
Portable medical equipment  
Smart meters and field transmitters  
Motor drives  
The TPS7A20 has a smart enable input circuit with an  
internally controlled pulldown resistor that keeps the  
LDO disabled even when the EN pin is left floating  
and helps eliminate the external components used to  
pulldown the EN pin.  
Wearables  
Device Information(1)  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
1.00 mm × 1.00 mm  
0.603 mm × 0.603 mm  
2.90 mm × 1.60 mm  
X2SON (4)  
TPS7A20  
DSBGA (4)  
SOT-23 (5)  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Simplified Schematic  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
TPS7A20  
www.ti.com  
SBVS338E – MARCH 2020 – REVISED DECEMBER 2021  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................6  
6.5 Electrical Characteristics.............................................6  
6.6 Switching Characteristics............................................7  
6.7 Typical Characteristics................................................8  
7 Detailed Description......................................................23  
7.1 Overview...................................................................23  
7.2 Functional Block Diagram.........................................23  
7.3 Feature Description...................................................24  
7.4 Device Functional Modes..........................................26  
8 Application and Implementation..................................27  
8.1 Application Information............................................. 27  
8.2 Typical Application.................................................... 31  
9 Power Supply Recommendations................................32  
10 Layout...........................................................................33  
10.1 Layout Guidelines................................................... 33  
10.2 Layout Examples.................................................... 33  
11 Device and Documentation Support..........................34  
11.1 Device Support........................................................34  
11.2 Receiving Notification of Documentation Updates..34  
11.3 Support Resources................................................. 34  
11.4 Trademarks............................................................. 34  
11.5 Electrostatic Discharge Caution..............................34  
11.6 Glossary..................................................................34  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 34  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision D (July 2021) to Revision E (December 2021)  
Page  
Changed YCJ and YCK packages from Preview to Production Data ................................................................1  
Changed maximum current limit for YCJ and YCK packages............................................................................ 6  
Changed minimum UVLO thresholds for YCJ and YCK packages.................................................................... 6  
Changes from Revision C (November 2020) to Revision D (July 2021)  
Page  
Added YCJ package to document...................................................................................................................... 1  
Changed maximum operating junction temperature TJ to 150°C....................................................................... 5  
Added thermal information for DSBGA packages.............................................................................................. 6  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS7A20  
 
TPS7A20  
www.ti.com  
SBVS338E – MARCH 2020 – REVISED DECEMBER 2021  
5 Pin Configuration and Functions  
1
2
1
2
A
IN  
OUT  
B
EN  
GND  
B
EN  
GND  
A
IN  
OUT  
Not to scale  
Not to scale  
Figure 5-1. YCJ and YCK Packages,  
4-Pin DSBGA (Top View)  
Figure 5-2. YCJ and YCK Packages,  
4-Pin DSBGA (Bottom View)  
Pin Functions: DSBGA  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
Input voltage supply. For best transient response and to minimize input impedance, use  
the nominal value or larger capacitor from IN to ground as listed in the Recommended  
Operating Conditions table. Place the input capacitor as close to the IN and GND pins of the  
device as possible.  
A1  
A2  
IN  
I
Regulated output voltage. A low equivalent series resistance (ESR) capacitor is required  
from OUT to ground for stability. For best transient response, use the nominal  
recommended value or larger capacitor listed in the Recommended Operating Conditions  
table. Place the output capacitor as close to the OUT and GND pins of the device as  
possible. An internal 150-Ω (typical) pulldown resistor prevents a charge from remaining on  
OUT  
O
V
OUT when the regulator is in shutdown mode (VEN< VEN(LOW)).  
Enable input. A low voltage (< VEN(LOW)) on this input turns the regulator off and discharges  
the output pin to GND. A high voltage (> VEN(HI)) on this pin enables the regulator output.  
This pin has an internal 500-kΩ pulldown resistor to hold the regulator off by default. When  
VEN > VEN(HI), the 500-kΩ pulldown is disconnected to reduce input current.  
B1  
B2  
EN  
I
GND  
Common ground.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS7A20  
 
TPS7A20  
www.ti.com  
SBVS338E – MARCH 2020 – REVISED DECEMBER 2021  
OUT  
1
4
IN  
IN  
GND  
EN  
1
2
3
5
OUT  
5
Thermal Pad  
4
N/C  
GND  
2
3
EN  
Not to scale  
Not to scale  
Figure 5-3. DQN Package, 4-Pin X2SON (Top View)  
Figure 5-4. DBV Package, 5-Pin SOT-23 (Top View)  
Pin Functions: X2SON, SOT-23  
PIN  
I/O  
DESCRIPTION  
NAME  
X2SON  
SOT-23  
Input voltage supply. For best transient response and to minimize input  
impedance, use the nominal value or larger capacitor from IN to ground as listed  
in the Recommended Operating Conditions table. Place the input capacitor as  
close to the IN and GND pins of the device as possible.  
IN  
4
1
1
I
Regulated output voltage. A low equivalent series resistance (ESR) capacitor  
is required from OUT to ground for stability. For best transient response, use  
the nominal recommended value or larger capacitor listed in the Recommended  
Operating Conditions table. Place the output capacitor as close to the OUT and  
GND pins of the device as possible. An internal 150-Ω (typical) pulldown resistor  
prevents a charge from remaining on VOUT when the regulator is in shutdown  
mode (VEN< VEN(LOW)).  
OUT  
5
O
Enable input. A low voltage (< VEN(LOW)) on this pin turns the regulator off  
and discharges the output pin to GND. A high voltage (> VEN(HI)) on this pin  
enables the regulator output. This pin has an internal 500-kΩ pulldown resistor  
to hold the regulator off by default. When VEN > VEN(HI), the 500-kΩ pulldown is  
disconnected to reduce input current.  
EN  
3
3
I
GND  
N/C  
2
2
4
Common ground.  
No internal electrical connection.  
Thermal pad for the X2SON package. Connect this pad to GND or leave floating.  
Do not connect to any potential other than GND. Connect the thermal pad to a  
large-area ground plane for best thermal performance.  
Thermal Pad  
5
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS7A20  
TPS7A20  
www.ti.com  
SBVS338E – MARCH 2020 – REVISED DECEMBER 2021  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (3)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
VIN  
6.5  
6.5 or VIN + 0.3 (2)  
6.5  
Voltage  
VOUT  
V
VEN  
Current  
Maximum output(4)  
Operating junction, TJ  
Storage, Tstg  
Internally limited  
A
–40  
–65  
150  
150  
°C  
°C  
Temperature  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The maximum value of VOUT is the lesser of 6.5 V or (VIN + 0.3 V).  
(3) All voltages are with respect to the GND pin.  
(4) Internal thermal shutdown circuitry protects the device from permanent damage.  
6.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safemanufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safemanufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
1.6  
0
NOM  
MAX  
6.0  
UNIT  
V
VIN  
Input supply voltage  
VEN  
VOUT  
IOUT  
CIN  
Enable input voltage  
6.0  
V
Nominal output voltage range  
Output current  
0.8  
0
5.5  
V
300  
mA  
µF  
µF  
mΩ  
°C  
Input capacitor(2)  
1
COUT  
ESR  
TJ  
Output capacitor(3)  
1
200  
100  
125  
Output capacitor effective series resistance  
Operating junction temperature  
–40  
(1) All voltages are with respect to GND.  
(2) An input capacitor is not required for LDO stability. However, an input capacitor with an effective value of 0.47 μF minimum is  
recommended to counteract the effect of source resistance and inductance, which may in some cases cause symptoms of system-  
level instability such as ringing or oscillation, especially in the presence of load transients.  
(3) Effective output capacitance of 0.47 μF minimum and 200 μF maximum is required for stability.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS7A20  
 
 
 
 
 
 
 
 
 
 
 
 
 
TPS7A20  
www.ti.com  
SBVS338E – MARCH 2020 – REVISED DECEMBER 2021  
6.4 Thermal Information  
TPS7A20  
DQN YCJ  
DBV  
YCK  
THERMAL METRIC(1)  
UNIT  
(SOT-23) (X2SON) (DSBGA) (DSBGA)  
5 PINS  
187.1  
85.5  
4 PINS  
166.1  
103.6  
110.6  
3.0  
4 PINS  
199.6  
2.8  
4 PINS  
201.4  
2.8  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
54.4  
67.5  
1.4  
69.3  
1.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
27.1  
ψJB  
54.1  
103.3  
98.8  
67.4  
N/A  
69.2  
N/A  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
at operating temperature range (TJ = –40to +125), VIN = VOUT(NOM) + 0.3 V or 1.6V, whichever is greater, VEN = 1.0 V,  
IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF (unless otherwise noted); all typical values are at TJ = 25℃  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN = (VOUT(NOM) + 0.3 V) to 6.0 V,  
IOUT = 1 mA to 300 mA,  
–1.5  
1.5  
VOUT ≥ 1.85 V (DQN, YCJ, YCK packages)  
%
VIN = (VOUT(NOM) + 0.3 V) to 6.0 V,  
IOUT = 1 mA to 300 mA,  
VOUT ≥ 2.8 V (DBV package)  
-1.5  
–30  
-40  
1.5  
30  
40  
ΔVOUT  
Output voltage tolerance  
VIN = (VOUT(NOM) + 0.5 V) to 6.0 V,  
IOUT = 1 mA to 300 mA  
VOUT < 1.85 V (DQN, YCJ, YCK packages)  
mV  
VIN = (VOUT(NOM) + 0.3 V) to 6.0 V,  
IOUT = 1 mA to 300 mA,  
VOUT < 2.8 V (DBV package)  
VIN = (VOUT(NOM) + 0.3 V) to 6.0 V,  
IOUT = 1 mA  
ΔVOUT  
ΔVOUT  
Line regulation  
Load regulation  
0.03  
%/V  
mV  
IOUT = 1 mA to 300 mA (DQN, YCJ, YCK packages)  
IOUT = 1 mA to 300 mA (DBV package)  
TJ = 25°C  
VEN = VIN = 6 V,  
TJ = –40°C to 85°C  
IOUT = 0 mA  
TJ = –40°C to 125°C  
VEN = VIN = 6 V, IOUT = 300 mA  
VEN = 0 V (disabled), VIN = 6.0 V, TJ = 25°C  
VIN ≤ VOUT(NOM) , IOUT = 0 mA, VEN = VIN  
0.8 V ≤ VOUT < 1.0 V(1)  
13  
19  
6.5  
8.5  
10  
15  
IGND  
Quiescent ground current  
µA  
2000  
0.07  
6.5  
ISHDN  
Shutdown ground current  
IGND in dropout  
0.2  
15  
µA  
µA  
IGND(DO)  
690  
490  
355  
200  
1.0 V ≤ VOUT < 1.2 V(1)  
1.2 V ≤ VOUT < 1.5 V(1)  
IOUT = 300 mA,  
VOUT = 95% x VOUT(NOM)  
1.5 V ≤ VOUT < 2.5 V  
,
VDO  
Dropout voltage  
mV  
(DQN, YCJ, YCK packages  
unless otherwise noted)  
1.5 V ≤ VOUT < 2.5 V  
(DBV)  
205  
140  
145  
2.5 V ≤ VOUT < 5.5 V  
2.5 V ≤ VOUT < 5.5 V  
(DBV)  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS7A20  
 
 
 
TPS7A20  
www.ti.com  
SBVS338E – MARCH 2020 – REVISED DECEMBER 2021  
6.5 Electrical Characteristics (continued)  
at operating temperature range (TJ = –40to +125), VIN = VOUT(NOM) + 0.3 V or 1.6V, whichever is greater, VEN = 1.0 V,  
IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF (unless otherwise noted); all typical values are at TJ = 25℃  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOUT = 0.9 x VOUT(NOM) VOUT < 1.5 V (YCJ, YCK  
,
360  
520  
770  
VIN = VOUT(NOM) + 0.5 V  
packages)  
VOUT = 0.9 x VOUT(NOM)  
VIN = VOUT(NOM) + 0.5 V  
,
VOUT < 1.5 V (DQN  
package)  
360  
360  
360  
360  
520  
520  
520  
520  
730  
730  
770  
730  
VOUT = VOUT(NOM) - 150 mV, VOUT < 1.5 V (DBV  
VIN = VOUT(NOM) + 0.5 V  
ICL  
Output current limit  
mA  
package)  
VOUT = 0.9 x VOUT(NOM)  
,
VOUT ≥ 1.5 V (YCJ, YCK  
packages)  
VIN = VOUT(NOM) + 0.3 V  
VOUT = 0.9 x VOUT(NOM)  
,
VOUT ≥ 1.5 V (DQN  
package)  
VIN = VOUT(NOM) + 0.3 V  
ISC  
Short-circuit current limit  
VOUT = 0 V  
160  
95  
95  
75  
75  
45  
65  
92  
75  
60  
40  
7
mA  
f = 100 Hz  
f = 1 kHz  
IOUT = 20 mA,  
VIN = VOUT + 1.0 V  
f = 10 kHz  
f = 100 kHz  
f = 1 MHz  
f = 100 Hz  
f = 1 kHz  
PSRR  
Power-supply rejection ratio  
dB  
IOUT = 300 mA,  
VIN = VOUT + 1.0 V  
f = 10 kHz  
f = 100 kHz  
f = 1 MHz  
IOUT = 300 mA  
IOUT = 1 mA  
BW = 10 Hz to 100 kHz,  
VOUT = 2.8 V  
VN  
Output noise voltage  
µVRMS  
10  
Output automatic discharge  
pulldown resistance  
RPULLDOWN  
VEN < VEN(LOW) (output disabled), VIN = 3.1 V  
150  
Ω
TJ rising  
TJ falling  
165  
140  
TSD  
Thermal shutdown  
°C  
VIN = 1.6 V to 6.0 V,  
VEN falling until the output is disabled  
VEN(LOW)  
VEN(HI)  
Low input threshold  
High input threshold  
0.3  
V
V
VIN = 1.6 V to 6.0 V  
VEN rising until the output is enabled  
0.9  
VIN rising (YCJ and YCK packages)  
VIN rising (DBV and DQN packages)  
VIN rising (YCJ and YCK packages)  
VIN falling (DBV and DQN packages)  
1.11  
1.17  
1.05  
1.11  
1.35  
1.35  
1.3  
1.3  
50  
1.59  
1.59  
1.55  
1.55  
VUVLO  
UVLO threshold  
V
VUVLO(HYST)  
IEN  
UVLO hysteresis  
mV  
nA  
EN input leakage current  
VEN = 6.0 V and VIN = 6.0 V  
VEN = 0.25 V  
90  
250  
REN(PULL-  
Smart enable pulldown resistor  
500  
KΩ  
DOWN)  
(1) Design simulation data only  
6.6 Switching Characteristics  
at operating temperature range (TJ = –40to +125), VIN = VOUT(NOM) + 0.3 V or 1.6V, whichever is greater, VEN = 1.0 V,  
IOUT = 1 mA, CIN= 1 µF, COUT = 1 µF (unless otherwise noted); all typical values are at TJ = 25℃  
PARAMETER  
Start-up time  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
From VEN > VEN(HI) to VOUT = 95% of VOUT(NOM)  
,
tSTR  
750  
1150  
µs  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS7A20  
 
 
TPS7A20  
www.ti.com  
SBVS338E – MARCH 2020 – REVISED DECEMBER 2021  
6.7 Typical Characteristics  
VIN = VOUT(NOM) + 0.3 V or 1.6 V (whichever is greater), VOUT = 2.8 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TA = 25°C  
(unless otherwise noted)  
3
2
9
6
TJ  
TJ  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
1
3
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-3  
-6  
-9  
-12  
-15  
5.6  
5.65  
5.7  
5.75  
5.8  
Input Voltage (V)  
5.85  
5.9  
5.95  
6
3.1 3.4 3.7  
4
4.3 4.6 4.9 5.2 5.5 5.8  
Input Voltage (V)  
6
VOUT = 5.5 V, VEN = 1 V, DQN, YCJ, and YCK packages  
VEN = 1 V, DQN, YCJ, and YCK packages  
Figure 6-2. Line Regulation vs VIN  
Figure 6-1. Line Regulation vs VIN  
VOUT = 5.5 V, VEN = 1 V, DBV package  
VEN = 1 V, DBV package  
Figure 6-4. Line Regulation vs VIN  
Figure 6-3. Line Regulation vs VIN  
15  
10  
5
16  
12  
8
TJ  
TJ  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
0
-5  
4
-10  
-15  
-20  
-25  
0
-4  
-8  
0
25 50 75 100 125 150 175 200 225 250 275 300  
Output Current (mA)  
0
0.2 0.4 0.6 0.8  
1
Output Current (mA)  
1.2 1.4 1.6 1.8  
2
VIN = 3.1 V, VEN = 1 V, DQN, YCJ, and YCK packages  
VIN = 3.1 V, VEN = 1 V, DQN, YCJ, and YCK packages  
Figure 6-5. Load Regulation vs IOUT  
Figure 6-6. Load Regulation vs IOUT  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS7A20  
 
TPS7A20  
www.ti.com  
SBVS338E – MARCH 2020 – REVISED DECEMBER 2021  
6.7 Typical Characteristics (continued)  
VIN = VOUT(NOM) + 0.3 V or 1.6 V (whichever is greater), VOUT = 2.8 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TA = 25°C  
(unless otherwise noted)  
VIN = 2.8 V, VEN = 1 V, DBV package  
VIN = 2.8 V, VEN = 1 V, DBV package  
Figure 6-8. Load Regulation vs IOUT  
Figure 6-7. Load Regulation vs IOUT  
15  
10  
5
15  
10  
5
TJ  
TJ  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
0
-5  
0
-10  
-15  
-20  
-25  
-30  
-35  
-5  
-10  
-15  
-20  
0
30  
60  
90 120 150 180 210 240 270 300  
Output Current (mA)  
0
0.2 0.4 0.6 0.8  
1
Output Current (mA)  
1.2 1.4 1.6 1.8  
2
VOUT = 5.5 V, VEN = 1 V, DQN, YCJ, and YCK packages  
VOUT = 5.5 V, VEN = 1 V, DQN, YCJ, and YCK packages  
Figure 6-9. Load Regulation vs IOUT  
Figure 6-10. Load Regulation vs IOUT  
VOUT = 5.5 V, VEN = 1 V, DBV package  
VOUT = 5.5 V, VEN = 1 V, DBV package  
Figure 6-11. Load Regulation vs IOUT  
Figure 6-12. Load Regulation vs IOUT  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS7A20  
TPS7A20  
www.ti.com  
SBVS338E – MARCH 2020 – REVISED DECEMBER 2021  
6.7 Typical Characteristics (continued)  
VIN = VOUT(NOM) + 0.3 V or 1.6 V (whichever is greater), VOUT = 2.8 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TA = 25°C  
(unless otherwise noted)  
0.6  
0.4  
0.2  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
TJ  
TJ  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.1  
-0.2  
-0.3  
0
0.2 0.4 0.6 0.8  
1 1.2 1.4 1.6 1.8  
Output Current (mA)  
2
0
25 50 75 100 125 150 175 200 225 250 275 300  
Output Current (mA)  
D076  
VEN = 1 V, DQN, YCJ, and YCK packages  
VEN = 1 V, DQN, YCJ, and YCK packages  
Figure 6-14. Output Voltage Accuracy vs IOUT  
Figure 6-13. Output Voltage Accuracy vs IOUT  
VEN = 1 V, DBV package  
VEN = 1 V, DBV package  
Figure 6-15. Output Voltage Accuracy vs IOUT  
Figure 6-16. Output Voltage Accuracy vs IOUT  
0.2  
0.1  
0.3  
0.2  
0.1  
0
TJ  
TJ  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.1  
-0.2  
-0.3  
0
30  
60  
90 120 150 180 210 240 270 300  
Output Current (mA)  
0
0.2 0.4 0.6 0.8  
1 1.2 1.4 1.6 1.8  
Output Current (mA)  
2
VOUT = 5.5 V, VEN = 1 V, DQN, YCJ, and YCK packages  
VOUT = 5.5 V, VEN = 1 V, DQN, YCJ, and YCK packages  
Figure 6-17. Output Voltage Accuracy vs IOUT  
Figure 6-18. Output Voltage Accuracy vs IOUT  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS7A20  
TPS7A20  
www.ti.com  
SBVS338E – MARCH 2020 – REVISED DECEMBER 2021  
6.7 Typical Characteristics (continued)  
VIN = VOUT(NOM) + 0.3 V or 1.6 V (whichever is greater), VOUT = 2.8 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TA = 25°C  
(unless otherwise noted)  
VOUT = 5.5 V, VEN = 1 V, DBV package  
VOUT = 5.5 V, VEN = 1 V, DBV package  
Figure 6-19. Output Voltage Accuracy vs IOUT  
Figure 6-20. Output Voltage Accuracy vs IOUT  
0.15  
0.15  
TJ  
TJ  
0.1  
0.05  
0
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
0.1  
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
-0.3  
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
3.1  
3.6  
4.1 4.6  
Input Voltage (V)  
5.1  
5.6  
6
5.6  
5.65  
5.7  
5.75  
5.8  
Input Voltage (V)  
5.85  
5.9  
5.95  
6
VEN = 1 V, IOUT = 1 mA, DQN, YCJ, and YCK packages  
VOUT = 5.5 V, VEN = 1 V, DQN, YCJ, and YCK packages  
Figure 6-21. Output Voltage Accuracy vs VIN  
Figure 6-22. Output Voltage Accuracy vs VIN  
VEN = 1 V, IOUT = 1 mA, DBV package  
VOUT = 5.5 V, VEN = 1 V, DBV package  
Figure 6-23. Output Voltage Accuracy vs VIN  
Figure 6-24. Output Voltage Accuracy vs VIN  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS7A20  
TPS7A20  
www.ti.com  
SBVS338E – MARCH 2020 – REVISED DECEMBER 2021  
6.7 Typical Characteristics (continued)  
VIN = VOUT(NOM) + 0.3 V or 1.6 V (whichever is greater), VOUT = 2.8 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TA = 25°C  
(unless otherwise noted)  
130  
120  
110  
100  
90  
90  
85  
80  
75  
70  
65  
60  
55  
TJ  
TJ  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
80  
70  
60  
50  
0
30  
60  
90 120 150 180 210 240 270 300  
Output Current (mA)  
0
1
2
3
4
5
6
Output Current (mA)  
7
8
9
10  
VEN = 1 V, DQN, YCJ, and YCK packages  
VEN = 1 V, DQN, YCJ, and YCK packages  
Figure 6-25. Dropout Voltage vs IOUT  
Figure 6-26. Dropout Voltage vs IOUT  
VEN = 1 V, DBV package  
VEN = 1 V, DBV package  
Figure 6-27. Dropout Voltage vs IOUT  
Figure 6-28. Dropout Voltage vs IOUT  
160  
150  
140  
130  
120  
110  
100  
90  
95  
90  
85  
80  
75  
70  
65  
60  
55  
TJ  
TJ  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
80  
70  
60  
0
30  
60  
90 120 150 180 210 240 270 300  
Output Current (mA)  
0
1
2
3
4
5
6
Output Current (mA)  
7
8
9
10  
D099  
D100  
VOUT = 1.8 V, VEN = 1 V, DQN, YCJ, and YCK packages  
VOUT = 1.8 V, VEN = 1 V, DQN, YCJ, and YCK packages  
Figure 6-29. Dropout Voltage vs IOUT  
Figure 6-30. Dropout Voltage vs IOUT  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS7A20  
TPS7A20  
www.ti.com  
SBVS338E – MARCH 2020 – REVISED DECEMBER 2021  
6.7 Typical Characteristics (continued)  
VIN = VOUT(NOM) + 0.3 V or 1.6 V (whichever is greater), VOUT = 2.8 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TA = 25°C  
(unless otherwise noted)  
VOUT = 1.8 V, VEN = 1 V, DBV package  
VOUT = 1.8 V, VEN = 1 V, DBV package  
Figure 6-31. Dropout Voltage vs IOUT  
Figure 6-32. Dropout Voltage vs IOUT  
180  
170  
160  
150  
140  
130  
120  
110  
100  
90  
14  
13  
12  
11  
10  
9
TJ  
0°C  
25°C  
TJ  
-40°C  
-20°C  
50°C  
85°C  
125°C  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
8
7
6
5
4
1.6  
1.5  
2
2.5  
3
3.5  
4
Output Voltage ( V)  
4.5  
5
5.5  
2.1  
2.6  
3.1  
3.6  
4.1  
Input Voltage (V)  
4.6  
5.1  
5.6  
6
IOUT = 300 mA  
VEN = 1 V, IOUT = 0 mA  
Figure 6-33. Dropout Voltage vs VOUT  
Figure 6-34. I GND vs VIN  
13  
12  
11  
10  
9
12  
11  
10  
9
TJ  
TJ  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
8
8
7
7
6
6
5
5
4
4
1.6  
2.1  
2.6  
3.1  
3.6  
Input Voltage (V)  
4.1  
4.6  
5.1 5.5  
1.6  
2.1  
2.6  
3.1  
3.6  
4.1  
4.6  
5.1  
5.6  
6
Input Voltage (V)  
VEN = VIN, IOUT = 0 mA  
Figure 6-35. IGND vs VIN  
VOUT(NOM) = 5.5 V, VEN = 1 V, IOUT = 0 mA  
Figure 6-36. IGND vs VIN in the Dropout Region  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS7A20  
TPS7A20  
www.ti.com  
SBVS338E – MARCH 2020 – REVISED DECEMBER 2021  
6.7 Typical Characteristics (continued)  
VIN = VOUT(NOM) + 0.3 V or 1.6 V (whichever is greater), VOUT = 2.8 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TA = 25°C  
(unless otherwise noted)  
3250  
3000  
2750  
2500  
2250  
2000  
1750  
1500  
1250  
1000  
750  
12  
11  
10  
9
TJ  
TJ  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
8
7
6
500  
5
250  
0
4
0
30  
60  
90 120 150 180 210 240 270 300  
Output Current (mA)  
1.6  
2.1  
2.6  
3.1  
3.6  
Input Voltage (V)  
4.1  
4.6  
5.1 5.5  
VEN = 1 V  
VOUT(NOM) = 5.5 V, VEN = VIN, IOUT = 0 mA  
Figure 6-37. IGND vs VIN in the Dropout Region  
Figure 6-38. IGND vs IOUT  
4000  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
TJ  
-55°C  
-40°C  
0°C  
25°C  
TJ  
85°C  
125°C  
150°C  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
1000  
100  
10  
2
0
0.001  
0.01  
0.1  
Output Current (mA)  
1
10  
100 300  
0
0.5  
1
1.5  
2
2.5  
Output Current (mA)  
3
3.5  
4
4.5  
5
D072  
D073  
VEN = 1 V  
VEN = 1 V  
Figure 6-39. IGND vs IOUT  
Figure 6-40. IGND vs IOUT  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
45  
TJ  
125°C  
TJ  
-40°C  
40  
35  
30  
25  
20  
15  
10  
5
85°C  
150°C  
-55°C  
0°C  
25°C  
0
0
1.6  
-5  
1.6  
2.1  
2.6  
3.1  
3.6  
4.1  
Input Voltage (V)  
4.6  
5.1  
5.6  
6
2.1  
2.6  
3.1  
3.6  
4.1  
Input Voltage (V)  
4.6  
5.1  
5.6  
6
VEN = 0 V  
VEN = 0 V  
Figure 6-42. Shutdown Current vs VIN  
Figure 6-41. Shutdown Current vs VIN  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS7A20  
TPS7A20  
www.ti.com  
SBVS338E – MARCH 2020 – REVISED DECEMBER 2021  
6.7 Typical Characteristics (continued)  
VIN = VOUT(NOM) + 0.3 V or 1.6 V (whichever is greater), VOUT = 2.8 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TA = 25°C  
(unless otherwise noted)  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
4.5  
4
TJ  
0°C  
25°C  
-55°C  
-40°C  
85°C  
125°C  
3.5  
3
2.5  
2
1.5  
1
TJ  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
5.5  
0.5  
0
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
VEN - VIN (V)  
4
4.5  
5
6
0
50 100 150 200 250 300 350 400 450 500 550 600  
Output Current (mA)  
VEN = 6 V, IOUT = 0 mA  
VEN = 1 V  
Figure 6-43. Enable Pin Leakage Current vs  
VEN - VIN  
Figure 6-44. Current Limit  
1.2  
1
1.4  
1.39  
1.38  
1.37  
1.36  
1.35  
1.34  
1.33  
1.32  
1.31  
1.3  
TJ  
V
UVLO+ (VIN rising)  
VUVLO- (V  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
IN falling)  
0.8  
0.6  
0.4  
0.2  
0
0
50 100 150 200 250 300 350 400 450 500 550 600  
Output Current (mA)  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (°C)  
D088  
VOUT = 0.8 V, VEN = 1 V  
VEN = 1 V  
Figure 6-45. Current Limit  
Figure 6-46. UVLO Threshold vs Temperature  
1
0.95  
0.9  
0.9  
0.85  
0.8  
VIN  
VIN  
1.6 V ( Vout = 0.8 V )  
2.1 V ( Vout = 1.8 V )  
3.1 V ( Vout = 2.8 V )  
5.8 V ( Vout = 5.5 V )  
6.0 V ( Vout = 0.8 V - 5.5 V )  
1.6 V ( Vout = 0.8 V )  
2.1 V ( Vout = 1.8 V )  
3.1 V ( Vout = 2.8 V )  
5.8 V ( Vout = 5.5 V )  
6.0 V ( Vout = 0.8 V - 5.5 V )  
0.85  
0.8  
0.75  
0.7  
0.75  
0.7  
0.65  
0.6  
0.65  
0.6  
0.55  
0.5  
0.55  
0.5  
0.45  
0.4  
0.45  
0.4  
0.35  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (°C)  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (°C)  
Figure 6-47. Enable Logic High Threshold vs Temperature  
Figure 6-48. Enable Logic Low Threshold Low vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS7A20  
TPS7A20  
www.ti.com  
SBVS338E – MARCH 2020 – REVISED DECEMBER 2021  
6.7 Typical Characteristics (continued)  
VIN = VOUT(NOM) + 0.3 V or 1.6 V (whichever is greater), VOUT = 2.8 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TA = 25°C  
(unless otherwise noted)  
400  
350  
300  
250  
200  
150  
100  
540  
520  
500  
480  
460  
440  
420  
VIN  
VIN  
1.6 V  
1.6 V ( VOUT = 0.8 V )  
2.1 V ( VOUT = 1.8 V )  
3.1 V ( VOUT = 2.8 V )  
6 V ( VOUT = 5.5 V )  
2.4 V  
3.4 V  
4.4 V  
5.4 V  
6.0 V  
-60  
-30  
0
30 60  
Temperature (°C)  
90  
120  
150  
-60  
-35  
-10  
15  
40  
65  
Temperature (°C)  
90  
115 140 160  
VEN = 0.25 V  
VEN = 0.25 V  
Figure 6-50. Smart Enable Pulldown Resistor vs Temperature  
and VIN  
Figure 6-49. Output Pulldown Resistor vs Temperature  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
20  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
40  
IOUT  
VOUT  
10  
30  
0
20  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
IOUT  
VOUT  
-0.1  
0
2
4
6
8
10  
Time (ms)  
12  
14  
16  
18  
20  
0
4
8
12  
16  
20  
Time (µs)  
24  
28  
32  
36  
40  
D030  
D033  
IOUT = 1 mA to 300 mA, tRISING = 1 µs  
IOUT = 300 mA to 1 mA, tFALLING = 1 µs  
Figure 6-51. Load Transient  
Figure 6-52. Load Transient  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
20  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
40  
IOUT  
VOUT  
0
30  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
20  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
IOUT  
VOUT  
-0.1  
0
2
4
6
8
10  
Time (ms)  
12  
14  
16  
18  
20  
0
10  
20  
30  
40  
50  
Time (µs)  
60  
70  
80  
90 100  
D031  
D032  
IOUT = 1 mA to 300 mA, tRISING = 200 ns  
IOUT = 300 mA to 1 mA, tFALLING = 200 ns  
Figure 6-53. Load Transient  
Figure 6-54. Load Transient  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS7A20  
TPS7A20  
www.ti.com  
SBVS338E – MARCH 2020 – REVISED DECEMBER 2021  
6.7 Typical Characteristics (continued)  
VIN = VOUT(NOM) + 0.3 V or 1.6 V (whichever is greater), VOUT = 2.8 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TA = 25°C  
(unless otherwise noted)  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
40  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
30  
IOUT  
VOUT  
0
20  
-40  
10  
-80  
0
-120  
-160  
-200  
-240  
-280  
-320  
-360  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
IOUT  
VOUT  
-0.1  
-0.1  
0
0
0
2
4
6
8
10  
Time (µs)  
12  
14  
16  
18  
20  
0
50 100 150 200 250 300 350 400 450 500  
Time (µs)  
D035  
D037  
IOUT = 0 mA to 300 mA, tRISING = 1 µs  
IOUT = 300 mA to 0 mA, tFALLING = 1 µs  
Figure 6-55. Load Transient  
Figure 6-56. Load Transient  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
40  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
30  
IOUT  
VOUT  
0
20  
-40  
10  
-80  
0
-120  
-160  
-200  
-240  
-280  
-320  
-360  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
IOUT  
VOUT  
-0.1  
-0.1  
2
4
6
8
10  
Time (µs)  
12  
14  
16  
18  
20  
0
50 100 150 200 250 300 350 400 450 500  
Time (µs)  
D034  
D036  
IOUT = 0 mA to 300 mA, tRISING = 200 ns  
IOUT = 300 mA to 0 mA, tFALLING = 200 ns  
Figure 6-57. Load Transient  
Figure 6-58. Load Transient  
6
5
7
6
5
6
VOUT  
VIN  
VOUT  
VIN  
6
5
4
5
4
4
3
4
3
3
2
3
2
2
1
2
1
1
0
1
0
0
-1  
-2  
-3  
-4  
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
-1  
-2  
-3  
10  
20  
30  
40  
50  
Time (µs)  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
Time (ms)  
60  
70  
80  
90 100  
D060  
D061  
VIN = 3.1 V → 4.1 V → 3.1 V, VIN tRISING = 5 µs, IOUT = 1 mA  
VIN = 3.1 V → 4.1 V → 3.1 V, VIN tRISING = 5 µs,  
IOUT = 300 mA  
Figure 6-60. Line Transient  
Figure 6-59. Line Transient  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS7A20  
TPS7A20  
www.ti.com  
SBVS338E – MARCH 2020 – REVISED DECEMBER 2021  
6.7 Typical Characteristics (continued)  
VIN = VOUT(NOM) + 0.3 V or 1.6 V (whichever is greater), VOUT = 2.8 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TA = 25°C  
(unless otherwise noted)  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN  
3.10 V  
3.30 V  
3.80 V  
VIN  
3.1 V  
3.3 V  
3.8 V  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
D011  
D00115  
IOUT = 20 mA  
IOUT = 300 mA  
Figure 6-61. PSRR vs VIN vs Frequency and VIN  
Figure 6-62. PSRR vs Frequency and VIN  
120  
110  
100  
90  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
COUT  
1 mF  
10 mF  
200 mF  
80  
70  
60  
50  
40  
30  
IOUT  
100 mA  
200 mA  
20  
10  
0
0.01 mA  
20 mA  
300 mA  
100k  
10  
100  
1k  
10k  
1M  
10M  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
Frequency (Hz)  
D012  
D00113  
IOUT = 20 mA  
Figure 6-63. PSRR vs Frequency and IOUT  
Figure 6-64. PSRR vs Frequency and COUT  
2
1
2
IOUT  
1 mA, RMS noise = 8.63 mVRMS  
20 mA, RMS noise = 6.66 mVRMS  
100 mA, RMS noise = 6.69 mVRMS  
200 mA, RMS noise = 6.73 mVRMS  
300 mA, RMS noise = 7.76 mVRMS  
VIN  
1
3.1 V, RMS Noise = 6.66 mVRMS  
3.3 V, RMS Noise = 6.71 mVRMS  
3.8 V, RMS Noise = 6.70 mVRMS  
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
D002  
D003  
VRMS BW = 10 Hz to 100 kHz  
IOUT = 20 mA, VRMS BW = 10 Hz to 100 kHz  
Figure 6-66. Noise vs Frequency and VIN  
Figure 6-65. Noise vs Frequency and IOUT  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS7A20  
TPS7A20  
www.ti.com  
SBVS338E – MARCH 2020 – REVISED DECEMBER 2021  
6.7 Typical Characteristics (continued)  
VIN = VOUT(NOM) + 0.3 V or 1.6 V (whichever is greater), VOUT = 2.8 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TA = 25°C  
(unless otherwise noted)  
2
1
2
1
VIN  
COUT  
3.1 V, RMS Noise = 6.76 mVRMS  
3.3 V, RMS Noise = 6.77 mVRMS  
3.8 V, RMS Noise = 7.10 mVRMS  
1 mF, RMS noise = 6.65 mVRMS  
10 mF, RMS noise = 6.94 mVRMS  
200 mF, RMS noise = 6.56 mVRMS  
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
D004  
D006  
IOUT = 300 mA, VRMS BW = 10 Hz to 100 kHz  
Figure 6-67. Noise vs Frequency and VIN  
VIN = 3.8 V, IOUT = 20 mA, VRMS BW = 10 Hz to 100 kHz  
Figure 6-68. Noise vs Frequency and COUT  
2
2
COUT  
IOUT  
20 mA, RMS noise = 7.11 mVRMS  
300 mA, RMS noise = 7.04 mVRMS  
1
1
1 mF, RMS noise = 7.14 mVRMS  
10 mF, RMS noise = 7.14 mVRMS  
200 mF, RMS noise = 6.87 mVRMS  
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
D007  
D010  
VIN = 3.8 V, IOUT = 300 mA, VRMS BW = 10 Hz to 100 kHz  
VOUT = 0.8 V, VRMS BW = 10 Hz to 100 kHz  
Figure 6-69. Noise vs Frequency and COUT  
Figure 6-70. Noise vs Frequency and IOUT  
2
2
IOUT  
20 mA, RMS noise = 7.09 mVRMS  
300 mA, RMS noise = 7.19 mVRMS  
IOUT  
20 mA, RMS noise = 7.21 mVRMS  
300 mA, RMS noise = 7.69 mVRMS  
1
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
D009  
D008  
VOUT = 0.8 V, VIN = 1.8 V, VRMS BW = 10 Hz to 100 kHz  
VOUT = 5.5 V, VIN = 6 V, VRMS BW = 10 Hz to 100 kHz  
Figure 6-71. Noise vs Frequency and IOUT  
Figure 6-72. Noise vs Frequency and IOUT  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS7A20  
TPS7A20  
www.ti.com  
SBVS338E – MARCH 2020 – REVISED DECEMBER 2021  
6.7 Typical Characteristics (continued)  
VIN = VOUT(NOM) + 0.3 V or 1.6 V (whichever is greater), VOUT = 2.8 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TA = 25°C  
(unless otherwise noted)  
2
1.8  
1.6  
1.4  
1.2  
1
900  
850  
800  
750  
700  
650  
600  
550  
0.8  
0.6  
0.4  
0.2  
0
VIN  
VEN  
VOUT ( IOUT = 0 mA)  
VOUT ( IOUT = 1 mA)  
VOUT ( IOUT = 300 mA)  
-0.2  
-0.4  
0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000  
Time (ms)  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (°C)  
D048  
VOUT = 0.8 V, VIN = 0 V to 1.8 V, VEN = 0 V to 1.8 V, VEN rises  
500 µs behind VIN, VIN and VEN slew rate = 1 V/µs  
From VEN = VEN(HI) to VOUT = 95% of VOUT(NOM), IOUT = 0 mA  
Figure 6-74. Start-Up  
Figure 6-73. Start-Up Turn-On Time  
2
1.8  
1.6  
1.4  
1.2  
1
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.8  
0.6  
0.4  
0.4  
VIN  
VEN  
0.2  
0.2  
VIN / VEN  
VOUT ( IOUT = 0 mA)  
VOUT ( IOUT = 1 mA)  
VOUT ( IOUT = 300 mA)  
VOUT ( IOUT = 0 mA)  
VOUT ( IOUT = 1 mA)  
VOUT ( IOUT = 300 mA)  
0
-0.2  
-0.4  
0
-0.2  
-0.4  
0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000  
Time (ms)  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
Time (ms)  
D049  
D050  
VOUT = 0.8 V, VIN = 0 V to 1.8 V, VEN = 0 V to 1.8 V, VEN rises  
500 µs ahead of VIN, VIN and VEN slew rate = 1 V/µs  
VOUT = 0.8 V, VIN = 0 V to 1.8 V, VEN = VIN,  
VIN slew rate = 1 V/µs  
Figure 6-75. Start-Up  
Figure 6-76. Start-Up  
4.5  
4
4.5  
4
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1.5  
1
1
0.5  
0
VIN  
VEN  
VIN  
VEN  
0.5  
0
VOUT ( IOUT = 0 mA)  
VOUT ( IOUT = 1 mA)  
VOUT ( IOUT = 300 mA)  
VOUT ( IOUT = 0 mA)  
VOUT ( IOUT = 1 mA)  
VOUT ( IOUT = 300 mA)  
-0.5  
-0.5  
0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000  
Time (ms)  
0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000  
Time (ms)  
D051  
D052  
VIN = 0 V to 3.8 V, VEN = 0 V to 3.8 V, VEN rises 500 µs behind  
VIN, VIN and VEN slew rate = 1 V/µs  
VIN = 0 V to 3.8 V, VEN = 0 V to 3.8 V, VEN rises 500 µs ahead  
of VIN, VIN and VEN slew rate = 1 V/µs  
Figure 6-77. Start-Up  
Figure 6-78. Start-Up  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS7A20  
TPS7A20  
www.ti.com  
SBVS338E – MARCH 2020 – REVISED DECEMBER 2021  
6.7 Typical Characteristics (continued)  
VIN = VOUT(NOM) + 0.3 V or 1.6 V (whichever is greater), VOUT = 2.8 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TA = 25°C  
(unless otherwise noted)  
4.5  
4
6.5  
6
5.5  
5
3.5  
3
4.5  
4
2.5  
2
3.5  
3
2.5  
2
1.5  
1
VIN  
VEN  
1.5  
1
VIN / VEN  
0.5  
0
VOUT ( IOUT = 0 mA)  
VOUT ( IOUT = 1 mA)  
VOUT ( IOUT = 300 mA)  
VOUT ( IOUT = 0 mA)  
VOUT ( IOUT = 1 mA)  
VOUT ( IOUT = 300 mA)  
0.5  
0
-0.5  
-0.5  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
Time (ms)  
0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000  
Time (us)  
D053  
D054  
VIN = 0 V to 3.8 V, VEN = 0 V to 3.8 V, VEN = VIN, VIN and slew  
rate = 1 V/µs  
VOUT = 5.5 V, VIN = 0 V to 6.0 V, VEN = 0 V to 6.0 V, VEN rises  
500 µs behind VIN, VIN and VEN slew rate = 1 V/µs  
Figure 6-79. Start-Up  
Figure 6-80. Start-Up  
6.5  
6
6.5  
6
5.5  
5
5.5  
5
4.5  
4
4.5  
4
3.5  
3
3.5  
3
2.5  
2
2.5  
2
VIN  
VEN  
1.5  
1
1.5  
VIN / VEN  
VOUT ( IOUT = 0 mA)  
VOUT ( IOUT = 1 mA)  
VOUT ( IOUT = 300 mA)  
1
VOUT ( IOUT = 0 mA)  
VOUT ( IOUT = 1 mA)  
VOUT ( IOUT = 300 mA)  
0.5  
0
0.5  
0
-0.5  
-0.5  
0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000  
Time (ms)  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
Time (ms)  
D055  
D056  
VOUT = 5.5 V, VIN = 0 V to 6.0 V, VEN = 0 V to 6.0 V, VEN rises  
500 µs ahead of VIN, VIN and VEN slew rate = 1 V/µs  
VOUT = 5.5 V, VIN = 0 V to 6 V, VEN = VIN, VIN slew rate =  
1 V/µs  
Figure 6-81. Start-Up  
Figure 6-82. Start-Up  
20  
18  
16  
14  
12  
10  
8
2.5  
2.25  
2
300  
5
IIN  
VIN  
VEN  
VOUT  
IIN  
VIN  
VEN  
VOUT  
270  
240  
210  
180  
150  
120  
90  
4.5  
4
1.75  
1.5  
1.25  
1
3.5  
3
2.5  
2
6
0.75  
0.5  
0.25  
0
1.5  
1
4
60  
2
30  
0.5  
0
0
0
0
120 240 360 480 600 720 840 960 1080 1200  
Time (µs)  
0
150 300 450 600 750 900 1050 1200 1350 1500  
Time (µs)  
D047  
D043  
VOUT = 0.8 V, VIN = 1.8 V, VEN = 0 V to 1.8 V,  
VEN slew rate = 1 V/µs, COUT = 10 µF  
VIN = 3.8 V, VEN = 0 V to 3.8 V, VEN slew rate = 1 V/µs,  
COUT = 10 µF  
Figure 6-83. Inrush Current  
Figure 6-84. Inrush Current  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS7A20  
TPS7A20  
www.ti.com  
SBVS338E – MARCH 2020 – REVISED DECEMBER 2021  
6.7 Typical Characteristics (continued)  
VIN = VOUT(NOM) + 0.3 V or 1.6 V (whichever is greater), VOUT = 2.8 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TA = 25°C  
(unless otherwise noted)  
800  
720  
640  
560  
480  
400  
320  
240  
160  
80  
8
IIN  
VIN  
VEN  
VOUT  
7.2  
6.4  
5.6  
4.8  
4
3.2  
2.4  
1.6  
0.8  
0
0
0
150 300 450 600 750 900 1050 1200 1350 1500  
Time (µs)  
D044  
VOUT = 5.5 V, VIN = 6.0 V, VEN = 0 V to 6.0 V,  
VEN slew rate = 1 V/µs, COUT = 10 µF  
Figure 6-85. Inrush Current  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS7A20  
TPS7A20  
www.ti.com  
SBVS338E – MARCH 2020 – REVISED DECEMBER 2021  
7 Detailed Description  
7.1 Overview  
Designed to meet the needs of sensitive RF and analog circuits, the TPS7A20 provides low noise, high  
PSRR, low quiescent current, as well as low line and load transient response figures. Using innovative design  
techniques, the TPS7A20 offers class-leading noise performance without the need for a separate noise filter  
capacitor.  
The TPS7A20 is designed to operate with a single 1-µF input capacitor and a single 1-µF ceramic output  
capacitor.  
7.2 Functional Block Diagram  
Current  
Limit  
IN  
OUT  
Bandgap  
+
Active Discharge  
P-Version Only  
œ
œ
Error  
Amp  
+
+
UVLO  
Internal  
Controller  
Thermal  
Shutdown  
EN  
500kΩ  
GND  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS7A20  
 
 
 
TPS7A20  
www.ti.com  
SBVS338E – MARCH 2020 – REVISED DECEMBER 2021  
7.3 Feature Description  
7.3.1 Low Output Noise  
Any internal noise at the TPS7A20 reference voltage is reduced by a first-order, low-pass RC filter before being  
passed to the output buffer stage. The low-pass RC filter has a –3-dB cut-off frequency of approximately 0.1 Hz.  
During start-up, the filter resistor is bypassed to reduce output rise time; the filter begins normal operation after  
the output voltage reaches the correct value.  
7.3.2 Smart Enable  
The enable (EN) input polarity is active high. The output voltage is enabled when the voltage of the enable input  
is greater than VEN(HI) and disabled when the enable input voltage is less than VEN(LOW). If independent control  
of the output voltage is not needed, connect EN to IN.  
This device has a smart enable circuit to reduce quiescent current. When the voltage on the enable pin is  
driven above VEN(HI), as listed in the Electrical Characteristics table, the device is enabled and the smart enable  
internal pulldown resistor (REN(PULLDOWN)) is disconnected. When the enable pin is floating, the REN(PULLDOWN) is  
connected and pulls the enable pin low to disable the device. The REN(PULLDOWN) value is listed in the Electrical  
Characteristics table.  
7.3.3 Dropout Voltage  
Dropout voltage (VDO) is defined as the input voltage minus the output voltage (VIN – VOUT) at the rated output  
current (IRATED), where the pass transistor is fully on. IRATED is the maximum IOUT listed in the Recommended  
Operating Conditions table. The pass transistor is in the ohmic or triode region of operation, and acts as a  
switch. The dropout voltage indirectly specifies a minimum input voltage greater than the nominal programmed  
output voltage at which the output voltage is expected to stay in regulation. If the input voltage falls to less than  
the value required to maintain output regulation, then the output voltage falls as well.  
For a CMOS regulator, the dropout voltage is determined by the drain-source on-state resistance (RDS(ON)) of the  
pass transistor. Therefore, if the linear regulator operates at less than the rated current, the dropout voltage for  
that current scales accordingly. The following equation calculates the RDS(ON) of the device.  
VDO  
RDS(ON)  
=
IRATED  
(1)  
7.3.4 Foldback Current Limit  
The device has an internal current limit circuit that protects the regulator during transient high-load current faults  
or shorting events. The current limit is a hybrid brickwall-foldback scheme. The current limit transitions from a  
brickwall scheme to a foldback scheme at the foldback voltage (VFOLDBACK). In a high-load current fault with  
the output voltage above VFOLDBACK, the brickwall scheme limits the output current to the current limit (ICL).  
When the voltage drops below VFOLDBACK, a foldback current limit activates that scales back the current as the  
output voltage approaches GND. When the output is shorted, the device supplies a typical current called the  
short-circuit current limit (ISC). ICL and ISC are listed in the Electrical Characteristics table.  
The output voltage is not regulated when the device is in current limit. When a current limit event occurs, the  
device begins to heat up because of the increase in power dissipation. When the device is in brickwall current  
limit, the pass transistor dissipates power [(VIN – VOUT) × ICL]. When the device output is shorted and the output  
is below VFOLDBACK, the pass transistor dissipates power [(VIN – VOUT) × ISC]. If thermal shutdown is triggered,  
the device turns off. After the device cools down, the internal thermal shutdown circuit turns the device back on.  
If the output current fault condition continues, the device cycles between current limit and thermal shutdown. For  
more information on current limits, see the Know Your Limits application report.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS7A20  
 
TPS7A20  
www.ti.com  
SBVS338E – MARCH 2020 – REVISED DECEMBER 2021  
Figure 7-1 shows a diagram of the foldback current limit.  
VOUT  
Brickwall  
VOUT(NOM)  
VFOLDBACK  
Foldback  
0 V  
IOUT  
IRATED  
0 mA  
ISC  
ICL  
Figure 7-1. Foldback Current Limit  
7.3.5 Undervoltage Lockout (UVLO)  
The device has an independent undervoltage lockout (UVLO) circuit that monitors the input voltage, allowing a  
controlled and consistent turn on and off of the output voltage. To prevent the device from turning off if the input  
drops during turn on, the UVLO has hysteresis as specified in the Electrical Characteristics table.  
7.3.6 Thermal Shutdown  
A thermal shutdown protection circuit disables the LDO when the junction temperature (TJ) of the pass transistor  
rises to TSD(shutdown) (typical). Thermal shutdown hysteresis assures that the device resets (turns on) when the  
temperature falls to TSD(reset) (typical).  
The thermal time-constant of the semiconductor die is fairly short, thus the device may cycle on and off  
when thermal shutdown is reached until power dissipation is reduced. Power dissipation during startup can  
be high from large VIN – VOUT voltage drops across the device or from high inrush currents charging large  
output capacitors. Under some conditions, the thermal shutdown protection disables the device before startup  
completes.  
For reliable operation, limit the junction temperature to the maximum listed in the Recommended Operating  
Conditions table. Operation above this maximum temperature causes the device to exceed its operational  
specifications. Although the internal protection circuitry of the device is designed to protect against thermal  
overload conditions, this circuitry is not intended to replace proper heat sinking. Continuously running the device  
into thermal shutdown or above the maximum recommended junction temperature reduces long-term reliability.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS7A20  
 
TPS7A20  
www.ti.com  
SBVS338E – MARCH 2020 – REVISED DECEMBER 2021  
7.3.7 Active Discharge  
An internal pulldown MOSFET connects a resistor from OUT to ground when the device is disabled to actively  
discharge the output capacitance. The active discharge circuit is activated by driving EN low or by the voltage on  
IN falling below the undervoltage lockout (UVLO) threshold.  
Do not rely on the active discharge circuit for discharging a large amount of output capacitance after the input  
supply has collapsed because reverse current can possibly flow from the output to the input. This reverse current  
flow can cause damage to the device. Limit reverse current to no more than 5% of the device rated current for a  
short period of time.  
7.4 Device Functional Modes  
7.4.1 Device Functional Mode Comparison  
The Device Functional Mode Comparison table shows the conditions that lead to the different modes of  
operation. See the Electrical Characteristics table for parameter values.  
Table 7-1. Device Functional Mode Comparison  
PARAMETER  
OPERATING MODE  
VIN  
VEN  
IOUT  
TJ  
Normal operation  
Dropout operation  
VIN > VOUT(nom) + VDO and VIN > VIN(min)  
VIN(min) < VIN < VOUT(nom) + VDO  
VEN > VEN(HI)  
VEN > VEN(HI)  
IOUT < IOUT(max)  
IOUT < IOUT(max)  
TJ < TSD(shutdown)  
TJ < TSD(shutdown)  
Disabled  
(any true condition  
disables the device)  
VIN < VUVLO  
VEN < VEN(LOW)  
Not applicable  
TJ > TSD(shutdown)  
7.4.2 Normal Operation  
The device regulates to the nominal output voltage when the following conditions are met:  
The input voltage is greater than the nominal output voltage plus the dropout voltage (VOUT(nom) + VDO)  
The output current is less than the current limit (IOUT < ICL)  
The device junction temperature is less than the thermal shutdown temperature (TJ < TSD  
)
The enable voltage has previously exceeded the enable rising threshold voltage and has not yet decreased  
to less than the enable falling threshold  
7.4.3 Dropout Operation  
If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other  
conditions are met for normal operation, the device operates in dropout mode. In this mode, the output voltage  
tracks the input voltage. During this mode, the transient performance of the device becomes significantly  
degraded because the pass transistor is in the ohmic or triode region, and acts as a switch. Line or load  
transients in dropout can result in large output-voltage deviations.  
When the device is in a steady dropout state (defined as when the device is in dropout, VIN < VOUT(NOM) + VDO  
,
directly after being in a normal regulation state, but not during startup), the pass transistor is driven into the  
ohmic or triode region. When the input voltage returns to a value greater than or equal to the nominal output  
voltage plus the dropout voltage (VOUT(NOM) + VDO), the output voltage can overshoot for a short period of time  
while the device pulls the pass transistor back into the linear region.  
7.4.4 Disabled  
The output of the LDO can be shut down by driving EN to less than VEN(LOW) (see the Electrical Characteristics  
table). When disabled, the pass transistor is turned off, internal circuits are shut down, and the output voltage is  
actively discharged to ground by an internal discharge circuit between OUT and ground.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS7A20  
 
 
TPS7A20  
www.ti.com  
SBVS338E – MARCH 2020 – REVISED DECEMBER 2021  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Recommended Capacitor Types  
The device is designed to be stable using low equivalent series resistance (ESR) ceramic capacitors at the input  
and output. Multilayer ceramic capacitors have become the industry standard for these types of applications and  
are recommended, but must be used with good judgment. Ceramic capacitors that employ X7R-, X5R-, and  
C0G-rated dielectric materials provide relatively good capacitive stability across temperature, whereas the use of  
Y5V-rated capacitors is discouraged because of large variations in capacitance.  
Regardless of the ceramic capacitor type selected, the effective capacitance varies with operating voltage and  
temperature. As a rule of thumb, expect the effective capacitance to decrease by as much as 50%. The input  
and output capacitors recommended in the Recommended Operating Conditions table account for an effective  
capacitance of approximately 50% of the nominal value.  
8.1.2 Input and Output Capacitor Requirements  
Although the LDO itself is stable without an input capacitor, good analog design practice is to connect a  
capacitor from IN to GND, with a value at least equal to the nominal value specified in the Recommended  
Operating Conditions table. The input capacitor counteracts reactive input sources and improves transient  
response, input ripple, and PSRR, and is recommended if the source impedance is greater than 0.5 Ω. When the  
source resistance and inductance are sufficiently high, especially in the presence of load transients, the overall  
system may be susceptible to instability (including ringing and sustained oscillation) and other performance  
degradation if there is insufficient capacitance between IN and GND. A capacitor with a value greater than  
the minimum may be necessary if large, fast-rise-time load or line transients are anticipated or if the device is  
located more than a few centimeters from the input power source.  
An output capacitor of an appropriate value helps ensure stability and improve dynamic performance. Use an  
output capacitor within the range specified in the Recommended Operating Conditions table.  
8.1.3 Load Transient Response  
The load-step transient response is the output voltage response by the LDO to a step in load current, whereby  
output voltage regulation is maintained. There are two key transitions during a load transient response: the  
transition from a light to a heavy load and the transition from a heavy to a light load. The regions shown in Figure  
8-1 are broken down as follows. Regions A, E, and H are where the output voltage is in steady-state.  
tAt  
tCt  
tDt  
tEt  
tGt  
tHt  
B
F
Figure 8-1. Load Transient Waveform  
During transitions from a light load to a heavy load, the:  
Initial voltage dip is a result of the depletion of the output capacitor charge and parasitic impedance to the  
output capacitor (region B)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS7A20  
 
 
 
TPS7A20  
www.ti.com  
SBVS338E – MARCH 2020 – REVISED DECEMBER 2021  
Recovery from the dip results from the LDO increasing its sourcing current, and leads to output voltage  
regulation (region C)  
During transitions from a heavy load to a light load, the:  
Initial voltage rise results from the LDO sourcing a large current, and leads to the output capacitor charge to  
increase (region F)  
Recovery from the rise results from the LDO decreasing its sourcing current in combination with the load  
discharging the output capacitor (region G)  
A larger output capacitance reduces the peaks during a load transient but slows down the response time of the  
device. A larger DC load also reduces the peaks because the amplitude of the transition is lowered and a higher  
current discharge path is provided for the output capacitor.  
8.1.4 Undervoltage Lockout (UVLO) Operation  
The UVLO circuit ensures that the device stays disabled before its input supply reaches the minimum  
operational voltage range, and ensures that the device shuts down when the input supply collapses. Figure  
8-2 shows the UVLO circuit response to various input voltage events. The diagram can be separated into the  
following parts:  
Region A: The device does not start until the input reaches the UVLO rising threshold.  
Region B: Normal operation, regulating device.  
Region C: Brownout event above the UVLO falling threshold (UVLO rising threshold – UVLO hysteresis). The  
output may fall out of regulation but the device remains enabled.  
Region D: Normal operation, regulating device.  
Region E: Brownout event below the UVLO falling threshold. The device is disabled in most cases and the  
output falls because of the load and active discharge circuit. The device is reenabled when the UVLO rising  
threshold is reached by the input voltage and a normal start-up follows.  
Region F: Normal operation followed by the input falling to the UVLO falling threshold.  
Region G: The device is disabled when the input voltage falls below the UVLO falling threshold to 0 V. The  
output falls because of the load and active discharge circuit.  
UVLO Rising Threshold  
UVLO Hysteresis  
VIN  
C
VOUT  
tAt  
tBt  
tDt  
tEt  
tFt  
tGt  
Figure 8-2. Typical UVLO Operation  
8.1.5 Power Dissipation (PD)  
Circuit reliability demands that proper consideration be given to device power dissipation, location of the circuit  
on the printed circuit board (PCB), and correct sizing of the thermal plane. The PCB area around the regulator  
must be as free as possible of other heat-generating devices that cause added thermal stresses.  
As a first-order approximation, power dissipation in the regulator depends on the input-to-output voltage  
difference and load conditions. Use Equation 2 to approximate PD:  
PD = (VIN – VOUT) × IOUT  
(2)  
Power dissipation can be minimized, and thus greater efficiency achieved, by proper selection of the system  
voltage rails. Proper selection allows the minimum input-to-output voltage differential to be obtained. The low  
dropout of the TPS7A20 allows for maximum efficiency across a wide range of output voltages.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS7A20  
 
 
TPS7A20  
www.ti.com  
SBVS338E – MARCH 2020 – REVISED DECEMBER 2021  
The main heat conduction path for the device is through the thermal pad on the package. As such, the thermal  
pad must be soldered to a copper pad area under the device. This pad area contains an array of plated vias that  
conduct heat to any inner plane areas or to a bottom-side copper plane.  
The maximum power dissipation determines the maximum allowable junction temperature (TJ) for the device.  
According to Equation 3, power dissipation and junction temperature are most often related by the junction-to-  
ambient thermal resistance (RθJA) of the combined PCB and device package and the temperature of the ambient  
air (TA). Equation 4 rearranges Equation 3 for output current.  
TJ = TA + (RθJA × PD)  
(3)  
(4)  
IOUT = (TJ – TA) / [RθJA × (VIN – VOUT)]  
Unfortunately, this thermal resistance (RθJA) is highly dependent on the heat-spreading capability built into the  
particular PCB design, and therefore varies according to the total copper area, copper weight, and location of  
the planes. The RθJA recorded in the Thermal Information table is determined by the JEDEC standard, PCB,  
and copper-spreading area, and is only used as a relative measure of package thermal performance. For a  
well-designed thermal layout, RθJA is actually the sum of the X2SON package junction-to-case (bottom) thermal  
resistance (RθJC(bot)) plus the thermal resistance contribution by the PCB copper.  
8.1.5.1 Estimating Junction Temperature  
The JEDEC standard now recommends the use of psi (Ψ) thermal metrics to estimate the junction temperatures  
of the LDO when in-circuit on a typical PCB board application. These metrics are not strictly speaking thermal  
resistances, but rather offer practical and relative means of estimating junction temperatures. These psi metrics  
are determined to be significantly independent of the copper-spreading area. The key thermal metrics (ΨJT and  
ΨJB) are used in accordance with Equation 5 and are given in the Thermal Information table.  
ΨJT : TJ = TT + ΨJT × PD and ΨJB : TJ = TB + ΨJB × PD  
(5)  
where:  
PD is the power dissipated as explained in Equation 2  
TT is the temperature at the center-top of the device package  
TB is the PCB surface temperature measured 1 mm from the device package and centered on the package  
edge  
8.1.5.2 Recommended Area for Continuous Operation  
The operational area of an LDO is limited by the dropout voltage, output current, junction temperature, and input  
voltage. The recommended area for continuous operation for a linear regulator is given in Figure 8-3 and can be  
separated into the following parts:  
Dropout voltage limits the minimum differential voltage between the input and the output (VIN – VOUT) at a  
given output current level. See the Dropout Operation section for more details.  
The rated output currents limits the maximum recommended output current level. Exceeding this rating  
causes the device to fall out of specification.  
The rated junction temperature limits the maximum junction temperature of the device. Exceeding this rating  
causes the device to fall out of specification and reduces long-term reliability.  
– The shape of the slope is given by Equation 4. The slope is nonlinear because the maximum-rated  
junction temperature of the LDO is controlled by the power dissipation across the LDO; thus when VIN  
VOUT increases the output current must decrease.  
The rated input voltage range governs both the minimum and maximum of VIN – VOUT.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS7A20  
 
 
 
TPS7A20  
www.ti.com  
SBVS338E – MARCH 2020 – REVISED DECEMBER 2021  
Figure 8-3 shows the recommended area of operation for this device on a JEDEC-standard high-K board with a  
RθJA as given in the Thermal Information table.  
Output current limited by  
dropout  
Rated output  
current  
Output current limited by thermals  
Limited by  
minimum VIN  
Limited by  
maximum VIN  
VIN œ VOUT (V)  
Figure 8-3. Region Description of Continuous Operation Regime  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS7A20  
 
TPS7A20  
www.ti.com  
SBVS338E – MARCH 2020 – REVISED DECEMBER 2021  
8.2 Typical Application  
Figure 8-4 shows the typical application circuit for the TPS7A20. Input and output capacitances may need to be  
increased above the 1 µF minimum for some applications.  
VOUT  
VIN  
OUTPUT  
1.0 µF  
INPUT  
1.0 µF  
TPS7A20  
VEN  
ENABLE  
GND  
GND  
SVA-30180501  
Figure 8-4. TPS7A20 Typical Application  
8.2.1 Design Requirements  
Table 8-1 summarizes the design requirements for Figure 8-4.  
Table 8-1. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
3.1 V to 3.6 V  
2.8 V  
Input voltage range  
Output voltage  
Output current  
200 mA  
Maximum ambient temperature  
85°C  
8.2.2 Detailed Design Procedure  
For this design example, the 2.8-V output version (TPS7A2028) is selected. A nominal 3.3-V input supply  
is assumed. A minimum 1.0-μF input capacitor is recommended to minimize the effect of resistance and  
inductance between the 3.3-V source and the LDO input. A minimum 1.0-μF output capacitor is also  
recommended for stability and good load transient response. The dropout voltage (VDO) is less than 140 mV  
maximum at a 2.8-V output voltage and 300-mA output current, so there are no dropout issues with a minimum  
input voltage of 3.0 V and a maximum output current of 200 mA.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS7A20  
 
 
 
TPS7A20  
www.ti.com  
SBVS338E – MARCH 2020 – REVISED DECEMBER 2021  
8.2.3 Application Curves  
4.5  
4
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IOUT  
200 mA  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
VIN / VEN  
VOUT  
-0.5  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
Time (us)  
10 20  
100  
1000  
10000 100000 1000000 1E+7  
Frequency (Hz)  
D064  
D065  
Figure 8-5. Start-Up  
Figure 8-6. PSRR  
9 Power Supply Recommendations  
This device is designed to operate from an input supply voltage range of 1.6 V to 6.0 V. The input supply must  
be well regulated and free of spurious noise. To ensure that the output voltage is well regulated and dynamic  
performance is optimum, the input supply must be at least VOUT(nom) + 0.3 V or 1.6 V, whichever is greater.  
TI highly recommends using a 1-µF or greater input capacitor to reduce the impedance of the input supply,  
especially during transients.  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS7A20  
 
TPS7A20  
www.ti.com  
SBVS338E – MARCH 2020 – REVISED DECEMBER 2021  
10 Layout  
10.1 Layout Guidelines  
Place input and output capacitors as close to the device as possible.  
Use copper planes for device connections to optimize thermal performance.  
Place thermal vias around the device to distribute the heat.  
Do not place a thermal via directly beneath the thermal pad of the DQN package. A via can wick solder or  
solder paste away from the thermal pad joint during the soldering process, leading to a compromised solder  
joint on the thermal pad.  
10.2 Layout Examples  
V
V
OUT  
IN  
C
IN  
OUT  
5
C
1
2
3
OUT  
IN  
GND  
GND  
GND  
EN  
Enable  
4
N/C  
Figure 10-1. DBV Package (SOT-23) Typical Layout  
TPS7A20  
VOUT  
VIN  
1
2
4
3
COUT  
CIN  
Power Ground  
VEN  
Figure 10-2. DQN Package (X2SON) Typical Layout  
VIN  
VOUT  
TPS7A20  
A1  
A2  
B2  
COUT  
CIN  
B1  
Power Ground  
VEN  
Figure 10-3. YCJ and YCK Package (DSBGA) Typical Layout  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS7A20  
 
 
 
TPS7A20  
www.ti.com  
SBVS338E – MARCH 2020 – REVISED DECEMBER 2021  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Device Nomenclature  
Table 11-1. Device Nomenclature  
PRODUCT (1) (2)  
VOUT  
xx(x) is the nominal output voltage. For output voltages with a resolution of 100 mV, two digits are used  
in the ordering number; otherwise, three digits are used (for example, 28 = 2.8 V; 125 = 1.25 V).  
P indicates an active output discharge feature. All members of the TPS7A20 family actively discharge  
the output when the device is disabled.  
TPS7A20xx(x)Pyyyz  
yyy is the package designator.  
z is the package quantity. R is for reel (3000 pieces for DQN and DBV; 12000 pieces for YCJ and YCK).  
(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or visit the  
device product folder on www.ti.com.  
(2) Output voltages from 0.8 V to 5.5 V in 25-mV increments are available. Contact the factory for details and availability.  
11.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
11.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS7A20  
 
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Dec-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PPS7A2018PYCJR  
PPS7A2022PYCKR  
PPS7A20285PYCKR  
PPS7A2028PYCJR  
PPS7A2030PYCJR  
TPS7A2009PDBVR  
TPS7A2009PDQNR  
TPS7A20105PDQNR  
TPS7A2012PDBVR  
TPS7A2012PDQNR  
TPS7A2015PDBVR  
TPS7A2015PDQNR  
TPS7A201825PDQNR  
TPS7A20185PDBVR  
TPS7A20185PDQNR  
TPS7A2018PDBVR  
TPS7A2018PDQNR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
SOT-23  
X2SON  
X2SON  
SOT-23  
X2SON  
SOT-23  
X2SON  
X2SON  
SOT-23  
X2SON  
SOT-23  
X2SON  
YCJ  
YCK  
YCK  
YCJ  
4
4
4
4
4
5
4
4
5
4
5
4
4
5
4
5
4
12000  
12000  
12000  
12000  
12000  
TBD  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
YCJ  
Call TI  
Call TI  
DBV  
DQN  
DQN  
DBV  
DQN  
DBV  
DQN  
DQN  
DBV  
DQN  
DBV  
DQN  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU | SN  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
2GBF  
KT  
NIPDAU  
KS  
NIPDAU | SN  
NIPDAU  
2ATF  
JC  
NIPDAU | SN  
2DTF  
JD  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
IQ  
3000 RoHS & Green  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
3000 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
NIPDAU | SN  
Level-1-260C-UNLIM  
2CBF  
JE  
2AUF  
JF  
TPS7A2018PYCKR  
TPS7A2022PYCKR  
PREVIEW  
ACTIVE  
DSBGA  
DSBGA  
YCK  
YCK  
4
4
12000 RoHS & Green  
12000 RoHS & Green  
SNAGCU  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
D
K
TPS7A2024PDBVR  
ACTIVE  
SOT-23  
DBV  
5
3000 RoHS & Green  
NIPDAU | SN  
Level-1-260C-UNLIM  
-40 to 125  
2CCF  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Dec-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7A2025PDBVR  
TPS7A2025PDQNR  
TPS7A2027PDQNR  
TPS7A20285PDBVR  
TPS7A20285PDQNR  
TPS7A20285PYCKR  
TPS7A2028PDBVR  
TPS7A2028PDQNR  
TPS7A2029PDQNR  
TPS7A2030PDBVR  
TPS7A2030PDQNR  
TPS7A2031PDBVR  
TPS7A2032PDBVR  
TPS7A2033PDBVR  
TPS7A2033PDQNR  
TPS7A2033PYCJR  
TPS7A2036PDBVR  
TPS7A2036PDQNR  
TPS7A2040PDQNR  
TPS7A2042PDBVR  
TPS7A2042PDQNR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
X2SON  
X2SON  
SOT-23  
X2SON  
DSBGA  
SOT-23  
X2SON  
X2SON  
SOT-23  
X2SON  
SOT-23  
SOT-23  
SOT-23  
X2SON  
DSBGA  
SOT-23  
X2SON  
X2SON  
SOT-23  
X2SON  
DBV  
DQN  
DQN  
DBV  
DQN  
YCK  
DBV  
DQN  
DQN  
DBV  
DQN  
DBV  
DBV  
DBV  
DQN  
YCJ  
5
4
4
5
4
4
5
4
4
5
4
5
5
5
4
4
5
4
4
5
4
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
12000 RoHS & Green  
3000 RoHS & Green  
NIPDAU | SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
2AVF  
JG  
NIPDAU  
NIPDAU  
KO  
NIPDAU | SN  
NIPDAU  
2GCF  
KN  
SNAGCU  
P
NIPDAU | SN  
2AWF  
JH  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
JI  
NIPDAU | SN  
NIPDAU  
2AXF  
JJ  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
2GDF  
2GEF  
2AZF  
JA  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
12000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
SNAGCU  
NIPDAU | SN  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
O
DBV  
DQN  
DQN  
DBV  
DQN  
2GIF  
KP  
NIPDAU  
KQ  
NIPDAU | SN  
NIPDAU  
2GFF  
KV  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Dec-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7A2045PDBVR  
TPS7A2045PDQNR  
TPS7A2050PDBVR  
TPS7A2050PDQNR  
TPS7A2055PDBVR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
X2SON  
SOT-23  
X2SON  
SOT-23  
DBV  
DQN  
DBV  
DQN  
DBV  
5
4
5
4
5
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU | SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
2GGF  
JB  
NIPDAU  
NIPDAU | SN  
NIPDAU  
2B1F  
KR  
NIPDAU | SN  
2GHF  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Dec-2021  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 4  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Dec-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS7A2009PDBVR  
TPS7A2009PDBVR  
TPS7A2009PDQNR  
TPS7A20105PDQNR  
TPS7A2012PDBVR  
TPS7A2012PDBVR  
TPS7A2012PDQNR  
TPS7A2015PDBVR  
TPS7A2015PDBVR  
TPS7A2015PDQNR  
TPS7A2015PDQNR  
TPS7A201825PDQNR  
TPS7A201825PDQNR  
TPS7A20185PDBVR  
TPS7A20185PDBVR  
TPS7A20185PDQNR  
TPS7A20185PDQNR  
TPS7A2018PDBVR  
SOT-23  
SOT-23  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
SOT-23  
SOT-23  
X2SON  
X2SON  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
X2SON  
SOT-23  
DBV  
DBV  
DQN  
DQN  
DBV  
DBV  
DQN  
DBV  
DBV  
DQN  
DQN  
DQN  
DQN  
DBV  
DBV  
DQN  
DQN  
DBV  
5
5
4
4
5
5
4
5
5
4
4
4
4
5
5
4
4
5
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
178.0  
180.0  
180.0  
180.0  
178.0  
180.0  
180.0  
180.0  
178.0  
180.0  
178.0  
180.0  
178.0  
180.0  
178.0  
178.0  
180.0  
180.0  
9.0  
8.4  
9.5  
9.5  
9.0  
8.4  
9.5  
8.4  
9.0  
9.5  
8.4  
9.5  
8.4  
8.4  
9.0  
8.4  
9.5  
8.4  
3.3  
3.2  
3.2  
3.2  
1.4  
1.4  
0.5  
0.5  
1.4  
1.4  
0.5  
1.4  
1.4  
0.5  
0.53  
0.5  
0.53  
1.4  
1.4  
0.53  
0.5  
1.4  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q2  
Q2  
Q3  
Q3  
Q2  
Q3  
Q3  
Q2  
Q2  
Q2  
Q2  
Q3  
Q3  
Q2  
Q2  
Q3  
1.16  
1.16  
3.3  
1.16  
1.16  
3.2  
3.2  
3.2  
1.16  
3.2  
1.16  
3.2  
3.3  
3.2  
1.16  
1.13  
1.16  
1.13  
3.2  
1.16  
1.13  
1.16  
1.13  
3.2  
3.3  
3.2  
1.13  
1.16  
3.2  
1.13  
1.16  
3.2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Dec-2021  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS7A2018PDBVR  
TPS7A2018PDQNR  
TPS7A2018PDQNR  
TPS7A2022PYCKR  
TPS7A2024PDBVR  
TPS7A2024PDBVR  
TPS7A2025PDBVR  
TPS7A2025PDBVR  
TPS7A2025PDQNR  
TPS7A2027PDQNR  
TPS7A20285PDBVR  
TPS7A20285PDBVR  
TPS7A20285PDQNR  
TPS7A20285PYCKR  
TPS7A2028PDBVR  
TPS7A2028PDBVR  
TPS7A2028PDQNR  
TPS7A2028PDQNR  
TPS7A2029PDQNR  
TPS7A2030PDBVR  
TPS7A2030PDBVR  
TPS7A2030PDQNR  
TPS7A2031PDBVR  
TPS7A2031PDBVR  
TPS7A2032PDBVR  
TPS7A2032PDBVR  
TPS7A2033PDBVR  
TPS7A2033PDBVR  
TPS7A2033PDQNR  
TPS7A2033PDQNR  
TPS7A2033PYCJR  
TPS7A2036PDBVR  
TPS7A2036PDBVR  
TPS7A2036PDQNR  
TPS7A2040PDQNR  
TPS7A2042PDBVR  
TPS7A2042PDBVR  
TPS7A2042PDQNR  
TPS7A2045PDBVR  
TPS7A2045PDBVR  
TPS7A2045PDQNR  
TPS7A2050PDBVR  
TPS7A2050PDBVR  
SOT-23  
X2SON  
X2SON  
DSBGA  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
DSBGA  
SOT-23  
SOT-23  
X2SON  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
X2SON  
X2SON  
DSBGA  
SOT-23  
SOT-23  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
SOT-23  
SOT-23  
X2SON  
SOT-23  
SOT-23  
DBV  
DQN  
DQN  
YCK  
DBV  
DBV  
DBV  
DBV  
DQN  
DQN  
DBV  
DBV  
DQN  
YCK  
DBV  
DBV  
DQN  
DQN  
DQN  
DBV  
DBV  
DQN  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DQN  
DQN  
YCJ  
5
4
4
4
5
5
5
5
4
4
5
5
4
4
5
5
4
4
4
5
5
4
5
5
5
5
5
5
4
4
4
5
5
4
4
5
5
4
5
5
4
5
5
3000  
3000  
3000  
12000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
12000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
12000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
178.0  
178.0  
180.0  
180.0  
180.0  
178.0  
178.0  
180.0  
180.0  
180.0  
178.0  
180.0  
180.0  
180.0  
180.0  
178.0  
178.0  
180.0  
180.0  
180.0  
178.0  
180.0  
180.0  
178.0  
178.0  
180.0  
178.0  
180.0  
180.0  
178.0  
180.0  
178.0  
180.0  
180.0  
180.0  
180.0  
178.0  
180.0  
178.0  
180.0  
180.0  
180.0  
178.0  
9.0  
8.4  
9.5  
8.4  
8.4  
9.0  
9.0  
8.4  
9.5  
9.5  
9.0  
8.4  
9.5  
8.4  
8.4  
9.0  
8.4  
9.5  
9.5  
8.4  
9.0  
9.5  
8.4  
9.0  
9.0  
8.4  
9.0  
8.4  
9.5  
8.4  
8.4  
9.0  
8.4  
9.5  
9.5  
8.4  
9.0  
9.5  
9.0  
8.4  
9.5  
8.4  
9.0  
3.3  
1.13  
1.16  
0.71  
3.2  
3.2  
1.13  
1.16  
0.71  
3.2  
1.4  
0.53  
0.5  
0.42  
1.4  
1.4  
1.4  
1.4  
0.5  
0.5  
1.4  
1.4  
0.5  
0.42  
1.4  
1.4  
0.53  
0.5  
0.5  
1.4  
1.4  
0.5  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
0.5  
0.53  
0.42  
1.4  
1.4  
0.5  
0.5  
1.4  
1.4  
0.5  
1.4  
1.4  
0.5  
1.4  
1.4  
4.0  
4.0  
4.0  
2.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
2.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
2.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q2  
Q2  
Q1  
Q3  
Q3  
Q3  
Q3  
Q2  
Q2  
Q3  
Q3  
Q2  
Q1  
Q3  
Q3  
Q2  
Q2  
Q2  
Q3  
Q3  
Q2  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q2  
Q2  
Q1  
Q3  
Q3  
Q2  
Q2  
Q3  
Q3  
Q2  
Q3  
Q3  
Q2  
Q3  
Q3  
3.3  
3.2  
3.3  
3.2  
3.2  
3.2  
1.16  
1.16  
3.3  
1.16  
1.16  
3.2  
3.2  
3.2  
1.16  
0.71  
3.2  
1.16  
0.71  
3.2  
3.3  
3.2  
1.13  
1.16  
1.16  
3.2  
1.13  
1.16  
1.16  
3.2  
3.3  
3.2  
1.16  
3.2  
1.16  
3.2  
3.3  
3.2  
3.3  
3.2  
3.2  
3.2  
3.3  
3.2  
3.2  
3.2  
1.16  
1.13  
0.71  
3.3  
1.16  
1.13  
0.71  
3.2  
DBV  
DBV  
DQN  
DQN  
DBV  
DBV  
DQN  
DBV  
DBV  
DQN  
DBV  
DBV  
3.2  
3.2  
1.16  
1.16  
3.2  
1.16  
1.16  
3.2  
3.3  
3.2  
1.16  
3.3  
1.16  
3.2  
3.2  
3.2  
1.16  
3.2  
1.16  
3.2  
3.3  
3.2  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Dec-2021  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS7A2050PDQNR  
TPS7A2055PDBVR  
TPS7A2055PDBVR  
X2SON  
SOT-23  
SOT-23  
DQN  
DBV  
DBV  
4
5
5
3000  
3000  
3000  
180.0  
178.0  
180.0  
9.5  
9.0  
8.4  
1.16  
3.3  
1.16  
3.2  
0.5  
1.4  
1.4  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
Q2  
Q3  
Q3  
3.2  
3.2  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS7A2009PDBVR  
TPS7A2009PDBVR  
TPS7A2009PDQNR  
TPS7A20105PDQNR  
TPS7A2012PDBVR  
TPS7A2012PDBVR  
TPS7A2012PDQNR  
TPS7A2015PDBVR  
TPS7A2015PDBVR  
TPS7A2015PDQNR  
TPS7A2015PDQNR  
TPS7A201825PDQNR  
TPS7A201825PDQNR  
TPS7A20185PDBVR  
SOT-23  
SOT-23  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
SOT-23  
SOT-23  
X2SON  
X2SON  
X2SON  
X2SON  
SOT-23  
DBV  
DBV  
DQN  
DQN  
DBV  
DBV  
DQN  
DBV  
DBV  
DQN  
DQN  
DQN  
DQN  
DBV  
5
5
4
4
5
5
4
5
5
4
4
4
4
5
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
180.0  
210.0  
184.0  
184.0  
180.0  
210.0  
184.0  
210.0  
180.0  
184.0  
205.0  
184.0  
205.0  
210.0  
180.0  
185.0  
184.0  
184.0  
180.0  
185.0  
184.0  
185.0  
180.0  
184.0  
200.0  
184.0  
200.0  
185.0  
18.0  
35.0  
19.0  
19.0  
18.0  
35.0  
19.0  
35.0  
18.0  
19.0  
33.0  
19.0  
33.0  
35.0  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Dec-2021  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS7A20185PDBVR  
TPS7A20185PDQNR  
TPS7A20185PDQNR  
TPS7A2018PDBVR  
TPS7A2018PDBVR  
TPS7A2018PDQNR  
TPS7A2018PDQNR  
TPS7A2022PYCKR  
TPS7A2024PDBVR  
TPS7A2024PDBVR  
TPS7A2025PDBVR  
TPS7A2025PDBVR  
TPS7A2025PDQNR  
TPS7A2027PDQNR  
TPS7A20285PDBVR  
TPS7A20285PDBVR  
TPS7A20285PDQNR  
TPS7A20285PYCKR  
TPS7A2028PDBVR  
TPS7A2028PDBVR  
TPS7A2028PDQNR  
TPS7A2028PDQNR  
TPS7A2029PDQNR  
TPS7A2030PDBVR  
TPS7A2030PDBVR  
TPS7A2030PDQNR  
TPS7A2031PDBVR  
TPS7A2031PDBVR  
TPS7A2032PDBVR  
TPS7A2032PDBVR  
TPS7A2033PDBVR  
TPS7A2033PDBVR  
TPS7A2033PDQNR  
TPS7A2033PDQNR  
TPS7A2033PYCJR  
TPS7A2036PDBVR  
TPS7A2036PDBVR  
TPS7A2036PDQNR  
TPS7A2040PDQNR  
TPS7A2042PDBVR  
TPS7A2042PDBVR  
TPS7A2042PDQNR  
TPS7A2045PDBVR  
TPS7A2045PDBVR  
SOT-23  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
X2SON  
DSBGA  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
DSBGA  
SOT-23  
SOT-23  
X2SON  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
X2SON  
X2SON  
DSBGA  
SOT-23  
SOT-23  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
SOT-23  
SOT-23  
DBV  
DQN  
DQN  
DBV  
DBV  
DQN  
DQN  
YCK  
DBV  
DBV  
DBV  
DBV  
DQN  
DQN  
DBV  
DBV  
DQN  
YCK  
DBV  
DBV  
DQN  
DQN  
DQN  
DBV  
DBV  
DQN  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DQN  
DQN  
YCJ  
5
4
4
5
5
4
4
4
5
5
5
5
4
4
5
5
4
4
5
5
4
4
4
5
5
4
5
5
5
5
5
5
4
4
4
5
5
4
4
5
5
4
5
5
3000  
3000  
3000  
3000  
3000  
3000  
3000  
12000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
12000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
12000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
180.0  
205.0  
184.0  
210.0  
180.0  
205.0  
184.0  
182.0  
210.0  
180.0  
180.0  
210.0  
184.0  
184.0  
180.0  
210.0  
184.0  
182.0  
210.0  
180.0  
205.0  
184.0  
184.0  
210.0  
180.0  
184.0  
210.0  
180.0  
180.0  
210.0  
180.0  
210.0  
184.0  
205.0  
182.0  
180.0  
210.0  
184.0  
184.0  
210.0  
180.0  
184.0  
180.0  
210.0  
180.0  
200.0  
184.0  
185.0  
180.0  
200.0  
184.0  
182.0  
185.0  
180.0  
180.0  
185.0  
184.0  
184.0  
180.0  
185.0  
184.0  
182.0  
185.0  
180.0  
200.0  
184.0  
184.0  
185.0  
180.0  
184.0  
185.0  
180.0  
180.0  
185.0  
180.0  
185.0  
184.0  
200.0  
182.0  
180.0  
185.0  
184.0  
184.0  
185.0  
180.0  
184.0  
180.0  
185.0  
18.0  
33.0  
19.0  
35.0  
18.0  
33.0  
19.0  
20.0  
35.0  
18.0  
18.0  
35.0  
19.0  
19.0  
18.0  
35.0  
19.0  
20.0  
35.0  
18.0  
33.0  
19.0  
19.0  
35.0  
18.0  
19.0  
35.0  
18.0  
18.0  
35.0  
18.0  
35.0  
19.0  
33.0  
20.0  
18.0  
35.0  
19.0  
19.0  
35.0  
18.0  
19.0  
18.0  
35.0  
DBV  
DBV  
DQN  
DQN  
DBV  
DBV  
DQN  
DBV  
DBV  
Pack Materials-Page 4  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Dec-2021  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS7A2045PDQNR  
TPS7A2050PDBVR  
TPS7A2050PDBVR  
TPS7A2050PDQNR  
TPS7A2055PDBVR  
TPS7A2055PDBVR  
X2SON  
SOT-23  
SOT-23  
X2SON  
SOT-23  
SOT-23  
DQN  
DBV  
DBV  
DQN  
DBV  
DBV  
4
5
5
4
5
5
3000  
3000  
3000  
3000  
3000  
3000  
184.0  
210.0  
180.0  
184.0  
180.0  
210.0  
184.0  
185.0  
180.0  
184.0  
180.0  
185.0  
19.0  
35.0  
18.0  
19.0  
18.0  
35.0  
Pack Materials-Page 5  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
2X 0.95  
1.9  
3.05  
2.75  
1.9  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/F 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/F 06/2021  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/F 06/2021  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
X2SON - 0.4 mm max height  
DQN0004A  
PLASTIC SMALL OUTLINE - NO LEAD  
1.05  
0.95  
A
B
1
1.05  
0.95  
PIN 1  
INDEX AREA  
C
0.4 MAX  
SEATING PLANE  
0.08  
NOTE 6  
+0.12  
-0.1  
0.05  
0.00  
0.48  
(0.05) TYP  
NOTE 6  
2
1
3
EXPOSED  
THERMAL PAD  
5
2X 0.65  
(0.07) TYP  
NOTE 5  
4
0.28  
PIN 1 ID  
(OPTIONAL)  
NOTE 4  
4X  
0.15  
(0.11)  
0.3  
0.2  
0.1  
C A B  
0.05  
C
0.30  
0.15  
3X  
4215302/E 12/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
4. Features may not exist. Recommend use of pin 1 marking on top of package for orientation purposes.  
5. Shape of exposed side leads may differ.  
6. Number and location of exposed tie bars may vary.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
X2SON - 0.4 mm max height  
DQN0004A  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.86)  
SYMM  
SEE DETAIL  
4X  
4X (0.36)  
(0.03)  
4
4X (0.21)  
1
5
SYMM  
(0.65)  
4X (0.18)  
2
3
(
0.48)  
(0.22) TYP  
EXPOSED METAL  
CLEARANCE  
LAND PATTERN EXAMPLE  
SCALE: 40X  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAIL  
4215302/E 12/2016  
NOTES: (continued)  
7. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271)  
.
8. If any vias are implemented, it is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
X2SON - 0.4 mm max height  
DQN0004A  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
SYMM  
4X (0.4)  
4X (0.03)  
4
1
4X (0.21)  
5
SYMM  
(0.65)  
SOLDER MASK  
EDGE  
4X (0.22)  
2
3
(
0.45)  
4X (0.235)  
SOLDER PASTE EXAMPLE  
BASED ON 0.075 - 0.1mm THICK STENCIL  
EXPOSED PAD  
88% PRINTED SOLDER COVERAGE BY AREA  
SCALE: 60X  
4215302/E 12/2016  
NOTES: (continued)  
9. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

TPS7A20285PYCKR

TPS7A20 300-mA, Ultra-Low-Noise, Low-IQ, High PSRR LDO

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A2028PDBVR

TPS7A20 300-mA, Ultra-Low-Noise, Low-IQ, High PSRR LDO

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A2028PDQNR

具有高 PSRR 的 300mA、超低噪声、低 IQ、低压降 (LDO) 线性稳压器 | DQN | 4 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A2028PDQNRM3

具有高 PSRR 的 300mA、超低噪声、低 IQ、低压降 (LDO) 线性稳压器 | DQN | 4 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A2028PYCJR

具有高 PSRR 的 300mA、超低噪声、低 IQ、低压降 (LDO) 线性稳压器 | YCJ | 4 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A2028PYCKR

具有高 PSRR 的 300mA、超低噪声、低 IQ、低压降 (LDO) 线性稳压器 | YCK | 4 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A2029PDQNR

TPS7A20 300-mA, Ultra-Low-Noise, Low-IQ, High PSRR LDO

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A2030PDBVR

TPS7A20 300-mA, Ultra-Low-Noise, Low-IQ, High PSRR LDO

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A2030PDQNR

TPS7A20 300-mA, Ultra-Low-Noise, Low-IQ, High PSRR LDO

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A2031PDBVR

TPS7A20 300-mA, Ultra-Low-Noise, Low-IQ, High PSRR LDO

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A2032PDBVR

TPS7A20 300-mA, Ultra-Low-Noise, Low-IQ, High PSRR LDO

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A2033PDBVR

TPS7A20 300-mA, Ultra-Low-Noise, Low-IQ, High PSRR LDO

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI