TPS7A26 [TI]

具有电源正常指示功能的 500mA、18V、超低 IQ、高精度、可调节低压降稳压器;
TPS7A26
型号: TPS7A26
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有电源正常指示功能的 500mA、18V、超低 IQ、高精度、可调节低压降稳压器

稳压器
文件: 总33页 (文件大小:3477K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS7A26  
ZHCSHP4B DECEMBER 2018REVISED OCTOBER 2019  
具有电源正常状态指示功能的 TPS7A26 500mA18V、超低 IQ、低压降线  
性稳压器  
1 特性  
3 说明  
1
超低 IQ2.0µA  
TPS7A26 低压降 (LDO) 线性稳压器支持 2.4V 18V  
输入电压范围,并具有极低的静态电流 (IQ)。这些 特  
性 能更好地帮助现代电器满足日益严苛的能源要求,  
并有助于延长便携式电源解决方案的电池寿命。  
输入电压:2.4V 18V  
可用输出电压选项:  
固定电压:1.25V 5.5V  
可调节:1.24V 17.4V  
TPS7A26 有固定电压和可调节电压两种版本可供选  
用。为了获得更大的灵活性或更高的输出电压,可调节  
电压版本使用反馈电阻器将输出电压从 1.24V 设置到  
17.4V。两种版本都具有 1% 的输出调节精度,可对微  
控制器 (MCU) 基准电压进行精密调节。  
在温度范围内的精度为 1%  
低压降:电流 500mA 时为 590mV(最大值)  
开漏电源正常状态输出  
主动过冲下拉保护  
热关断保护和过流保护  
凭借开漏电源正常状态 (PG) 输出,该器件可为 MCU  
提供复位,或者与其他开漏 PG 进行线或 (wire-OR) 和  
电平转换,从而提供系统范围的 PG 或复位。  
工作结温范围:–40°C +125°C  
1µF 输出电容器一起工作时保持稳定  
封装:6 引脚 WSON  
在电流为 500mA 时,TPS7A26 LDO 拥有小于  
590mV 的最大压降,因此它比标准线性稳压器的工作  
效率更高。该最大压降电压使得器件可从 5.7V 输入电  
(VIN)  
2 应用  
家庭和楼宇自动化  
多电池移动电源  
智能电网和计量  
便携式电动工具  
电机驱动器  
获得 5.0V 输出电压 (VOUT),实现 87.7% 的效率。  
对于低功耗 应用,请考虑使用 TPS7A25。  
器件信息(1)  
白色家电  
便携式电器  
器件型号  
TPS7A26  
封装  
WSON (6)  
封装尺寸(标称值)  
2.00mm × 2.00mm  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的封装选项附  
录。  
典型应用电路  
VPG  
PG  
RPG  
OUT  
IN  
VIN  
VOUT  
TPS7A26  
R1  
COUT  
CIN  
EN  
FB  
GND  
R2  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBVS290  
 
 
 
 
 
 
 
 
TPS7A26  
ZHCSHP4B DECEMBER 2018REVISED OCTOBER 2019  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
7.2 Functional Block Diagram ....................................... 12  
7.3 Feature Description................................................. 13  
7.4 Device Functional Modes........................................ 16  
8
9
Application and Implementation ........................ 17  
8.1 Application Information............................................ 17  
8.2 Typical Application .................................................. 20  
Power Supply Recommendations...................... 23  
10 Layout................................................................... 23  
10.1 Layout Guidelines ................................................. 23  
10.2 Layout Examples................................................... 23  
11 器件和文档支持 ..................................................... 24  
11.1 器件支持................................................................ 24  
11.2 文档支持................................................................ 24  
11.3 接收文档更新通知 ................................................. 24  
11.4 社区资源................................................................ 24  
11.5 ....................................................................... 24  
11.6 静电放电警告......................................................... 24  
11.7 Glossary................................................................ 24  
12 机械、封装和可订购信息....................................... 24  
7
4 修订历史记录  
Changes from Revision A (March 2019) to Revision B  
Page  
已添加 在文档中添加了固定电压版本 ..................................................................................................................................... 1  
已更改 将可调节电压版本输出电压从 0.24V 17.45V 更改为 1.24V 17.4V.................................................................... 1  
已删除 删除了固定电压版本 说明 ,目标位置说明 部分......................................................................................................... 1  
已添加 添加了 TPS7A25 参考,目标位置:说明 部分 ........................................................................................................... 1  
已添加 Active to Overshoot Pulldown Circuitry title ............................................................................................................. 15  
Changes from Original (December 2019) to Revision A  
Page  
已更改 将状态从预告信息更改为生产数据” ......................................................................................................................... 1  
2
Copyright © 2018–2019, Texas Instruments Incorporated  
 
TPS7A26  
www.ti.com.cn  
ZHCSHP4B DECEMBER 2018REVISED OCTOBER 2019  
5 Pin Configuration and Functions  
TPS7A26: DRV Package (Adjustable)  
6-Pin WSON  
TPS7A26: DRV Package (Fixed)  
6-Pin WSON  
Top View  
Top View  
OUT  
FB  
1
2
3
6
5
4
IN  
OUT  
NC  
1
2
3
6
5
4
IN  
Thermal  
Pad  
Thermal  
Pad  
GND  
EN  
GND  
EN  
PG  
PG  
Not to scale  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
DRV  
(Adjustable)  
DRV  
(Fixed)  
NAME  
Enable pin. Drive EN greater than VEN(HI) to enable the regulator. Drive EN  
less than VEN(LOW) to put the regulator into low-current shutdown. Do not float  
this pin. If not used, connect EN to IN.  
EN  
FB  
4
4
Input  
Feedback pin. Input to the control-loop error amplifier. This pin is used to set  
the output voltage of the device with the use of external resistors. For  
adjustable-voltage version devices only.  
2
5
5
Input  
GND  
IN  
Ground pin.  
Input pin. For best transient response and to minimize input impedance, use  
the recommended value or larger capacitor from IN to ground as listed in the  
Recommended Operating Conditions table. Place the input capacitor as  
close to the IN and GND pins of the device as possible.  
6
6
2
Input  
No internal connection. For fixed-voltage version devices only. Ths pin can  
be floated but the device has better thermal performance with this pin tied to  
GND.  
NC  
Output pin. A capacitor is required from OUT to ground for stability. For best  
transient response, use the nominal recommended value or larger capacitor  
from OUT to ground. Follow the recommended capacitor value as listed in  
the Recommended Operating Conditions table. Place the output capacitor as  
close to the OUT and GND pins of the device as possible.  
OUT  
1
1
Output  
Power-good pin; open-collector output. Pullup this pin externally to the OUT  
pin or another voltage rail. The PG pin goes high when VOUT > VIT(PG,RISING)  
as discussed in the Electrical Characteristics table. The PG pin is driven low  
when VOUT < VIT(PG,FALLING), as discussed in the Electrical Characteristics  
table. Ths pin can be floated but the device has better thermal performance  
with this pin tied to GND.  
,
PG  
3
3
Output  
Exposed pad of the package. Connect this pad to ground or leave floating.  
Connect the thermal pad to a large-area ground plane for best thermal  
performance.  
Thermal pad  
Pad  
Pad  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
TPS7A26  
ZHCSHP4B DECEMBER 2018REVISED OCTOBER 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
MAX  
20  
UNIT  
VIN  
(3)  
VOUT  
–0.3  
VIN + 0.3  
5.5  
Voltage(2)  
VFB  
–0.3  
V
VEN  
–0.3  
20  
VPG  
–0.3  
20  
Current  
Maximum output  
Operating junction, TJ  
Storage, Tstg  
Internally limited  
–50  
A
150  
150  
Temperature  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages with respect to GND.  
(3) VIN + 0.3 V or 20 V (whichever is smaller).  
6.2 ESD Ratings  
VALUE  
±1500  
±1000  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 2-kV HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 500-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
2.4  
1.24  
1.25  
0
NOM  
MAX  
UNIT  
VIN  
Input voltage  
18  
18-VDO  
5.5  
V
V
VOUT  
VOUT  
IOUT  
VEN  
Output voltage (adjustable version)  
Output voltage (fixed version)  
Output current  
V
500  
mA  
V
Enable voltage  
0
18  
(1)  
VPG  
Power-good voltage  
Input capacitor  
0
18  
V
(2)  
CIN  
COUT  
TJ  
1
μF  
μF  
°C  
(2)  
Output capacitor  
1
2.2  
100  
125  
Operating junction temperature  
–40  
(1) Select pullup resistor to limit PG pin sink current when PG output is driven low. See Power Good section for details.  
(2) All capacitor values are assumed to derate to 50% of the nominal capacitor value.  
6.4 Thermal Information  
TPS7A26  
THERMAL METRIC(1)  
DRV (WSON)  
6 PINS  
73.3  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
90.6  
38.3  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
3.7  
ΨJB  
38.4  
RθJC(bot)  
14.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
TPS7A26  
www.ti.com.cn  
ZHCSHP4B DECEMBER 2018REVISED OCTOBER 2019  
6.5 Electrical Characteristics  
specified at TJ = –40°C to +125°C, VIN = VOUT(nom) + 0.8 V or VIN = 2.4 V (whichever is greater), FB tied to OUT, IOUT = 1 mA,  
VEN = 2 V, and CIN = 1 μF, COUT = 2.2 μF (unless otherwise noted); typical values are at TJ = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
2.15  
70  
MAX  
UNIT  
V
VUVLO(RISING)  
VUVLO(HYS)  
VUVLO(FALLING)  
VFB  
UVLO threshold rising  
UVLO hysteresis  
VIN rising  
VIN falling  
1.95  
2.35  
mV  
V
UVLO threshold falling  
Feedback voltage  
Output voltage accuracy  
Output voltage  
1.85  
2.09  
1.24  
1.24  
2.25  
Adjustable version only  
V
VOUT  
Adjustable version, VOUT = VFB  
1.228  
–1  
1.252  
1
V
VOUT  
accuracyaccuracy for fixed Fixed output versions  
output options  
%
ΔVOUT(ΔVIN)  
Line regulation(1)  
(VOUT(nom) + 0.8 V or 2.4 V) VIN 18 V  
–0.1  
–0.5  
0.1  
0.5  
%
%
ΔVOUT(ΔIOUT)  
Load regulation  
1 mA IOUT 500 mA  
IOUT = 100 mA  
92  
173  
355  
717  
2
145  
280  
590  
970  
4.5  
VDO  
Dropout voltage(2)  
IOUT = 250 mA  
mV  
IOUT = 500 mA  
ICL  
Output current limit  
Ground pin current  
VOUT = 0.9 × VOUT(nom)  
IOUT = 0 mA  
525  
mA  
µA  
IGND  
IOUT = 1 mA  
15  
ISHUTDOWN  
Shutdown current  
FB pin current  
EN pin current  
V
EN 0.4 V, VIN = 2.4 V, Iout = 0 mA  
325  
10  
600  
nA  
nA  
nA  
IFB  
IEN  
VEN = 18 V  
10  
Enable pin high-level input  
voltage  
VEN(HI)  
Device enabled  
0.9  
V
Enable pin low-level input  
voltage  
VEN(LOW)  
Device disabled  
0.4  
V
RPULLUP = 10 kΩ, VOUT rising,  
VIN VUVLO(RISING)  
VIT(PG,RISING)  
VHYS(PG)  
PG pin threshold rising  
PG pin hysteresis  
93  
3
96.5  
%VOUT  
%VOUT  
%VOUT  
RPULLUP = 10 kΩ, VOUT falling,  
VIN VUVLO(RISING)  
RPULLUP = 10 kΩ, VOUT falling,  
VIN VUVLO(RISING)  
VIT(PG,FALLING)  
PG pin threshold falling  
84  
90  
PG pin low level output  
voltage  
VOL(PG)  
ILKG(PG)  
VOUT < VIT(PG,FALLING), IPG-SINK = 500 µA  
0.4  
V
PG pin leakage current  
VOUT > VIT(PG,RISING), VPG = 18 V  
f = 10 Hz  
5
75  
300  
nA  
PSRR  
Power-supply rejection ratio f = 100 Hz  
f = 1 kHz  
62  
dB  
52  
Vn  
Output noise voltage  
BW = 10 Hz to 100 kHz, VOUT = 1.2 V  
300  
μVRMS  
Thermal shutdown  
temperature  
TSD(shutdown)  
Shutdown, temperature increasing  
Reset, temperature decreasing  
165  
145  
°C  
Thermal shutdown reset  
temperature  
TSD(reset)  
°C  
(1) Vout(nom) + 0.8 V or 2.4 V (whichever is greater).  
(2) VDO is measured with VIN = 0.97 × VOUT(nom) for fixed output voltage versions. VDO is not measured for fixed output voltage versions  
when VOUT 2.5 V. For the adjustable output device, VDO is measured with VFB = 0.97 × VFB(nom).  
版权 © 2018–2019, Texas Instruments Incorporated  
5
 
TPS7A26  
ZHCSHP4B DECEMBER 2018REVISED OCTOBER 2019  
www.ti.com.cn  
6.6 Typical Characteristics  
at operating temperature TJ = 25°C, IOUT = 1 mA, VEN = 0.9 V, CIN = 2.2 µF, COUT = 2.2 μF, and VIN = VOUT(typ) + 0.8 V or 2.4 V  
(whichever is greater), unless otherwise noted; typical values are at TJ = 25°C  
1
0.8  
0.6  
0.4  
0.2  
0
0.6  
0.4  
0.2  
0
Tj  
-50èC  
-40èC  
0èC  
25èC  
Tj  
-50èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
150èC  
85èC  
125èC  
150èC  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
2
2
2
4
4
4
6
8
10  
12  
Input Voltage (V)  
14  
16  
18  
0
2
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Output Current (A)  
D002  
D008  
IOUT = 1 mA  
VOUT = 1.24 V  
1. Line Regulation vs VIN  
2. Load Regulation vs IOUT  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
Tj  
-50èC  
-40èC  
0èC  
Tj  
-50èC  
-40èC  
0èC  
85èC  
125èC  
150èC  
85èC  
125èC  
150èC  
25èC  
25èC  
0
6
8 10  
Input Voltage (V)  
12  
14  
16  
18  
4
6
8
10  
Input Voltage (V)  
12  
14  
16  
18  
D017  
D016  
IOUT = 100 mA  
IOUT = 250 mA  
3. Dropout Voltage vs VIN  
4. Dropout Voltage vs VIN  
800  
700  
600  
500  
400  
300  
200  
100  
600  
500  
400  
300  
200  
100  
0
Tj  
Tj  
-50èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
150èC  
-50èC  
-40èC  
0èC  
85èC  
125èC  
150èC  
25èC  
6
8 10  
Input Voltage (V)  
12  
14  
16  
18  
0.1  
0.2 0.3  
Output Current (A)  
0.4  
0.5  
D015  
D013  
IOUT = 500 mA  
5. Dropout Voltage vs VIN  
VIN = 2.4 V  
6. Dropout Voltage vs IOUT  
6
版权 © 2018–2019, Texas Instruments Incorporated  
TPS7A26  
www.ti.com.cn  
ZHCSHP4B DECEMBER 2018REVISED OCTOBER 2019  
Typical Characteristics (接下页)  
at operating temperature TJ = 25°C, IOUT = 1 mA, VEN = 0.9 V, CIN = 2.2 µF, COUT = 2.2 μF, and VIN = VOUT(typ) + 0.8 V or 2.4 V  
(whichever is greater), unless otherwise noted; typical values are at TJ = 25°C  
600  
500  
400  
300  
200  
100  
0
1
0.9  
0.8  
0.7  
0.6  
Tj  
Tj  
-50èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
150èC  
-50èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
150èC  
0
0.1  
0.2 0.3  
Output Current (A)  
0.4  
0.5  
2
4
6
8
10  
12  
Input Voltage (V)  
14  
16  
18  
D012  
VIN = 18 V  
7. Dropout Voltage vs IOUT  
8. Current Limit vs VIN  
30  
25  
20  
15  
10  
5
10  
8
Tj  
-50èC  
-40èC  
0èC  
Tj  
-50èC  
-40èC  
0èC  
85èC  
125èC  
150èC  
85èC  
125èC  
150èC  
25èC  
25èC  
6
4
2
0
0
2
4
6
8
10  
12  
Input Voltage (V)  
14  
16  
18  
2
4
6
8
10  
12  
Input Voltage (V)  
14  
16  
18  
D005  
VOUT = 1.24 V, IOUT = 0 A  
VOUT = 1.24 V, IOUT = 1 mA  
10. IQ vs VIN  
9. IGND vs VIN  
240  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Tj  
Tj  
-50èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
150èC  
220  
200  
180  
160  
140  
120  
100  
80  
-50èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
150èC  
60  
40  
20  
0
0
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Output Current (A)  
0
0.5  
1
1.5  
2
2.5  
Input Voltage (V)  
3
3.5  
4
D006  
VOUT = 1.24 V  
VOUT = 1.24 V, IOUT = 0 A  
12. IGND vs IOUT  
11. IQ vs VIN  
版权 © 2018–2019, Texas Instruments Incorporated  
7
TPS7A26  
ZHCSHP4B DECEMBER 2018REVISED OCTOBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at operating temperature TJ = 25°C, IOUT = 1 mA, VEN = 0.9 V, CIN = 2.2 µF, COUT = 2.2 μF, and VIN = VOUT(typ) + 0.8 V or 2.4 V  
(whichever is greater), unless otherwise noted; typical values are at TJ = 25°C  
3
2.5  
2
0.8  
0.7  
0.6  
0.5  
0.4  
Tj  
-50èC  
-40èC  
0èC  
25èC  
VEN(LOW)  
VEN(HIGH)  
85èC  
125èC  
150èC  
1.5  
1
0.5  
0
-0.5  
0
2
4
6
8 10  
Input Voltage (V)  
12  
14  
16  
18  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
VOUT = 1.24 V  
VOUT = 1.24 V, 2.4 V V IN 18 V  
14. VEN vs Temperature  
13. Shutdown Current vs VIN  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
2.3  
VIT(PG,FALLING)  
VIT(PG,RISING)  
VUVLO- (VIN Falling)  
VUVLO+ (VIN Rising)  
2.2  
2.1  
2
1.9  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
Temperature (èC)  
VOUT = 1.24 V, IOUT = 1 mA  
15. UVLO Thresholds vs Temperature  
VOUT = 1.24 V  
16. PG Thresholds vs Temperature  
200  
150  
100  
50  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IOUT  
10 mA  
100 mA  
200 mA  
300 mA  
500 mA  
ILKG(PG)  
125 150  
0
-50  
-25  
0
25  
50  
75  
100  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
Temperature (èC)  
VOUT = 1.24 V  
VOUT = 1.24 V, CIN = 0 μF, COUT = 1 μF  
18. PSRR vs Frequency and IOUT  
17. PG Leakage Current vs Temperature  
8
版权 © 2018–2019, Texas Instruments Incorporated  
TPS7A26  
www.ti.com.cn  
ZHCSHP4B DECEMBER 2018REVISED OCTOBER 2019  
Typical Characteristics (接下页)  
at operating temperature TJ = 25°C, IOUT = 1 mA, VEN = 0.9 V, CIN = 2.2 µF, COUT = 2.2 μF, and VIN = VOUT(typ) + 0.8 V or 2.4 V  
(whichever is greater), unless otherwise noted; typical values are at TJ = 25°C  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN  
3.8 V  
4.0 V  
4.3 V  
IOUT  
10 mA  
100 mA  
200 mA  
300 mA  
500 mA  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
VOUT = 3.3 V, VIN = 4.3 V,  
VOUT = 3.3 V, IOUT = 0.5 A,  
CIN = 0 μF, COUT = 1 μF, CFF = 10 nF  
CIN = 0 μF, COUT = 1 μF, CFF = 10 nF  
19. PSRR vs Frequency and IOUT  
20. PSRR vs Frequency and VIN  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
COUT  
1 uF  
10 uF  
47 uF  
CFF  
1 nF  
10 nF  
100 nF  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
VOUT = 3.3 V, VIN = 4.3 V, IOUT = 0.5 A,  
VOUT = 3.3 V, VIN = 4.3 V, IOUT = 0.5 A,  
CIN = 0 μF, CFF = 10 nF  
CIN = 0 μF, COUT = 1 μF  
21. PSRR vs Frequency and COUT  
22. PSRR vs Frequency and CFF  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
                                                                                                                                                                                       
20  
                                                                                                                                                                                         
VOUT  
10  
5
1.24 V  
3.3 V  
5 V  
2
1
0.5  
0.2  
0.1  
0.05  
VOUT  
1.24 V, RMS Noise = 292.7 mVRMS  
3.3 V, RMS Noise = 297.7 mVRMS  
5 V, RMS Noise = 341.9 mVRMS  
0.02  
0.01  
0.005  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
VIN = VOUT + 1 V or 2.4 V (whichever is greater), IOUT = 0.5 A,  
VIN = VOUT + 1 V or 2.4 V (whichever is greater),  
IOUT = 0.5 A, CIN = 1 μF, COUT = 1 μF, CFF = 10 nF,  
VRMS BW = 10 Hz to 100 kHz  
CIN = 0 μF, COUT = 1 μF, CFF = 10 nF  
24. Output Noise (Vn) vs Frequency and VOUT  
23. PSRR vs Frequency and VOUT  
版权 © 2018–2019, Texas Instruments Incorporated  
9
TPS7A26  
ZHCSHP4B DECEMBER 2018REVISED OCTOBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at operating temperature TJ = 25°C, IOUT = 1 mA, VEN = 0.9 V, CIN = 2.2 µF, COUT = 2.2 μF, and VIN = VOUT(typ) + 0.8 V or 2.4 V  
(whichever is greater), unless otherwise noted; typical values are at TJ = 25°C  
10  
10  
5
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
IOUT  
0.05  
0.05  
0.01A, RMS Noise = 280.2 mVRMS  
0.1A, RMS Noise = 283.2 mVRMS  
0.2 A, RMS Noise = 285.2 mVRMS  
0.3 A RMS Noise = 281.8 mVRMS  
0.5 A RMS Noise = 292.7 mVRMS  
COUT  
0.02  
0.01  
0.02  
0.01  
1 mF, RMS Noise = 292.7 mVRMS  
10 mF, RMS Noise = 325.0 mVRMS  
100 mF, RMS Noise = 275.2 mVRMS  
0.005  
0.005  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
VOUT = 1.24 V, CIN = 1 μF, COUT = 1 μF, CFF = 10 nF,  
VOUT = 1.24 V, IOUT = 0.5 A, CIN = 1 μF, CFF = 10 nF,  
VRMS BW = 10 Hz to 100 kHz  
VRMS BW = 10 Hz to 100 kHz  
25. Output Noise (Vn) vs Frequency and IOUT  
26. Output Noise (Vn) vs Frequency and COUT  
200  
20  
10  
5
2
1.8  
1.6  
1.4  
1.2  
1
100  
0
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
-900  
-1000  
2
1
0.5  
0.8  
0.6  
0.4  
0.2  
0
0.2  
0.1  
0.05  
CFF  
0 nF, RMS Noise = 411.0 mVRMS  
10 nF, RMS Noise = 290.4 mVRMS  
100 nF, RMS Noise = 244.7 mVRMS  
0.02  
0.01  
IOUT  
VOUT  
-0.2  
-0.4  
0.005  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
-100  
0
100  
200 300  
Time (µsec)  
400  
500  
600  
VOUT = 3.3 V, VIN = 4.3 V, IOUT = 0.5 A, CIN = 1 μF, COUT = 1 μF,  
IOUT = 0.001 A to 0.5 A, slew rate = 0.5 A/μs,  
VOUT = 3.3 V, VIN = 4.3 V, CIN = 1 μF, COUT = 1 μF  
VRMS BW = 10 Hz to 100 kHz  
27. Output Noise (Vn) vs Frequency and CFF  
28. Load Transient  
20  
10  
12  
11  
10  
9
2
1.8  
1.6  
1.4  
1.2  
1
750  
600  
450  
300  
150  
0
IOUT  
VOUT  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
8
7
0.8  
0.6  
0.4  
0.2  
0
-150  
-300  
-450  
-600  
-750  
-900  
-1050  
6
5
4
VOUT  
VIN  
3
-0.2  
-0.4  
2
1000  
-400  
-200  
0
200 400  
Time (µsec)  
600  
800  
-100  
0
100  
200 300  
Time (µsec)  
400  
500  
600  
VIN = 5.3 V to 4.3 V, slew rate = 0.5 V/μs, VOUT = 3.3 V,  
IOUT = 0.5 A, CIN = 1 μF, COUT = 1 μF  
IOUT = 0.5 A to 0.001 A, slew rate = 0.5 A/μs,  
VOUT = 3.3 V, VIN = 4.3 V, CIN = 1 μF, COUT = 1 μF  
30. Line Transient  
29. Load Transient  
10  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS7A26  
www.ti.com.cn  
ZHCSHP4B DECEMBER 2018REVISED OCTOBER 2019  
Typical Characteristics (接下页)  
at operating temperature TJ = 25°C, IOUT = 1 mA, VEN = 0.9 V, CIN = 2.2 µF, COUT = 2.2 μF, and VIN = VOUT(typ) + 0.8 V or 2.4 V  
(whichever is greater), unless otherwise noted; typical values are at TJ = 25°C  
20  
12  
11  
10  
9
8
VIN  
VEN  
VOUT  
10  
7
0
6
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
5
8
4
7
3
6
5
2
4
1
VOUT  
VIN  
3
0
2
-450 -300 -150  
0
150 300 450 600 750 900 1050  
Time (µsec)  
-1  
-100  
0
100 200 300 400 500 600 700 800 900  
Time (msec)  
VIN = 4.3 V to 5.3 V, slew rate = 0.5 V/μs, VOUT = 3.3 V,  
IOUT = 0.5 A, CIN = 1 μF, COUT = 1 μF  
VEN= 0 V to 2 V, VOUT = 3.3 V, IOUT = 0.5 A,  
CIN = 1 μF, COUT = 1 μF  
32. Start-Up With Enable  
31. Line Transient  
10  
VIN  
VOUT  
9
8
7
6
5
4
3
2
1
0
-1  
-2  
-200  
0
200  
400  
600  
800  
1000  
1200  
Time (msec)  
VIN = 0 V to 5 V, VEN = VIN, VOUT = 3.3 V, IOUT = 0.5 A,  
CIN = 1 μF, COUT = 1 μF  
33. Start-Up With Enable Pin Tied to Input  
版权 © 2018–2019, Texas Instruments Incorporated  
11  
TPS7A26  
ZHCSHP4B DECEMBER 2018REVISED OCTOBER 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS7A26 is an 18-V, low quiescent current, low-dropout (LDO) linear regulator. The low IQ performance  
makes the TPS7A26 an excellent choice for battery-powered or line-power applications that are expected to  
meet increasingly stringent standby-power standards.  
The 1% accuracy over temperature and power-good indication make this device an excellent choice for meeting  
a wide range of microcontroller power requirements.  
For increased reliability, the TPS7A26 also incorporates overcurrent, overshoot pulldown, and thermal shutdown  
protection. The operating junction temperature is –40°C to +125°C, and adds margin for applications concerned  
with higher working ambient temperatures.  
The TPS7A26 is available in a thermally enhanced WSON package.  
7.2 Functional Block Diagram  
TPS7A2601  
(Adjustable Version)  
IN  
OUT  
Current  
Limit  
Thermal  
Shutdown  
FB  
œ
+
UVLO  
PG  
Band-Gap  
Reference  
EN  
GND  
Logic  
PG  
Reference  
œ
34. Adjustable Version  
12  
Copyright © 2018–2019, Texas Instruments Incorporated  
TPS7A26  
www.ti.com.cn  
ZHCSHP4B DECEMBER 2018REVISED OCTOBER 2019  
Functional Block Diagram (continued)  
TPS7A26  
(Fixed Version)  
IN  
OUT  
Current  
Limit  
Thermal  
Shutdown  
R1  
œ
+
UVLO  
PG  
R2  
Band-Gap  
Reference  
EN  
GND  
Logic  
PG  
Reference  
œ
35. Fixed Version  
7.3 Feature Description  
7.3.1 Output Enable  
The enable pin for the device is an active-high pin. The output voltage is enabled when the voltage of the enable  
pin is greater than the high-level input voltage of the EN pin and disabled with the enable pin voltage is less than  
the low-level input voltage of the EN pin. If independent control of the output voltage is not needed, connect the  
enable pin to the input of the device.  
7.3.2 Dropout Voltage  
Dropout voltage (VDO) is defined as the input voltage minus the output voltage (VIN – VOUT) at the rated output  
current (IRATED), where the pass transistor is fully on. IRATED is the maximum IOUT listed in the Recommended  
Operating Conditions table. The pass transistor is in the ohmic or triode region of operation, and acts as a switch.  
The dropout voltage indirectly specifies a minimum input voltage greater than the nominal programmed output  
voltage at which the output voltage is expected to stay in regulation. If the input voltage falls to less than the  
nominal output regulation, then the output voltage falls as well.  
版权 © 2018–2019, Texas Instruments Incorporated  
13  
TPS7A26  
ZHCSHP4B DECEMBER 2018REVISED OCTOBER 2019  
www.ti.com.cn  
Feature Description (continued)  
For a CMOS regulator, the dropout voltage is determined by the drain-source on-state resistance (RDS(ON)) of the  
pass transistor. Therefore, if the linear regulator operates at less than the rated current, the dropout voltage for  
that current scales accordingly. Use Equation 1 to calculate the RDS(ON) of the device.  
VDO  
RDS(ON)  
=
IRATED  
(1)  
7.3.3 Current Limit  
The device has an internal current limit circuit that protects the regulator during transient high-load current faults  
or shorting events. The current limit is a brickwall scheme. In a high-load current fault, the brickwall scheme limits  
the output current to the current limit (ICL). ICL is listed in the Electrical Characteristics table.  
The output voltage is not regulated when the device is in current limit. When a current limit event occurs, the  
device begins to heat up because of the increase in power dissipation. When the device is in brickwall current  
limit, the pass transistor dissipates power [(VIN – VOUT) × ICL]. If thermal shutdown is triggered, the device turns  
off. After the device cools down, the internal thermal shutdown circuit turns the device back on. If the output  
current fault condition continues, the device cycles between current limit and thermal shutdown. For more  
information on current limits, see the Know Your Limits application report.  
Figure 36 shows a diagram of the current limit.  
VOUT  
Brickwall  
VOUT(NOM)  
0 V  
IOUT  
IRATED  
0 mA  
ICL  
Figure 36. Current Limit  
7.3.4 Undervoltage Lockout (UVLO)  
The device has an independent undervoltage lockout (UVLO) circuit that monitors the input voltage, allowing a  
controlled and consistent turn on and off of the output voltage. To prevent the device from turning off if the input  
drops during turn on, the UVLO has hysteresis as specified in the Electrical Characteristics table.  
7.3.5 Thermal Shutdown  
The device contains a thermal shutdown protection circuit to disable the device when the junction temperature  
(TJ) of the pass transistor rises to TSD(shutdown) (typical). Thermal shutdown hysteresis assures that the device  
resets (turns on) when the temperature falls to TSD(reset) (typical).  
The thermal time-constant of the semiconductor die is fairly short, thus the device may cycle on and off when  
thermal shutdown is reached until power dissipation is reduced. Power dissipation during startup can be high  
from large VIN – VOUT voltage drops across the device or from high inrush currents charging large output  
capacitors. Under some conditions, the thermal shutdown protection disables the device before startup  
completes.  
14  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
TPS7A26  
www.ti.com.cn  
ZHCSHP4B DECEMBER 2018REVISED OCTOBER 2019  
Feature Description (continued)  
When the thermal limit is triggered with load currents near the value of the current limit, the output may oscillate  
prior to the output switching off.  
For reliable operation, limit the junction temperature to the maximum listed in the Recommended Operating  
Conditions table. Operation above this maximum temperature causes the device to exceed its operational  
specifications. Although the internal protection circuitry of the device is designed to protect against thermal  
overall conditions, this circuitry is not intended to replace proper heat sinking. Continuously running the device  
into thermal shutdown or above the maximum recommended junction temperature reduces long-term reliability.  
7.3.6 Power Good  
The power-good (PG) pin is an open-drain output and can be connected to a regulated supply through an  
external pullup resistor. The maximum pullup voltage is listed as VPG in the Recommended Operating Conditions  
table. For the PG pin to have a valid output, the voltage on the IN pin must be greater than VUVLO(RISING), as listed  
in the Electrical Characteristics table. When the VOUT exceeds VIT(PG,RISING), the PG output is high impedance and  
the PG pin voltage pulls up to the connected regulated supply. When the regulated output falls below  
VIT(PG,FALLING), the open-drain output turns on and pulls the PG output low after a short deglitch time. If output  
voltage monitoring is not needed, the PG pin can be left floating or connected to ground.  
By connecting a pullup resistor to an external supply, any downstream device can receive power-good (PG) as a  
logic signal that can be used for sequencing. Make sure that the external pullup supply voltage results in a valid  
logic signal for the receiving device.  
The recommended maximum PG pin sink current (IPG-SINK) and the leakage current into the PG pin (ILKG(PG)) are  
listed in the Electrical Characteristics table.  
The PG pullup voltage (VPG_PULLUP), the desired minimum power-good output voltage (VPG(MIN)), and ILKG(PG) limit  
the maximum PG pin pullup resistor value (RPG_PULLUP). VPG_PULLUP, the PG pin low-level output voltage (VOL(PG)),  
and IPG-SINK limit the minimum RPG_PULLUP. Maximum and minimum values for RPG_PULLUP can be calculated from  
the following equations:  
RPG_PULLUP(MAX) = (VPG_PULLUP – VPG(MIN)) / ILKG(PG)_MAX  
RPG_PULLUP(MIN) = (VPG_PULLUP – VOL(PG)) / IPG-SINK  
(2)  
(3)  
For example, if the PG pin is connected to a pullup resistor with a 3.3-V external supply, from Equation 2,  
RPG_PULLUP(MAX) is 11 MΩ. From Equation 3, RPG_PULLUP(MIN) is 5.8 kΩ.  
7.3.7 Active Overshoot Pulldown Circuitry  
This device has pulldown circuitry connected to VOUT. This circuitry is a 100-μA current sink, in series with a 5.5-  
kΩ resistor, controlled by VEN. When VEN is below VEN(LOW), the pulldown circuitry is disabled and the LDO output  
is in high-impedance mode.  
If the output voltage is more than 60 mV above nominal voltage when VEN VEN(LOW), the pulldown circuitry turns  
on and the output is pulled down until the output voltage is within 60 mV from the nominal voltage. This feature  
helps reduce overshoot during the transient response.  
版权 © 2018–2019, Texas Instruments Incorporated  
15  
 
 
TPS7A26  
ZHCSHP4B DECEMBER 2018REVISED OCTOBER 2019  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Device Functional Mode Comparison  
The Device Functional Mode Comparison table shows the conditions that lead to the different modes of  
operation. See the Electrical Characteristics table for parameter values.  
Table 1. Device Functional Mode Comparison  
PARAMETER  
OPERATING MODE  
VIN  
VEN  
IOUT  
TJ  
Normal operation  
Dropout operation  
VIN > VOUT(nom) + VDO and VIN > VIN(min)  
VIN(min) < VIN < VOUT(nom) + VDO  
VEN > VEN(HI)  
VEN > VEN(HI)  
IOUT < IOUT(max)  
IOUT < IOUT(max)  
TJ < TSD(shutdown)  
TJ < TSD(shutdown)  
Disabled  
(any true condition  
disables the device)  
VIN < VUVLO  
VEN < VEN(LOW)  
Not applicable  
TJ > TSD(shutdown)  
7.4.2 Normal Operation  
The device regulates to the nominal output voltage when the following conditions are met:  
The input voltage is greater than the nominal output voltage plus the dropout voltage (VOUT(nom) + VDO  
The output current is less than the current limit (IOUT < ICL  
The device junction temperature is less than the thermal shutdown temperature (TJ < TSD  
The enable voltage has previously exceeded the enable rising threshold voltage and has not yet decreased to  
less than the enable falling threshold  
)
)
)
7.4.3 Dropout Operation  
If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other  
conditions are met for normal operation, the device operates in dropout mode. In this mode, the output voltage  
tracks the input voltage. During this mode, the transient performance of the device becomes significantly  
degraded because the pass transistor is in the ohmic or triode region, and acts as a switch. Line or load  
transients in dropout can result in large output-voltage deviations.  
When the device is in a steady dropout state (defined as when the device is in dropout, VIN < VOUT(NOM) + VDO  
,
directly after being in a normal regulation state, but not during startup), the pass transistor is driven into the  
ohmic or triode region. When the input voltage returns to a value greater than or equal to the nominal output  
voltage plus the dropout voltage (VOUT(NOM) + VDO), the output voltage can overshoot for a short period of time  
while the device pulls the pass transistor back into the linear region.  
7.4.4 Disabled  
The output of the device can be shutdown by forcing the voltage of the enable pin to less than the maximum EN  
pin low-level input voltage (see the Electrical Characteristics table). When disabled, the pass transistor is turned  
off and internal circuits are shutdown.  
16  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS7A26  
www.ti.com.cn  
ZHCSHP4B DECEMBER 2018REVISED OCTOBER 2019  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Adjustable Device Feedback Resistors  
The adjustable-version device requires external feedback divider resistors to set the output voltage. VOUT is set  
using the feedback divider resistors, R1 and R2, according to the following equation:  
VOUT = VFB × (1 + R1 / R2)  
(4)  
To ignore the FB pin current error term in the VOUT equation, set the feedback divider current to 100x the FB pin  
current listed in the Electrical Characteristics table. This setting provides the maximum feedback divider series  
resistance, as shown in the following equation:  
R1 + R2 VOUT / (IFB × 100)  
(5)  
8.1.2 Recommended Capacitor Types  
The device is designed to be stable using low equivalent series resistance (ESR) capacitors at the input and  
output. Multilayer ceramic capacitors have become the industry standard for these types of applications and are  
recommended, but must be used with good judgment. Ceramic capacitors that employ X7R-, X5R-, and C0G-  
rated dielectric materials provide relatively good capacitive stability across temperature, whereas the use of Y5V-  
rated capacitors is discouraged because of large variations in capacitance.  
Regardless of the ceramic capacitor type selected, the effective capacitance varies with operating voltage and  
temperature. As a rule of thumb, expect the effective capacitance to decrease by as much as 50%. The input  
and output capacitors recommended in the Recommended Operating Conditions table account for an effective  
capacitance of approximately 50% of the nominal value.  
8.1.3 Input and Output Capacitor Requirements  
Although an input capacitor is not required for stability, good analog design practice is to connect a capacitor  
from IN to GND. This capacitor counteracts reactive input sources and improves transient response, input ripple,  
and PSRR. An input capacitor is recommended if the source impedance is more than 0.5 Ω. A higher value  
capacitor may be necessary if large, fast load transient or line transients are anticipated or if the device is located  
several inches from the input power source.  
Dynamic performance of the device is improved with the use of an output capacitor. Use an output capacitor  
within the range specified in the Recommended Operating Conditions table for stability.  
The effective output capacitance value is recommended to not exceed 50 µF.  
8.1.4 Reverse Current  
Excessive reverse current can damage this device. Reverse current flows through the intrinsic body diode of the  
pass transistor instead of the normal conducting channel. At high magnitudes, this current flow degrades the  
long-term reliability of the device.  
Conditions where reverse current can occur are outlined in this section, all of which can exceed the absolute  
maximum rating of VOUT VIN + 0.3 V.  
If the device has a large COUT and the input supply collapses with little or no load current  
The output is biased when the input supply is not established  
The output is biased above the input supply  
Copyright © 2018–2019, Texas Instruments Incorporated  
17  
TPS7A26  
ZHCSHP4B DECEMBER 2018REVISED OCTOBER 2019  
www.ti.com.cn  
Application Information (continued)  
If reverse current flow is expected in the application, external protection is recommended to protect the device.  
Reverse current is not limited in the device, so external limiting is required if extended reverse voltage operation  
is anticipated.  
Figure 37 shows one approach for protecting the device.  
Schottky Diode  
Internal Body Diode  
IN  
OUT  
Device  
COUT  
CIN  
GND  
Figure 37. Example Circuit for Reverse Current Protection Using a Schottky Diode  
38 shows another, more commonly used, approach in high input voltage applications.  
IN  
OUT  
Device  
COUT  
CIN  
GND  
38. Reverse Current Prevention Using A Diode Before the LDO  
8.1.5 Feed-Forward Capacitor (CFF)  
For the adjustable-voltage version device, a feed-forward capacitor (CFF) can be connected from the OUT pin to  
the FB pin. CFF improves transient, noise, and PSRR performance, but is not required for regulator stability.  
Recommended CFF values are listed in the Recommended Operating Conditions table. A higher capacitance CFF  
can be used; however, the startup time increases. For a detailed description of CFF tradeoffs, see the Pros and  
Cons of Using a Feedforward Capacitor with a Low-Dropout Regulator application report.  
8.1.6 Power Dissipation (PD)  
Circuit reliability requires consideration of the device power dissipation, location of the circuit on the printed circuit  
board (PCB), and correct sizing of the thermal plane. The PCB area around the regulator must have few or no  
other heat-generating devices that cause added thermal stress.  
To first-order approximation, power dissipation in the regulator depends on the input-to-output voltage difference  
and load conditions. Equation 6 calculates power dissipation (PD).  
PD = (VIN – VOUT) × IOUT  
(6)  
NOTE  
Power dissipation can be minimized, and therefore greater efficiency can be achieved, by  
correct selection of the system voltage rails. For the lowest power dissipation use the  
minimum input voltage required for correct output regulation.  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
TPS7A26  
www.ti.com.cn  
ZHCSHP4B DECEMBER 2018REVISED OCTOBER 2019  
Application Information (continued)  
For devices with a thermal pad, the primary heat conduction path for the device package is through the thermal  
pad to the PCB. Solder the thermal pad to a copper pad area under the device. This pad area must contain an  
array of plated vias that conduct heat to additional copper planes for increased heat dissipation.  
The maximum power dissipation determines the maximum allowable ambient temperature (TA) for the device.  
According to Equation 7, power dissipation and junction temperature are most often related by the junction-to-  
ambient thermal resistance (RθJA) of the combined PCB and device package and the temperature of the ambient  
air (TA).  
TJ = TA + (RθJA × PD)  
(7)  
Thermal resistance (RθJA) is highly dependent on the heat-spreading capability built into the particular PCB  
design, and therefore varies according to the total copper area, copper weight, and location of the planes. The  
junction-to-ambient thermal resistance listed in the Thermal Information table is determined by the JEDEC  
standard PCB and copper-spreading area, and is used as a relative measure of package thermal performance.  
8.1.7 Estimating Junction Temperature  
The JEDEC standard now recommends the use of psi (Ψ) thermal metrics to estimate the junction temperatures  
of the linear regulator when in-circuit on a typical PCB board application. These metrics are not thermal  
resistance parameters and instead offer a practical and relative way to estimate junction temperature. These psi  
metrics are determined to be significantly independent of the copper area available for heat-spreading. The  
Thermal Information table lists the primary thermal metrics, which are the junction-to-top characterization  
parameter (ψJT) and junction-to-board characterization parameter (ψJB). These parameters provide two methods  
for calculating the junction temperature (TJ). As described in , use the junction-to-top characterization parameter  
(ψJT) with the temperature at the center-top of device package (TT) to calculate the junction temperature. As  
described in , use the junction-to-board characterization parameter (ψJB) with the PCB surface temperature 1 mm  
from the device package (TB) to calculate the junction temperature.  
TJ = TT + ψJT × PD  
where:  
PD is the dissipated power  
TT is the temperature at the center-top of the device package  
(8)  
TJ = TB + ψJB × PD  
where  
TB is the PCB surface temperature measured 1 mm from the device package and centered on the package  
edge  
(9)  
For detailed information on the thermal metrics and how to use them, see the Semiconductor and IC Package  
Thermal Metrics application report.  
版权 © 2018–2019, Texas Instruments Incorporated  
19  
 
TPS7A26  
ZHCSHP4B DECEMBER 2018REVISED OCTOBER 2019  
www.ti.com.cn  
Application Information (continued)  
8.1.8 Special Consideration for Line Transient  
During a line transient, the response of this LDO to a very large or fast input voltage change can cause a brief  
shutdown lasting up to a few hundred microseconds from the voltage transition. This shutdown can be avoided  
by reducing the voltage step size, increasing the transition time, or a combination of both. 39 provides a  
boundary to follow to avoid this behavior. If necessary, reduce slew rate and the voltage step size to stay below  
the curve.  
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
VIN Delta  
0
0
1
2
3
4
5
6
7
Input Voltage Step Size (V)  
8
9
10 11 12 13 14 15  
39. Recommended Input Voltage Step and Slew Rate in a Line transient  
8.2 Typical Application  
VPG  
PG  
RPG  
IN  
OUT  
VIN  
VOUT  
TPS7A26  
R1  
COUT  
CIN  
EN  
FB  
GND  
R2  
40. Generating a 5-V Rail From a Multicell Power Bank  
8.2.1 Design Requirements  
2 summarizes the design requirements for 40.  
2. Design Parameters  
PARAMETER  
VIN  
DESIGN VALUES  
7.2 V  
VOUT  
5 V ±1%  
I(IN) (no load)  
IOUT (max)  
TA  
< 5 µA  
330 mA  
70°C (max)  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
TPS7A26  
www.ti.com.cn  
ZHCSHP4B DECEMBER 2018REVISED OCTOBER 2019  
8.2.2 Detailed Design Procedure  
Select a 5-V output, fixed or adjustable device to generate the 5-V rail. The fixed-version LDO has internal  
feedback divider resistors, and thus has lower quiescent current. The adjustable-version LDO requires external  
feedback divider resistors, and is described in the Selecting Feedback Divider Resistors section.  
8.2.2.1 Transient Response  
As with any regulator, increasing the output capacitor value reduces over- and undershoot magnitude, but  
increases transient response duration.  
8.2.2.2 Selecting Feedback Divider Resistors  
For this design example, VOUT is set to 5 V. The following equations set the output voltage:  
VOUT = VFB × (1 + R1 / R2)  
(10)  
(11)  
R1 + R2 VOUT / (IFB × 100)  
For improved output accuracy, use Equation 11 and IFB(TYP) = 10 nA as listed in the Electrical Characteristics  
table to calculate the upper limit for series feedback resistance, R1 + R2 5 MΩ.  
The control-loop error amplifier drives the FB pin to the same voltage as the internal reference (VFB = 1.24 V as  
listed in the Electrical Characteristics table). Use Equation 10 to determine the ratio of R1 / R2 = 3.03. Use this  
ratio and solve Equation 11 for R2. Now calculate the upper limit for R2 1.24 MΩ. Select a standard value  
resistor of R2 = 1.18 MΩ.  
Reference Equation 10 and solve for R1:  
R1 = (VOUT / VFB – 1) × R2  
(12)  
From 公式 12, R1 = 3.64 MΩ can be determined. Select a standard resistor value for R1 = 3.6 MΩ. From  
Equation 10, select VOUT = 5.023 V.  
8.2.2.3 Thermal Dissipation  
Junction temperature can be determined using the junction-to-ambient thermal resistance (RθJA) and the total  
power dissipation (PD). Use 公式 13 to calculate the power dissipation. Multiply PD by RθJA and add the ambient  
temperature (TA), as 公式 14 shows, to calculate the junction temperature (TJ).  
PD = (IGND+ IOUT) × (VIN – VOUT  
)
(13)  
(14)  
TJ = RθJA × PD + TA  
公式 15 calculates the maximum ambient temperature. 公式 16 calculates the maximum ambient temperature for  
typical design applications.  
TA(MAX) = TJ(MAX) – (RθJA × PD)  
(15)  
(16)  
TA(MAX) = 125°C – [73.3°C/W × (7.2 V – 5 V) × 0.33 A] = 71.8°C  
版权 © 2018–2019, Texas Instruments Incorporated  
21  
 
 
 
 
 
 
 
 
TPS7A26  
ZHCSHP4B DECEMBER 2018REVISED OCTOBER 2019  
www.ti.com.cn  
8.2.3 Application Curve  
2
1.8  
1.6  
1.4  
1.2  
1
1000  
800  
IOUT  
VOUT  
600  
400  
200  
0
0.8  
0.6  
0.4  
0.2  
0
-200  
-400  
-600  
-800  
-1000  
-1200  
-1400  
-0.2  
-0.4  
-1000  
0
1000  
2000  
3000  
4000  
Time (µsec)  
IOUT = 1 mA to 0.33 A, slew rate = 0.5 A/μs,  
VOUT = 5 V, VIN = 7.2 V, CIN = 1 μF, COUT = 1 μF, CFF = 0 μF  
41. TPS7A26 Load Transient 1 mA to 330 mA)  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS7A26  
www.ti.com.cn  
ZHCSHP4B DECEMBER 2018REVISED OCTOBER 2019  
9 Power Supply Recommendations  
The device is designed to operate with an input supply range of 2.4 V to 18 V. If the input supply is noisy,  
additional input capacitors with low ESR can help improve output noise performance.  
10 Layout  
10.1 Layout Guidelines  
Place input and output capacitors as close to the device pins as possible  
Use copper planes for device connections to optimize thermal performance  
Place thermal vias around the device and under the DRV thermal pad to distribute heat  
10.2 Layout Examples  
GND PLANE  
COUT  
VIN  
CIN  
VOUT  
R1  
1
6
5
GND  
2
FB  
RPG  
PG  
3
4
EN  
R2  
GND PLANE  
Represents via used for application-specific connections  
42. Adjustable Version Layout Example  
VOUT  
VIN  
COUT  
GND  
1
6
5
CIN  
GND  
2
RPG  
PG  
EN  
3
4
GND  
PLANE  
Represents via used for application-specific connections  
43. Fixed Version Layout Example  
版权 © 2018–2019, Texas Instruments Incorporated  
23  
TPS7A26  
ZHCSHP4B DECEMBER 2018REVISED OCTOBER 2019  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 器件命名规则  
3. 器件命名规则(1)  
产品  
VOUT  
xx(x) 是标称输出电压。对于分辨率为 100mV 的输出电压,订购编号使用两位数字;对于分辨率为  
50mV 的输出电压,则使用三位数字(例如,28 = 2.8V125 = 1.25V)。01 表示可调节输出版  
本。  
TPS7A26xx(x)yyyz  
yyy 为封装标识符。  
z 为封装数量。R 表示大数量卷带,T 表示小数量卷带。  
(1) 要获得最新的封装和订货信息,请参阅本文档末尾的封装选项附录,或者访问器件产品文件夹,此文件夹位于www.ti.com.cn内。  
11.2 文档支持  
11.2.1 相关文档  
德州仪器 (TI)《具有电源正常状态指示功能的 TPS7A25 300mA18V、超低 IQ、低压降线性稳压器》 数据  
德州仪器 (TI)《了解限制》 应用报告  
德州仪器 (TI)《使用前馈电容器和低压降稳压器的优缺点》应用报告  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
24  
版权 © 2018–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7A2601DRVR  
TPS7A2601DRVT  
TPS7A26125DRVR  
TPS7A2618DRVR  
TPS7A2625DRVR  
TPS7A2633DRVR  
TPS7A2650DRVR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
6
6
6
6
6
6
6
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
7A26  
7A26  
1X9P  
1X8P  
1X7P  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
1WRP  
1WPP  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS7A2601DRVR  
TPS7A2601DRVT  
TPS7A26125DRVR  
TPS7A2618DRVR  
TPS7A2625DRVR  
TPS7A2633DRVR  
TPS7A2650DRVR  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
6
6
6
6
6
6
6
3000  
250  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
2.25  
2.25  
2.25  
2.25  
2.25  
2.25  
2.25  
2.25  
2.25  
2.25  
2.25  
2.25  
2.25  
2.25  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
3000  
3000  
3000  
3000  
3000  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS7A2601DRVR  
TPS7A2601DRVT  
TPS7A26125DRVR  
TPS7A2618DRVR  
TPS7A2625DRVR  
TPS7A2633DRVR  
TPS7A2650DRVR  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
6
6
6
6
6
6
6
3000  
250  
205.0  
205.0  
205.0  
205.0  
205.0  
205.0  
205.0  
200.0  
200.0  
200.0  
200.0  
200.0  
200.0  
200.0  
33.0  
33.0  
33.0  
33.0  
33.0  
33.0  
33.0  
3000  
3000  
3000  
3000  
3000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DRV 6  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4206925/F  
PACKAGE OUTLINE  
DRV0006A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
2.1  
1.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
(0.2) TYP  
0.05  
0.00  
1
0.1  
EXPOSED  
THERMAL PAD  
3
4
6
2X  
7
1.3  
1.6 0.1  
1
4X 0.65  
0.35  
0.25  
6X  
PIN 1 ID  
(OPTIONAL)  
0.3  
0.2  
6X  
0.1  
C A  
C
B
0.05  
4222173/B 04/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRV0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
6X (0.45)  
6X (0.3)  
(1)  
1
7
6
SYMM  
(1.6)  
(1.1)  
4X (0.65)  
4
3
SYMM  
(1.95)  
(R0.05) TYP  
(
0.2) VIA  
TYP  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222173/B 04/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRV0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
7
6X (0.45)  
METAL  
1
6
6X (0.3)  
(0.45)  
SYMM  
4X (0.65)  
(0.7)  
4
3
(R0.05) TYP  
(1)  
(1.95)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD #7  
88% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:30X  
4222173/B 04/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS7A2601DRVR

具有电源正常指示功能的 500mA、18V、超低 IQ、高精度、可调节低压降稳压器 | DRV | 6 | -40 to 125
TI

TPS7A2601DRVT

具有电源正常指示功能的 500mA、18V、超低 IQ、高精度、可调节低压降稳压器 | DRV | 6 | -40 to 125
TI

TPS7A26125DRVR

具有电源正常指示功能的 500mA、18V、超低 IQ、高精度、可调节低压降稳压器 | DRV | 6 | -40 to 125
TI

TPS7A2618DRVR

具有电源正常指示功能的 500mA、18V、超低 IQ、高精度、可调节低压降稳压器 | DRV | 6 | -40 to 125
TI

TPS7A2625DRVR

具有电源正常指示功能的 500mA、18V、超低 IQ、高精度、可调节低压降稳压器 | DRV | 6 | -40 to 125
TI

TPS7A2633DRVR

具有电源正常指示功能的 500mA、18V、超低 IQ、高精度、可调节低压降稳压器 | DRV | 6 | -40 to 125
TI

TPS7A2650DRVR

具有电源正常指示功能的 500mA、18V、超低 IQ、高精度、可调节低压降稳压器 | DRV | 6 | -40 to 125
TI

TPS7A30

具有使能功能的 200mA、低噪声、高 PSRR、负电压、可调节低压降稳压器
TI

TPS7A3001

–36V, –200mA, Ultralow-Noise, Negative LINEAR REGULATOR
TI

TPS7A3001-EP

–36V, –200mA, ULTRALOW-NOISE, NEGATIVE LINEAR REGULATOR
TI

TPS7A3001DGNR

-36V, -200mA, Ultralow-Noise, Negative LINEAR REGULATOR
TI

TPS7A3001DGNT

-36V, -200mA, Ultralow-Noise, Negative LINEAR REGULATOR
TI