TPS7A4433DGQR [TI]

TPS7A44 50-mA, 65-V, Low IQ, Low-Dropout Linear Voltage Regulator With Power-Good and Selectable Mid-Output Rail;
TPS7A4433DGQR
型号: TPS7A4433DGQR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TPS7A44 50-mA, 65-V, Low IQ, Low-Dropout Linear Voltage Regulator With Power-Good and Selectable Mid-Output Rail

文件: 总37页 (文件大小:3000K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS7A44  
SBVS421 – NOVEMBER 2021  
TPS7A44 50-mA, 65-V, Low IQ, Low-Dropout Linear Voltage Regulator  
With Power-Good and Selectable Mid-Output Rail  
1 Features  
3 Description  
Input voltage: 4 V to 65 V  
The TPS7A44 low-dropout (LDO) linear voltage  
regulator introduces a combination of a 4-V to 65-V  
input voltage range with very-low quiescent current.  
Wide output (OUT) voltage range:  
– Adjustable: 1.24 V to 14.5 V  
– Fixed: 1.25 V to 5.0 V  
Selectable intermediate output (MID_OUT):  
– 10 V, 12 V, 15 V  
This device can support a wide range of input  
voltages (for example, a 15-s battery and 24-V to  
48-V line power) and withstand line transient voltages  
up to 85 V. These features help modern applications  
meet increasingly stringent energy requirements, and  
help extend battery life in portable-power solutions.  
Maximum output current:  
– 50 mA (shared between OUT and MID_OUT)  
1% accuracy over temperature  
Ultra-low IQ: 5.5 μA  
The TPS7A44 output (OUT) is available in both  
fixed and adjustable output versions, which can  
regulate from 1.24 V to 14.5 V at 1% accuracy. The  
device also provides a second intermediate output  
(MID_OUT) that can be set to 10 V, 12 V, and 15 V  
using the MVSEL pins and can be used to bias gate  
drivers in place of a discrete regulator.  
Precision enable  
Power-good (PG) output (open drain)  
Thermal shutdown and overcurrent protection  
Operating junction temperature: –40°C to +125°C  
Package: HVSSOP-10 (RθJA = 53.7°C/W)  
2 Applications  
Cordless power tools  
DC motors and fans  
The TPS7A44 features a precision enable input that  
helps enable or disable the LDO at a fixed and  
accurate threshold voltage using a resistor divider  
from the input.  
Programmable logic controllers (PLCs)  
Field transmitter and process sensors  
Smoke and heat detectors  
EV charging infrastructure  
Battery packs  
The power-good (PG) output is used to monitor the  
voltage at the feedback pin to indicate the status of  
the output voltage. The EN input and PG output can  
be used for sequencing multiple power sources in the  
system.  
Device Information(1)  
PART NUMBER  
TPS7A44  
PACKAGE  
BODY SIZE (NOM)  
HVSSOP (10)  
3.00 mm × 3.00 mm  
(1) For all available packages, see the package option  
addendum at the end of the data sheet.  
300  
200  
100  
0
100  
VIN  
VOUT  
COUT  
IN  
OUT  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
CIN  
VEN  
VMVSEL1  
VMVSEL2  
NC  
EN  
GND  
GND  
-100  
-200  
-300  
-400  
-500  
-600  
-700  
TPS7A44  
VMID_OUT  
CMID_OUT  
VMID_OUT  
VOUT  
VIN  
MID_OUT  
MVSEL1  
MVSEL2  
GND  
GND  
PG  
GND  
0
200  
400  
Time (ms)  
600  
800  
1,000  
Typical Application Circuit  
Line Transient With VMID_OUT = 12 V, VOUT = 3.3 V,  
IOUT = 50 mA  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
TPS7A44  
SBVS421 – NOVEMBER 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................6  
6.6 Typical Characteristics................................................8  
7 Detailed Description......................................................15  
7.1 Overview...................................................................15  
7.2 Functional Block Diagrams....................................... 15  
7.3 Feature Description...................................................16  
7.4 Device Functional Modes..........................................20  
8 Application and Implementation..................................21  
8.1 Application Information............................................. 21  
8.2 Typical Application.................................................... 23  
9 Power Supply Recommendations................................25  
10 Layout...........................................................................25  
10.1 Layout Guidelines................................................... 25  
10.2 Layout Examples.................................................... 26  
11 Device and Documentation Support..........................27  
11.1 Device Support........................................................27  
11.2 Documentation Support.......................................... 27  
11.3 Receiving Notification of Documentation Updates..27  
11.4 Support Resources................................................. 27  
11.5 Trademarks............................................................. 27  
11.6 Electrostatic Discharge Caution..............................27  
11.7 Glossary..................................................................28  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 28  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
DATE  
REVISION  
NOTES  
November 2021  
*
Initial Release  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS7A44  
 
TPS7A44  
SBVS421 – NOVEMBER 2021  
www.ti.com  
5 Pin Configuration and Functions  
OUT  
FB  
1
2
3
4
5
10  
9
IN  
OUT  
NC  
1
2
3
4
5
10  
IN  
NC  
9
8
7
6
NC  
Thermal pad  
Thermal pad  
PG  
8
MID_OUT  
MVSEL2  
EN  
PG  
MID_OUT  
MVSEL2  
EN  
MVSEL1  
GND  
7
MVSEL1  
GND  
6
Not to scale  
Not to scale  
Figure 5-1. DGQ Package (Adjustable),  
10-Pin HVSSOP (Top View)  
Figure 5-2. DGQ Package (Fixed), 10-Pin HVSSOP  
(Top View)  
Table 5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
DGQ  
(Adjustable)  
DGQ  
(Fixed)  
NAME  
Precision enable pin. Driving this pin higher than VEN(HI) enables the device.  
Driving this pin lower than VEN(LOW) disables the device. This pin can be left  
floating to enable the device because the device features an internal pullup  
current source. If this pin is tied to the IN pin then the input voltage must not  
exceed 18 V; see the Recommended Operating Conditions table.  
EN  
FB  
6
6
Input  
Feedback pin. Input to the control-loop error amplifier for the (OUT) output.  
This pin is used to set the output voltage of the device with the use of  
external resistors. For adjustable-voltage version devices only. This pin must  
not be left floating.  
2
5
5
Input  
GND  
IN  
Ground pin.  
Input pin. For best transient response and to minimize input impedance, use  
the recommended value or larger ceramic capacitor from IN to ground; see  
the Recommended Operating Conditions table. Place the input capacitor as  
close to the IN and GND pins of the device as possible.  
10  
10  
Input  
MID output pin. A capacitor is required from MID_OUT to ground for stability.  
For best transient response, use the nominal recommended value or larger  
capacitor from MID_OUT to ground. Follow the recommended capacitor  
value as listed in the Recommended Operating Conditions table. Place the  
MID output capacitor as close to the MID_OUT and GND pins of the device  
as possible.  
MID_OUT  
8
8
Output  
MID_OUT voltage-select pin. The MVSEL1 pin and MVSEL2 pin are used  
to set the MID_OUT voltage; see Table 8-1 for details on how to set the  
MID_OUT voltage using these pins. Do not float this pin, instead tie this pin  
MVSEL1  
MVSEL2  
4
7
4
7
Input  
Input  
to GND if not used to set VMID_OUT  
.
MID_OUT voltage-select pin. The MVSEL2 pin and MVSEL1 pin are used  
to set the MID_OUT voltage; see Table 8-1 for details on how to set the  
MID_OUT voltage using these pins. Do not float this pin, instead tie this pin  
to GND if not used to set VMID_OUT  
.
No internal connection. This pin must be left floating to observe high voltage  
clearance between the IN and MID_OUT pins.  
NC  
NC  
9
9
2
No internal connection. This pin can be left floating or tied to the GND plane  
to improve thermal performance.  
Output pin. A capacitor is required from OUT to ground for stability. For best  
transient response, use the nominal recommended value or larger capacitor  
from OUT to ground. Follow the recommended capacitor value as listed in  
the Recommended Operating Conditions table. Place the output capacitor as  
close to the OUT and GND pins of the device as possible.  
OUT  
1
1
Output  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS7A44  
 
TPS7A44  
SBVS421 – NOVEMBER 2021  
www.ti.com  
Table 5-1. Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
DGQ  
(Adjustable)  
DGQ  
(Fixed)  
NAME  
Power-good pin. An open-drain output indicates when the output voltage  
reaches VIT(PG, RISING). If not used, this pin can be left floating or tied to the  
GND plane to improve thermal performance.  
PG  
3
3
Output  
Exposed pad of the package. Connect this pad to ground or leave floating.  
Connect the thermal pad to a large-area GND plane for improved thermal  
performance.  
Thermal pad  
Pad  
Pad  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
VIN  
85(3)  
VOUT (adjustable version)  
VOUT (fixed version)  
VMID_OUT  
VMID + 0.3(4)  
5.5  
VIN + 0.3(5)  
Voltage(2)  
VFB  
5.5  
20  
20  
20  
20  
V
VEN  
VMVSEL1  
VMVSEL2  
VPG  
Maximum output  
Maximum MID output  
Operating junction, TJ  
Storage, Tstg  
Internally limited  
Internally limited  
–50  
Current  
A
150  
150  
Temperature  
°C  
–65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions.  
If briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not  
sustain damage, but it may not be fully functional – this may affect device reliability, functionality, performance, and shorten the device  
lifetime.  
(2) All voltages with respect to GND.  
(3) Absolute maximum voltage, withstand 85 V for 200 ms.  
(4) VMID_OUT + 0.3 V or 20 V (whichever is smaller).  
(5) VIN + 0.3 V or 20 V (whichever is smaller).  
6.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 2-kV HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 500-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS7A44  
 
 
 
 
 
 
 
 
 
 
TPS7A44  
SBVS421 – NOVEMBER 2021  
www.ti.com  
6.3 Recommended Operating Conditions  
MIN  
4
NOM  
MAX  
65  
UNIT  
V
VIN  
Input voltage  
VMID_OUT  
MID output voltage  
10  
15  
V
VMID_OUT  
VDO(OUT)  
VOUT  
Output voltage (adjustable version)  
1.24  
V
VOUT  
Output voltage (fixed version)  
Output current  
1.25  
0
5.5  
V
mA  
mA  
V
IOUT  
50 – IMID_OUT  
IMID_OUT  
VMVSEL1  
VMVSEL2  
VEN  
MID rail output current  
MID voltage select input voltage 1  
MID voltage select input voltage 2  
Enable voltage  
0
50  
18  
18  
18  
18  
0
0
V
0
V
(1)  
VPG  
Power-good voltage  
0
V
(2)  
CIN  
Input capacitor  
0.1  
2.2  
μF  
μF  
μF  
°C  
(2)  
COUT  
Output capacitor  
1
3 × COUT  
–40  
100  
125  
(2) (3)  
CMID_OUT  
TJ  
MID output capacitor  
Operating junction temperature  
(1) Select pullup resistor to limit PG pin sink current when PG output is driven low. See the Power Good section for details.  
(2) All capacitor values are assumed to derate to 50% of the nominal capacitor value.  
(3) Maintain a 3:1 ratio between CMID_OUT vs COUT for stability.  
6.4 Thermal Information  
TPS7A44  
THERMAL METRIC(1)  
HVSSOP (DGQ)  
UNIT  
8 PINS  
53.7  
76.6  
26.8  
3.6  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ΨJB  
26.7  
9.6  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS7A44  
 
 
 
 
 
 
TPS7A44  
SBVS421 – NOVEMBER 2021  
www.ti.com  
6.5 Electrical Characteristics  
specified at TJ = –40°C to +125°C, VIN = VOUT(nom) + 1.5V or 4V, whichever is greater, FB tied to OUT (adjustable version  
only), IOUT = 1 mA, IMID_OUT = 0mA, VEN = 2 V, VMVSEL1 = 0.9 V, VMVSEL2 = 0.9 V, CIN = 1 μF, CMID_OUT = 4.7 μF, and COUT  
1 μF (unless otherwise noted); typical values are at TJ = 25°C  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.25  
0.5  
UNIT  
ΔVOUT  
ΔVOUT  
VFB  
Adjustable version, VOUT = VFB  
1.23  
1.24  
V
Output voltage  
accuracy  
Fixed output version, TJ = 25  
Fixed output version  
–0.5  
%
V
–0.75  
0.75  
Feedback voltage  
Line regulation(1)  
Adjustable version only  
1.24  
(VOUT(nom) + 1 V or 4 V) ≤ VIN ≤ 65 V  
VMID_OUT(nom) + 1.5 V ≤ VIN ≤ 65 V  
–0.05  
–0.05  
0.05  
0.05  
ΔVOUT(ΔVIN)  
%
1 mA ≤ IOUT ≤ 50 mA,  
IMID_OUT = 0 mA  
ΔVOUT(ΔIOUT)  
Load regulation  
–0.15  
14.4  
0.10  
15.6  
%
V
VMVSEL1 ≤ VMVSEL1(LOW)  
VMVSEL2 ≤ VMVSEL2(LOW)  
,
15  
12  
10  
VMVSEL1 ≤ VMVSEL1(LOW)  
or VMVSEL1  
VMVSEL1(HIGH)  
MID output voltage  
accuracy  
ΔVMID_OUT  
VIN = VMID_OUT + 1.5 V  
11.5  
12.5  
,
VMVSEL2 ≥ VMVSEL2(HIGH)  
VMVSEL1 ≥ VMVSEL1(HIGH)  
VMVSEL2 ≤ VMVSEL2(LOW)  
,
9.6  
10.4  
0.1  
Line regulation of  
MID output(1)  
(VMID_OUT(nom)) + 1.5 V ≤ VIN ≤ 65 V,  
IMID_OUT = 1 mA, IOUT = 0 mA  
ΔVMID_OUT(ΔVIN)  
–0.1  
%
%
1 mA ≤ IMID_OUT ≤ 50 mA  
VIN = VMID_OUT + 1.5 V  
IOUT = 0 mA  
ΔVMID_OUT(Δ  
Load regulation of  
MID output  
–0.2  
0.1  
IOUT)  
Dropout voltage of  
VIN to VOUT  
VDO(OUT)  
VDO(OUT)  
VDO(MID_OUT)  
ICL(OUT)  
IOUT = 50 mA  
800  
200  
mV  
mV  
(2)  
Dropout voltage of  
IOUT = 50 mA  
(2)  
VMID_OUT to VOUT  
Dropout voltage of  
IMID_OUT = 50 mA  
600  
145  
165  
mV  
mA  
mA  
(3)  
VIN to VMID_OUT  
Output current limit VOUT = 0.9 × VOUT(nom)  
MID output current VOUT = 0.9 × VMID_OUT(nom)  
100  
118  
125  
145  
5.5  
,
ICL(MID_OUT)  
limit  
VIN = VMID_OUT + 1.5 V  
TJ = 25°C  
7
9
IOUT = IMID_OUT = 0 mA,  
VIN = VMID_OUT + 1.5 V  
TJ = –40°C to +125°C  
IGND  
Ground pin current  
µA  
IOUT = 50 mA,  
VIN = VMID_OUT + 1.5 V  
185  
710  
VEN ≤ VEN(LOW)  
VIN = VMID_OUT(nom) + 1.5  
V
,
TJ = –40°C to +85°C  
TJ = –40°C to +125°C  
1600  
2100  
nA  
nA  
ISHUTDOWN  
Shutdown current  
IOUT = IMID_OUT = 0 mA  
VEN ≤ VEN(LOW)  
VIN =65 V  
IOUT = IMID_OUT = 0 mA  
,
TJ = –40°C to +85°C  
TJ = –40°C to +125°C  
710  
1900  
2500  
ISHUTDOWN  
Shutdown current  
FB pin current  
nA  
IFB  
10  
10  
10  
10  
nA  
nA  
nA  
nA  
IMVSEL1  
IMVSEL2  
IEN  
MVSEL1 pin current VMVSEL1 = 18 V  
MVSEL2 pin current VMVSEL2 = 18 V  
EN pin current  
VEN = 18 V  
MVSEL1 pin high-  
level input voltage  
VMVSEL1(HIGH)  
VMVSEL1(LOW)  
0.9  
V
V
MVSEL1 pin low-  
level input voltage  
0.3  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS7A44  
 
TPS7A44  
SBVS421 – NOVEMBER 2021  
www.ti.com  
6.5 Electrical Characteristics (continued)  
specified at TJ = –40°C to +125°C, VIN = VOUT(nom) + 1.5V or 4V, whichever is greater, FB tied to OUT (adjustable version  
only), IOUT = 1 mA, IMID_OUT = 0mA, VEN = 2 V, VMVSEL1 = 0.9 V, VMVSEL2 = 0.9 V, CIN = 1 μF, CMID_OUT = 4.7 μF, and COUT  
1 μF (unless otherwise noted); typical values are at TJ = 25°C  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MVSEL2 pin high-  
level input voltage  
VMVSEL2(HIGH)  
VMVSEL2(LOW)  
VEN(HI)  
0.9  
V
MVSEL2 pin low-  
level input voltage  
0.3  
1.35  
1.28  
V
V
Enable rising  
threshold  
Device enabled  
Device disabled  
1.15  
1.11  
1.24  
1.19  
50  
Enable falling  
threshold  
VEN(LOW)  
V
Enable pin  
hysteresis  
VEN(HYST)  
VIT(PG,RISING)  
VHYS(PG)  
mV  
PG pin threshold  
rising  
RPULLUP = 10 kΩ, VOUT rising,  
VIN ≥ VUVLO(RISING)  
88  
84  
93  
96.5  
RPULLUP = 10 kΩ, VOUT falling,  
VIN ≥ VUVLO(RISING)  
PG pin hysteresis  
3
%VOUT  
PG pin threshold  
falling  
RPULLUP = 10 kΩ, VOUT falling,  
VIN ≥ VUVLO(RISING)  
VIT(PG,FALLING)  
VOL(PG)  
90  
94.5  
0.4  
PG pin low level  
output voltage  
VOUT < VIT(PG,FALLING), IPG-SINK = 500 µA  
V
PG pin leakage  
current  
ILKG(PG)  
VOUT > VIT(PG,RISING), VPG = 18 V  
f = 10 Hz  
5
130  
nA  
76  
67  
82  
73  
61  
64  
55  
47  
Power-supply  
rejection ratio of  
OUT rail  
f = 100 Hz  
IOUT = 20 mA  
PSRR(OUT)  
f = 1 kHz  
f = 100 kHz  
f = 10 Hz  
dB  
Power-supply  
PSRR(MID_OUT) rejection ratio of  
MID_OUT rail  
f = 100 Hz  
IMID_OUT = 20 mA  
f = 1 kHz  
f = 100 kHz  
Output noise  
voltage  
Vn  
BW = 10 Hz to 100 kHz, VOUT = 1.24 V  
124  
170  
μVRMS  
°C  
Thermal shutdown  
TSD(shutdown)  
Shutdown, temperature increasing  
temperature  
(1) Line regulation from Input of the LDO to the final output of the LDO.  
(2) VDO is measured with VIN = 0.95 × VOUT(nom) for fixed output voltage versions. VDO is not measured for fixed output voltage versions  
when VOUT ≤ 3.1 V. For the adjustable output device, VDO is measured with VFB = 0.95 × VFB(nom).  
(3) VDO(MID_OUT) is measured with VIN = 0.95 × VMID_OUT(nom) for Mid output voltages.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS7A44  
 
 
 
TPS7A44  
SBVS421 – NOVEMBER 2021  
www.ti.com  
6.6 Typical Characteristics  
at operating temperature TJ = 25°C, IOUT = 1 mA, IMID_OUT = 0 mA, VEN = 2 V, VMVSEL1 = 0.9 V, VMVSEL2 = 0.9 V, CIN = 1 μF,  
CMID_OUT = 4.7 μF, COUT = 1 μF, and VIN = VMID_OUT + 1.5 V (unless otherwise noted); typical values are at TJ = 25°C  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
TJ  
25èC  
85èC  
TJ  
25èC  
85èC  
-40èC  
0èC  
125èC  
-40èC  
0èC  
125èC  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1  
Output Current (A)  
0
10  
20  
30 40  
Input Voltage (V)  
50  
60 65  
VOUT = 1.24 V (adjustable)  
VOUT = 1.24 V (adjustable)  
Figure 6-1. VOUT Accuracy vs IOUT  
Figure 6-2. VOUT Accuracy vs VIN  
1
2
1.75  
1.5  
1.25  
1
TJ  
25èC  
85èC  
TJ  
0.8  
0.6  
0.4  
0.2  
0
-40èC  
0èC  
125èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0.75  
0.5  
0.25  
0
13  
23  
33 43  
Input Voltage (V)  
53  
63  
0
0.02 0.04 0.06 0.08 0.1  
Output Current Limit (A)  
0.12 0.14 0.16  
VMID_OUT = 12 V  
VOUT = 1.24 V (adjustable)  
Figure 6-3. VMID_OUT Accuracy vs VIN  
Figure 6-4. VOUT vs ICL(OUT)  
1000  
700  
18  
16  
14  
12  
10  
8
TJ  
25èC  
85èC  
-40èC  
0èC  
125èC  
500  
300  
200  
TJ  
-40èC  
0èC  
25èC  
85èC  
125èC  
100  
70  
6
50  
4
30  
20  
2
0
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1  
Output Current (A)  
0
0
0.02 0.04 0.06 0.08  
0.1  
MID_OUT Current Limit (A)  
0.12 0.14 0.16  
VIN = 11 V, VOUT = 1.24 V (adjustable)  
VMID_OUT = 12 V  
Figure 6-6. IGND vs IOUT (MID_OUT in Dropout)  
Figure 6-5. VMID_OUT vs ICL(MID_OUT)  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS7A44  
 
TPS7A44  
SBVS421 – NOVEMBER 2021  
www.ti.com  
6.6 Typical Characteristics (continued)  
at operating temperature TJ = 25°C, IOUT = 1 mA, IMID_OUT = 0 mA, VEN = 2 V, VMVSEL1 = 0.9 V, VMVSEL2 = 0.9 V, CIN = 1 μF,  
CMID_OUT = 4.7 μF, COUT = 1 μF, and VIN = VMID_OUT + 1.5 V (unless otherwise noted); typical values are at TJ = 25°C  
270  
240  
210  
180  
150  
120  
90  
30  
25  
20  
15  
10  
5
TJ  
25èC  
85èC  
TJ  
25èC  
85èC  
-40èC  
0èC  
125èC  
-40èC  
0èC  
125èC  
60  
30  
0
0
0
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1  
Output Current (A)  
0
10  
20  
30 40  
Input Voltage (V)  
50  
60 65  
VIN = 16.5 V, VMID_OUT = 15 V, VMVSEL1 = VMVSEL2 = 0 V,  
VOUT = 1.24 V (adjustable)  
IOUT = 0 mA  
Figure 6-7. IGND vs IOUT  
Figure 6-8. IGND vs VIN  
8
0.3  
0.27  
0.24  
0.21  
0.18  
0.15  
0.12  
0.09  
0.06  
0.03  
0
TJ  
25èC  
85èC  
TJ  
-40èC  
0èC  
125èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
6
4
2
0
0
10  
20  
30 40  
Input Voltage (V)  
50  
60 65  
0
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1  
Output Current (A)  
VEN = 1 V  
VOUT = 1.24 V (adjustable)  
Figure 6-9. ISHUTDOWN vs VIN  
Figure 6-10. VDO(OUT) vs IOUT  
85  
210  
1.2  
1
VIN  
VOUT  
VMID_OUT  
IIN  
TJ  
25èC  
85èC  
75  
65  
55  
45  
35  
25  
15  
5
180  
150  
120  
90  
-40èC  
0èC  
125èC  
0.8  
0.6  
0.4  
0.2  
0
60  
30  
0
-30  
-5  
-60  
1.4  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1  
MID_Output Current (A)  
Time (ms)  
CIN = 0 μF, VIN ramp rate = 10 V/μs, VOUT = 3.3 V,  
IOUT = 0 mA  
VMID_OUT = 15 V, VMVSEL1 = VMVSEL2 = 0 V, IOUT = 0 mA  
Figure 6-12. Fast Start-Up (Inrush Current)  
Figure 6-11. VDO(MID_OUT) vs IMID_OUT  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS7A44  
TPS7A44  
SBVS421 – NOVEMBER 2021  
www.ti.com  
6.6 Typical Characteristics (continued)  
at operating temperature TJ = 25°C, IOUT = 1 mA, IMID_OUT = 0 mA, VEN = 2 V, VMVSEL1 = 0.9 V, VMVSEL2 = 0.9 V, CIN = 1 μF,  
CMID_OUT = 4.7 μF, COUT = 1 μF, and VIN = VMID_OUT + 1.5 V (unless otherwise noted); typical values are at TJ = 25°C  
75  
65  
55  
45  
35  
25  
15  
5
5.6  
4.8  
4
300  
200  
100  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN  
VOUT  
VMID_OUT  
3.2  
2.4  
1.6  
0.8  
0
-100  
-200  
-300  
-400  
-500  
-600  
-700  
VMID_OUT  
VOUT  
VIN  
-5  
-0.8  
0
0.2 0.4 0.6 0.8  
1 1.2 1.4 1.6 1.8  
Time (ms)  
2
0
200  
400  
Time (ms)  
600  
800  
1,000  
CIN = 0 μF, VIN ramp rate = 40 V/ms,VOUT = 3.3 V,  
IOUT = 1 mA  
VIN = 15 V to 65 V, VIN ramp rate = 10 V/μs, VOUT = 3.3 V,  
IOUT = 50 mA  
Figure 6-13. Slow Start-Up  
Figure 6-14. Line Transient  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
5
0
-100  
-5  
-200  
VIN  
VMID_OUT  
-10  
-15  
-20  
-25  
-30  
-35  
VIN  
VOUT  
-300  
-400  
-500  
-600  
-700  
0
200  
400  
600  
800  
1,000  
0
200  
400  
600  
800  
1,000  
Time (ms)  
Time (ms)  
VIN = 15 V to 65 V, VIN ramp rate = 10 V/μs, VOUT = 3.3 V,  
IOUT = 50 mA  
VIN = 15 V to 65 V, VIN ramp rate = 10 V/μs, VOUT = 3.3 V,  
IOUT = 50 mA  
Figure 6-15. Line Transient  
Figure 6-16. Line Transient  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
5
0
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-5  
VIN  
VMID_OUT  
VIN  
VOUT  
-10  
-15  
-20  
-25  
-30  
-35  
0
100 200 300 400 500 600 700 800 900 1000  
Time (ms)  
0
100  
200  
300  
Time (ms)  
400  
500  
600  
700  
VIN = 15 V to 65 V, VIN ramp rate = 5 V/μs, VOUT = 3.3 V,  
IOUT = 1 mA  
VIN = 15 V to 65 V, VIN ramp rate = 5 V/μs, VOUT = 3.3 V,  
IOUT = 50 mA  
Figure 6-17. Line Transient  
Figure 6-18. Line Transient  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS7A44  
TPS7A44  
SBVS421 – NOVEMBER 2021  
www.ti.com  
6.6 Typical Characteristics (continued)  
at operating temperature TJ = 25°C, IOUT = 1 mA, IMID_OUT = 0 mA, VEN = 2 V, VMVSEL1 = 0.9 V, VMVSEL2 = 0.9 V, CIN = 1 μF,  
CMID_OUT = 4.7 μF, COUT = 1 μF, and VIN = VMID_OUT + 1.5 V (unless otherwise noted); typical values are at TJ = 25°C  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
5
0
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-5  
VIN  
VMID_OUT  
-10  
-15  
-20  
-25  
-30  
-35  
VIN  
VOUT  
0
200 400 600 800 1000 1200 1400 1600 1800  
Time (ms)  
0
200 400 600 800 1000 1200 1400 1600 1800  
Time (ms)  
VIN = 15 V to 65 V, VIN ramp rate = 5 V/μs, VOUT = 3.3 V,  
IOUT = 1 mA  
VIN = 15 V to 65 V, VIN ramp rate = 5 V/μs, VOUT = 3.3 V,  
IOUT = 1 mA  
Figure 6-19. Line Transient  
Figure 6-20. Line Transient  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
5
0
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-5  
VIN  
VMID_OUT  
VIN  
VOUT  
-10  
-15  
-20  
-25  
-30  
-35  
0
200 400 600 800 1000 1200 1400 1600 1800  
Time (ms)  
0
200 400 600 800 1000 1200 1400 1600 1800  
Time (ms)  
VIN = 15 V to 65 V, VIN ramp rate = 10 V/μs, VOUT = 3.3 V,  
IOUT = 1 mA  
VIN = 15 V to 65 V, VIN ramp rate = 10 V/μs, VOUT = 3.3 V,  
IOUT = 1 mA  
Figure 6-21. Line Transient  
Figure 6-22. Line Transient  
95  
85  
75  
65  
55  
45  
35  
25  
15  
5
50  
95  
85  
75  
65  
55  
45  
35  
25  
15  
5
400  
0
200  
-50  
0
-100  
-150  
-200  
-250  
-300  
-350  
-400  
-450  
-200  
-400  
-600  
-800  
-1,000  
-1,200  
-1,400  
-1,600  
VIN  
VMID_OUT  
VOUT  
VIN  
VMID_OUT  
VOUT  
-5  
-5  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Time (ms)  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Time (ms)  
1
VIN = 4 V to 65 V, VIN ramp rate = 1 V/μs, VOUT = 3.3 V,  
IOUT = 1 mA  
VIN = 4 V to 65 V, VIN ramp rate = 5 V/μs, VOUT = 3.3 V,  
IOUT = 1 mA  
Figure 6-23. Line Transient (VMID_OUT in Dropout)  
Figure 6-24. Line Transient (VMID_OUT in Dropout)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS7A44  
TPS7A44  
SBVS421 – NOVEMBER 2021  
www.ti.com  
6.6 Typical Characteristics (continued)  
at operating temperature TJ = 25°C, IOUT = 1 mA, IMID_OUT = 0 mA, VEN = 2 V, VMVSEL1 = 0.9 V, VMVSEL2 = 0.9 V, CIN = 1 μF,  
CMID_OUT = 4.7 μF, COUT = 1 μF, and VIN = VMID_OUT + 1.5 V (unless otherwise noted); typical values are at TJ = 25°C  
95  
85  
75  
65  
55  
45  
35  
25  
15  
5
4
95  
85  
75  
65  
55  
45  
35  
25  
15  
5
4
3
3
2
2
1
1
0
0
VIN  
VMID_OUT  
VOUT  
VIN  
VMID_OUT  
VOUT  
-1  
-2  
-3  
-4  
-5  
-6  
-1  
-2  
-3  
-4  
-5  
-6  
-5  
-5  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Time (ms)  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Time (ms)  
1
VIN = 4 V to 65 V, VIN ramp rate = 1 V/μs, VOUT = 3.3 V,  
IOUT = 50 mA  
VIN = 4 V to 65 V, VIN ramp rate = 5 V/μs, VOUT = 3.3 V,  
IOUT = 50 mA  
Figure 6-25. Line Transient (VMID_OUT in Dropout)  
Figure 6-26. Line Transient (VMID_OUT in Dropout)  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
VOUT  
VMID_OUT  
IOUT  
VOUT  
VMID_OUT  
IOUT  
0
0
-50  
-50  
-100  
-150  
-200  
-100  
-150  
-200  
0
0
-50  
-50  
0
500 1000 1500 2000 2500 3000 3500 4000  
Time (ms)  
0
10  
20  
30  
40  
50  
Time (ms)  
60  
70  
80  
90 100  
VIN = 65 V, VOUT = 3.3 V, IOUT = 0 mA to 50 mA to 0 mA,  
IOUT slew rate = 1 A/μs  
VIN = 65 V, VOUT = 3.3 V, IOUT = 0 mA to 50 mA to 0 mA,  
IOUT slew rate = 1 A/μs  
Figure 6-27. Load Transient  
Figure 6-28. Load Transient (Rising Edge)  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
VOUT  
VMID_OUT  
IOUT  
VOUT  
VMID_OUT  
IOUT  
0
0
-50  
-50  
-100  
-150  
-200  
-100  
-150  
-200  
0
0
-50  
-50  
0
500 1000 1500 2000 2500 3000 3500 4000  
Time (ms)  
0
10  
20  
30  
40  
50  
Time (ms)  
60  
70  
80  
90 100  
VIN = 65 V, VOUT = 3.3 V, IOUT = 1 mA to 50 mA to 1 mA,  
IOUT slew rate = 1 A/μs  
VIN = 65 V, VOUT = 3.3 V, IOUT = 1 mA to 50 mA to 1 mA,  
IOUT slew rate = 1 A/μs  
Figure 6-29. Load Transient  
Figure 6-30. Load Transient (Rising Edge)  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS7A44  
TPS7A44  
SBVS421 – NOVEMBER 2021  
www.ti.com  
6.6 Typical Characteristics (continued)  
at operating temperature TJ = 25°C, IOUT = 1 mA, IMID_OUT = 0 mA, VEN = 2 V, VMVSEL1 = 0.9 V, VMVSEL2 = 0.9 V, CIN = 1 μF,  
CMID_OUT = 4.7 μF, COUT = 1 μF, and VIN = VMID_OUT + 1.5 V (unless otherwise noted); typical values are at TJ = 25°C  
100  
250  
200  
150  
100  
50  
5
250  
200  
150  
100  
50  
VMID_OUT  
IMID_OUT  
50  
0
0
-5  
VOUT  
IMID_OUT  
-50  
-100  
-150  
-200  
-10  
-15  
-20  
-25  
0
0
-50  
-50  
0
1000 2000 3000 4000 5000 6000 7000 8000  
Time (ms)  
0
1000 2000 3000 4000 5000 6000 7000 8000  
Time (ms)  
VIN = 65 V, VMID_OUT = 12 V, IMID_OUT = 0 mA to 50 mA to  
0 mA, IMID_OUT slew rate = 1 A/μs, IOUT = 0 mA  
VIN = 65 V, VOUT = 3.3 V, IMID_OUT = 0 mA to 50 mA to 0 mA,  
IMID_OUT slew rate = 1 A/μs, IOUT = 0 mA  
Figure 6-31. Load Transient (MID_OUT)  
Figure 6-32. Load Transient (MID_OUT)  
100  
50  
250  
200  
150  
100  
50  
5
0
250  
200  
150  
100  
50  
VMID_OUT  
IMID_OUT  
0
-5  
VOUT  
IMID_OUT  
-50  
-100  
-150  
-200  
-10  
-15  
-20  
-25  
0
0
-50  
-50  
0
1000 2000 3000 4000 5000 6000 7000 8000  
Time (ms)  
0
1000 2000 3000 4000 5000 6000 7000 8000  
Time (ms)  
VIN = 65 V, VMID_OUT = 12 V, IMID_OUT = 1 mA to 50 mA to  
1 mA, IMID_OUT slew rate = 1 A/μs, IOUT = 0 mA  
VIN = 65 V, VOUT = 3.3 V, IMID_OUT = 1 mA to 50 mA to 1 mA,  
IMID_OUT slew rate = 1 A/μs, IOUT = 0 mA  
Figure 6-33. Load Transient (MID_OUT)  
Figure 6-34. Load Transient (MID_OUT)  
200  
100  
IOUT = 0.1 mA, Vn = 235 mVRMS  
IOUT = 1.0 mA, Vn = 320 mVRMS  
IOUT = 20 mA, Vn = 385 mVRMS  
IOUT = 50 mA, Vn = 398 mVRMS  
COUT = 1.0 mF, Vn = 385 mVRMS  
COUT = 100 mF, Vn = 317 mVRMS  
100  
50  
50  
20  
20  
10  
5
10  
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
VIN = 13 V, VOUT = 3.3 V, VRMS bandwidth = 10 Hz to 100 kHz  
VIN = 13 V, VOUT = 3.3 V, IOUT = 20 mA,  
VRMS bandwidth = 10 Hz to 100 kHz  
Figure 6-35. Spectral Noise Density vs Frequency and IOUT  
Figure 6-36. Spectral Noise Density vs Frequency and COUT  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS7A44  
TPS7A44  
SBVS421 – NOVEMBER 2021  
www.ti.com  
6.6 Typical Characteristics (continued)  
at operating temperature TJ = 25°C, IOUT = 1 mA, IMID_OUT = 0 mA, VEN = 2 V, VMVSEL1 = 0.9 V, VMVSEL2 = 0.9 V, CIN = 1 μF,  
CMID_OUT = 4.7 μF, COUT = 1 μF, and VIN = VMID_OUT + 1.5 V (unless otherwise noted); typical values are at TJ = 25°C  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
IOUT = 1 mA  
IOUT = 20 mA  
IOUT = 50 mA  
VIN - VMID_OUT = 1 V  
VIN - VMID_OUT = 3 V  
VIN - VMID_OUT = 6 V  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
10M  
10M  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
VIN = 13 V, CIN = 0 μF, VOUT = 3.3 V  
CIN = 0 μF,VOUT = 3.3 V, IOUT = 20 mA  
Figure 6-37. OUT PSRR vs Frequency and IOUT  
Figure 6-38. OUT PSRR vs Frequency and VIN  
120  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
COUT = 1 mF  
COUT = 100 mF  
IMID_OUT = 1 mA  
IMID_OUT = 20 mA  
IMID_OUT = 50 mA  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
VIN = 13 V, CIN = 0 μF, VOUT = 3.3 V, IOUT = 20 mA  
Figure 6-39. OUT PSRR vs Frequency and COUT  
100  
VIN = 13 V, CIN = 0 μF, VOUT = 3.3 V, IOUT = 0 mA  
Figure 6-40. MID_OUT PSRR vs Frequency and IMID_OUT  
120  
VIN - VMID_OUT = 1 V  
VIN - VMID_OUT = 3 V  
VIN - VMID_OUT = 6 V  
CMID_OUT = 3.3 mF  
CMID_OUT = 300 mF  
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
CIN = 0 μF, VOUT = 3.3 V, IMID_OUT = 20 mA, IOUT = 0 mA  
VIN = 13 V, CIN = 0 μF, VOUT = 3.3 V, IMID_OUT = 20 mA,  
IOUT = 0 mA  
Figure 6-41. MID_OUT PSRR vs Frequency and VIN  
Figure 6-42. MID_OUT PSRR vs Frequency and CMID_OUT  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS7A44  
TPS7A44  
SBVS421 – NOVEMBER 2021  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The TPS7A44 is a 65-V, low quiescent current, low-dropout (LDO) linear regulator. The very low IQ performance  
makes the device an excellent choice for battery-powered or line-power applications that are expected to meet  
increasingly stringent standby-power standards.  
The high accuracy over temperature and power-good indication make this device an excellent choice for meeting  
a broad range of microcontroller power requirements. The device features a selectable MID_OUT voltage pin to  
provide a secondary voltage to serve as a bias rail for gate drivers.  
For increased robustness, the TPS7A44 also incorporates precision enable, output current limit, active  
discharge, and thermal shutdown protection. The operating junction temperature for this device is –40°C to  
+125°C.  
7.2 Functional Block Diagrams  
OUT  
IN  
Current  
limit  
Current  
limit  
1.24-V  
band gap  
Band gap  
MVSEL1  
FB  
Internal  
controller  
MVSEL2  
PG  
Thermal  
shutdown  
œ
0.9 x 1.24-V Band Gap  
+
+
EN  
œ
GND  
MID_OUT  
Band gap  
GND  
Figure 7-1. Adjustable Version  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS7A44  
 
 
 
TPS7A44  
SBVS421 – NOVEMBER 2021  
www.ti.com  
OUT  
IN  
Current  
limit  
Current  
limit  
1.24-V  
band gap  
Band gap  
MVSEL1  
MVSEL2  
NC  
PG  
550 kΩ  
Internal  
controller  
GND  
Thermal  
Shutdown  
œ
0.9 x 1.24-V Band Gap  
+
+
EN  
œ
GND  
MID_OUT  
Band Gap  
GND  
Figure 7-2. Fixed Version  
7.3 Feature Description  
7.3.1 MID_OUT Voltage Selection  
The TPS7A44 features a MID_OUT voltage pin that provides a secondary output voltage supply in addition to  
the OUT pin, which is the main output voltage supply. The MID_OUT voltage can be set using the MVSEL1 and  
MVSEL2 pins; see the MID_OUT Voltage Setting section for more details.  
7.3.2 Precision Enable  
The TPS7A44 features a precision enable circuit. The enable pin (EN) is active high; thus, enable the device  
by forcing the voltage of the enable pin to exceed the VEN(HI) voltage; see the Electrical Characteristics table.  
Turn off the device by forcing the voltage of the enable pin to drop below the VEN(LOW) voltage; see the Electrical  
Characteristics table. This device has an internal pullup resistor to the IN pin that enables the device when the  
EN pin is left floating.  
If this pin is tied to the IN pin, the input voltage must not exceed 18 V; see the Recommended Operating  
Conditions table.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS7A44  
 
TPS7A44  
SBVS421 – NOVEMBER 2021  
www.ti.com  
As shown in Figure 7-3, an external resistor divider circuit can be used to enable the device using the input  
voltage.  
IN  
Internal  
controller  
R1  
+
EN  
œ
R2  
Band gap  
GND  
Figure 7-3. Enable the Device Using the Input Voltage  
The VEN(HI) (maximum) and VEN(LOW) (minimum) thresholds along with the application input voltage can be used  
to set the R1 to R2 resistor divider ratio. The values of the R2 and R1 resistors can also be optimized to minimize  
the leakage current through the divider.  
7.3.3 Dropout Voltage  
Dropout voltage (VDO) is defined as the input voltage minus the output voltage (VIN – VOUT) at the rated output  
current (IRATED), where the pass transistor is fully on. IRATED is the maximum IOUT listed in the Recommended  
Operating Conditions table. The pass transistor is in the ohmic or triode region of operation, and acts as a  
switch. The dropout voltage indirectly specifies a minimum input voltage greater than the nominal programmed  
output voltage at which the output voltage is expected to stay in regulation. If the input voltage falls to less than  
the nominal output regulation, then the output voltage falls as well.  
For a CMOS regulator, the dropout voltage is determined by the drain-source on-state resistance (RDS(ON)) of the  
pass transistor. Therefore, if the linear regulator operates at less than the rated current, the dropout voltage for  
that current scales accordingly. The following equation calculates the RDS(ON) of the device.  
VDO  
RDS(ON)  
=
IRATED  
(1)  
7.3.4 Current Limit  
The device has internal current limit circuits for both MID_OUT and OUT rails. These circuits protect the  
regulator during high-current load transient faults or shorting events on either rails. Both current limit circuits  
are brick-wall schemes with ICL(MID_OUT) being higher than ICL(OUT); see the Electrical Characteristics table. In  
a high-current load transient fault, the brick-wall scheme limits the output current to the respective current limit  
(ICL(MID_OUT) or ICL(OUT)), both of which are listed in the Electrical Characteristics table.  
When the device is in either current limit, the output voltages are not regulated. When a current limit event  
occurs, the device begins to heat up because of the increase in power dissipation. When the device is in either  
current limit, the corresponding pass transistor dissipates power. For instance, when the OUT rail is in current  
limit, the power dissipation can be calculated as [(VIN – VOUT) × ICL(OUT)]. If thermal shutdown is triggered, the  
device turns off. After the device cools down, the internal thermal shutdown circuit turns the device back on. If  
the faulty output current condition continues, the device cycles between current limit and thermal shutdown with  
approximately a 5-ms time constant. For more information on current limits, see the Know Your Limits application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS7A44  
 
TPS7A44  
SBVS421 – NOVEMBER 2021  
www.ti.com  
Figure 7-4 shows a diagram of the current limit.  
VOUT  
Brick Wall  
VOUT(NOM)  
0 V  
IOUT  
IRATED  
0 mA  
ICL  
Figure 7-4. Current Limit: Brick-Wall Scheme  
7.3.5 Thermal Shutdown  
The device contains a thermal shutdown protection circuit to disable the device when the junction temperature  
(TJ) of the pass transistor rises to TSD(shutdown) (typical). Thermal shutdown hysteresis assures that the device  
resets (turns on) when the temperature falls to TSD(reset) (typical).  
The thermal time-constant of the semiconductor die is fairly short, thus the device may cycle on and off  
when thermal shutdown is reached until power dissipation is reduced. Power dissipation during start up can  
be high from large VIN – VOUT voltage drops across the device or from high inrush currents charging large  
output capacitors. Under some conditions, the thermal shutdown protection disables the device before start up  
completes.  
When the thermal limit is triggered with the load current near the value of the current limit, the output may  
oscillate prior to the output switching off.  
For reliable operation, limit the junction temperature to the maximum listed in the Recommended Operating  
Conditions table. Operation above this maximum temperature causes the device to exceed its operational  
specifications. Although the internal protection circuitry of the device is designed to protect against thermal  
overall conditions, this circuitry is not intended to replace proper heat sinking. Continuously running the device  
into thermal shutdown or above the maximum recommended junction temperature reduces long-term reliability.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS7A44  
 
TPS7A44  
SBVS421 – NOVEMBER 2021  
www.ti.com  
7.3.6 Power Good  
The power-good (PG) pin is an open-drain output and can be connected to a regulated supply through an  
external pullup resistor. The maximum pullup voltage is listed as VPG in the Recommended Operating Conditions  
table. For the PG pin to have a valid output, the voltage on the IN pin must be greater than 4 V. When VOUT  
exceeds VIT(PG,RISING), the PG output is high impedance and the PG pin voltage pulls up to the connected  
regulated supply. When the regulated output falls below VIT(PG,FALLING), the open-drain output turns on and pulls  
the PG output low after a short deglitch time. If output voltage monitoring is not needed, the PG pin can be left  
floating or connected to ground.  
The recommended maximum PG pin sink current (IPG-SINK) and the leakage current into the PG pin (ILKG(PG)) are  
listed in the Electrical Characteristics table.  
The PG pullup voltage (VPG_PULLUP), the desired minimum power-good output voltage (VPG(MIN)), and ILKG(PG)  
limit the maximum PG pin pullup resistor value (RPG_PULLUP). VPG_PULLUP, the PG pin low-level output voltage  
(VOL(PG)), and IPG-SINK limit the minimum RPG_PULLUP. Maximum and minimum values for RPG_PULLUP can be  
calculated from the following equations:  
RPG_PULLUP(MAX) = (VPG_PULLUP – VPG(MIN)) / ILKG(PG)_MAX  
RPG_PULLUP(MIN) = (VPG_PULLUP – VOL(PG)) / IPG-SINK  
(2)  
(3)  
For example, if the PG pin is connected to a pullup resistor with a 3.3-V external supply, from the Electrical  
Characteristics table, RPG_PULLUP(MAX) is 25 MΩ. From the Electrical Characteristics table, RPG_PULLUP(MIN) is 6.6  
kΩ.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS7A44  
TPS7A44  
SBVS421 – NOVEMBER 2021  
www.ti.com  
7.4 Device Functional Modes  
7.4.1 Device Functional Mode Comparison  
Table 7-1 shows the conditions that lead to the different modes of operation. See the Electrical Characteristics  
table for parameter values.  
Table 7-1. Device Functional Mode Comparison  
PARAMETER  
IMID_OUT  
IMID_OUT  
IMID_OUT(max)  
IMID_OUT  
IMID_OUT(max)  
IMID_OUT  
IMID_OUT(max)  
OPERATING  
MODE  
VIN  
VEN  
IOUT  
TJ  
VIN > VOUT(nom) + VDO and VIN  
VIN(min)  
>
<
Normal operation  
VEN > VEN(HI)  
IOUT < IOUT(max) TJ < TSD(shutdown)  
Dropout operation  
on MID_OUT  
VIN(min) < VIN < VMID_OUT(nom)  
VDO(MID_OUT)  
+
<
VEN > VEN(HI)  
VEN > VEN(HI)  
IOUT < IOUT(max) TJ < TSD(shutdown)  
IOUT < IOUT(max) TJ < TSD(shutdown)  
Dropout operation  
on OUT  
VIN(min) < VIN < VOUT(nom) + VDO(OUT)  
<
Disabled  
(any true condition  
disables the  
device)  
VIN < 4 V  
VEN < VEN(LOW) Not applicable  
Not applicable  
TJ > TSD(reset)  
7.4.2 Normal Operation  
The device regulates to the nominal output voltages when the following conditions are met:  
The input voltage is greater than the nominal output voltage plus the dropout voltage on either rails  
(VMID_OUT(nom) + VDO(MID_OUT) and VOUT(nom) +VDO(OUT)  
The current sourced from either MID_OUT and OUT is less than the respective current limit specified in the  
)
Electrical Characteristics table for each rail  
The device junction temperature is less than the thermal shutdown temperature (TJ < TSD(shutdown))  
The enable voltage has previously exceeded the VEN(HI) (maximum) threshold and has not yet decreased to  
less than the VEN(LOW) minimum threshold or VIN had exceeded 4 V if the EN pin is left floating  
7.4.3 Dropout Operation  
Because the TPS7A44 has two output rails (MID_OUT and OUT), the device can be in either VDO(MID_OUT) or  
VDO(OUT), or in both depending on the input voltage level while all other conditions are met for normal operation.  
When the input voltage drops to lower than VMID_OUT(nom) + VDO(MID_OUT), the device is in VDO(MID_OUT) dropout.  
During this rail dropout, VMID_OUT tracks VIN and the transient performance of VMID_OUT becomes significantly  
degraded because the pass transistor is in the ohmic or triode region, and acts as a switch. The MID_OUT  
rail line or load transients in the VDO(MID_OUT) dropout can result in large VMID_OUT deviations. When the device  
is still in VDO(MID_OUT) and when VIN is higher than VOUT(nom) + VDO(OUT), VOUT is in regulation and is not in  
VDO(OUT) dropout. When VIN drops below VOUT(nom) + VDO(OUT), VOUT is no longer in regulation and its transient  
performance becomes significantly degraded.  
When the device is in a steady dropout state (when the device is in both VDO(MID_OUT) and VDO(OUT) dropout,  
directly after being in a normal regulation state, but not during start up), the pass transistor is driven into the  
ohmic or triode region. When the input voltage returns to a value greater than or equal to VMID_OUT(nom)  
+
VDO(MID_OUT) and greater than VOUT(NOM) + VDO, the output voltage (OUT) can overshoot for a short period of  
time while the device pulls the pass transistor back into the linear region.  
7.4.4 Disabled  
The outputs of the device can be shutdown by forcing the voltage of the enable pin to less than VEN(LOW)  
(minimum); see the Electrical Characteristics table. When disabled, the pass transistor is turned off and internal  
circuits are shutdown.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS7A44  
 
 
TPS7A44  
SBVS421 – NOVEMBER 2021  
www.ti.com  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 MID_OUT Voltage Setting  
The MID_OUT voltage has three different output voltage levels (10 V, 12 V, and 15 V), as listed in Table 8-1,  
depending on the MVSEL1 and MVSEL2 pin voltage settings.  
Table 8-1. MID_OUT Voltage Setting  
SET VMVSEL1  
SET VMVSEL2  
MID_OUT  
15 V  
VMVSEL1 ≤ VMVSEL1(LOW)  
VMVSEL1 ≤ VMVSEL1(LOW)  
VMVSEL1 ≥ VMVSEL1(HIGH)  
VMVSEL1 ≥ VMVSEL1(HIGH)  
VMVSEL2 ≤ VMVSEL2(LOW)  
VMVSEL2 ≥ VMVSEL2(HIGH)  
VMVSEL2 ≤ VMVSEL2(LOW)  
VMVSEL2 ≥ VMVSEL2(HIGH)  
12 V  
10 V  
12 V  
For adjustable voltage options of the TPS7A44, and to maintain voltage regulation on the MID_OUT and OUT  
pins, the input voltage must be kept ≥ MID_OUT + VDO(MID_OUT). Additionally, to maintain regulation on the OUT  
pin, the MID_OUT voltage must be set ≥ VOUT(nom) + VDO(OUT)  
.
Set the MVSEL1 and MVSEL2 voltages before enabling the device to set the MID_OUT voltage level; however,  
the MID_OUT voltage setting can be changed to a different level after the device had powered up. Do not allow  
these pins to float, instead tie them both to GND if not used to set VMID_OUT. When the device is powered while  
either of these pins are floating, the MID_OUT voltage is not set properly and might switch levels and cause  
damage to the device.  
8.1.2 Adjustable Device Feedback Resistors  
The adjustable-version device requires external feedback divider resistors to set the output voltage. VOUT is set  
using the feedback divider resistors, R1 and R2, according to the following equation:  
VOUT = VFB × (1 + R1 / R2)  
(4)  
To ignore the FB pin current error term in the VOUT equation, set the feedback divider current to 100x the FB pin  
current listed in the Electrical Characteristics table. This setting provides the maximum feedback divider series  
resistance, as shown in the following equation:  
R1 + R2 ≤ VOUT / (IFB × 100)  
(5)  
8.1.3 Recommended Capacitor Types  
The device is designed to be stable using low equivalent series resistance (ESR) capacitors at the input and  
output. Multilayer ceramic capacitors have become the industry standard for these types of applications and  
are recommended, but must be used with good judgment. Ceramic capacitors that employ X7R-, X5R-, and  
C0G-rated dielectric materials provide relatively good capacitive stability across temperature, whereas the use of  
Y5V-rated capacitors is discouraged because of large variations in capacitance.  
Regardless of the ceramic capacitor type selected, the effective capacitance varies with operating voltage and  
temperature. As a rule of thumb, expect the effective capacitance to decrease by as much as 50%. The input  
and output capacitors recommended in the Recommended Operating Conditions table account for an effective  
capacitance of approximately 50% of the nominal value.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS7A44  
 
 
 
 
TPS7A44  
SBVS421 – NOVEMBER 2021  
www.ti.com  
8.1.4 Input and Output Capacitor Requirements  
An input capacitor is not required for stability except when the device maximum current is sourced from the  
MID_OUT pin. However, adding an input capacitor is always good analog design practice to counteract reactive  
input sources and improve transient response, input ripple, and PSRR. Starting with the nominal input capacitor  
value is required if large, fast transient load or line transients are anticipated on the MID_OUT pin or if the device  
is located several inches from the input power source.  
A minimum of a 3:1 capacitor ratio between CMID_OUT and COUT is required for proper operation of the TPS7A44  
LDO and a 4.7-μF capacitor can be connected from the MID_OUT pin to GND.  
A minimum 1-μF output capacitor is required for VOUT stability. A maximum 100-μF output capacitor can be used  
as long as the 3:1 ratio between CMID_OUT and COUT is maintained.  
8.1.5 Power Dissipation (PD)  
Circuit reliability requires consideration of the device power dissipation, location of the circuit on the printed  
circuit board (PCB), and correct sizing of the thermal plane. The PCB area around the regulator must have few  
or no other heat-generating devices that cause added thermal stress.  
To first-order approximation, power dissipation in the regulator depends on the input-to-output voltage difference  
and load conditions. The following equation calculates power dissipation (PD).  
PD = (VIN – VOUT) × IOUT  
(6)  
Note  
Power dissipation can be minimized, and therefore greater efficiency can be achieved, by correct  
selection of the system voltage rails. For the lowest power dissipation use the minimum input voltage  
required for correct output regulation.  
For devices with a thermal pad, the primary heat conduction path for the device package is through the thermal  
pad to the PCB. Solder the thermal pad to a copper pad area under the device. This pad area must contain an  
array of plated vias that conduct heat to additional copper planes for increased heat dissipation.  
The maximum power dissipation determines the maximum allowable ambient temperature (TA) for the device.  
According to the following equation, power dissipation and junction temperature are most often related by the  
junction-to-ambient thermal resistance (RθJA) of the combined PCB and device package and the temperature of  
the ambient air (TA).  
TJ = TA + (RθJA × PD)  
(7)  
Thermal resistance (RθJA) is highly dependent on the heat-spreading capability built into the particular PCB  
design, and therefore varies according to the total copper area, copper weight, and location of the planes.  
The junction-to-ambient thermal resistance listed in the Thermal Information table is determined by the JEDEC  
standard PCB and copper-spreading area, and is used as a relative measure of package thermal performance.  
8.1.6 Estimating Junction Temperature  
The JEDEC standard now recommends the use of psi (Ψ) thermal metrics to estimate the junction temperatures  
of the linear regulator when in-circuit on a typical PCB board application. These metrics are not thermal  
resistance parameters and instead offer a practical and relative way to estimate junction temperature. These  
psi metrics are determined to be significantly independent of the copper area available for heat-spreading.  
The Thermal Information table lists the primary thermal metrics, which are the junction-to-top characterization  
parameter (ψJT) and junction-to-board characterization parameter (ψJB). These parameters provide two methods  
for calculating the junction temperature (TJ), as described in Equation 8 and Equation 9. Use the junction-to-top  
characterization parameter (ψJT) with the temperature at the center-top of device package (TT) to calculate  
the junction temperature. Use the junction-to-board characterization parameter (ψJB) with the PCB surface  
temperature 1 mm from the device package (TB) to calculate the junction temperature.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS7A44  
TPS7A44  
SBVS421 – NOVEMBER 2021  
www.ti.com  
TJ = TT + ψJT × PD  
(8)  
where:  
PD is the dissipated power  
TT is the temperature at the center-top of the device package  
TJ = TB + ψJB × PD  
(9)  
where:  
TB is the PCB surface temperature measured 1 mm from the device package and centered on the package  
edge  
For detailed information on the thermal metrics and how to use them, see the Semiconductor and IC Package  
Thermal Metrics application report.  
8.2 Typical Application  
This section discusses the implementation of the TPS7A44 in a cordless power tools application. Figure 8-1  
shows a typical circuit diagram for this application.  
VIN  
R1  
VOUT  
COUT  
IN  
OUT  
VCC  
VSS  
CIN  
GND  
GND  
MCU  
NC  
EN  
GND  
GND  
GND  
R2  
TPS7A4433  
VMID_OUT  
MID_OUT  
MVSEL1  
MVSEL2  
CMOID_OUT  
VIN  
GND  
Gate  
Driver  
R3  
PG  
R4  
GND  
GND  
Figure 8-1. Powering Cordless Power Tools  
8.2.1 Design Requirements  
Table 8-2 summarizes the design requirements for Figure 8-1.  
Table 8-2. Design Parameters  
PARAMETER  
DESIGN VALUES  
VIN  
15 V (min), 65 V (transient max)  
3.3 V ± 2 %  
0 V  
VOUT  
VMVSEL1  
VMVSEL2  
≥ 0.9 V  
VMID_OUT  
12 V ± 5 %  
I(IN) (no load)  
IOUT (typical), (max)  
IMID_OUT (typical), (max)  
TA  
< 9 μA  
20 mA, 50 mA  
0 mA , 1 mA  
60 °C (max)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS7A44  
 
 
 
 
 
TPS7A44  
SBVS421 – NOVEMBER 2021  
www.ti.com  
8.2.2 Detailed Design Procedure  
A fixed 3.3-V output voltage device is used for this application. The MID_OUT voltage is set to 12 V by tying the  
VMVSEL1 pin to GND and setting VMVSEL2 to ≥ 0.9 V using the R3 and R4 resistor divider. The value of the R3 and  
R4 divider ratio must ensure that VMVSEL2 is set to ≥ 0.9 V when VIN ≥ 15 V. To limit the current burned through  
this divider to 5 μA, R3 can be calculated using Equation 10, and the calculated value then can be rounded to  
the nearest standard value. When VIN goes all the way up to 65 V during a transient, the VMSEL2 voltage goes  
up to 3.9 V (which is still lower than maximum recommended value for this pin as specified in the Recommended  
Operating Conditions table).  
R3 = (15 V – 0.9 V) / 5 μA = 2.82 MΩ  
(10)  
R4 then can be calculated with Equation 11 by using the VMVSEL2 value of the same current value.  
R3 = 0.9 V / 5 μA = 180 kΩ  
(11)  
The enable precision circuit is also used to turn off the device when VIN drops below 15 V. The R1 and R2  
resistor divider is used to set VEN to lower than VEN(LOW) of 1.15 V when VIN drops below 15 V. R1 can be  
calculated using Equation 12 to limit the burned current through this divider to 5 μA, similar to the above divider.  
R1 = (15 V – 1.15 V) / 5 μA = 2.77 MΩ  
(12)  
Equation 13 can then be used to calculate R2. The calculated R1 and R2 values can then rounded to the  
nearest standard values.  
R2 = 1.15 V / 5 μA = 230 kΩ  
(13)  
8.2.3 Application Curves  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
5
0
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
VIN  
VMID_OUT  
VIN  
VOUT  
0
200  
400  
600  
800  
1,000  
0
200  
400  
600  
800  
1,000  
Time (ms)  
Time (ms)  
VIN = 15 V to 65 V, VIN ramp rate = 10 V/μs, VMVSEL1 = 0 V,  
VMVSEL2 = 0.9 V, IOUT = 50 mA, IMID_OUT = open  
VIN = 15 V to 65 V, VIN ramp rate = 10 V/μs, VMVSEL1 = 0 V,  
VMVSEL2 = 0.9 V, IOUT = 50 mA, IMID_OUT = open  
Figure 8-2. TPS7A43 Line Transient: 15 V to 65 V  
Figure 8-3. TPS7A43 Line Transient: 15 V to 65 V  
(Zoom on VOUT  
)
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS7A44  
 
 
 
 
TPS7A44  
SBVS421 – NOVEMBER 2021  
www.ti.com  
9 Power Supply Recommendations  
The device is designed to operate from an input supply voltage range of 4 V to 65 V. To ensure that the  
output voltages are well regulated and dynamic performance is optimum, the input supply must be at least  
VMID_OUT(nom) + 1.5 V. Connect a low output impedance power supply directly to the input pin of the TPS7A44.  
10 Layout  
10.1 Layout Guidelines  
Place input and output capacitors as close to the device pins as possible.  
Use copper planes for device connections to optimize thermal performance.  
Place thermal vias around the device and under the thermal pad to distribute heat.  
Only place tented thermal vias directly beneath the thermal pad of the DGQ package. An untented via  
can wick solder or solder paste away from the thermal pad joint during the soldering process, leading to a  
compromised solder joint on the thermal pad.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS7A44  
 
 
 
TPS7A44  
SBVS421 – NOVEMBER 2021  
www.ti.com  
10.2 Layout Examples  
CIN  
COUT  
OUT  
IN  
GND Plane  
OUT  
FB  
1
2
3
4
10  
9
IN  
R1  
NC  
8
PG  
MID_OUT  
MVSEL2  
EN  
Thermal Pad  
R2  
R2  
CMID_  
OUT  
R PG  
MVSEL1  
GND  
7
PG  
5
6
GND Plane  
Routing Via  
Thermal Via  
Figure 10-1. Adjustable Version Layout Example  
CIN  
COUT  
OUT  
IN  
GND Plane  
OUT  
NC  
1
2
3
4
10  
9
IN  
NC  
R PG  
8
PG  
MID_OUT  
MVSEL2  
EN  
Thermal Pad  
CMID_  
OUT  
MVSEL1  
GND  
7
5
6
GND Plane  
Routing Via  
Thermal Via  
Figure 10-2. Fixed Version Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS7A44  
 
TPS7A44  
SBVS421 – NOVEMBER 2021  
www.ti.com  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
11.1.1.1 Evaluation Modules  
An evaluation module (EVM) for a similar P2P device, the TPS7A43, is available to assist in the initial  
circuit performance evaluation for the TPS7A44. The TPS7A43EVM-047 Evaluation Module user guide can  
be requested at the Texas Instruments website through the product folders or purchased directly from the TI  
Store.  
11.1.1.2 Spice Models  
SPICE models for the TPS7A44 are available through the product folder under Tools & software.  
11.1.2 Device Nomenclature  
Table 11-1. Device Nomenclature(1)  
PRODUCT  
VOUT  
xx(x) is the nominal output voltage. For output voltages with a resolution of 100 mV, two  
digits are used in the ordering number; for output voltages with a resolution of 50 mV, three  
digits are used (for example, 28 = 2.8 V; 125 = 1.25 V). 01 indicates adjustable output  
version.  
TPS7A44xx(x) yyy z  
yyy is the package designator.  
z is the package quantity. R is for large quantity reel, T is for small quantity reel.  
(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or visit the  
device product folder at www.ti.com.  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, TPS7A43EVM-047 Evaluation Module user guide  
Texas Instruments, LDO Basics: Preventing reverse current blog  
Texas Instruments, LDO basics: capacitor vs. capacitance blog  
11.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
11.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS7A44  
 
 
 
 
 
 
 
 
TPS7A44  
SBVS421 – NOVEMBER 2021  
www.ti.com  
11.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS7A44  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Dec-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7A4401DGQR  
TPS7A4433DGQR  
TPS7A4450DGQR  
ACTIVE  
ACTIVE  
ACTIVE  
HVSSOP  
HVSSOP  
HVSSOP  
DGQ  
DGQ  
DGQ  
10  
10  
10  
2500 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
4401  
4433  
4450  
NIPDAUAG  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Dec-2021  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Dec-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS7A4401DGQR  
TPS7A4433DGQR  
TPS7A4450DGQR  
HVSSOP DGQ  
HVSSOP DGQ  
HVSSOP DGQ  
10  
10  
10  
2500  
2500  
2500  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
5.3  
5.3  
5.3  
3.4  
3.4  
3.4  
1.4  
1.4  
1.4  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Dec-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS7A4401DGQR  
TPS7A4433DGQR  
TPS7A4450DGQR  
HVSSOP  
HVSSOP  
HVSSOP  
DGQ  
DGQ  
DGQ  
10  
10  
10  
2500  
2500  
2500  
366.0  
366.0  
366.0  
364.0  
364.0  
364.0  
50.0  
50.0  
50.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DGQ 10  
3 x 3, 0.5 mm pitch  
PowerPADTM HVSSOP - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224775/A  
www.ti.com  
PACKAGE OUTLINE  
DGQ0010D  
PowerPADTM - 1.1 mm max height  
S
C
A
L
E
3
.
7
0
0
PLASTIC SMALL OUTLINE  
C
5.05  
4.75  
TYP  
SEATING PLANE  
PIN 1 ID  
AREA  
A
0.1 C  
8X 0.5  
10  
1
3.1  
2.9  
NOTE 3  
2X  
2
5
6
0.27  
0.17  
10X  
3.1  
2.9  
1.1 MAX  
0.08  
C A B  
B
NOTE 4  
0.23  
0.13  
TYP  
SEE DETAIL A  
EXPOSED  
THERMAL PAD  
4
5
0.25  
GAGE PLANE  
1.89  
1.69  
0.15  
0.05  
0.7  
0.4  
8
0 - 8  
1
DETAIL A  
TYPICAL  
1.83  
1.63  
4218842/A 01/2019  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-187, variation BA-T.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGQ0010D  
PowerPADTM - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
(2.2)  
NOTE 9  
(1.83)  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED PAD  
SEE DETAILS  
10X (1.45)  
10X (0.3)  
1
10  
(1.3)  
TYP  
(1.89)  
SOLDER MASK  
OPENING  
SYMM  
(3.1)  
NOTE 9  
8X (0.5)  
6
5
(R0.05) TYP  
SYMM  
METAL COVERED  
BY SOLDER MASK  
(
0.2) TYP  
VIA  
(1.3) TYP  
(4.4)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4218842/A 01/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGQ0010D  
PowerPADTM - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
(1.83)  
BASED ON  
0.125 THICK  
STENCIL  
10X (1.45)  
10X (0.3)  
1
10  
(1.89)  
SYMM  
BASED ON  
0.125 THICK  
STENCIL  
8X (0.5)  
5
6
(R0.05) TYP  
SEE TABLE FOR  
SYMM  
(4.4)  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
METAL COVERED  
BY SOLDER MASK  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:15X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
2.05 X 2.11  
1.83 X 1.89 (SHOWN)  
1.67 X 1.73  
0.125  
0.150  
0.175  
1.55 X 1.60  
4218842/A 01/2019  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

TPS7A4450DGQR

TPS7A44 50-mA, 65-V, Low IQ, Low-Dropout Linear Voltage Regulator With Power-Good and Selectable Mid-Output Rail
TI

TPS7A45

具有反向电流保护和使能功能的 1.5A、20V 超低压降稳压器
TI

TPS7A4501

LOW-NOISE FAST-TRANSIENT-RESPONSE 1.5-A LDO VOLTAGE REGULATORS
TI

TPS7A4501-SP

Low-Dropout Voltage Regulator
TI

TPS7A4501-SP_15

Low-Dropout Voltage Regulator
TI

TPS7A4501DCQR

LOW-NOISE FAST-TRANSIENT-RESPONSE 1.5-A LDO VOLTAGE REGULATORS
TI

TPS7A4501DCQT

LOW-NOISE FAST-TRANSIENT-RESPONSE 1.5-A LDO VOLTAGE REGULATORS
TI

TPS7A4501HKU/EM

Low-Dropout Voltage Regulator
TI

TPS7A4501KTTR

LOW-NOISE FAST-TRANSIENT-RESPONSE 1.5-A LDO VOLTAGE REGULATORS
TI

TPS7A4501KTTT

1.21 V-20V ADJUSTABLE POSITIVE LDO REGULATOR, 0.45V DROPOUT, PSSO5, PLASTIC, TO-263, D2PAK-5
TI

TPS7A4501U/EM

Low-Dropout Voltage Regulator
TI

TPS7A4501Y/EM

耐辐射加固保障 (RHA)、1.5V 至 20V 输入、1.5A、可调节低压降 (LDO) 稳压器 | KGD | 0 | 25 to 25
TI