TPS7A53A-Q1 [TI]

汽车类 3A、低 VIN、5.6µVRMS、低噪声、高精度、超低压降稳压器;
TPS7A53A-Q1
型号: TPS7A53A-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 3A、低 VIN、5.6µVRMS、低噪声、高精度、超低压降稳压器

稳压器
文件: 总37页 (文件大小:2682K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS7A53A-Q1  
ZHCSR69A NOVEMBER 2022 REVISED DECEMBER 2022  
TPS7A53A-Q1 3A 高精度汽车级低噪LDO 稳压器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
TPS7A53A-Q1 是一款低噪声 (5.6µVRMS)、低压降线  
性稳压器 (LDO)提供 3A 电流降仅为  
130mV。  
– 温度等140°C TA +125°C  
HBM ESD 分类等2  
CDM ESD 分类等C4A  
• 扩展结(TJ) 范围:  
– –40°C +150°C  
• 输入电压范围:  
IN: VIN + VDO 6.0V  
BIASVOUT + VDO(BIAS) 6.0V  
• 低压降130 mV (3 A)  
• 输出电压噪声5.6µVRMS  
• 整个线路、负载和温度范围内的精度:  
1.3%最大值)  
• 电源纹波抑制:  
500kHz 40dB  
• 可调软启动浪涌控制  
• 开漏电源正(PG) 输出  
• 封装:  
TPS7A53A-Q1 集低噪声 (5.6µVRMS)、高 PSRR 和高  
输出电流能力等特性于一体设计用于为雷达电源和信  
息娱乐等应用中的噪声敏感型组件供电。此器件的优秀  
性能可抑制电源产生的相位噪声和时钟抖动适合为射  
频放大器、雷达传感器和芯片组供电。具体而言信号  
链元件将受益于器件的高性能。TPS7A53A-Q1 还提供  
可湿侧面选项方便进行光学检查。  
对于需要以低输入和低输出 (LILO) 电压运行的数字负  
例如应用特定集成电路 (ASIC)、现场可编程门阵  
(FPGA) 和数字信号处理器 (DSP)),TPS7A53A-  
Q1 具备的出色精度负载和温度范围内可达  
1.3%、遥感功能、出色的瞬态性能和软启动功能可  
实现出色的系统性能。  
TPS7A53A-Q1 器件的多功能性使其适用于许多严苛应  
用。  
– 具有可湿侧面和CTE (12ppm/°C) 塑封料的  
4mm × 4mm 20 WQFN  
封装信息(1)  
封装尺寸标称值)  
器件型号  
封装  
2 应用  
具有可湿侧面的  
RTJ (WQFN20)  
TPS7A53A-Q1  
4.00mm × 4.00mm  
远程信息处理控制单元  
信息娱乐系统与仪表组  
成像雷达  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
Bias Supply  
BIAS  
Input Supply  
IN  
TPS7A53A-Q1  
OUT  
EN Signal  
EN  
PG  
VCC  
Radar  
Sensor System  
EN  
频谱噪声密度与频率和输出电流  
为射频组件供电  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBVS412  
 
 
 
 
TPS7A53A-Q1  
ZHCSR69A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................17  
8 Application and Implementation..................................18  
8.1 Application Information............................................. 18  
8.2 Typical Application.................................................... 22  
8.3 Power Supply Recommendations.............................23  
8.4 Layout....................................................................... 23  
9 Device and Documentation Support............................25  
9.1 Documentation Support............................................ 25  
9.2 接收文档更新通知..................................................... 25  
9.3 支持资源....................................................................25  
9.4 Trademarks...............................................................25  
9.5 Electrostatic Discharge Caution................................25  
9.6 术语表....................................................................... 25  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics................................................7  
7 Detailed Description......................................................13  
7.1 Overview...................................................................13  
7.2 Functional Block Diagram.........................................13  
7.3 Feature Description...................................................14  
Information.................................................................... 25  
10.1 Mechanical Data..................................................... 26  
4 Revision History  
Changes from Revision * (November 2022) to Revision A (December 2022)  
Page  
• 将文档状态从预告信更改为量产数.............................................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS7A53A-Q1  
 
TPS7A53A-Q1  
ZHCSR69A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
OUT  
SNS  
NC  
1
15  
14  
13  
12  
11  
IN  
2
3
4
5
EN  
Thermal  
Pad  
NR/SS  
BIAS  
NC  
PG  
NC  
Not to scale  
5-1. RTJ Package (Fixed), 4-mm × 4-mm, 20-Pin WQFN (Top View)  
5-1. Pin Functions  
PIN  
RTJ  
(Fixed) TYPE  
NAME  
DESCRIPTION  
BIAS supply voltage. This pin enables the use of low-input voltage, low-output (LILO) voltage conditions  
(that is, VIN = 1.3 V, VOUT = 1 V) to reduce power dissipation across the die. Using a BIAS voltage improves  
dc and ac performance for VIN 2.2 V. A 0.1-µF capacitor or larger must be connected between this pin  
and ground.  
BIAS  
12  
14  
I
Enable pin. Driving this pin to logic high enables the device; driving this pin to logic low disables the device.  
If enable functionality is not required, this pin must be connected to IN or BIAS.  
EN  
I
I
Feedback pin connected to the error amplifier. Although not required, a 10-nF, feed-forward capacitor from  
FB to OUT (as close to the device as possible) maximizes ac performance. Using a feed-forward capacitor  
can disrupt PG (power-good) functionality.  
FB  
8
GND  
IN  
Ground pin. This pin must be connected to ground and the thermal pad with a low-impedance connection.  
Input supply voltage pin. A 1-µF or larger ceramic capacitor (0.5 µF or greater of capacitance) from IN to  
ground reduces the impedance of the input supply. Place the input capacitor as close to the input as  
possible.  
15-17  
I
3, 5, 6, 7,  
9, 10,11,  
18  
NC  
No internal connection.  
O
Noise-reduction and soft-start pin. Connecting an external capacitor between this pin and ground enables  
the soft-start function.  
SS  
13  
Regulated output pin. A 10-µF or larger ceramic capacitor (5 µF or greater of capacitance) from OUT to  
ground is required for stability and must be placed as close to the output as possible. Minimize the  
impedance from the OUT pin to the load.  
OUT  
1, 19, 20  
Active-high, power-good pin. An open-drain output indicates when the output voltage reaches VIT(PG) of the  
target. The use of a feed-forward capacitor can disrupt PG (power-good) functionality.  
PG  
4
2
O
SNS  
I
Sense pin connected to the error amplifier.  
Thermal pad  
Connect the thermal pad to a large-area ground plane. The thermal pad is internally connected to GND.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS7A53A-Q1  
 
TPS7A53A-Q1  
ZHCSR69A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
MAX  
6.5  
UNIT  
V
IN, BIAS, PG, EN  
Voltage  
OUT  
VIN + 0.3  
6.5  
V
SS, FB  
V
OUT  
Internally limited  
mA  
Current  
PG (sink current into device)  
Junction, TJ  
Storage, Tstg  
0
40  
55  
1.5  
150  
150  
Temperature  
°C  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per AEC specification Q100-011  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
6.0  
UNIT  
VOUT + VDO  
(IN)  
VIN  
Input supply voltage  
Enable supply voltage  
BIAS supply voltage  
V
V
V
VEN  
VBIAS  
6.0  
VOUT + VDO  
(BIAS)(1)  
6.0  
VOUT  
IOUT  
COUT  
CIN  
Output voltage  
0.8  
0
VIN - VDO  
3
V
Output current  
A
Output capacitor (3)  
Input capacitor (1) (2)  
Bias capacitor  
10  
1
µF  
µF  
µF  
nF  
CBIAS  
CSS  
TJ  
0.1  
0
1
Soft-start capacitor  
Operating junction temperature  
10  
100  
150  
40  
(1) VBIAS has a minimum voltage of 1.7 V or VOUT + VDO (VBIAS), whichever is higher.  
(2) If VIN and VBIAS are connected to the same supply, the recommended minimum capacitor for the supply is 4.7 μF.  
(3) A maximum capacitor derating of 25% is considered for minimum capacitance.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS7A53A-Q1  
 
 
 
 
 
 
 
 
 
TPS7A53A-Q1  
ZHCSR69A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.4 Thermal Information  
TPS7A53A-Q1  
THERMAL METRIC(1)  
RTJ (VQFN)  
20 PINS  
42.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
35.2  
Junction-to-board thermal resistance  
18.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.7  
ψJT  
18.7  
ψJB  
RθJC(bot)  
2.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC package thermal metrics application  
report.  
6.5 Electrical Characteristics  
at VEN = 1.1 V, VIN = VOUT + 0.3 V, CBIAS = 0.1 μF, CIN = COUT = 10 μF, CNR = 1 nF, IOUT = 50 mA, VBIAS = 5.0 V (5), and TJ  
= 40°C to 150°C (unless otherwise noted); typical values are at TJ = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1.0  
1
MAX  
UNIT  
VREF  
Internal reference  
NR/SS pin voltage  
Rising bias supply UVLO  
Fixed 1 V only  
V
V
V
VNR/SS  
Fixed 1 V only (4)  
VBIAS(UVLO)  
1.4  
1.8  
75  
VBIAS(UVLO),HY Bias supply UVLO  
25  
50  
mV  
hysteresis  
ST  
VOUT + 2.5 V VBIAS 5.5 V, 50 mA IOUT 3  
A, -40°C TJ 125°C  
±0.5  
1
1  
Accuracy (1) (6)  
%
ΔVOUT (ΔVIN)  
±0.5  
0.025  
0.025  
1.3  
VOUT + 2.5 V VBIAS 5.5 V, 50 mA IOUT 3 A  
VOUT(nom) + 0.3 V VIN 6.0 V  
50 mA IOUT 3 A  
1.3  
Line regulation  
Load regulation  
%/V  
%/A  
ΔVOUT (ΔIOUT)  
VOUT  
IOUT = 3 A, VBIAS VOUT(nom) 3.25 V(3), -40°C ≤  
TJ 125°C  
130  
275  
VDO(IN)  
VIN dropout voltage(2)  
mV  
IOUT = 3 A, VBIAS VOUT(nom) 3.25 V(3)  
130  
1.4  
285  
1.9  
VDO(BIAS)  
ICL (Fixed  
VBIAS dropout voltage(2)  
IOUT = 3 A, VIN = VBIAS  
V
A
Fixed VOUT, output  
current limit  
VOUT = 80% × VOUT(nom)  
IOUT = 50 mA  
4.0  
4.7  
0.7  
1
5.5  
1.2  
25  
VOUT  
)
IBIAS  
BIAS pin current  
mA  
µA  
Shutdown supply current  
ISHDN  
VEN 0.4 V, VIN = 1.25 V, VBIAS = 6 V  
(IGND  
)
Feedback/sense pin  
current  
IFB/SNS  
0.12  
0.3  
µA  
0.3  
1 kHz, IOUT = 2 A, VIN = 1.25 V, VOUT = 1.0 V  
3 MHz, IOUT = 2 A, VIN = 1.25 V, VOUT = 1.0 V  
1 kHz, IOUT = 2 A, VIN = 1.25 V, VOUT = 1.0 V  
3 MHz, IOUT = 2 A, VIN = 1.25 V, VOUT = 1.0 V  
BW = 10 Hz to 100 kHz, IOUT = 2 A, CSS = 1 nF  
CSS = 10 nF, VOUT = 1.0 V  
70  
27  
65  
28  
7
dB  
dB  
Power-supply rejection  
(VIN to VOUT  
)
PSRR  
dB  
Power-supply rejection  
(VBIAS to VOUT  
)
dB  
Vn  
Output noise voltage  
Minimum startup time  
μVrms  
ms  
tSTR  
2
Soft-start charging  
current  
ISS  
tSS = 4.8 x VOUT(NOM) / 0.8 V, VOUT = 1.0 V  
6
µA  
VEN(hi)  
VEN(lo)  
VEN(hys)  
Enable input high level  
Enable input low level  
Enable pin hysteresis  
1.1  
0
5.5  
0.4  
V
V
70  
mV  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS7A53A-Q1  
 
 
 
TPS7A53A-Q1  
ZHCSR69A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
at VEN = 1.1 V, VIN = VOUT + 0.3 V, CBIAS = 0.1 μF, CIN = COUT = 10 μF, CNR = 1 nF, IOUT = 50 mA, VBIAS = 5.0 V (5), and TJ  
= 40°C to 150°C (unless otherwise noted); typical values are at TJ = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VEN(dg)  
IEN  
Enable pin deglitch time  
Enable pin current  
PG trip threshold  
15  
µs  
VEN = 5 V  
0.1  
90  
0.25  
µA  
VIT  
VOUT decreasing  
85  
94 %VOUT  
%VOUT  
VHYS  
PG trip hysteresis  
PG output low voltage  
PG leakage current  
2.5  
VPG(lo)  
IPG(lkg)  
RPULLDOWN  
IPG = 1 mA (sinking), VOUT < VIT  
VPG = 5.25 V, VOUT > VIT  
0.3  
V
0.001  
0.5  
0.05  
µA  
kΩ  
Output Pulldown resistor VBIAS = 5 V, VEN = 0 V  
Shutdown, temperature increasing  
Reset, temperature decreasing  
165  
140  
Thermal shutdown  
temperature  
TSD  
(1) Adjustable devices tested at 0.8 V; resistor tolerance is not taken into account.  
(2) Dropout is defined as the voltage from VIN to VOUT when VOUT is 3% below nominal.  
(3) 3.25 V is a test condition of this device and can be adjusted by referring to Figure 6.  
(4) For fixed voltage, NR/SS voltage is equal to output voltage.  
(5) VBIAS = VDO_MAX(BIAS) + VOUT for VOUT 3.1V.  
(6) The device is not tested under conditions where VIN > VOUT + 0.85 V and IOUT = 3 A, because the power dissipation is higher than the  
maximum rating of the package. Also, this accuracy specification does not apply on any application condition that exceeds the power  
dissipation limit of the package under test.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS7A53A-Q1  
 
 
 
 
 
 
TPS7A53A-Q1  
ZHCSR69A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.6 Typical Characteristics  
at TA = 25°C, VIN = 1.4 V or VIN = VOUT(NOM) + 0.3 V (whichever is greater), VBIAS = open, VOUT(NOM) = 0.8 V, VEN = 1.1 V,  
COUT = 47 µF, CNR/SS = 0 nF, CFF = 0 nF, and PG pin pulled up to VIN with 100 kΩ(unless otherwise noted)  
VIN = 1.3 V, VBIAS = 5 V, VOUT = 1.0 V, COUT = 10 µF,  
IOUT = 1 A, VBIAS = 5 V, VOUT = 1.0 V, COUT = 10 µF,  
CBIAS = 0.1 μF, CSS = 10 nF  
CBIAS = 0.1 μF, CSS = 10 nF  
6-1. PSRR vs Frequency and IOUT  
6-2. PSRR vs Frequency and VIN for IOUT = 1 A  
IOUT = 2 A, VBIAS = 5 V, VOUT = 1.0 V, COUT = 10 µF,  
IOUT = 3 A, VBIAS = 5 V, VOUT = 1.0 V, COUT = 10 µF,  
CBIAS = 0.1 μF, CSS = 10 nF  
CBIAS = 0.1 μF, CSS = 10 nF  
6-3. PSRR vs Frequency and VIN for IOUT = 2 A  
6-4. PSRR vs Frequency and VIN for IOUT = 3 A  
IOUT = 3 A, VBIAS = 5 V, VOUT = 1.0 V, CBIAS = 0.1 μF,  
IOUT = 3 A, VBIAS = 5 V, VOUT = 1.0 V, CBIAS = 0.1 μF,  
COUT = 10 μF  
CSS = 10 nF  
6-5. PSRR vs Frequency and COUT  
6-6. PSRR vs Frequency and CSS  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS7A53A-Q1  
 
TPS7A53A-Q1  
ZHCSR69A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VIN = 1.4 V or VIN = VOUT(NOM) + 0.3 V (whichever is greater), VBIAS = open, VOUT(NOM) = 0.8 V, VEN = 1.1 V,  
COUT = 47 µF, CNR/SS = 0 nF, CFF = 0 nF, and PG pin pulled up to VIN with 100 kΩ(unless otherwise noted)  
VIN = VEN = 1.3 V, VBIAS = 5 V, VOUT = 1.0 V, CIN = 10 μF,  
COUT = 10 μF, CSS = 10 nF  
VIN = VEN = 1.3 V, VOUT = 1.0 V, CIN = 10 μF, COUT = 10 μF,  
CSS = 10 nF  
6-8. BIAS PSRR vs Frequency and VBIAS  
6-7. BIAS PSRR vs Frequency and IOUT  
VIN = 1.3 V, VOUT = 1.0 V, VBIAS = 5 V, COUT = 10 µF, CSS  
=
VIN = 1.3 V, VOUT = 1.0 V, COUT = 10 µF, CSS = 10 nF,  
10 nF, CBIAS = 0.1 μF, RMS noise BW = 10 Hz to 100 kHz  
CBIAS = 0.1 μF, RMS noise BW = 10 Hz to 100 kHz  
6-9. Spectral Noise Density vs Frequency and IOUT  
6-10. Spectral Noise Density vs Frequency and VBIAS  
VIN = 1.3 V, VOUT = 1.0 V, VBIAS = 5 V, CSS = 10 nF,  
VIN = 1.3 V, VOUT = 1.0 V, VBIAS = 5 V, COUT = 10 μF,  
CBIAS = 0.1 μF, RMS noise BW = 10 Hz to 100 kHz  
CBIAS = 0.1 μF, RMS noise BW = 10 Hz to 100 kHz  
6-11. Spectral Noise Density vs Frequency and COUT  
6-12. Spectral Noise Density vs Frequency and CSS  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS7A53A-Q1  
TPS7A53A-Q1  
ZHCSR69A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VIN = 1.4 V or VIN = VOUT(NOM) + 0.3 V (whichever is greater), VBIAS = open, VOUT(NOM) = 0.8 V, VEN = 1.1 V,  
COUT = 47 µF, CNR/SS = 0 nF, CFF = 0 nF, and PG pin pulled up to VIN with 100 kΩ(unless otherwise noted)  
VIN = 1.3 V, VOUT = 1.0 V, VBIAS = 5.0 V, IOUT = 3 A,  
COUT = 10 µF, CSS = 1 nF  
VIN = 1.3 V, VOUT = 1.0 V, VBIAS = 5.0 V, IOUT = 3 A,  
COUT = 10 µF, CSS = 10 nF  
6-13. Start-Up Waveform for CSS = 1 nF  
6-14. Start-Up Waveform vs Time for CSS = 10 nF  
VIN = VOUT + 0.3 V, VBIAS = VEN = 5 V, IOUT, DC = 10 mA,  
slew rate = 1 A/µs, CSS = 10 nF, COUT = 10 µF  
VIN = 1.3 V, VOUT = 1.0 V, VBIAS = 5.0 V, IOUT = 3 A,  
COUT = 10 µF, CSS = 22 nF  
6-16. Load Transient for VOUT With Bias  
6-15. Start-Up Waveform for CSS = 22 nF  
IOUT, DC = 1.5 A, COUT = 10 µF,  
VBIAS = 5 V, IOUT = 3 A, COUT = 10 µF, CSS = 10 nF  
CSS = CFF = 10 nF, slew rate = 1 A/µs  
6-17. Line Transient for VOUT With Bias  
6-18. Input Ramp Response  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS7A53A-Q1  
TPS7A53A-Q1  
ZHCSR69A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VIN = 1.4 V or VIN = VOUT(NOM) + 0.3 V (whichever is greater), VBIAS = open, VOUT(NOM) = 0.8 V, VEN = 1.1 V,  
COUT = 47 µF, CNR/SS = 0 nF, CFF = 0 nF, and PG pin pulled up to VIN with 100 kΩ(unless otherwise noted)  
VBIAS = 5 V, VOUT = 1.0 V  
VIN = 1.25 V, VOUT = 1 V  
6-19. IN-to-OUT Dropout Voltage vs Output Current  
6-20. BIAS-to-OUT Dropout Voltage vs Output Current  
VIN = 1.25 V, VBIAS = 5 V, VOUT = 1.0 V  
VIN = 1.25 V, VOUT = 1.0 V, VBIAS = 5 V  
6-21. Load Regulation vs 0-mA to 50-mA Output Current  
6-22. Load Regulation vs 50-mA Output Current  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS7A53A-Q1  
 
TPS7A53A-Q1  
ZHCSR69A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VIN = 1.4 V or VIN = VOUT(NOM) + 0.3 V (whichever is greater), VBIAS = open, VOUT(NOM) = 0.8 V, VEN = 1.1 V,  
COUT = 47 µF, CNR/SS = 0 nF, CFF = 0 nF, and PG pin pulled up to VIN with 100 kΩ(unless otherwise noted)  
VIN = 5 V, VOUT = 1.0 V, IOUT = 50 mA  
VOUT = 1.0 V, VBIAS = 5 V, IOUT = 50 mA  
6-24. Output Voltage vs Bias Voltage  
6-23. Line Regulation vs Input Voltage  
VOUT = 1.0 V, VBIAS = 5.0 V, IOUT = 50 mA  
VOUT = 1.0 V, VBIAS = 5.0 V  
6-25. IN Pin Quiescent Current vs  
6-26. IN Pin Quiescent Current vs  
Input Voltage  
Output Current  
VOUT = 1.0 V, VBIAS = 5.0 V, IOUT = 3 A  
VIN = 1.25 V, VBIAS = 5.0 V, VOUT = 1.0 V  
6-27. BIAS Pin Quiescent Current vs  
6-28. BIAS Pin Quiescent Current vs  
Input Voltage  
Output Current  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS7A53A-Q1  
TPS7A53A-Q1  
ZHCSR69A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VIN = 1.4 V or VIN = VOUT(NOM) + 0.3 V (whichever is greater), VBIAS = open, VOUT(NOM) = 0.8 V, VEN = 1.1 V,  
COUT = 47 µF, CNR/SS = 0 nF, CFF = 0 nF, and PG pin pulled up to VIN with 100 kΩ(unless otherwise noted)  
VBIAS = 5 V, VEN = 0 V  
VIN = 1.25 V, VEN = 0 V  
6-29. Shutdown Current (GND Pin) vs  
6-30. Shutdown Current (GND Pin) vs  
Input Voltage  
Bias Voltage  
Temperature limited because of power dissipation  
6-31. Current Limit vs Output Voltage  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS7A53A-Q1  
TPS7A53A-Q1  
ZHCSR69A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS7A53A-Q1 is a low-input, low-output (LILO), low-quiescent-current linear regulator optimized to support  
excellent transient performance. This regulator uses a low-current bias rail to power all internal control circuitry,  
allowing the n-type field effect transistor (NMOS) pass transistor to regulate very-low input and output voltages.  
Using an NMOS-pass transistor offers several critical advantages for many applications. Unlike a p-channel  
metal-oxide-semiconductor field effect transistor (PMOS) topology device, the output capacitor has little effect on  
loop stability. This architecture allows the TPS7A53A-Q1 to be stable with any ceramic capacitor 10 μF or  
greater. Transient response is also superior to PMOS topologies, particularly for low VIN applications.  
The TPS7A53A-Q1 features a programmable, voltage-controlled, soft-start circuit that provides a smooth,  
monotonic start-up and limits start-up inrush currents that can be caused by large capacitive loads. An enable  
(EN) pin with hysteresis and deglitch allows slow-ramping signals to be used for sequencing the device. The low  
VIN and VOUT capability allows for inexpensive, easy-to-design, and efficient linear regulation between the  
multiple supply voltages often required by processor-intensive systems.  
7.2 Functional Block Diagram  
OUT  
VOUT  
IN  
500  
BIAS  
UVLO  
Thermal &  
Current  
Limit  
20 µA  
SS  
CSS  
Soft-Start  
Discharge  
1-V  
Reference  
SNS  
Hysteresis  
and Deglitch  
EN  
VOUT  
œ
Delay(B)  
+
10 k  
0.9 x  
VREF  
V
PG  
GND  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS7A53A-Q1  
 
 
 
TPS7A53A-Q1  
ZHCSR69A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Enable and Shutdown  
The enable (EN) pin is active high and compatible with standard digital-signaling levels. Setting VEN below 0.4 V  
turns the regulator off, and setting VEN above 1.1 V turns the regulator on. Unlike many regulators, the enable  
circuitry has hysteresis and deglitching for use with relatively slowly ramping analog signals. This configuration  
allows the device to be enabled by connecting the output of another supply to the EN pin. The enable circuitry  
typically has 70 mV of hysteresis and a deglitch circuit to help avoid on-off cycling as a result of small glitches in  
the VEN signal.  
The enable threshold is typically 0.75 V and varies with temperature and process variations. Temperature  
variation is approximately 1.2 mV/°C; process variation accounts for most of the remaining variation to the 0.4-  
V and 1.1-V limits. If precise turn-on timing is required, a fast rise-time signal must be used.  
If not used, EN can be connected to BIAS. Place the connection as close as possible to the bias capacitor.  
7.3.2 Active Discharge  
The TPS7A53A-Q1 has an internal active pulldown circuits on the OUT pin.  
This active discharge function uses an internal metal-oxide-semiconductor field-effect transistor (MOSFET) that  
connects a resistor (RPULLDOWN) to ground when the low-dropout resistor (LDO) is disabled in order to actively  
discharge the output voltage. The active discharge circuit is activated when the device is disabled by driving EN  
to logic low, when the voltage at IN or BIAS is below the UVLO threshold, or when the regulator is in thermal  
shutdown.  
The discharge time after disabling the device depends on the output capacitance (COUT) and the load resistance  
(RL) in parallel with the pulldown resistor.  
The active pulldown circuit connects the output to GND through a 500-Ωresistor when the device is disabled.  
τOUT = (500 × RL / (500 + RL) × COUT  
(1)  
Do not rely on the active discharge circuit for discharging a large amount of output capacitance after the input  
supply has collapsed because reverse current can flow from the output to the input and can cause damage to  
the device. Limit reverse current to no more than 5% of the device-rated current.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS7A53A-Q1  
 
TPS7A53A-Q1  
ZHCSR69A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3.3 Power-Good Output (PG)  
The PG signal provides an easy solution to meet demanding sequencing requirements because PG signals  
when the output nears the nominal value. PG can be used to signal other devices in a system when the output  
voltage is near, at, or above the set output voltage (VOUT(nom)). 7-1 shows a simplified schematic.  
The PG signal is an open-drain digital output that requires a pullup resistor to a voltage source and is active  
high. The PG circuit sets the PG pin into a high-impedance state to indicate that the power is good.  
Using a large feed-forward capacitor (CFF) delays the output voltage and, because the PG circuit monitors the  
FB pin, the PG signal can indicate a false positive.  
VPG  
VBG  
VIN  
œ
VFB  
+
GND  
GND  
UVLOBIAS  
EN  
GND  
7-1. Simplified PG Circuit  
7.3.4 Internal Current Limit  
The device has an internal current-limit circuit that protects the regulator during transient high-load current faults  
or shorting events. The current limit is a hybrid brick-wall foldback scheme. The current limit transitions from a  
brick-wall scheme to a foldback scheme at the foldback voltage (VFOLDBACK). In a high-load current fault with the  
output voltage above VFOLDBACK, the brick-wall scheme limits the output current to the current limit (ICL). When  
the voltage drops below VFOLDBACK, a foldback current limit activates that scales back the current when the  
output voltage approaches GND. When the output is shorted, the device supplies a typical current called the  
short-circuit current limit (ISC). ICL and ISC are listed in the Electrical Characteristics table.  
For this device, VFOLDBACK is approximately 60% × VOUT(nom)  
.
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS7A53A-Q1  
 
TPS7A53A-Q1  
ZHCSR69A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
The output voltage is not regulated when the device is in current limit. When a current-limit event occurs, the  
device begins to heat up because of the increase in power dissipation. When the device is in a brick-wall current  
limit, the pass transistor dissipates power [(VIN VOUT) × ICL]. When the device output is shorted and the output  
is below VFOLDBACK, the pass transistor dissipates power [(VIN VOUT) × ISC]. If thermal shutdown is triggered,  
the device turns off. When the device sufficiently cools down, the internal thermal shutdown circuit turns the  
device back on. If the output current fault condition continues, the device cycles between current limit and  
thermal shutdown. For more information on current limits, see the Know Your Limits application note. 7-2  
shows a diagram of the foldback current limit.  
VOUT  
Brickwall  
VOUT(NOM)  
VFOLDBACK  
Foldback  
0 V  
IOUT  
IRATED  
0 mA  
ISC  
ICL  
7-2. Foldback Current Limit  
7.3.5 Thermal Shutdown Protection (TSD  
)
The internal thermal shutdown protection circuit disables the output when the thermal junction temperature (TJ )  
of the pass transistor rises to the thermal shutdown temperature threshold, TSD(shutdown) (typical). The thermal  
shutdown circuit hysteresis makes sure that the LDO resets (turns on) when the temperature falls to  
TSD(reset) (typical)  
.
The thermal time constant of the semiconductor die is fairly short; thus, the device can cycle on and off when  
thermal shutdown is reached until the power dissipation is reduced. Power dissipation during start up can be  
high from large VIN VOUT voltage drops across the device or from high inrush currents charging large output  
capacitors. Under some conditions, the thermal shutdown protection disables the device before start up  
completes.  
For reliable operation, limit the junction temperature to the maximum listed in the Recommended Operating  
Conditions table. Operation above this maximum temperature causes the device to exceed operational  
specifications. Although the internal protection circuitry is designed to protect against thermal overload  
conditions, this circuitry is not intended to replace proper heat sinking. Continuously running the regulator into  
thermal shutdown, or above the maximum recommended junction temperature, reduces long-term reliability.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS7A53A-Q1  
 
TPS7A53A-Q1  
ZHCSR69A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.4 Device Functional Modes  
7-1 shows the conditions that lead to the different modes of operation. See the Electrical Characteristics table  
for parameter values.  
7-1. Device Functional Mode Comparison  
PARAMETER  
OPERATING MODE  
VIN  
VBIAS  
VEN  
IOUT  
TJ  
VIN VOUT (nom)  
VDO(IN) and VIN ≥  
+
TJ < TSD for  
shutdown  
V
BIAS VOUT +  
VDO(BIAS)  
Normal mode  
Dropout mode  
IOUT < ICL  
VEN VHI(EN)  
VIN(min)  
VIN(min) < VIN < VOUT  
(nom) + VDO(IN)  
TJ < TSD for  
shutdown  
VBIAS < VOUT + VDO(BIAS)  
VEN > VHI(EN)  
IOUT < ICL  
Disabled mode  
(any true condition  
disables the device)  
TJ TSD for  
shutdown  
VIN < VUVLO(IN)  
VBIAS < VBIAS(UVLO)  
VEN < VLO(EN)  
7.4.1 Normal Operation  
The device regulates to the nominal output voltage when the following conditions are met:  
The input voltage is greater than the nominal output voltage plus the dropout voltage (VOUT(nom) + VDO(IN)  
)
The bias voltage is greater than the nominal output voltage plus the dropout voltage (VOUT(nom) + VDO(BIAS)  
The output current is less than the current limit (IOUT < ICL)  
)
The device junction temperature is less than the thermal shutdown temperature ( TJ < TSD(shutdown)  
)
The enable voltage has previously exceeded the enable rising threshold voltage and has not yet decreased  
to less than the enable falling threshold  
7.4.2 Dropout Operation  
If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other  
conditions are met for normal operation, the device operates in dropout mode. Similarly, if the bias voltage is  
lower than the nominal output voltage plus the specified dropout voltage, but all other conditions are met for  
normal operation, the device operates in dropout mode as well. In this mode, the output voltage tracks the input  
voltage. During this mode, the transient performance of the device becomes significantly degraded because the  
pass transistor is in the ohmic or triode region, and functions as a switch. Line or load transients in dropout can  
result in large output voltage deviations.  
When the device is in a steady dropout state, defined as when the device is in dropout (VIN < VOUT + VDO(IN) or  
VBIAS < VOUT + VDO(BIAS) directly after being in normal regulation state, but not during start up), the pass  
transistor is driven into the ohmic or triode region. When the input voltage returns to a value greater than or  
equal to the nominal output voltage plus the dropout voltage (VOUT(NOM) + VDO(IN)), the output voltage can  
overshoot for a short time when the device pulls the pass transistor back into the linear region.  
7.4.3 Disabled  
The output of the device can be shutdown by forcing the voltage of the enable pin to less than VIL(EN) (see the  
Electrical Characteristics table). When disabled, the pass transistor is turned off, internal circuits are shutdown,  
and the output voltage is actively discharged to ground by an internal discharge circuit from the output to ground.  
The device is disabled under the following conditions:  
The input or bias voltages are below the respective minimum specifications  
The enable voltage is less than the enable falling threshold voltage or has not yet exceeded the enable rising  
threshold  
The device junction temperature is greater than the thermal shutdown temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS7A53A-Q1  
 
 
TPS7A53A-Q1  
ZHCSR69A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The TPS7A53A-Q1 is a low-input, low-output (LILO), low-dropout regulator (LDO) that features soft-start  
capability. This regulator uses a low-current bias input to power all internal control circuitry, allowing the NMOS  
pass transistor to regulate very low input and output voltages.  
Using an NMOS pass transistor offers several critical advantages for many applications. Unlike a PMOS  
topology device, the output capacitor has little effect on loop stability. This architecture allows stability with  
ceramic capacitors of 10 μF or greater. Transient response is also superior to PMOS topologies, particularly for  
low VIN applications.  
A programmable voltage-controlled, soft-start circuit provides a smooth, monotonic start-up and limits start-up  
inrush currents that can be caused by large capacitive loads. An enable (EN) pin with hysteresis and deglitch  
allows slow-ramping signals to be used for sequencing the device. The low VIN and VOUT capability allows for  
inexpensive, easy-to-design, and efficient linear regulation between the multiple supply voltages often required  
by processor-intensive systems.  
8.1.1 Input, Output, and Bias Capacitor Requirements  
The device is designed to be stable for ceramic capacitor of values 10 μF. The device is also stable with  
multiple capacitors in parallel, which can be of any type or value.  
The capacitance required on the IN and BIAS pins strongly depends on the input supply source impedance. To  
counteract any inductance in the input, the minimum recommended capacitor for VIN is 1 μF and the minimum  
recommended capacitor for VBIAS is 0.1 µF. If VIN and VBIAS are connected to the same supply, the  
recommended minimum capacitor for VBIAS is 4.7 μF. Use good quality, low equivalent series resistance (ESR)  
and equivalent series inductance (ESL) capacitors on the input; ceramic X5R and X7R capacitors are preferred.  
Place these capacitors as close the pins as possible for optimum performance.  
Low ESR and ESL capacitors improve high-frequency PSRR.  
8.1.2 Dropout Voltage  
The TPS7A53A-Q1 offers very low dropout performance, making the device designed for high-current, low VIN  
and low VOUT applications. The low dropout allows the device to be used in place of a dc/dc converter and still  
achieve good efficiency. 方程2 provides a quick estimate of the efficiency.  
V
OUT ´ IOUT  
VOUT  
VIN  
at IOUT >> IQ  
»
Efficiency »  
VIN ´ (IIN + IQ)  
(2)  
This efficiency provides designers with the power architecture for applications to achieve the smallest, simplest,  
and lowest cost solutions.  
For this architecture, there are two different specifications for dropout voltage. The first specification (see 图  
6-19) is referred to as VIN dropout and is used when an external bias voltage is applied to achieve low dropout.  
This specification assumes that VBIAS is at least 2.8 V above VOUT, which is the case for VBIAS when powered by  
a 5.0-V rail with 5% tolerance and with VOUT = 1.5 V. If VBIAS is higher than VOUT + 2.8 V, the VIN dropout is less  
than specified.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS7A53A-Q1  
 
 
 
TPS7A53A-Q1  
ZHCSR69A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
备注  
2.8 V is a test condition of this device and can be adjusted by referring to the Electrical Characteristics  
table.  
The second specification (illustrated in 6-20) is referred to as VBIAS dropout and applies to applications where  
IN and BIAS are tied together. This option allows the device to be used in applications where an auxiliary bias  
voltage is not available or low dropout is not required. Dropout is limited by BIAS in these applications because  
VBIAS provides the gate drive to the pass transistor; therefore, VBIAS must be 1.9 V above VOUT. Because of this  
usage, having IN and BIAS tied together become a highly inefficient solution that can consume large amounts of  
power. Pay attention not to exceed the power rating of the device package.  
8.1.3 Output Noise  
The TPS7A53A-Q1 provides low output noise when a soft-start capacitor is used. When the device reaches the  
end of the soft-start cycle, the soft-start capacitor serves as a filter for the internal reference. By using a 10-nF,  
soft-start capacitor, the output noise is reduced by half and is typically 7.1 μVRMS for a 1-V output (10 Hz to  
100 kHz). Further increasing CSS has little effect on noise. Because most of the output noise is generated by the  
internal reference, the noise is a function of the set output voltage. 方程式 3 gives the RMS noise with a 10-nF,  
soft-start capacitor:  
V  
«
÷
÷
RMS  
V
V ( VRMS ) = 7.1∂  
VOUT (V)  
N
(3)  
The low output noise makes this LDO a good choice for powering transceivers, phase-locked loops (PLLs), or  
other noise-sensitive circuitry.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS7A53A-Q1  
 
TPS7A53A-Q1  
ZHCSR69A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.1.4 Estimating Junction Temperature  
By using the thermal metrics ΨJT and ΨJB, as shown in the Thermal Information table, the junction temperature  
can be estimated with corresponding formulas (given in 方程式 4). For backwards compatibility, an older θJC(top)  
parameter is listed as well.  
YJT: TJ = TT + YJT · PD  
YJB: TJ = TB + YJB · PD  
(4)  
where:  
PD is the power dissipation  
TT is the temperature at the center-top of the package  
TB is the PCB temperature measured 1 mm away from the package on the PCB surface  
备注  
Both TT and TB can be measured on actual application boards using a thermo-gun (an infrared  
thermometer).  
For more information about measuring TT and TB, see the Using New Thermal Metrics application note,  
available for download at www.ti.com.  
For a more detailed discussion of why TI does not recommend using θJC(top) to determine thermal  
characteristics, see the Using New Thermal Metrics application note, available for download at www.ti.com. For  
further information, see the Semiconductor and IC Package Thermal Metrics application note, also available on  
the TI website.  
8.1.5 Soft Start, Sequencing, and Inrush Current  
Soft-start refers to the ramp-up characteristic of the output voltage during LDO turn-on after EN and UVLO  
achieve threshold voltage. The soft start current is fixed for fixed output voltage versions.  
Although the device does not have any sequencing requirement, following the sequencing order of BIAS, IN, and  
EN makes sure that the soft start starts from zero.  
8-1 shows an example of the device behavior when the EN pin is enabled prior to having either power supply  
up. Under this condition, the output jumps from 0 V to approximately 0.3 V almost instantly when the IN voltage  
is sufficient to power the circuit.  
8-1. Sequencing and Soft-Start Behavior  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS7A53A-Q1  
 
 
TPS7A53A-Q1  
ZHCSR69A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
As shown in 8-2, connecting EN to IN, in conjunction with a slow input or output voltage ramp, can have  
undesired behavior in the application. For a smooth IN and OUT ramp, consider using the EN pin separate from  
the IN voltage.  
8-2. VEN = VIN Behavior  
Inrush current is defined as the current into the LDO at the IN pin during start-up. Inrush current then consists  
primarily of the sum of load current and the current used to charge the output capacitor. This current is difficult to  
measure because the input capacitor must be removed, which is not recommended. However, 方程式 5 can  
estimate this soft-start current:  
C
OUT ´ dVOUT(t)  
VOUT(t)  
RLOAD  
IOUT(t)  
=
+
dt  
(5)  
where:  
VOUT(t) is the instantaneous output voltage of the turn-on ramp  
dVOUT(t) / dt is the slope of the VOUT ramp  
RLOAD is the resistive load impedance  
8.1.6 Power-Good Operation  
For proper operation of the power-good circuit, the pullup resistor value must be between 10 kΩ and 100 kΩ.  
The lower limit of 10 kΩ results from the maximum pulldown strength of the power-good transistor, and the  
upper limit of 100 kΩresults from the maximum leakage current at the power-good node. If the pullup resistor is  
outside of this range, then the power-good signal can possibly not read a valid digital logic level.  
The state of PG is only valid when the device operates above the minimum supply voltage. During short UVLO  
events and at light loads, power-good does not assert because the output voltage is sustained by the output  
capacitance.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS7A53A-Q1  
 
 
TPS7A53A-Q1  
ZHCSR69A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.2 Typical Application  
This section discusses the implementation of the fixed 1.0-V TPS7A53A-Q1 to regulate a 3-A load requiring  
good PSRR at high frequency with low noise. 8-3 provides a schematic for this typical application circuit.  
VIN  
IN  
OUT  
VOUT  
COUT  
VBIAS  
CIN  
SNS  
TPS7A53A-Q1  
EN  
SS  
PG  
RPG  
CSS  
VBIAS  
CBIAS  
BIAS  
GND  
8-3. Typical Fixed Voltage Application  
8.2.1 Design Requirements  
For this design example, use the parameters listed in 8-1 as the input parameters.  
8-1. Design Parameters  
PARAMETER  
Input voltage  
DESIGN REQUIREMENT  
1.3 V, ±3%, provided by the dc/dc converter switching at 500 kHz  
Bias voltage  
5.0 V  
Output voltage  
1.0 V, ±1%  
Output current  
3.0 A (maximum), 10 mA (minimum)  
RMS noise, 10 Hz to 100 kHz  
PSRR at 500 kHz  
Start-up time  
< 10 µVRMS  
> 40 dB  
< 25 ms  
8.2.2 Detailed Design Procedure  
At 3.0 A and 1.0 VOUT, the dropout of the TPS7A53A-Q1 has a 285-mV maximum dropout over temperature;  
thus, a 300-mV headroom is sufficient for operation over both input and output voltage accuracy. At full load and  
high temperature on some devices, the TPS7A53A-Q1 can enter dropout if both the input and output supply are  
beyond the edges of the respective accuracy specification.  
To satisfy the required start-up time and still maintain low noise performance, a 10-nF CSS is selected. 方程式 6  
calculates this value.  
tSS = (VSS × CSS) / ISS  
(6)  
At the 3.0-A maximum load, the internal power dissipation is 0.9 W and corresponds to a 38.3°C junction  
temperature rise for the RTJ package on a standard JEDEC board. With an 55°C maximum ambient  
temperature, the junction temperature is at 93.3°C.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS7A53A-Q1  
 
 
 
 
TPS7A53A-Q1  
ZHCSR69A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.2.3 Application Curve  
8-4. PSRR vs Frequency for  
VOUT = 1.0 V and IOUT = 3 A  
8.3 Power Supply Recommendations  
The TPS7A53A-Q1 is designed to operate from an input voltage up to 6.0 V, provided the bias rail is at least  
1.3 V higher than the input supply and dropout requirements are met. The bias rail and the input supply must  
both provide adequate headroom and current for the device to operate normally. Connect a low output  
impedance power supply directly to the IN pin. This supply must have at least 1 μF of capacitance near the IN  
pin for optimal performance. A supply with similar requirements must also be connected directly to the BIAS rail  
with a separate 0.1 μF or larger capacitor. If the IN pin is tied to the BIAS pin, a minimum 4.7-μF capacitor is  
required for performance. To increase the overall PSRR of the solution at higher frequencies, use a pi-filter or  
ferrite bead before the input capacitor.  
8.4 Layout  
8.4.1 Layout Guidelines  
8.4.1.1 Board Layout  
For best overall performance, place all circuit components on the same side of the circuit board and as near as  
practical to the respective LDO pin connections. Place ground return connections to the input and output  
capacitor, and to the LDO ground pin as close to each other as possible, connected by a wide, component-side,  
copper surface. To avoid negative system performance, do not use of vias and long traces to the input and  
output capacitors. The grounding and layout scheme illustrated in 8-5 minimizes inductive parasitics, and  
thereby reduces load-current transients, minimizes noise, and increases circuit stability.  
To improve performance, use a ground reference plane, either embedded in the PCB or placed on the bottom  
side of the PCB opposite the components. This reference plane serves to provide accuracy of the output  
voltage, shield noise, and behaves similar to a thermal plane to spread (or sink) heat from the LDO device when  
connected to the thermal pad. In most applications, this ground plane is necessary to meet thermal  
requirements.  
8.4.1.2 RTJ Package High CTE Mold Compound  
The RTJ package uses a mold compound with a high coefficient of thermal expansion (CTE) of 12 ppm/°C. This  
mold compound allows for the CTE of the packaged device to more closely match the CTE of a conventional  
FR4 PCB (approximately 14 ppm/°C to 17 ppm/°C). This CTE match is important when considering the effects  
that temperature swings can induce on a board with large differences in CTE values. Package and board  
combinations with widely dissimilar CTEs can experience mechanical cracking or fracturing of the solder joints  
caused by frequent changes in temperature, and the corresponding differences in expansion. Devices with  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS7A53A-Q1  
 
 
TPS7A53A-Q1  
ZHCSR69A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
normal mold compounds in similar packages typically have CTE values that are 25% lower than values found  
with the RTJ package.  
8.4.2 Layout Example  
Ground Plane for Thermal Relief and Signal  
Ground  
10  
9
8
7
6
To PG Pullup Supply  
PG Output  
NC 11  
5
NC  
PG  
CBIAS  
RPG  
To Bias Supply  
To Signal Ground  
Enable Signal  
BIAS  
12  
4
3
Thermal Pad  
SS 13  
NC  
SNS  
CNR/SS  
EN 14  
2
1
To Load  
15  
IN  
OUT  
16  
18  
19  
20  
17  
Input Power Plane  
Output Power Plane  
CIN  
COUT  
Power Ground Plane  
Vias used for application purposes.  
8-5. Example Layout  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS7A53A-Q1  
 
TPS7A53A-Q1  
ZHCSR69A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Documentation Support  
9.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, TPS3702 High-Accuracy, Overvoltage and Undervoltage Monitor data sheet  
Texas Instruments, Pros and Cons of Using a Feed-Forward Capacitor with a Low Dropout Regulator  
application note  
Texas Instruments, 6 A Current-Sharing Dual LDO design guide  
9.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS7A53A-Q1  
 
 
 
 
 
 
 
 
TPS7A53A-Q1  
ZHCSR69A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
10.1 Mechanical Data  
PACKAGE OUTLINE  
RTJ0020L  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.15  
3.85  
B
A
PIN 1 INDEX AREA  
4.15  
3.85  
0.07 MIN  
(0.13)  
A
-
A
3
0
.
0
0
0
SECTION A-A  
TYPICAL  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.2 0.1  
2X  
2
SYMM  
(0.2) TYP  
6
10  
EXPOSED  
THERMAL PAD  
11  
5
(0.16) TYP  
A
A
SYMM  
21  
2X  
2
16X 0.5  
PIN 1 ID  
1
15  
0.3  
0.2  
20X  
0.1  
C A B  
16  
0.5  
20  
0.05  
20X  
0.3  
4228235/A 12/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS7A53A-Q1  
 
TPS7A53A-Q1  
ZHCSR69A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
RTJ0020L  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.2)  
SYMM  
20  
16  
SEE SOLDER MASK  
DETAIL  
20X (0.6)  
20X (0.25)  
1
15  
16X (0.5)  
(0.85)  
21  
SYMM  
(3.8)  
5
11  
(R0.05) TYP  
(
0.2) TYP  
VIA  
6
10  
(0.85)  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DEFINED  
SOLDER MASK DETAILS  
4228235/A 12/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS7A53A-Q1  
TPS7A53A-Q1  
ZHCSR69A NOVEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
RTJ0020L  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.59) TYP  
16  
20  
20X (0.6)  
20X (0.25)  
16X (0.5)  
1
15  
(0.59) TYP  
(3.8)  
21  
SYMM  
4X ( 0.98)  
11  
(R0.05) TYP  
5
10  
6
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 20X  
EXPOSED PAD 21  
79% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4228235/A 12/2021  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS7A53A-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-May-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTPS7A5310AQWRTJQ1  
TPS7A5310AQWRTJRQ1  
ACTIVE  
ACTIVE  
QFN  
QFN  
RTJ  
RTJ  
20  
20  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 150  
-40 to 150  
P7A5310  
7A5310A  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-May-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Mar-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS7A5310AQWRTJRQ1 QFN  
RTJ  
20  
3000  
330.0  
12.4  
4.25  
4.25  
1.15  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Mar-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
QFN RTJ 20  
SPQ  
Length (mm) Width (mm) Height (mm)  
360.0 360.0 36.0  
TPS7A5310AQWRTJRQ1  
3000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RTJ 20  
4 x 4, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224842/A  
www.ti.com  
PACKAGE OUTLINE  
RTJ0020L  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.15  
3.85  
A
B
PIN 1 INDEX AREA  
4.15  
3.85  
0.07 MIN  
(0.13)  
A
-
A
3
0
.
0
0
0
SECTION A-A  
TYPICAL  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.2 0.1  
2X 2  
SYMM  
(0.2) TYP  
6
10  
EXPOSED  
THERMAL PAD  
11  
5
(0.16) TYP  
A
A
SYMM  
21  
2X 2  
16X 0.5  
1
15  
0.3  
0.2  
20X  
PIN 1 ID  
0.1  
C A B  
16  
0.5  
20  
0.05  
20X  
0.3  
4228235/A 12/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTJ0020L  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.2)  
SYMM  
20  
16  
SEE SOLDER MASK  
DETAIL  
20X (0.6)  
20X (0.25)  
1
15  
16X (0.5)  
(0.85)  
21  
SYMM  
(3.8)  
5
11  
(R0.05) TYP  
(
0.2) TYP  
VIA  
6
10  
(0.85)  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
SOLDER MASK DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4228235/A 12/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTJ0020L  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.59) TYP  
16  
20  
20X (0.6)  
20X (0.25)  
16X (0.5)  
1
15  
(0.59) TYP  
(3.8)  
21  
SYMM  
4X ( 0.98)  
11  
(R0.05) TYP  
5
10  
6
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 20X  
EXPOSED PAD 21  
79% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4228235/A 12/2021  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS7A54

4A、低输入电压 (1.1V)、低噪声、高精度、超低压降 (LDO) 稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A54-Q1

汽车类 4A、低输入电压 (1.1V)、低噪声、高精度、超低压降 (LDO) 稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A5401QRGRRQ1

汽车类 4A、低输入电压 (1.1V)、低噪声、高精度、超低压降 (LDO) 稳压器 | RGR | 20 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A5401RPSR

4A、低输入电压 (1.1V)、低噪声、高精度、超低压降 (LDO) 稳压器 | RPS | 12 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A5401RPST

4A、低输入电压 (1.1V)、低噪声、高精度、超低压降 (LDO) 稳压器 | RPS | 12 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A57

5A、低输入电压、低噪声、高精度、低压降 (LDO) 稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A5701RTER

5A、低输入电压、低噪声、高精度、低压降 (LDO) 稳压器 | RTE | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A60-Q1

具有电源正常指示功能的汽车类 300mA、电池供电运行 (40V)、低 IQ、低压降稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A6033-Q1

300-mA 40-V LOW-DROPOUT REGULATOR WITH 25-μA QUIESCENT CURRENT

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A6033QKTTRQ1

300-mA 40-V LOW-DROPOUT REGULATOR WITH 25-μA QUIESCENT CURRENT

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A6033QKVURQ1

300-mA 40-V LOW-DROPOUT REGULATOR WITH 25-μA QUIESCENT CURRENT

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A6050QKTTRQ1

300-mA 40-V LOW-DROPOUT REGULATOR WITH 25-μA QUIESCENT CURRENT

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI