TPS7B8133QDGNRQ1 [TI]

具有使能功能的汽车类 150mA、电池供电运行 (40V)、超低 IQ、低压降稳压器 | DGN | 8 | -40 to 150;
TPS7B8133QDGNRQ1
型号: TPS7B8133QDGNRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有使能功能的汽车类 150mA、电池供电运行 (40V)、超低 IQ、低压降稳压器 | DGN | 8 | -40 to 150

电池 稳压器
文件: 总35页 (文件大小:3076K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS7B81-Q1  
ZHCSJO2C MAY 2019REVISED APRIL 2020  
脱离电池运行的 TPS7B81-Q1 150mA、超低 IQ (3µA) 低压降稳压器  
1 特性  
3 说明  
1
符合面向汽车 应用的 AEC-Q100 标准:  
温度等级 1-40°C 125°CTA  
在汽车电池连接 应用中,低静态电流 (IQ) 对于省电和  
延长电池寿命而言非常重要。始终开启的系统必须在扩  
展温度范围内实现超低 IQ,以便在车辆点火开关关闭  
时也能实现持久运行。  
器件结温范围:  
-40°C 150°C  
3V 40V VIN 输入电压范围,瞬态电压高达  
45V  
TPS7B81-Q1 是一款低压降 (LDO) 线性稳压器,专为  
高达 40V VIN 的 这些领域而设计。此器件在轻负载时  
的典型静态电流仅为 2.7µA,是用于为待机系统中的微  
控制器以及控制器局域网和本地互联网络 (CAN/LIN)  
收发器供电的最佳解决方案。  
最大输出电流:150mA  
低静态电流 IQ:  
EN = 低电平时典型值为 300nA  
(关断模式)  
轻负载时典型值为 2.7µA  
轻负载时最大值为 4.5µA  
此器件 具有 集成式短路和过流保护。此器件可在  
-40°C +125°C 的环境温度下运行,结温范围为  
-40°C +150°C。此外,此器件提供多种具有不同尺  
寸和热导率的封装选项。小型 WSON 封装有助于实现  
最紧凑的 PCB 设计,即使整个器件散热较多,TO-  
252 封装也能让器件实现持久运行。这些 特性 使得此  
器件非常适合用作各种电池连接汽车 这些领域。  
线路、负载和温度范围内的输出电压精度为 1.5%  
最大压降电压:对于固定 5V 输出电压版  
本,150mA 负载电流下为 540mV  
与低 ESR0.001Ω 5Ω)陶瓷输出稳定电容器  
1µF 200µF)搭配使用时可保持稳定  
5V3.3V 2.5V 固定输出电压  
器件信息(1)  
集成故障保护:  
器件型号  
封装  
HVSSOP (8)  
封装尺寸(标称值)  
3.00mm × 3.00mm  
2.00mm × 2.00mm  
6.10mm × 6.60mm  
热关断  
短路和过流保护  
TPS7B81-Q1  
WSON (6)  
TO-252 (5)  
封装:  
DGN8 引脚 HVSSOP),RθJA = 63.9°C/W  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
DRV6 引脚 WSON),RθJA = 72.8°C/W  
KVU5 引脚 TO-252)RθJA = 38.8°C/W  
添加了项目符号  
典型应用原理图  
VBATT  
VOUT = 3.3V or 5V  
2 应用  
OUT  
TPS7B81-Q1  
IN  
汽车音响主机  
CIN  
COUT  
前照灯  
EN  
电池管理系统 (BMS)  
逆变器和电机控制  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBVS370  
 
 
 
 
 
 
TPS7B81-Q1  
ZHCSJO2C MAY 2019REVISED APRIL 2020  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 12  
Application and Implementation ........................ 13  
8.1 Application Information............................................ 13  
8.2 Typical Application ................................................. 17  
Power Supply Recommendations...................... 18  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 11  
7.1 Overview ................................................................. 11  
7.2 Functional Block Diagram ....................................... 11  
7.3 Feature Description................................................. 11  
8
9
10 Layout................................................................... 19  
10.1 Layout Guidelines ................................................. 19  
10.2 Layout Example ................................................... 19  
11 器件和文档支持 ..................................................... 20  
11.1 接收文档更新通知 ................................................. 20  
11.2 支持资源................................................................ 20  
11.3 ....................................................................... 20  
11.4 静电放电警告......................................................... 20  
11.5 Glossary................................................................ 20  
12 机械、封装和可订购信息....................................... 20  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (August 2019) to Revision C  
Page  
已更改 将 KVU 封装从预览更改为生产数据”....................................................................................................................... 1  
已更改 应用 部分 .................................................................................................................................................................... 1  
Changes from Revision A (June 2019) to Revision B  
Page  
已更改 将 DGN 封装从预览更改为生产数据” ...................................................................................................................... 1  
已更改 将 525mV 更改为 540mV(在最大压降电压 特性 项目符号) ................................................................................... 1  
已添加 RθJA versus Cu Area for the HVSSOP (DGN) Package through ψJB versus Cu Area for the TO-252 (KVU)  
Package figures to Power Dissipation section ..................................................................................................................... 15  
Deleted values from capacitors CIN and COUT in 31......................................................................................................... 17  
Changes from Original (May 2019) to Revision A  
Page  
已更改 将预告信息更改为生产数据.................................................................................................................................... 1  
2
Copyright © 2019–2020, Texas Instruments Incorporated  
 
TPS7B81-Q1  
www.ti.com.cn  
ZHCSJO2C MAY 2019REVISED APRIL 2020  
5 Pin Configuration and Functions  
DGN Package  
8-Pin HVSSOP PowerPAD™  
Top View  
DRV Package  
6-Pin WSON PowerPAD™  
Top View  
IN  
EN  
1
2
3
6
5
4
OUT  
DNC  
GND  
IN  
EN  
1
2
3
4
8
7
6
5
OUT  
NC  
Thermal  
Pad  
Thermal  
Pad  
NC  
GND  
GND  
GND  
GND  
Not to scale  
Not to scale  
KVU Package  
5-Pin TO-252  
Top View  
GND  
Not to scale  
Copyright © 2019–2020, Texas Instruments Incorporated  
3
TPS7B81-Q1  
ZHCSJO2C MAY 2019REVISED APRIL 2020  
www.ti.com.cn  
Pin Functions  
PIN  
NO.  
I/O  
DESCRIPTION  
NAME  
DGN  
DRV  
KVU  
Do not connect to a biased voltage. Tie this pin to ground or leave  
floating.  
DNC  
5
4
Enable input pin. Drive EN greater than VIH to turn on the regulator.  
Drive EN less than VIL to put the low-dropout (LDO) into shutdown  
mode.  
EN  
2
2
2
I
GND  
4, 5, 6  
3,4  
3, TAB  
Ground reference  
Input power-supply pin. For best transient response and to  
minimize input impedance, use the recommended value or larger  
ceramic capacitor from IN to ground as listed in the Recommended  
Operating Conditions table and the Input Capacitor section. Place  
the input capacitor as close to the output of the device as possible.  
IN  
1
1
1
I
NC  
3, 7  
Not internally connected  
Regulated output voltage pin. A capacitor is required from OUT to  
ground for stability. For best transient response, use the nominal  
recommended value or larger ceramic capacitor from OUT to  
ground; see the Recommended Operating Conditions table and the  
Output Capacitor section. Place the output capacitor as close to  
output of the device as possible.  
OUT  
8
6
5
O
Connect the thermal pad to a large-area GND plane for improved  
thermal performance.  
Thermal pad  
4
Copyright © 2019–2020, Texas Instruments Incorporated  
TPS7B81-Q1  
www.ti.com.cn  
ZHCSJO2C MAY 2019REVISED APRIL 2020  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.3  
–0.3  
–0.3  
–40  
MAX  
45  
UNIT  
V
VIN  
Unregulated input(3)  
Enable input(3)  
VEN  
VOUT  
TJ  
VIN  
7
V
Regulated output  
V
Junction temperature range  
Storage temperature range  
150  
150  
°C  
°C  
Tstg  
–40  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to GND.  
(3) Absolute maximum voltage, can withstand 45 V for 200 ms.  
6.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Electrostatic  
discharge  
V(ESD)  
Charged-device model (CDM), per  
AEC Q100-011  
Corner pins  
Other pins  
V
±500  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
3
MAX  
UNIT  
VIN  
Unregulated input voltage  
40  
VIN  
200  
5
V
V
VEN  
COUT  
ESR  
TA  
Enable input voltage  
0
Output capacitor requirements(1)  
Output capacitor ESR requirements(2)  
Ambient temperature range  
Junction temperature range  
1
µF  
Ω
0.001  
–40  
–40  
125  
150  
°C  
°C  
TJ  
(1) The output capacitance range specified in the table is the effective value.  
(2) Relevant ESR value at f = 10 kHz  
6.4 Thermal Information  
TPS7B81-Q1  
DGN  
(HVSSOP)  
DRV  
(WSON)  
KVU  
THERMAL METRIC(1)  
UNIT  
(TO-252)  
5 PINS  
31.1  
39.9  
9.9  
8 PINS  
63.9  
50.2  
22.6  
1.8  
6 PINS  
72.8  
85.8  
37.4  
2.7  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
4.2  
ψJB  
22.3  
12.1  
37.3  
13.8  
9.9  
RθJC(bot)  
2.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2019–2020, Texas Instruments Incorporated  
5
 
TPS7B81-Q1  
ZHCSJO2C MAY 2019REVISED APRIL 2020  
www.ti.com.cn  
6.5 Electrical Characteristics  
over operating ambient temperature range, TJ = –40°C to +150°C, VIN = 14 V, and 10-µF ceramic output capacitor (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX UNIT  
SUPPLY VOLTAGE AND CURRENT (IN)  
VOUT(Nom)  
+ V(Dropout)  
VIN  
Input voltage  
40  
1
V
I(SD)  
Shutdown current  
EN = 0 V  
0.3  
1.9  
2.7  
2.7  
µA  
VIN = 6 V to 40 V, EN 2 V,  
IOUT = 0 mA  
3.5  
6.5  
4.5  
2.7  
I(Q)  
Quiescent current  
DGN package  
µA  
VIN = 6 V to 40 V, EN 2 V,  
IOUT = 0.2 mA  
DRV and KVU  
packages  
Ramp VIN down until the output turns off  
Hysteresis  
V
V(IN,  
UVLO)  
VIN undervoltage  
detection  
200  
10  
mV  
ENABLE INPUT (EN)  
VIL  
VIH  
IEN  
Logic-input low level  
0.7  
V
V
Logic-input high level  
Enable current  
2
nA  
REGULATED OUTPUT (OUT)  
VIN = VOUT + V(Dropout) to 40 V,  
IOUT = 1 mA to 150 mA  
VOUT  
Regulated output  
Line regulation  
–1.5%  
1.5%  
V(Line-  
Reg)  
VIN = 6 V to 40 V, IOUT = 10 mA  
10  
20  
mV  
mV  
DGN package  
V(Load-  
Reg)  
Load regulation  
VIN = 14 V, IOUT = 1 mA to 150 mA  
DRV and KVU  
packages  
10  
DGN package  
270  
325  
180  
200  
540  
585  
350  
390  
650  
675  
IOUT = 150 mA  
DRV and KVU  
packages  
VOUT = 5 V  
DGN package  
IOUT = 100 mA  
DRV and KVU  
packages  
V(Dropout  
)
Dropout voltage  
mV  
DGN package  
IOUT = 150 mA  
VOUT = 3.3 V  
DRV and KVU  
packages  
345  
255  
IOUT = 100 mA  
450  
750  
500  
IOUT = 150 mA  
IOUT = 100 mA  
VOUT = 2.5 V,  
DGN package  
VOUT in regulation, VIN = 7 V for the fixed 5-V option, VIN = 5.8 V  
for the fixed 3.3-V option  
IOUT  
Output current  
0
150  
690  
mA  
mA  
dB  
I(CL)  
Output current limit  
VOUT short to 90% × VOUT  
180 510  
60  
Power-supply ripple  
rejection  
V(Ripple) = 0.5 VPP, IOUT = 10 mA, frequency = 100 Hz, COUT = 2.2  
µF  
PSRR  
OPERATING TEMPERATURE RANGE  
Junction shutdown  
temperature  
T(SD)  
175  
20  
ºC  
ºC  
Hysteresis of thermal  
shutdown  
T(HYST)  
6
版权 © 2019–2020, Texas Instruments Incorporated  
TPS7B81-Q1  
www.ti.com.cn  
ZHCSJO2C MAY 2019REVISED APRIL 2020  
6.6 Typical Characteristics  
at TJ = –40°C to +150°C, VIN = 14 V, and VEN 2 V (unless otherwise noted)  
480  
450  
420  
390  
360  
330  
300  
270  
240  
210  
180  
4.2  
3.9  
3.6  
3.3  
3
5 V option  
3.3 V option  
IOUT = 0 mA; VIN = 6 V  
IOUT = 0 mA; VIN = 40 V  
IOUT = 200 mA; VIN = 6 V  
IOUT = 200 mA; VIN = 40 V  
2.7  
2.4  
2.1  
1.8  
1.5  
-50  
-25  
0
25  
50  
75  
100 125 150 175  
-50  
-25  
0
25  
50  
75  
100 125 150 175  
Temperature (èC)  
Temperature (èC)  
shut  
iq_v  
VEN = 0 V  
VOUT = 5 V  
1. Shutdown Current vs Ambient Temperature  
2. Quiescent Current vs Ambient Temperature  
4.2  
3.9  
3.6  
3.3  
3
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
IOUT = 0 mA; VIN = 6 V  
IOUT = 0 mA; VIN = 40 V  
IOUT = 200 mA; VIN = 6 V  
IOUT = 200 mA; VIN = 40 V  
150èC  
125èC  
105èC  
85èC  
25èC  
0èC  
-40èC  
-50èC  
2.7  
2.4  
2.1  
1.8  
1.5  
0
-50  
-25  
0
25  
50  
75  
100 125 150 175  
0
20  
40  
60  
80  
IOUT (mA)  
100  
120  
140  
160  
Temperature (èC)  
iq_v  
drop  
VOUT = 3.3 V  
VOUT = 5 V, DRV Package  
3. Quiescent Current vs Ambient Temperature  
4. Dropout Voltage vs Output Current  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
510  
480  
450  
420  
390  
360  
330  
300  
270  
240  
210  
180  
150  
120  
150èC  
125èC  
105èC  
85èC  
25èC  
0èC  
IOUT = 100mA  
IOUT = 150mA  
-40èC  
-50èC  
0
0
20  
40  
60  
80  
IOUT (mA)  
100  
120  
140  
160  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
drop  
drop  
VOUT = 3.3 V, DRV package  
5. Dropout Voltage vs Output Current  
VOUT = 5 V  
6. Dropout Voltage vs Ambient Temperature  
版权 © 2019–2020, Texas Instruments Incorporated  
7
TPS7B81-Q1  
ZHCSJO2C MAY 2019REVISED APRIL 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TJ = –40°C to +150°C, VIN = 14 V, and VEN 2 V (unless otherwise noted)  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
5.004  
5.002  
5
IOUT = 100 mA  
IOUT = 150 mA  
4.998  
4.996  
4.994  
4.992  
4.99  
4.988  
4.986  
4.984  
IOUT = 1 mA  
IOUT = 150 mA  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
-50  
-25  
0
25  
50  
75  
100 125 150 175  
Temperature (èC)  
drop  
accu  
VOUT = 5 V  
VOUT = 3.3 V  
8. Output Voltage vs Ambient Temperature  
7. Dropout Voltage vs Ambient Temperature  
3.302  
3.3  
25%  
22.5%  
20%  
17.5%  
15%  
12.5%  
10%  
7.5%  
5%  
3.298  
3.296  
3.294  
3.292  
3.29  
VIN = 4 V  
VIN = 14 V  
VIN = 40 V  
2.5%  
0
-50  
-25  
0
25  
50  
75  
100 125 150 175  
Drift (ppm/èC)  
Temperature (èC)  
accu  
neg4  
VOUT = 3.3 V, IOUT = 1 mA  
3.3-V and 5-V options, IOUT = 1 mA  
9. Output Voltage vs Ambient Temperature  
10. Temperature Drift Histogram (–40°C to +25°C)  
5.01  
5.005  
5
40%  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
-50èC  
-40èC  
0èC  
85èC  
125èC  
150èC  
25èC  
105èC  
4.995  
4.99  
4.985  
0
5
10  
15  
20 25  
Input Voltage (V)  
30  
35  
40  
Drift (ppm/èC)  
accu  
25_t  
VOUT = 5 V, IOUT = 1 mA  
12. Output Voltage vs Input Voltage  
3.3-V and 5-V options, IOUT = 1 mA  
11. Temperature Drift Histogram (25ºC to 150ºC)  
8
版权 © 2019–2020, Texas Instruments Incorporated  
TPS7B81-Q1  
www.ti.com.cn  
ZHCSJO2C MAY 2019REVISED APRIL 2020  
Typical Characteristics (接下页)  
at TJ = –40°C to +150°C, VIN = 14 V, and VEN 2 V (unless otherwise noted)  
525  
520  
515  
510  
505  
500  
495  
490  
485  
480  
3.31  
3.305  
3.3  
-50èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
150èC  
160èC  
3.295  
3.29  
5 V option; VIN = 7 V  
3.3 V option; VIN = 5.8 V  
0
5
10  
15  
20  
25  
Input Voltage (V)  
30  
35  
40  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
accu  
curr  
VOUT = 3.3 V, IOUT = 1 mA  
VOUT is shorted to 90% × VOUT(NOM)  
13. Output Voltage vs Input Voltage  
14. Output Current Limit vs Ambient Temperature  
1.55  
1.5  
4.5  
4
1.45  
1.4  
3.5  
3
1.35  
1.3  
2.5  
2
1.25  
1.2  
1.15  
1.1  
1.5  
1
VIL (disabled)  
VIH (enabled)  
1.05  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (C)è  
enab  
enab  
15. Enable Voltage vs Ambient Temperature  
16. Enable Current vs Ambient Temperature  
20  
15  
10  
5
2.65  
2.55  
2.45  
2.35  
2.25  
2.15  
2.05  
1.95  
1.85  
VEN  
VIN  
VOUT  
0
V(IN, UVLO), Falling  
V(IN, UVLO), Rising  
-5  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
0
0.0005  
0.001  
Time (s)  
0.0015  
0.002  
uvlo  
D005  
VOUT = 5 V, CIN = 1 µF, COUT = 1 µF  
17. UVLO vs Ambient Temperature  
18. Startup with enable  
版权 © 2019–2020, Texas Instruments Incorporated  
9
TPS7B81-Q1  
ZHCSJO2C MAY 2019REVISED APRIL 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TJ = –40°C to +150°C, VIN = 14 V, and VEN 2 V (unless otherwise noted)  
20  
17.5  
15  
0.32  
0.28  
0.24  
0.2  
0.12  
0.08  
0.04  
0
0.75  
0.5  
VIN  
VOUT (ac coupled)  
12.5  
10  
0.16  
0.12  
0.08  
0.04  
0
0.25  
0
7.5  
5
2.5  
0
-0.04  
-0.08  
-0.25  
IOUT  
VOUT (ac coupled)  
-2.5  
-5  
-0.04  
-0.08  
-0.5  
0.002  
0
0.0005  
0.001  
Time (s)  
0.0015  
0.002  
0
0.0005  
0.001  
Time (s)  
0.0015  
D004  
D006  
VOUT = 3.3 V, CIN = 0 µF, COUT = 1 µF,  
IOUT = 100 mA, Slew rate = 1 V/µs  
VOUT = 5 V, CIN = 1 µF, COUT = 1 µF,  
IOUT = 1 mA 100 mA 1 mA, Slew rate = 1 mA/µs  
19. Line Transient  
20. Load Transient  
80  
80  
60  
40  
20  
0
60  
40  
20  
0
IOUT = 1 mA  
IOUT = 100 mA  
IOUT = 1 mA  
IOUT = 100 mA  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
psrr  
psrr  
VOUT = 5 V, CIN = 0 µF, COUT = 10 µF  
VOUT = 3.3 V, CIN = 0 µF, COUT = 10 µF  
21. PSRR vs Frequency  
22. PSRR vs Frequency  
200  
100  
10  
5
2
1
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
10  
0.005  
0.002  
0.001  
0.0005  
VOUT = 5 V; IOUT = 1 mA; 247 mVRMS  
VOUT = 5 V; IOUT = 100 mA; 478 mVRMS  
VOUT = 3.3 V; IOUT = 1 mA; 203 mVRMS  
VOUT = 3.3 V; IOUT = 100 mA; 355 mVRMS  
0.0002  
0.0001  
1
0.001  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
0.01  
0.1  
ESR (W)  
1
5
nois  
D014  
CIN = 0.1 µF, COUT = 10 µF  
23. Noise vs Frequency  
24. Output Capacitance vs ESR Stability  
10  
版权 © 2019–2020, Texas Instruments Incorporated  
TPS7B81-Q1  
www.ti.com.cn  
ZHCSJO2C MAY 2019REVISED APRIL 2020  
7 Detailed Description  
7.1 Overview  
The TPS7B81-Q1 is a 40-V, 150-mA, low-dropout (LDO) linear regulator with ultralow quiescent current. This  
voltage regulator consumes only 3 µA of quiescent current at light load, and is quite suitable for the automotive  
always-on application.  
7.2 Functional Block Diagram  
IN  
OUT  
Undervoltage  
Lockout  
+
Band Gap  
Regulator Control  
Vref  
EN  
GND  
Overcurrent  
Protection  
Thermal Shutdown  
7.3 Feature Description  
7.3.1 Device Enable (EN)  
The EN pin is a high-voltage-tolerant pin. A high input activates the device and turns the regulation on. Connect  
this pin to an external microcontroller or a digital circuit to enable and disable the device, or connect to the IN pin  
for self-bias applications.  
7.3.2 Undervoltage Shutdown  
This device has an integrated undervoltage lockout (UVLO) circuit to shut down the output if the input voltage  
(VIN) falls below an internal UVLO threshold (V(UVLO)). This feature ensures that the regulator does not latch into  
an unknown state during low-input-voltage conditions. If the input voltage has a negative transient that drops  
below the UVLO threshold and recovers, the regulator shuts down and powers up with a normal power-up  
sequence when the input voltage is above the required level.  
7.3.3 Current Limit  
This device features current-limit protection to keep the device in a safe operating area when an overload or  
output short-to-ground condition occurs. This feature protects the device from excessive power dissipation. For  
example, during a short-circuit condition on the output, the fault protection limits the current through the pass  
element to I(LIM) to protect the device from excessive power dissipation.  
7.3.4 Thermal Shutdown  
This device incorporates a thermal shutdown (TSD) circuit as protection from overheating. For continuous normal  
operation, the junction temperature must not exceed the TSD trip point. If the junction temperature exceeds the  
TSD trip point, the output turns off. When the junction temperature falls below the TSD trip point minus the  
thermal shutdown hysteresis, the output turns on again.  
版权 © 2019–2020, Texas Instruments Incorporated  
11  
TPS7B81-Q1  
ZHCSJO2C MAY 2019REVISED APRIL 2020  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Operation With VIN Lower Than 3 V  
The device normally operates with input voltages above 3 V. The device can also operate at lower input  
voltages; the maximum UVLO voltage is 2.7 V. The device does not operate at input voltages below the actual  
UVLO voltage.  
7.4.2 Operation With VIN Larger Than 3 V  
When VIN is greater than 3 V, if VIN is also higher than the output set value plus the device dropout voltage, VOUT  
is equal to the set value. Otherwise, VOUT is equal to VIN minus the dropout voltage.  
1. Device Functional Mode Comparison  
OPERATING  
PARAMETER  
MODE  
VIN > VOUT(nom)+ V(Dropout) and  
Normal mode  
Dropout mode  
VEN > VIH  
VEN > VIH  
IOUT < ICL  
IOUT < ICL  
TJ < 160°C  
TJ < 160°C  
VIN 3 V  
3V VIN < VOUT(nom)+ V(Dropout)  
Disabled mode  
(any true  
condition  
VIN < V(IN, UVLO)  
VEN < VIL  
TJ > 160°C  
disables the  
device)  
12  
版权 © 2019–2020, Texas Instruments Incorporated  
TPS7B81-Q1  
www.ti.com.cn  
ZHCSJO2C MAY 2019REVISED APRIL 2020  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS7B81-Q1 is a 150-mA, 40-V, low-dropout (LDO) linear regulator with ultralow quiescent current. The  
PSpice transient model is available for download on the product folder and can be used to evaluate the basic  
function of the device.  
8.1.1 Power Dissipation  
Circuit reliability demands that proper consideration is given to device power dissipation, location of the circuit on  
the printed circuit board (PCB), and correct sizing of the thermal plane. The PCB area around the regulator must  
be as free as possible of other heat-generating devices that cause added thermal stresses.  
As a first-order approximation, power dissipation in the regulator depends on the input-to-output voltage  
difference and load conditions. PD can be approximated using 公式 1:  
PD = (VIN – VOUT) × IOUT  
(1)  
An important note is that power dissipation can be minimized, and thus greater efficiency achieved, by proper  
selection of the system voltage rails. Proper selection allows the minimum input-to-output voltage differential to  
be obtained. The low dropout of the device allows for maximum efficiency across a wide range of output  
voltages.  
The main heat conduction path for the device is through the thermal pad on the package. As such, the thermal  
pad must be soldered to a copper pad area under the device. This pad area contains an array of plated vias that  
conduct heat to any inner plane areas or to a bottom-side copper plane.  
The maximum power dissipation determines the maximum allowable junction temperature (TJ) for the device.  
Power dissipation and junction temperature are most often related by the junction-to-ambient thermal resistance  
(RθJA) of the combined PCB, device package, and the temperature of the ambient air (TA), according to 公式 2.  
The equation is rearranged for output current in 公式 3.  
TJ = TA + RθJA × PD  
(2)  
(3)  
IOUT = (TJ – TA) / [RθJA × (VIN – VOUT)]  
Unfortunately, this thermal resistance (RθJA) is highly dependent on the heat-spreading capability built into the  
particular PCB design, and therefore varies according to the total copper area, copper weight, and location of the  
planes. The RθJA recorded in the v table is determined by the JEDEC standard, PCB, and copper-spreading area,  
and is only used as a relative measure of package thermal performance. Note that for a well-designed thermal  
layout, RθJA is actually the sum of the package junction-to-case (bottom) thermal resistance (RθJCbot) plus the  
thermal resistance contribution by the PCB copper.  
25 through 30 show the functions of RθJA and ψJB vs. copper area and thickness. These plots are  
generated with a 101.6 mm x 101.6 mm x 1.6mm PCB of two and four layers. For the four layer board, inner  
planes use 1 oz copper thickness. Outer layers are simulated with both 1 oz and 2 oz copper thickness. A 2 x 1  
array of thermal vias of 300 µm drill diameter and 25 µm Cu plating is located beneath the thermal pad of the  
device. The thermal vias connect the top layer, the bottom layer and, in the case of the 4-layer board, the first  
inner GND plane. Each of the layers has a copper plane of equal area.  
版权 © 2019–2020, Texas Instruments Incorporated  
13  
 
 
 
TPS7B81-Q1  
ZHCSJO2C MAY 2019REVISED APRIL 2020  
www.ti.com.cn  
Application Information (接下页)  
140  
130  
120  
110  
100  
90  
4 layer PCB, 1 oz copper  
4 layer PCB, 2 oz copper  
2 layer PCB, 1 oz copper  
2 layer PCB, 2 oz copper  
80  
70  
60  
50  
40  
30  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Cu Area Per Layer (cm2)  
thet  
25. RθJA versus Cu Area for the WSON (DRV) Package  
34  
32  
30  
28  
26  
24  
22  
20  
4 layer PCB, 1 oz copper  
4 layer PCB, 2 oz copper  
2 layer PCB, 1 oz copper  
2 layer PCB, 2 oz copper  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Cu Area Per Layer (cm2)  
psij  
26. ψJB versus Cu Area for the WSON (DRV) Package  
14  
版权 © 2019–2020, Texas Instruments Incorporated  
TPS7B81-Q1  
www.ti.com.cn  
ZHCSJO2C MAY 2019REVISED APRIL 2020  
Application Information (接下页)  
130  
120  
110  
100  
90  
4 layer PCB, 1 oz copper  
4 layer PCB, 2 oz copper  
2 layer PCB, 1 oz copper  
2 layer PCB, 2 oz copper  
80  
70  
60  
50  
40  
30  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Cu Area Per Layer (cm2)  
thet  
27. RθJA versus Cu Area for the HVSSOP (DGN) Package  
32  
30  
28  
26  
24  
22  
20  
18  
4 layer PCB, 1 oz copper  
4 layer PCB, 2 oz copper  
2 layer PCB, 1 oz copper  
2 layer PCB, 2 oz copper  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Cu Area Per Layer (cm2)  
psij  
28. ψJB versus Cu Area for the HVSSOP (DGN) Package  
版权 © 2019–2020, Texas Instruments Incorporated  
15  
TPS7B81-Q1  
ZHCSJO2C MAY 2019REVISED APRIL 2020  
www.ti.com.cn  
Application Information (接下页)  
110  
105  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
4 layer PCB, 1 oz copper  
4 layer PCB, 2 oz copper  
2 layer PCB, 1 oz copper  
2 layer PCB, 2 oz copper  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Cu Area Per Layer (cm2)  
thet  
29. RθJA versus Cu Area for the TO-252 (KVU) Package  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
4 layer PCB, 1 oz copper  
4 layer PCB, 2 oz copper  
2 layer PCB, 1 oz copper  
2 layer PCB, 2 oz copper  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Cu Area Per Layer (cm2)  
psij  
30. ψJB versus Cu Area for the TO-252 (KVU) Package  
16  
版权 © 2019–2020, Texas Instruments Incorporated  
TPS7B81-Q1  
www.ti.com.cn  
ZHCSJO2C MAY 2019REVISED APRIL 2020  
Application Information (接下页)  
8.1.1.1 Estimating Junction Temperature  
The JEDEC standard now recommends the use of psi (Ψ) thermal metrics to estimate the junction temperatures  
of the LDO when in-circuit on a typical PCB board application. These metrics are not strictly speaking thermal  
resistances, but rather offer practical and relative means of estimating junction temperatures. These psi metrics  
are determined to be significantly independent of the copper-spreading area. The key thermal metrics (ΨJT and  
ΨJB) are given in the Thermal Information table and are used in accordance with 公式 4.  
YJT: TJ = TT + YJT ´ PD  
YJB: TJ = TB + YJB ´ PD  
where:  
PD is the power dissipated as explained in 公式 1  
TT is the temperature at the center-top of the device package, and  
TB is the PCB surface temperature measured 1 mm from the device package and centered on the package  
edge  
(4)  
8.2 Typical Application  
31 shows a typical application circuit for the TPS7B81-Q1. Different external component values can be used,  
depending on the end application. An application may require a larger output capacitor during fast load steps to  
prevent a large drop on the output voltage. TI recommends using a low-equivalent series resistance (ESR)  
ceramic capacitor with an X5R- or X7R-type dielectric.  
VBATT  
VOUT = 3.3V or 5V  
OUT  
TPS7B81-Q1  
IN  
CIN  
COUT  
EN  
31. TPS7B81-Q1 Typical Application Schematic  
8.2.1 Design Requirements  
Use the parameters listed in 2 for this design example.  
2. Design Requirements Parameters  
PARAMETER  
Input voltage range  
Output voltage  
VALUE  
3 V to 40 V  
5 V or 3.3 V  
Output current  
150 mA maximum  
8.2.2 Detailed Design Procedure  
To begin the design process, determine the following:  
Input voltage range  
Output voltage  
Output current  
8.2.2.1 Input Capacitor  
Although an input capacitor is not required for stability, good analog design practice is to connect a 10-µF to 22-  
µF capacitor from IN to GND. This capacitor counteracts reactive input sources and improves transient response,  
input ripple rejection, and PSRR. The voltage rating must be greater than the maximum input voltage.  
版权 © 2019–2020, Texas Instruments Incorporated  
17  
 
 
 
TPS7B81-Q1  
ZHCSJO2C MAY 2019REVISED APRIL 2020  
www.ti.com.cn  
8.2.2.2 Output Capacitor  
To ensure the stability of the TPS7B81-Q1, the device requires an output capacitor with a value in the range from  
1 µF to 200 µF and with an ESR range between 0.001 Ω and 5 Ω. TI recommends selecting a ceramic capacitor  
with low ESR to improve the load transient response.  
8.2.3 Application Curve  
15  
12.5  
10  
7.5  
5
2.5  
0
VEN  
VIN  
VOUT  
0.002  
-2.5  
0
0.0005  
0.001  
Time (s)  
0.0015  
D007  
32. TPS7B81-Q1 Power-Up Waveform (5 V)  
9 Power Supply Recommendations  
The device is designed to operate from an input-voltage supply range from 3 V to 40 V. The input supply must be  
well regulated. If the input supply is located more than a few inches from the TPS7B81-Q1, TI recommends  
adding a capacitor with a value greater than or equal to 10 µF with a 0.1-µF bypass capacitor in parallel at the  
input.  
18  
版权 © 2019–2020, Texas Instruments Incorporated  
TPS7B81-Q1  
www.ti.com.cn  
ZHCSJO2C MAY 2019REVISED APRIL 2020  
10 Layout  
10.1 Layout Guidelines  
Layout is an important step for LDO power supplies, especially for high-voltage and large-output-current supplies.  
If the layout is not carefully designed, the regulator can fail to deliver enough output current because of thermal  
limitations. To improve the thermal performance of the device, and to maximize the current output at high  
ambient temperature, spread the copper under the thermal pad as far as possible and put enough thermal vias  
on the copper under the thermal pad. 33 shows an example layout.  
10.2 Layout Example  
GND  
IN  
1
2
3
4
8
7
6
5
OUT  
EN  
GND  
33. TPSB81-Q1 Example Layout Diagram  
版权 © 2019–2020, Texas Instruments Incorporated  
19  
 
TPS7B81-Q1  
ZHCSJO2C MAY 2019REVISED APRIL 2020  
www.ti.com.cn  
11 器件和文档支持  
11.1 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.2 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.3 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
20  
版权 © 2019–2020, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Feb-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7B8125QDGNRQ1  
TPS7B8133QDGNRQ1  
TPS7B8133QDRVRQ1  
TPS7B8133QKVURQ1  
TPS7B8150QDGNRQ1  
TPS7B8150QDRVRQ1  
TPS7B8150QKVURQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
HVSSOP  
HVSSOP  
WSON  
DGN  
DGN  
DRV  
KVU  
DGN  
DRV  
KVU  
8
8
6
5
8
6
5
2500 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
26GX  
1VTX  
1X2H  
NIPDAUAG  
NIPDAU  
SN  
TO-252  
HVSSOP  
WSON  
7B8133Q1  
1VUX  
NIPDAUAG  
NIPDAU  
SN  
1WNH  
TO-252  
7B8150Q1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Feb-2022  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TPS7B81-Q1 :  
Catalog : TPS7B81  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS7B8125QDGNRQ1 HVSSOP DGN  
TPS7B8133QDGNRQ1 HVSSOP DGN  
8
8
6
5
8
6
5
2500  
2500  
3000  
2500  
2500  
3000  
2500  
330.0  
330.0  
180.0  
330.0  
330.0  
180.0  
330.0  
12.4  
12.4  
8.4  
5.3  
5.3  
2.3  
6.9  
5.3  
2.3  
6.9  
3.4  
3.4  
1.4  
1.4  
8.0  
8.0  
4.0  
8.0  
8.0  
4.0  
8.0  
12.0  
12.0  
8.0  
Q1  
Q1  
Q2  
Q2  
Q1  
Q2  
Q2  
TPS7B8133QDRVRQ1  
WSON  
DRV  
KVU  
2.3  
1.15  
2.7  
TPS7B8133QKVURQ1 TO-252  
16.4  
12.4  
8.4  
10.5  
3.4  
16.0  
12.0  
8.0  
TPS7B8150QDGNRQ1 HVSSOP DGN  
1.4  
TPS7B8150QDRVRQ1  
WSON  
DRV  
KVU  
2.3  
1.15  
2.7  
TPS7B8150QKVURQ1 TO-252  
16.4  
10.5  
16.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS7B8125QDGNRQ1  
TPS7B8133QDGNRQ1  
TPS7B8133QDRVRQ1  
TPS7B8133QKVURQ1  
TPS7B8150QDGNRQ1  
TPS7B8150QDRVRQ1  
TPS7B8150QKVURQ1  
HVSSOP  
HVSSOP  
WSON  
DGN  
DGN  
DRV  
KVU  
DGN  
DRV  
KVU  
8
8
6
5
8
6
5
2500  
2500  
3000  
2500  
2500  
3000  
2500  
366.0  
366.0  
210.0  
340.0  
366.0  
210.0  
340.0  
364.0  
364.0  
185.0  
340.0  
364.0  
185.0  
340.0  
50.0  
50.0  
35.0  
38.0  
50.0  
35.0  
38.0  
TO-252  
HVSSOP  
WSON  
TO-252  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DRV 6  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4206925/F  
PACKAGE OUTLINE  
DRV0006A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
2.1  
1.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
(0.2) TYP  
0.05  
0.00  
1
0.1  
EXPOSED  
THERMAL PAD  
3
4
6
2X  
7
1.3  
1.6 0.1  
1
4X 0.65  
0.35  
0.25  
6X  
PIN 1 ID  
(OPTIONAL)  
0.3  
0.2  
6X  
0.1  
C A  
C
B
0.05  
4222173/B 04/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRV0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
6X (0.45)  
6X (0.3)  
(1)  
1
7
6
SYMM  
(1.6)  
(1.1)  
4X (0.65)  
4
3
SYMM  
(1.95)  
(R0.05) TYP  
(
0.2) VIA  
TYP  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222173/B 04/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRV0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
7
6X (0.45)  
METAL  
1
6
6X (0.3)  
(0.45)  
SYMM  
4X (0.65)  
(0.7)  
4
3
(R0.05) TYP  
(1)  
(1.95)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD #7  
88% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:30X  
4222173/B 04/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
GENERIC PACKAGE VIEW  
DGN 8  
3 x 3, 0.65 mm pitch  
PowerPAD VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225482/A  
www.ti.com  
PACKAGE OUTLINE  
DGN0008G  
PowerPADTM VSSOP - 1.1 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE PACKAGE  
C
5.05  
4.75  
TYP  
A
0.1 C  
SEATING  
PLANE  
PIN 1 INDEX AREA  
6X 0.65  
8
1
2X  
3.1  
2.9  
1.95  
NOTE 3  
4
5
0.38  
8X  
0.25  
3.1  
2.9  
0.13  
C A B  
B
NOTE 4  
0.23  
0.13  
SEE DETAIL A  
EXPOSED THERMAL PAD  
4
5
0.25  
GAGE PLANE  
2.15  
1.95  
9
1.1 MAX  
8
0.15  
0.05  
1
0.7  
0.4  
0 -8  
A
20  
DETAIL A  
TYPICAL  
1.846  
1.646  
4225480/B 12/2022  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-187.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGN0008G  
PowerPADTM VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
(2)  
NOTE 9  
METAL COVERED  
BY SOLDER MASK  
(1.57)  
SOLDER MASK  
DEFINED PAD  
SYMM  
8X (1.4)  
(R0.05) TYP  
8
8X (0.45)  
1
(3)  
NOTE 9  
SYMM  
(1.89)  
9
(1.22)  
6X (0.65)  
5
4
(
0.2) TYP  
VIA  
SEE DETAILS  
(0.55)  
(4.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 15X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4225480/B 12/2022  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGN0008G  
PowerPADTM VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
(1.57)  
BASED ON  
0.125 THICK  
STENCIL  
SYMM  
(R0.05) TYP  
8X (1.4)  
8
1
8X (0.45)  
(1.89)  
SYMM  
BASED ON  
0.125 THICK  
STENCIL  
6X (0.65)  
5
4
METAL COVERED  
BY SOLDER MASK  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
(4.4)  
SOLDER PASTE EXAMPLE  
EXPOSED PAD 9:  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE: 15X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
1.76 X 2.11  
1.57 X 1.89 (SHOWN)  
1.43 X 1.73  
0.125  
0.15  
0.175  
1.33 X 1.60  
4225480/B 12/2022  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS7B8133QDRVRQ1

具有使能功能的汽车类 150mA、电池供电运行 (40V)、超低 IQ、低压降稳压器 | DRV | 6 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B8133QKVURQ1

具有使能功能的汽车类 150mA、电池供电运行 (40V)、超低 IQ、低压降稳压器 | KVU | 5 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B8150DGNR

具有使能功能的 150mA、电池供电运行 (40V)、超低 IQ、低压降 (LDO) 稳压器 | DGN | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B8150DRVR

具有使能功能的 150mA、电池供电运行 (40V)、超低 IQ、低压降 (LDO) 稳压器 | DRV | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B8150QDGNRQ1

具有使能功能的汽车类 150mA、电池供电运行 (40V)、超低 IQ、低压降稳压器 | DGN | 8 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B8150QDRVRQ1

具有使能功能的汽车类 150mA、电池供电运行 (40V)、超低 IQ、低压降稳压器 | DRV | 6 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B8150QKVURQ1

具有使能功能的汽车类 150mA、电池供电运行 (40V)、超低 IQ、低压降稳压器 | KVU | 5 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B82-Q1

符合 AEC-Q100 0 级和 1 级标准、具有使能引脚的汽车类 300mA 非电池电源 (40V) 超低 IQ LDO

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B82-Q1_V05

TPS7B82-Q1 300-mA High-Voltage Ultralow-IQ Low-Dropout Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B82-Q1_V06

TPS7B82-Q1 Automotive 300-mA, High-Voltage, Ultra-Low-IQ Low-Dropout Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B8225QDGNRQ1

TPS7B82-Q1 Automotive 300-mA, High-Voltage, Ultra-Low-IQ Low-Dropout Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B8233EPWPRQ1

TPS7B82-Q1 Automotive 300-mA, High-Voltage, Ultra-Low-IQ Low-Dropout Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI