TPS82150SILR [TI]

具有集成电感器的 17V 输入 1A 同步降压转换器 MicroSiP™ 模块 | SIL | 8 | -40 to 125;
TPS82150SILR
型号: TPS82150SILR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成电感器的 17V 输入 1A 同步降压转换器 MicroSiP™ 模块 | SIL | 8 | -40 to 125

开关 输出元件 电感器 转换器
文件: 总27页 (文件大小:908K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS82150  
ZHCSGD2 JUNE 2017  
TPS82150 17V 输入、1A 降压转换器 MicroSiP™模块  
1 特性  
3 说明  
1
3.0mm x 2.8mm x 1.5mm MicroSiP™封装  
输入电压范围:3.0V 17V  
TPS82150 是一款 17V 输入、1A 降压转换器  
MicroSiP™电源模块,经优化兼具小型解决方案尺寸和  
高效率优势。该模块集成了同步降压转换器和电感,可  
简化设计、减少外部元件数量并节省印刷电路板  
(PCB) 的面积。该器件采用紧凑的薄型封装,适合通  
过标准表面贴装设备自动组装。  
1A 持续输出电流  
DCS-Control™拓扑技术  
在轻负载条件下实现高效率的省电模式  
20µA 静态工作电流  
0.9V 6V 可调节输出电压  
可实现最低压降的 100% 占空比  
电源正常输出  
为了最大限度地提高效率,该转换器以 2.0MHz 的标  
称开关频率在脉宽调制 (PWM) 模式下工作,并且会在  
轻负载电流条件下自动进入节能工作模式。在节能模式  
下,该器件静态工作电流的典型值为 20µA。凭借  
DCS-Control™拓扑,器件可获得出色的负载瞬态性能  
和精确的输出稳压。  
具有跟踪功能的可编程软启动  
热关断保护  
TPS82130 TPS82140 引脚对引脚兼容  
-40°C 125°C 的工作温度范围  
空白  
使用 TPS82150 并借助 WEBENCH® 电源设计器  
创建定制设计方案  
器件信息(1)  
器件型号  
封装  
封装尺寸(标称值)  
2 应用  
TPS82150SIL  
µSiL (8)  
3.0mm x 2.8mm x 1.5mm  
工业 应用  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
电信和网络 应用  
固态硬盘  
逆变电源  
空白  
空白  
典型应用电路原理图  
空白空白  
效率与输出电流,VIN=12V  
空白  
100  
90  
TPS82150  
VIN  
VOUT  
VIN  
VOUT  
12V  
1.8V/1A  
C1  
10µF  
C2  
22µF  
R1  
124k  
R3  
100k  
EN  
SS/TR  
FB  
80  
C3  
3.3nF  
R2  
100k  
PG  
GND  
70  
POWER GOOD  
Copyright © 2017, Texas Instruments Incorporated  
VOUT = 1.0 V  
VOUT = 1.8 V  
60  
VOUT = 2.5 V  
VOUT = 3.3 V  
50  
1m  
10m  
100m  
1
Load (A)  
D017  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSDN4  
 
 
TPS82150  
ZHCSGD2 JUNE 2017  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
Application and Implementation ........................ 11  
8.1 Application Information............................................ 11  
8.2 Typical Applications ................................................ 11  
8.3 System Examples ................................................... 17  
Power Supply Recommendations...................... 18  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommend Operating Conditions........................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics.......................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 7  
7.1 Overview ................................................................... 7  
7.2 Functional Block Diagram ......................................... 7  
7.3 Feature Description................................................... 8  
7.4 Device Functional Modes.......................................... 9  
10 Layout................................................................... 18  
10.1 Layout Guidelines ................................................. 18  
10.2 Layout Example .................................................... 18  
10.3 Thermal Consideration.......................................... 19  
11 器件和文档支持 ..................................................... 20  
11.1 器件支持 ............................................................... 20  
11.2 接收文档更新通知 ................................................. 20  
11.3 社区资源................................................................ 20  
11.4 ....................................................................... 20  
11.5 静电放电警告......................................................... 20  
11.6 Glossary................................................................ 20  
12 机械、封装和可订购信息....................................... 21  
7
4 修订历史记录  
日期  
修订版本  
注意  
2017 6 月  
*
初始发行版。  
2
Copyright © 2017, Texas Instruments Incorporated  
 
TPS82150  
www.ti.com.cn  
ZHCSGD2 JUNE 2017  
5 Pin Configuration and Functions  
space  
8-Pin µSiL Package  
(SIL0008C Top View)  
EN  
1
2
3
4
8
7
6
5
SS/TR  
PG  
VIN  
GND  
FB  
VOUT  
VOUT  
space  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Enable pin. Pull High to enable the device. Pull Low to disable the device. This pin has an  
internal pull-down resistor of typically 400kΩ when the device is disabled.  
EN  
1
I
VIN  
2
3
PWR Input pin.  
Ground pin.  
GND  
VOUT  
4,5  
PWR Output pin.  
Feedback reference pin. An external resistor divider connected to this pin programs the output  
voltage.  
FB  
6
7
8
I
O
I
Power good open drain output pin. A pull-up resistor can be connected to any voltage less than  
6V. Leave it open if it is not used.  
PG  
Soft startup and voltage tracking pin. An external capacitor connected to this pin sets the internal  
reference voltage rising time.  
SS/TR  
The exposed thermal pad must be connected to the GND pin. Must be soldered to achieve  
appropriate power dissipation and mechanical reliability.  
Exposed Thermal Pad  
Copyright © 2017, Texas Instruments Incorporated  
3
TPS82150  
ZHCSGD2 JUNE 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
MIN  
–0.3  
–0.3  
–0.3  
0
MAX  
UNIT  
VIN  
20  
EN, SS/TR  
Voltage at pins(2)  
VIN + 0.3  
V
PG, FB  
7
VOUT  
7
Sink current  
PG  
10  
125  
125  
mA  
°C  
Module operating temperature  
Storage temperature  
–40  
–55  
°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground pin.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommend Operating Conditions  
MIN  
MAX  
UNIT  
VIN  
Input voltage  
3
17  
6
V
V
VPG  
VOUT  
IOUT  
TJ  
Power good pull-up resistor voltage  
Output voltage  
0.9  
0
6
V
Output current  
1
A
Module operating temperature range for 100,000 hours lifetime(1)  
–40  
110  
°C  
(1) The module operating temperature range includes module self temperature rise and IC junction temperature rise. In applications where  
high power dissipation is present, the maximum operating temperature or maximum output current must be derated. For applications  
where the module operates continuously at 125 °C temperature, the maximum lifetime is reduced to 50,000 hours.  
6.4 Thermal Information  
TPS82150  
THERMAL METRIC(1)  
8-Pin SIL  
JEDEC 51-5  
UNIT  
EVM  
46.1  
9.4  
RθJA  
Junction-to-ambient thermal resistance  
58.2  
9.4  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
RθJB  
ψJT  
Junction-to-board thermal resistance  
14.4  
0.9  
14.4  
0.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
ψJB  
14.2  
21.3  
14.0  
21.3  
RθJC(bot) Junction-to-case (bottom) thermal resistance  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
Theta-JA can be improved with a custom PCB design containing thermal vias where possible.  
4
Copyright © 2017, Texas Instruments Incorporated  
TPS82150  
www.ti.com.cn  
ZHCSGD2 JUNE 2017  
6.5 Electrical Characteristics  
TJ = -40°C to 125°C and VIN = 3.0V to 17V. Typical values are at TJ = 25°C and VIN = 12V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
SUPPLY  
IQ  
Quiescent current into VIN  
Shutdown current into VIN  
No load, device not switching  
20  
1.5  
35  
7.4  
2.8  
3.0  
µA  
µA  
V
ISD  
EN = Low  
VIN falling  
VIN rising  
TJ rising  
2.6  
2.8  
2.7  
VUVLO  
Under voltage lock out threshold  
Thermal shutdown threshold  
2.9  
V
160  
140  
°C  
°C  
TJSD  
TJ falling  
LOGIC INTERFACE (EN)  
VIH  
High-level input voltage  
0.9  
0.65  
0.45  
0.01  
V
V
VIL  
Low-level input voltage  
0.3  
1
Ilkg(EN)  
Input leakage current into EN pin  
EN = High  
µA  
CONTROL (SS/TR, PG)  
ISS/TR SS/TR pin source current  
2.1  
92%  
87%  
2.5  
2.8  
µA  
VOUT rising, referenced to VOUT nominal  
VOUT falling, referenced to VOUT nominal  
Isink = 2mA  
95% 99%  
90% 94%  
VPG  
Power good threshold  
VPG,OL  
Power good low-level voltage  
0.1  
1
0.3  
V
Ilkg(PG)  
Input leakage current into PG pin  
VPG = 1.8V  
400  
nA  
OUTPUT  
785  
788  
785  
788  
800 815  
800 812  
800 823  
800 815  
PWM mode  
TJ = 0°C to 85°C  
VFB  
Feedback regulation voltage  
mV  
COUT = 22µF  
PSM  
COUT = 2x22µF, TJ = 0°C to 85°C  
Ilkg(FB)  
Feedback input leakage current  
Line regulation  
VFB = 0.8V  
1
0.002  
0.12  
100  
nA  
IOUT = 1A, VOUT = 1.8V  
IOUT = 0.5A to 1A, VOUT = 1.8V  
%/V  
%/A  
Load regulation  
POWER SWITCH  
ISW = 500mA, VIN 6V  
ISW = 500mA, VIN = 3V  
ISW = 500mA, VIN 6V  
ISW = 500mA, VIN = 3V  
100% mode, VIN 6V  
100% mode, VIN = 3V  
90 170  
120  
40  
High-side FET on-resistance  
RDS(on)  
mΩ  
mΩ  
70  
Low-side FET on-resistance  
Dropout resistance  
50  
125  
160  
2.2  
RDP  
ILIMF  
fSW  
High-side FET switch current limit VIN = 6V, TJ = 25°C  
PWM switching frequency IOUT = 1A, VOUT = 1.8V  
1.7  
2.7  
A
2.0  
MHz  
版权 © 2017, Texas Instruments Incorporated  
5
TPS82150  
ZHCSGD2 JUNE 2017  
www.ti.com.cn  
6.6 Typical Characteristics  
50  
40  
30  
20  
10  
0
250  
TJ = -40°C  
TJ = 25°C  
TJ = 85°C  
TJ = 125°C  
200  
150  
100  
50  
VIN = 3.0 V  
VIN = 6.0 V  
3
5
7
9
11  
13  
15  
17  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Input Voltage (V)  
Module Temperature (°C)  
D025  
D014  
2. Quiescent Current  
1. Dropout Resistance  
8
TJ = -40°C  
TJ = 25°C  
TJ = 85°C  
TJ = 125°C  
6
4
2
0
3
5
7
9
11  
13  
15  
17  
Input Voltage (V)  
D026  
3. Shutdown Current  
6
版权 © 2017, Texas Instruments Incorporated  
TPS82150  
www.ti.com.cn  
ZHCSGD2 JUNE 2017  
7 Detailed Description  
7.1 Overview  
The TPS82150 synchronous step-down converter MicroSiP™ power module is based on DCS-Control™ (Direct  
Control with Seamless transition into Power Save Mode). This is an advanced regulation topology that combines  
the advantages of hysteretic and voltage mode control.  
The DCS-Control™ topology operates in PWM (Pulse Width Modulation) mode for medium to heavy load  
conditions and in PSM (Power Save Mode) at light load currents. In PWM mode, the converter operates with its  
nominal switching frequency of 2.0 MHz having a controlled frequency variation over the input voltage range. As  
the load current decreases, the converter enters Power Save Mode, reducing the switching frequency and  
minimizing the IC's quiescent current to achieve high efficiency over the entire load current range. DCS-Control™  
supports both operation modes using a single building block and therefore has a seamless transition from PWM  
to PSM without effects on the output voltage. The TPS82150 offers excellent DC voltage regulation and load  
transient regulation, combined with low output voltage ripple, minimizing interference with RF circuits.  
7.2 Functional Block Diagram  
space  
space  
PG  
VIN  
VFB  
High Side  
Current Sense  
VREF  
Bandgap  
Undervoltage Lockout  
Thermal Shutdown  
EN  
L(2)  
400k(1)  
MOSFET Driver  
Control Logic  
VIN  
Ramp  
Direct Control  
and  
Compensation  
VOUT  
Voltage  
Clamp  
VREF  
SS/TR  
22pF  
Timer  
ton  
FB  
Comparator  
VREF  
Error Amplifier  
DCS - Control TM  
GND  
Note:  
(1) When the device is enabled, the 400 kΩ resistor is disconnected.  
(2) The integrated inductor of 1 µH in the module.  
Copyright © 2016, Texas Instruments Incorporated  
space  
版权 © 2017, Texas Instruments Incorporated  
7
TPS82150  
ZHCSGD2 JUNE 2017  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 PWM and PSM Operation  
The TPS82150 includes an on-time (tON) circuitry. This tON, in steady-state operation in PWM and PSM modes, is  
estimated as:  
space  
VOUT  
tON = 500ns´  
V
IN  
(1)  
space  
In PWM mode, the TPS82150 operates with pulse width modulation in continuous conduction mode (CCM) with  
a tON shown in 公式 1 at medium and heavy load currents. A PWM switching frequency of typically 2.0MHz is  
achieved by this tON circuitry. The device operates in PWM mode as long as the output current is higher than half  
the inductor's ripple current estimated by 公式 2.  
space  
VIN - VOUT  
DIL = tON  
´
L
(2)  
space  
To maintain high efficiency at light loads, the device enters Power Save Mode seamlessly when the load current  
decreases. This happens when the load current becomes smaller than half the inductor's ripple current. In PSM,  
the converter operates with reduced switching frequency and with a minimum quiescent current to maintain high  
efficiency. PSM is also based on the tON circuitry. The switching frequency in PSM is estimated as:  
space  
2´IOUT  
fPSM  
=
V
VIN - VOUT  
2
IN  
´
tON  
´
VOUT  
L
(3)  
space  
In PSM, the output voltage rises slightly above the nominal output voltage in PWM mode. This effect is reduced  
by increasing the output capacitance. The output voltage accuracy in PSM operation is reflected in the electrical  
specification table and given for a 22-µF output capacitor.  
For very small output voltages, an absolute minimum on-time of about 80ns is kept to limit switching losses. The  
operating frequency is thereby reduced from its nominal value, which keeps efficiency high. Also the off-time can  
reach its minimum value at high duty cycles. The output voltage remains regulated in such cases.  
When VIN decreases to typically 15% above VOUT, the TPS82150 can't enter Power Save Mode, regardless of  
the load current. The device maintains output regulation in PWM mode.  
7.3.2 Low Dropout Operation (100% Duty Cycle)  
The TPS82150 offers a low input to output voltage differential by entering 100% duty cycle mode. In this mode,  
the high-side MOSFET switch is constantly turned on. This is particularly useful in battery powered applications  
to achieve longest operation time by taking full advantage of the whole battery voltage range. The minimum input  
voltage to maintain a minimum output voltage is given by:  
space  
V
= VOUT(min) + IOUT ´RDP  
IN(min)  
(4)  
space  
Where  
RDP = Resistance from VIN to VOUT, including high-side FET on-resistance and DC resistance of the inductor  
VOUT(min) = Minimum output voltage the load can accept.  
8
版权 © 2017, Texas Instruments Incorporated  
 
 
TPS82150  
www.ti.com.cn  
ZHCSGD2 JUNE 2017  
Feature Description (接下页)  
7.3.3 Switch Current Limit  
The switch current limit prevents the device from high inductor current and from drawing excessive current from  
the battery or input voltage rail. Excessive current might occur with a heavy load/shorted output circuit condition.  
If the inductor peak current reaches the switch current limit after a propagation delay of typically 30ns, the high-  
side FET is turned off and the low-side FET is turned on to ramp down the inductor current.  
7.3.4 Undervoltage Lockout  
To avoid mis-operation of the device at low input voltages, an under voltage lockout is implemented, which shuts  
down the devices at voltages lower than VUVLO with a hysteresis of 200mV.  
7.3.5 Thermal Shutdown  
The device goes into thermal shutdown and stops switching once the junction temperature exceeds TJSD. Once  
the device temperature falls below the threshold by 20°C, the device returns to normal operation automatically.  
7.4 Device Functional Modes  
7.4.1 Enable and Disable (EN)  
The device is enabled by setting the EN pin to a logic High. Accordingly, the shutdown mode is forced if the EN  
pin is pulled Low with a shutdown current of typically 1.5 μA.  
An internal pull-down resistor of 400kΩ is connected to the EN pin when the EN pin is Low. The pull-down  
resistor is disconnected when the EN pin is High.  
7.4.2 Soft Startup (SS/TR)  
The internal voltage clamp controls the output voltage slope during startup. This avoids excessive inrush current  
and ensures a controlled output voltage rise time. When the EN pin is pulled high, the device starts switching  
after a delay of typically 55μs and the output voltage rises with a slope controlled by an external capacitor  
connected to the SS/TR pin. Using a very small capacitor or leaving the SS/TR pin floating provides fastest  
startup time.  
The TPS82150 is able to start into a pre-biased output capacitor. During the pre-biased startup, both the power  
MOSFETs are not allowed to turn on until the internal voltage clamp sets an output voltage above the pre-bias  
voltage.  
When the device is in shutdown, undervoltage lockout or thermal shutdown, the capacitor connected to SS/TR  
pin is discharged by an internal resistor. Returning from those states causes a new startup sequence.  
7.4.3 Voltage Tracking (SS/TR)  
The SS/TR pin is externally driven by another voltage source to achieve output voltage tracking. The application  
circuit is shown in 4.  
VOUT1  
VOUT2  
TPS82150  
R1  
R3  
SS/TR  
FB  
R2  
R4  
4. Output Voltage Tracking  
版权 © 2017, Texas Instruments Incorporated  
9
 
TPS82150  
ZHCSGD2 JUNE 2017  
www.ti.com.cn  
Device Functional Modes (接下页)  
When the SS/TR pin voltage is between 50 mV and 1.2 V, the VOUT2 tracks the VOUT1 as described in 公式 5.  
space  
VOUT2  
R2  
R3 + R4  
» 0.64 ´  
´
VOUT1  
space  
R1+ R2  
R4  
(5)  
When the SS/TR pin voltage is above 1.2 V, the voltage tracking is disabled and the FB pin voltage is regulated  
at 0.8 V. For decreasing SS/TR pin voltage, the device doesn't sink current from the output. So the resulting  
decreases of the output voltage may be slower than the SS/TR pin voltage if the load is light. When driving the  
SS/TR pin with an external voltage, do not exceed the voltage rating of the SS/TR pin which is VIN+0.3V.  
Details about tracking and sequencing circuits are found in SLVA470.  
7.4.4 Power Good Output (PG)  
The device has a power good (PG) output. The PG pin goes high impedance once the output is above 95% of  
the nominal voltage, and is driven low once the output voltage falls below typically 90% of the nominal voltage.  
The PG pin is an open drain output and is specified to sink up to 2mA. The power good output requires a pull-up  
resistor connecting to any voltage rail less than 6V.  
The PG pin goes low when the device is in shutdown or thermal shutdown. When the device is in UVLO, the PG  
pin is high impedance. The PG signal can be used for sequencing of multiple rails by connecting it to the EN pin  
of other converters. Leave the PG pin floating when it is not used. 1 shows the PG pin logic.  
1. Power Good Pin Logic  
PG Logic Status  
Device State  
High Impedance  
Low  
V
FB VTH_PG  
FB VTH_PG  
Enable (EN=High)  
V
Shutdown (EN=Low)  
UVLO  
0.7 V < VIN < VUVLO  
TJ > TSD  
Thermal Shutdown  
Power Supply Removal  
VIN < 0.7 V  
10  
版权 © 2017, Texas Instruments Incorporated  
 
 
TPS82150  
www.ti.com.cn  
ZHCSGD2 JUNE 2017  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The output voltage of the TPS82150 is adjusted by component selection. The following section discusses the  
design of the external components to complete the power supply design for several input and output voltage  
options by using typical applications as a reference.  
8.2 Typical Applications  
8.2.1 1.8-V Output Application  
space  
TPS82150  
VIN  
VOUT  
VIN  
VOUT  
12 V  
1.8 V/1 A  
C1  
10µF  
C2  
22µF  
R1  
R3  
124kΩ 100kΩ  
EN  
SS/TR  
FB  
C3  
3.3nF  
R2  
100kΩ  
PG  
GND  
POWER GOOD  
Copyright © 2016, Texas Instruments Incorporated  
5. 1.8-V Output Application  
space  
8.2.1.1 Design Requirements  
For this design example, use the following as the input parameters.  
2. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
Input voltage range  
Output voltage  
12V  
1.8V  
< 20mV  
1A  
Output ripple voltage  
Output current rating  
The components used for measurements are given in the following table.  
3. List of Components  
REFERENCE  
C1  
DESCRIPTION(1)  
MANUFACTURER  
10 µF, 25 V, X7R, ±20%, size 1206, C3216X7R1E106M160AE  
22 µF, 10 V, X7S, ±20%, size 0805, C2012X7S1A226M125AC  
TDK  
TDK  
C2  
3300 pF, 50 V, ±5%, C0G/NP0, size 0603,  
GRM1885C1H332JA01D  
C3  
Murata  
R1, R2, R3  
Standard  
(1) See Third-party Products Disclaimer  
版权 © 2017, Texas Instruments Incorporated  
11  
 
TPS82150  
ZHCSGD2 JUNE 2017  
www.ti.com.cn  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Custom Design with WEBENCH® Tools  
Click here to create a custom design using the TPS82150 device with the WEBENCH® Power Designer.  
1. Start by entering your VIN, VOUT, and IOUT requirements.  
2. Optimize your design for key parameters like efficiency, footprint and cost using the optimizer dial and  
compare this design with other possible solutions from Texas Instruments.  
3. The WEBENCH Power Designer provides you with a customized schematic along with a list of materials with  
real time pricing and component availability.  
4. In most cases, you will also be able to:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand the thermal performance of your board  
Export your customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share your design with colleagues  
5. Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.1.2.2 Setting the Output Voltage  
The output voltage is set by an external resistor divider according to the following equations:  
space  
R1  
R1  
æ
ö
æ
ö
VOUT = VFB  
´
1 +  
= 0.8 V ´ 1 +  
ç
÷
ç
÷
R2  
R2  
è
ø
è
ø
(6)  
space  
R2 should not be higher than 100kΩ to achieve high efficiency at light load while providing acceptable noise  
sensitivity. Larger currents through R2 improve noise sensitivity and output voltage accuracy. 5 shows the  
external resistor divider value for a 1.8-V output. Choose appropriate resistor values for other outputs.  
In case the FB pin gets opened, the device clamps the output voltage at the VOUT pin internally to about 7V.  
8.2.1.2.3 Input and Output Capacitor Selection  
For best output and input voltage filtering, low ESR ceramic capacitors are required. The input capacitor  
minimizes input voltage ripple, suppresses input voltage spikes and provides a stable system rail for the device.  
A 10-µF or larger input capacitor is required. The output capacitor value can range from 22μF up to more than  
400μF. Higher values are possible as well and can be evaluated through the transient response. Larger soft start  
times are recommended for higher output capacitances.  
High capacitance ceramic capacitors have a DC Bias effect, which will have a strong influence on the final  
effective capacitance. Therefore the right capacitor value has to be chosen carefully. Package size and voltage  
rating in combination with dielectric material are responsible for differences between the rated capacitor value  
and the effective capacitance.  
8.2.1.2.4 Soft Startup Capacitor Selection  
A capacitance connected between the SS/TR pin and the GND allows programming the startup slope of the  
output voltage. A constant current of 2.5 μA charges the external capacitor. The capacitance required for a given  
soft startup time for the output voltage is given by:  
space  
ISS/ TR  
CSS/ TR = tSS/ TR  
´
1.25V  
(7)  
12  
版权 © 2017, Texas Instruments Incorporated  
TPS82150  
www.ti.com.cn  
ZHCSGD2 JUNE 2017  
8.2.1.3 Application Performance Curves  
TA = 25°C, VIN = 12 V, VOUT = 1.8 V, unless otherwise noted.  
100  
90  
100  
90  
80  
70  
60  
50  
80  
70  
60  
VIN = 3.3 V  
VIN = 5.0 V  
VIN = 12 V  
IOUT = 0.1 A  
IOUT = 1.0 A  
50  
1m  
10m  
100m  
1
3
5
7
9
11  
13  
15  
17  
Load (A)  
Input Voltage (V)  
D001  
D019  
6. Efficiency, VOUT = 1.0 V  
7. Efficiency, VOUT = 1.0 V  
100  
100  
90  
80  
70  
60  
50  
90  
80  
70  
60  
50  
VIN = 3.3 V  
VIN = 5.0 V  
VIN = 12 V  
IOUT = 0.1 A  
IOUT = 1.0 A  
1m  
10m  
100m  
1
3
5
7
9
11  
13  
15  
17  
Load (A)  
Input Voltage (V)  
D002  
D020  
8. Efficiency, VOUT = 1.8 V  
9. Efficiency, VOUT = 1.8 V  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
VIN = 3.3 V  
VIN = 5.0 V  
VIN = 12 V  
IOUT = 0.1 A  
IOUT = 1.0 A  
1m  
10m  
100m  
1
3
5
7
9
11  
13  
15  
17  
Load (A)  
Input Voltage (V)  
D003  
D021  
10. Efficiency, VOUT = 2.5 V  
11. Efficiency, VOUT = 2.5 V  
版权 © 2017, Texas Instruments Incorporated  
13  
TPS82150  
ZHCSGD2 JUNE 2017  
www.ti.com.cn  
100  
90  
80  
70  
60  
100  
90  
80  
70  
60  
50  
VIN = 5.0 V  
VIN = 12 V  
IOUT = 0.1 A  
IOUT = 1.0 A  
50  
1m  
10m  
100m  
1
5
7
9
11  
13  
15  
17  
Load (A)  
Input Voltage (V)  
D004  
D022  
12. Efficiency, VOUT = 3.3 V  
13. Efficiency, VOUT = 3.3 V  
100  
90  
80  
70  
60  
100  
90  
80  
70  
60  
50  
IOUT = 0.1 A  
IOUT = 1.0 A  
VIN = 12 V  
50  
1m  
10m  
100m  
1
6
7
8
9
10 11 12 13 14 15 16 17  
Input Voltage (V)  
Load (A)  
D023  
D024  
14. Efficiency, VOUT = 5.0 V  
15. Efficiency, VOUT = 5.0 V  
1.5  
1
1.5  
1
0.5  
0.5  
VIN = 3.3 V  
VIN = 5.0 V  
VIN = 12 V  
VIN = 3.3 V  
VIN = 5.0 V  
VIN = 12 V  
0
0
45  
55  
65  
75  
85  
95  
105  
115  
125  
45  
55  
65  
75  
85  
95  
105  
115  
125  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
D002  
D001  
θJA = 46.1 °C/W  
θJA = 46.1 °C/W  
17. Thermal Derating, VOUT = 1.8 V  
16. Thermal Derating, VOUT = 1 V  
14  
版权 © 2017, Texas Instruments Incorporated  
TPS82150  
www.ti.com.cn  
ZHCSGD2 JUNE 2017  
1.5  
1.5  
1
1
0.5  
0.5  
VIN = 5.0V  
VIN = 12 V  
VIN = 8.4 V  
VIN = 12 V  
0
0
45  
55  
65  
75  
85  
95  
105  
115  
125  
45  
55  
65  
75  
85  
95  
105  
115  
125  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
D003  
D003  
θJA = 46.1 °C/W  
θJA = 46.1 °C/W  
18. Thermal Derating, VOUT = 3.3 V  
19. Thermal Derating, VOUT = 5 V  
1.0  
0.5  
1.0  
0.5  
0.0  
0.0  
-0.5  
-0.5  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = -40°C  
TA = 25°C  
TA = 85°C  
-1.0  
1m  
-1.0  
10m  
100m  
1
5
3
5
7
9
11  
13  
15  
17  
Load (A)  
Input Voltage (V)  
D005  
D006  
IOUT = 1A  
20. Load Regulation  
21. Line Regulation  
5x106  
3x106  
2x106  
1x106  
5x105  
2x106  
1x106  
2x105  
1x105  
5x104  
2x104  
1x104  
5x103  
VOUT = 1.0 V  
VOUT = 1.8 V  
VOUT = 2.5 V  
VOUT = 3.3 V  
TA = 25°C  
TA = -40°C  
TA = 85°C  
2x103  
1x103  
0x100  
3
1m  
10m  
100m  
1
5
5
7
9
11  
13  
15  
17  
Load (A)  
Input Voltage (V)  
D009  
D018  
VOUT = 1.8V  
IOUT = 1A  
22. Switching Frequency  
23. Switching Frequency  
版权 © 2017, Texas Instruments Incorporated  
15  
TPS82150  
ZHCSGD2 JUNE 2017  
www.ti.com.cn  
No Load  
IOUT = 1A  
25. Input and Output Ripple in PSM Mode  
24. Input and Output Ripple in PWM Mode  
IOUT = 0.5A to 1A,  
1A/µs  
IOUT = 0A to 1A,  
1A/µs  
27. Load Transient  
26. Load Transient  
No Load  
ROUT = 1.8Ω  
28. Startup without Load  
29. Startup / Shutdown with Resistance Load  
16  
版权 © 2017, Texas Instruments Incorporated  
TPS82150  
www.ti.com.cn  
ZHCSGD2 JUNE 2017  
8.3 System Examples  
8.3.1 Inverting Power Supply  
The TPS82150 can be used as inverting power supply by rearranging external circuitry as shown in 30. As the  
former GND node now represents a voltage level below system ground, the voltage difference between VIN and  
VOUT has to be limited for operation to the maximum supply voltage of 17V (see 公式 8).  
space  
V + VOUT £ V  
IN  
INmax  
(8)  
space  
space  
VIN  
VIN  
EN  
VOUT  
PG  
R3  
TPS82150  
R1  
R2  
CIN  
COUT  
FB  
SS/TR  
GND  
CSS  
- VOUT  
Copyright © 2017, Texas Instruments Incorporated  
30. Inverting Power Supply Schematic  
space  
The transfer function of the inverting power supply configuration differs from the buck mode transfer function,  
incorporating a Right Half Plane Zero additionally. Therefore the loop stability has to be adapted. More detailed  
information is given in TIDUCV2.  
版权 © 2017, Texas Instruments Incorporated  
17  
 
 
TPS82150  
ZHCSGD2 JUNE 2017  
www.ti.com.cn  
9 Power Supply Recommendations  
The devices are designed to operate from an input voltage supply range between 3V and 17V. The average  
input current of the TPS82150 is calculated as:  
space  
VOUT ´IOUT  
1
IIN  
=
´
h
V
IN  
(9)  
space  
Ensure that the power supply has a sufficient current rating for the applications.  
10 Layout  
10.1 Layout Guidelines  
TI recommends placing all components as close as possible to the IC. The input capacitor placement  
specifically, must be closest to the VIN and GND pins of the device.  
Use wide and short traces for the main current paths to reduce the parasitic inductance and resistance.  
To enhance heat dissipation of the device, the exposed thermal pad should be connected to bottom or  
internal layer ground planes using vias.  
Refer to 31 for an example of component placement, routing and thermal design.  
10.2 Layout Example  
space  
space  
C3  
VIN  
C1  
R2  
R1  
SS/TR  
PG  
EN  
VIN  
GND  
VOUT  
FB  
VOUT  
VOUT  
GND  
C2  
31. TPS82150 PCB Layout  
18  
版权 © 2017, Texas Instruments Incorporated  
 
TPS82150  
www.ti.com.cn  
ZHCSGD2 JUNE 2017  
10.3 Thermal Consideration  
The output current of the TPS82150 needs to be derated when the device operates in a high ambient  
temperature or delivers high output power. The amount of current derating is dependent upon the input voltage,  
output power, PCB layout design and environmental thermal condition. Care should especially be taken in  
applications where the localized PCB temperature exceeds 65°C.  
The TPS82150 module temperature must be kept less than the maximum rating of 125°C. Three basic  
approaches for enhancing thermal performance are below:  
Improve the power dissipation capability of the PCB design.  
Improve the thermal coupling of the TPS82150 to the PCB.  
Introduce airflow into the system.  
To estimate approximate module temperature of TPS82150, apply the typical efficiency stated in this datasheet  
to the desired application condition to find the module's power dissipation. Then calculate the module  
temperature rise by multiplying the power dissipation by its thermal resistance. For more details on how to use  
the thermal parameters in real applications, see the application notes: SZZA017 and SPRA953.  
版权 © 2017, Texas Instruments Incorporated  
19  
TPS82150  
ZHCSGD2 JUNE 2017  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.1.2 开发支持  
11.1.2.1 使用 WEBENCH® 工具定制设计方案  
单击此处,使用 TPS82150 器件并借助 WEBENCH® 电源设计器创建定制设计方案。  
1. 在开始阶段键入输入电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化关键设计参数,如效率、封装和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他解决方案进行比较。  
WEBENCH Power Designer 提供一份定制原理图以及罗列实时价格和组件可用性的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案导出至常用 CAD 格式  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com/WEBENCH。  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。请单击右上角的通知我 进行注册,即可收到任意产  
品信息更改每周摘要。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
MicroSiP, DCS-Control, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
20  
版权 © 2017, Texas Instruments Incorporated  
TPS82150  
www.ti.com.cn  
ZHCSGD2 JUNE 2017  
12 机械、封装和可订购信息  
以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不  
会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参见左侧的导航栏。  
Copyright © 2017, Texas Instruments Incorporated  
21  
TPS82150  
ZHCSGD2 JUNE 2017  
www.ti.com.cn  
PACKAGE OUTLINE  
SIL0008D  
MicroSiPTM - 1.53 mm max height  
S
C
A
L
E
4
.
0
0
0
MICRO SYSTEM IN PACKAGE  
2.9  
2.7  
A
B
PIN 1 INDEX  
AREA  
(2.5)  
3.1  
2.9  
PICK AREA  
NOTE 3  
(2)  
1.53 MAX  
C
0.08 C  
1.1 0.1  
SYMM  
EXPOSED  
THERMAL PAD  
(0.1)  
TYP  
5
4
SYMM  
2X  
1.9 0.1  
1.95  
1
8
0.42  
0.38  
6X 0.65  
8X  
(45 X0.25)  
PIN 1 ID  
0.1  
C A  
C
B
0.05  
0.52  
0.48  
8X  
4221520/A 07/2015  
MicroSiP is a trademark of Texas Instruments  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Pick and place nozzle 1.3 mm or smaller recommended.  
4. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
22  
Copyright © 2017, Texas Instruments Incorporated  
TPS82150  
www.ti.com.cn  
ZHCSGD2 JUNE 2017  
EXAMPLE BOARD LAYOUT  
SIL0008D  
MicroSiP TM - 1.53 mm max height  
MICRO SYSTEM IN PACKAGE  
(1.1)  
8X (0.5)  
8
1
8X (0.4)  
SYMM  
(1.9)  
(0.75)  
6X (0.65)  
5
4
SYMM  
(2.1)  
(
0.2) VIA  
TYP  
LAND PATTERN EXAMPLE  
SOLDER MASK DEFINED  
SCALE:20X  
0.05 MIN  
ALL SIDES  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
(R0.05) TYP  
DETAIL  
NOT TO SCALE  
4221520/A 07/2015  
NOTES: (continued)  
5. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
Copyright © 2017, Texas Instruments Incorporated  
23  
TPS82150  
ZHCSGD2 JUNE 2017  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
SIL0008D  
MicroSiP TM - 1.53 mm max height  
MICRO SYSTEM IN PACKAGE  
SOLDER MASK EDGE  
(R0.05) TYP  
8X (0.5)  
8X (0.4)  
1
(1.04)  
8
METAL  
TYP  
(0.85)  
SYMM  
(1.05)  
6X (0.65)  
5
4
SYMM  
(2.1)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
85% PRINTED SOLDER COVERAGE BY AREA  
SCALE:30X  
4221520/A 07/2015  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
24  
版权 © 2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS82150SILR  
TPS82150SILT  
ACTIVE  
ACTIVE  
uSiP  
uSiP  
SIL  
SIL  
8
8
3000 RoHS & Green  
250 RoHS & Green  
NIAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
5S  
5S  
NIAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Sep-2021  
Addendum-Page 2  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS82150SILT

具有集成电感器的 17V 输入 1A 同步降压转换器 MicroSiP™ 模块 | SIL | 8 | -40 to 125
TI

TPS823

Silicon Epitaxial Planar Photo IC
ETC

TPS825

Silicon Epitaxial Planar Photo IC
ETC

TPS826

Silicon Epitaxial Planar Photo IC
ETC

TPS82670

600-mA, HIGH-EFFICIENCY MicroSiP? STEP-DOWN CONVERTER (PROFILE <1.0mm)
TI

TPS82670SIP

600-mA, HIGH-EFFICIENCY MicroSiP? STEP-DOWN CONVERTER (PROFILE <1.0mm)
TI

TPS82670SIPR

600-mA, HIGH-EFFICIENCY MicroSiP? STEP-DOWN CONVERTER (PROFILE <1.0mm)
TI

TPS82670SIPT

600-mA, HIGH-EFFICIENCY MicroSiP? STEP-DOWN CONVERTER (PROFILE <1.0mm)
TI

TPS82670_12

600-mA, HIGH-EFFICIENCY MicroSiP STEP-DOWN CONVERTER (PROFILE <1.0mm)
TI

TPS82671

600-mA, HIGH-EFFICIENCY MicroSiP? STEP-DOWN CONVERTER (PROFILE <1.0mm)
TI

TPS826711

600-mA, HIGH-EFFICIENCY MicroSiP? STEP-DOWN CONVERTER (PROFILE <1.0mm)
TI

TPS826711SIP

600-mA, HIGH-EFFICIENCY MicroSiP? STEP-DOWN CONVERTER (PROFILE <1.0mm)
TI