TPS82740B [TI]

具有 360nA Iq 的 200mA 降压转换器模块;
TPS82740B
型号: TPS82740B
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 360nA Iq 的 200mA 降压转换器模块

转换器
文件: 总29页 (文件大小:2649K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS82740A, TPS82740B  
ZHCSCJ5A JUNE 2014REVISED JUNE 2014  
TPS82740x 360nA IQ MicroSIPTM 降压转换器模块,用于低功率应用  
1 特性  
这款全新的基于 DCS-Control™ 的器件将轻负载效率  
范围拓展至 10µA 负载电流以下。 它支持高达 200mA  
的输出电流。  
1
360nA 静态电流典型值  
10µA 输出电流时的效率高达 90%  
引脚可选输出电压,步长 100mV  
集成转换率受控负载开关  
此器件由可再充电锂离子电池,锂化学电池(例如锂亚  
硫酰氯 (Li-SOC12),锂锰电池 (Li-MnO2))和两节或  
三节碱性电池供电运行。 输入电压范围高达 5.5V,也  
可实现由 1 USB 端口和薄膜太阳能模块供电运行。  
高达 200mA 输出电流  
2.2V 5.5V 的输入电压范围 VIN  
射频 (RF) 友好型 DCS-Control™  
低输出电压纹波  
用户可通过三个电压选择引脚 (VSEL) 1.8V 2.5V  
(TPS82740A) 2.6V 3.3V (TPS82740B) 的范围  
内以 100mV 的步长选择输出电压。 TPS82740 特有  
低输出电压纹波和低噪声。 一旦电池电压接近输出电  
压(接近 100% 占空比),此器件进入无纹波 100%  
模式运行,以防止增加输出电压纹波。 在这个情况  
下,此器件停止开关,并且输出被连接至输入电压。  
自动转换至无纹波 100% 模式  
VOUT LOAD 上的放电功能  
高度不到 1.1mm 的解决方案  
总体解决方案尺寸 < 6.7mm2  
小型 2.3mm x 2.9mm MicroSIP™ 封装  
2 应用范围  
集成的转换率受控负载开关(具有 0.6的导通电阻典  
型值)将已选输出电压配送至一个临时使用的子系统。  
Bluetooth® 低功耗 (Low Energy),消费类电子产品  
用射频 (RF4CE),短距低功耗通信协议 (Zigbee)  
TPS82740 采用小型 9 焊锡凸点 6.7mm2 MicroSiPTM  
封装。  
可穿戴电子产品  
能量采集  
器件信息(1)  
3 说明  
产品型号  
TPS82740A  
TPS82740B  
封装  
封装尺寸(标称值)  
2.30mm x 2.90mm  
2.30mm x 2.90mm  
TPS82740 是业界第一款降压转换器模块,此模块特  
有典型值为 360nA 的静态流耗。 它是一款用于超低功  
率应用的完整 MicroSIPTM 直流/直流降压电源解决方  
案。 此模块包括开关稳压器、电感器和输入/输出电容  
器。 将所有需要的无源组件集成在一起可实现仅为  
6.7mm2 的微型解决方案尺寸。  
µSIP  
µSIP  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
4 典型应用  
TPS82740  
DC/DC Converter  
L
V
IN  
2.2 V to 5.5 V  
TPS82740B  
V
OUT  
up to 200mA  
VIN  
SW  
COUT  
CIN  
VOUT  
GND  
TPS82740 extends  
light load efficiency range  
down to 10mA output current  
Switched Supply  
RON = 0.6Ω  
ENABLE  
VSEL1  
EN  
LOAD  
CTRL  
VSEL1  
VSEL2  
VSEL3  
VSEL2  
VSEL3  
Control for  
Switched  
Supply Rail  
Current  
DCS-ControlTM topology  
GND  
VIN = 3.6V  
VOUT = 3.3V  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSCE3  
 
 
 
 
 
TPS82740A, TPS82740B  
ZHCSCJ5A JUNE 2014REVISED JUNE 2014  
www.ti.com.cn  
目录  
10.2 Functional Block Diagram ..................................... 15  
10.3 Feature Description............................................... 15  
10.4 Device Functional Modes...................................... 17  
11 Application and Implementation........................ 19  
11.1 Application Information.......................................... 19  
11.2 Typical Application ............................................... 19  
12 Power Supply Recommendations ..................... 22  
13 Layout................................................................... 22  
13.1 Layout Guidelines ................................................. 22  
13.2 Layout Example .................................................... 22  
13.3 Surface Mount Information.................................... 23  
14 器件和文档支持 ..................................................... 24  
14.1 文档支持 ............................................................... 24  
14.2 ....................................................................... 24  
14.3 静电放电警告......................................................... 24  
14.4 术语表 ................................................................... 24  
15 机械封装和可订购信息 .......................................... 24  
1
2
3
4
5
6
7
8
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
典型应用................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
8.1 Absolute Maximum Ratings ..................................... 4  
8.2 Handling Ratings ...................................................... 4  
8.3 Recommended Operating Conditions...................... 4  
8.4 Thermal Information.................................................. 5  
8.5 Electrical Characteristics.......................................... 5  
8.6 Typical Characteristics.............................................. 6  
Parameter Measurement Information ................ 14  
9
10 Detailed Description ........................................... 15  
10.1 Overview ............................................................... 15  
5 修订历史记录  
Changes from Original (June 2014) to Revision A  
Page  
Added 150 mA Typical current specification for ILIM_softstart, Low side MOSFET switch current limit...................................... 6  
2
Copyright © 2014, Texas Instruments Incorporated  
 
TPS82740A, TPS82740B  
www.ti.com.cn  
ZHCSCJ5A JUNE 2014REVISED JUNE 2014  
6 Device Comparison Table  
PACKAGE  
MARKING  
OUTPUT VOLTAGE SETTINGS  
(VSEL1, VSEL2, VSEL3)  
PART NUMBER  
TPS82740A  
TPS82740B  
1.8V to 2.5V in 100mV steps  
2.6V to 3.3V in 100mV steps  
E7  
E8  
7 Pin Configuration and Functions  
MicroSIP™  
9 Bump  
(TOP VIEW)  
VSEL2  
(BOTTOM VIEW)  
VSEL2  
A1  
B1  
C1  
A2  
B2  
C2  
A3  
B3  
C3  
A3  
B3  
C3  
A2  
B2  
C2  
A1  
B1  
C1  
VSEL3  
LOAD  
VOUT  
VSEL1  
EN  
VSEL1  
EN  
VSEL3  
LOAD  
VOUT  
VIN  
VIN  
GND  
CTRL  
CTRL GND  
Table 1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
VIN  
NO  
C3  
C2  
B2  
IN  
-
Input voltage supply pin of the module.  
Ground terminal.  
GND  
CTRL  
IN  
CTRL pin controls the LOAD output pin. With CTRL = low, the LOAD output is disabled. This pin must be  
terminated and not left floating.  
VOUT  
LOAD  
C1  
B1  
OUT  
OUT  
Output voltage pin of the module. An internal load switch is connected between VOUT pin and LOAD pin.  
Load switch output pin controlled by the CTRL pin. With CTRL = high, an internal load switch connects the  
LOAD pin to the VOUT pin. The LOAD pin allows connect / disconnect other system components to the  
output of the DC/DC converter. This pin is pulled to GND with the CTRL pin = low. The LOAD pin features  
soft switching. If not used, leave the pin open.  
VSEL3  
VSEL2  
VSEL1  
EN  
A1  
A2  
A3  
B3  
IN  
IN  
IN  
IN  
Output voltage selection pins. See Table 2 and Table 3 for VOUT selection. These pins must be terminated  
and can be changed during operation.  
High level enables the devices and low level turns the device into shutdown mode. This pin must be  
terminated and not left floating.  
Table 2. Output Voltage Setting TPS82740A  
Device  
VOUT  
1.8  
VSEL3  
VSEL2  
VSEL1  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1.9  
2.0  
2.1  
TPS82740A  
2.2  
2.3  
2.4  
2.5  
Copyright © 2014, Texas Instruments Incorporated  
3
 
TPS82740A, TPS82740B  
ZHCSCJ5A JUNE 2014REVISED JUNE 2014  
www.ti.com.cn  
Table 3. Output Voltage Setting TPS82740B  
Device  
VOUT  
2.6  
VSEL3  
VSEL2  
VSEL1  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2.7  
2.8  
2.9  
TPS82740B  
3.0  
3.1  
3.2  
3.3  
8 Specifications  
8.1 Absolute Maximum Ratings(1)  
Over operating free-air temperature range (unless otherwise noted)  
VALUE  
UNIT  
MIN  
–0.3  
–0.3  
–0.3  
-40  
MAX  
(2)  
Pin voltage  
VIN  
6
V
V
EN, CTRL, VSEL1, VSEL2, VSEL3  
VIN +0.3V  
3.7  
VOUT, LOAD  
V
(3)  
Operating ambient temperature range, TA  
Operating junction temperature TJ  
85  
°C  
°C  
-40  
125  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal GND.  
(3) In applications where ambient temperature (TA) constantly stays above 70°C, the product life time might degrade. MLCC capacitor  
reliability and lifetime is depending on temperature and applied voltage conditions. At higher temperatures, MLCC capacitors are subject  
to stronger stress. The most critical parameter is the Insulation Resistance (IR) resulting in leakage current.  
8.2 Handling Ratings  
MIN  
–55  
0
MAX  
125  
UNIT  
Tstg  
Storage temperature range  
°C  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins(1)  
2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(2)  
0
1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. The human body  
model is a 100-pF capacitor discharged through a 1.5-kΩ resistor into each pin.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
8.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN NOM  
MAX UNIT  
VIN  
Supply voltage VIN  
2.2  
5.5  
200  
100  
100  
10  
V
IOUT + ILOAD  
Device output current (sum of IOUT and ILOAD  
)
VOUTnom + 0.7V VIN 5.5V  
OUTnom VIN VOUTnom +0.7V  
mA  
V
ILOAD  
COUT  
CLOAD  
TJ  
Load current (current from LOAD pin)  
Additional output capacitance connected to VOUT pin (not including LOAD pin)  
Capacitance connected to LOAD pin  
µF  
°C  
10  
Operating junction temperature range  
-40  
-40  
90  
TA  
Operating ambient temperature range  
85  
4
Copyright © 2014, Texas Instruments Incorporated  
 
TPS82740A, TPS82740B  
www.ti.com.cn  
ZHCSCJ5A JUNE 2014REVISED JUNE 2014  
8.4 Thermal Information  
TPS82740  
THERMAL METRIC(1)  
µSIP  
UNIT  
9 PINS  
RθJA  
Junction-to-ambient thermal resistance  
83  
53  
-
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
-
ψJB  
-
RθJC(bot)  
-
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
8.5 Electrical Characteristics  
VIN = 3.6V, TA = –40°C to 85°C, typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
SUPPLY  
VIN  
Input voltage range  
2.2  
5.5  
V
EN = VIN, CTRL = GND, IOUT = 0µA, VOUT = 1.8V / 2.6V, device not  
switching  
360 2300  
nA  
µA  
EN = VIN, IOUT = 0mA, CTRL = GND, VOUT = 1.8V device switching  
460  
500  
Operating quiescent EN = VIN, IOUT = 0mA, CTRL = GND, VOUT = 2.6V, device switching  
IQ  
current  
EN = VIN, IOUT = 0mA., CTRL = VIN, VOUT = 1.8V, device not  
switching  
12.5  
13.5  
EN = VIN, IOUT = 0mA., CTRL = VIN, VOUT = 2.6V, device not  
switching  
ISD  
Shutdown current  
EN = GND, shutdown current into VIN  
EN = GND, shutdown current into VIN, TA = 60°C  
Rising VIN  
70  
nA  
V
150  
VTH_UVLO+  
VTH_UVLO-  
Undervoltage  
lockout threshold  
2.075  
1.925  
2.15  
2
Falling VIN  
INPUTS EN, CTRL, VSEL 1-3  
VIH TH  
VIL TH  
IIN  
High level input  
threshold  
2.2V VIN 5.5V  
2.2V VIN 5.5V  
1.1  
V
V
Low level input  
threshold  
0.4  
Input bias Current  
TA = 25°C  
10  
25  
nA  
TA = –40°C to 85°C  
POWER SWITCHES  
High side MOSFET  
switch current limit  
430  
430  
mA  
mA  
ILIMF  
2.2V VIN 5.5V  
Low side MOSFET  
switch current limit  
OUTPUT DISCHARGE SWITCH (VOUT)  
MOSFET on-  
30  
40  
65  
RDSCH_VOUT  
resistance  
EN = GND, IOUT = -10mA into VOUT pin  
EN = VIN, VOUT = 2V / 2.8V, CTRL = GND  
Bias current into  
VOUT pin  
TA = 25°C  
660  
IIN_VOUT  
nA  
TA = –40°C to 85°C  
1570  
LOAD OUTPUT (LOAD)  
High side MOSFET  
on-resistance  
0.6  
30  
1.25  
65  
RLOAD  
ILOAD = 50mA, CTRL = VIN, VOUT = 2.0V / 2.8V, 2.2 V VIN 5.5V  
CTRL = GND, 2.2V VIN 5.5V, ILOAD = - 10mA  
Low side MOSFET  
on-resistance  
RDSCH_LOAD  
VLOAD rise time  
Starting with CTRL low to high transition, time to ramp VLOAD from  
0V to 95%, VOUT = 1.8V / 2.6V, 2.2V VIN 5.5V, ILOAD = 1mA, TA  
25°C  
315  
800  
µs  
tRise_LOAD  
=
Copyright © 2014, Texas Instruments Incorporated  
5
TPS82740A, TPS82740B  
ZHCSCJ5A JUNE 2014REVISED JUNE 2014  
www.ti.com.cn  
Electrical Characteristics (continued)  
VIN = 3.6V, TA = –40°C to 85°C, typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
AUTO 100% MODE TRANSITION  
Auto 100% Mode  
170  
250  
200  
340  
280  
mV  
Rising VIN,100% Mode is left with VIN = VOUT + VTH_100+ , max value  
at TJ = 85°C  
VTH_100+  
exit detection  
(1)  
threshold  
Auto 100% Mode  
enter detection  
110  
Falling VIN, 100% Mode is entered with VIN = VOUT + VTH_100-, max  
value at TJ = 85°C  
VTH_100-  
(1)  
threshold  
OUTPUT  
tStartup_delay  
Regulator start up  
delay time  
From transition EN = low to high until device starts switching  
10  
25  
ms  
µs  
tSoftstart  
Softstart time with  
reduced switch  
current limit  
2.2V VIN 5.5V, EN = VIN  
400 1200  
High side MOSFET  
switch current limit  
80  
150  
150  
200  
ILIM_softstart  
Reduced switch current limit during softstart  
mA  
Low side MOSFET  
switch current limit  
Output voltage  
range  
Output voltages are selected with pins VSEL1,  
VSEL2, VSEL3  
TPS82740A  
TPS82740B  
1.8  
2.6  
-2.5  
–2  
2.5  
3.3  
2.5  
2
V
IOUT = 10mA, VOUT = 1.8V / 2.6V  
IOUT = 100mA, VOUT = 1.8V / 2.6V  
VOUT = 1.8V / 2.6V, CTRL = VIN  
0
0
%
Output voltage  
accuracy  
VVOUT  
DC output voltage  
load regulation  
0.001  
%/mA  
%/V  
DC output voltage  
line regulation  
VOUT = 1.8V / 2.6V, CTRL = VIN, IOUT = 10 mA, 2.5V VIN 5.5V  
0
(1) VIN is compared to the programmed output voltage (VOUT). When VIN–VOUT falls below VTH_100- , the device enters 100% Mode by  
turning the high side MOSFET on. 100% Mode is exited when VIN–VOUT exceeds VTH_100+ and the device starts switching. The  
hysteresis for the 100% Mode detection threshold VTH_100+ - VTH_100- is always positive and 50 mV(typ.)  
8.6 Typical Characteristics  
TABLE OF GRAPHS  
FIGURE  
Figure 3, Figure 4, Figure 5,  
Figure 6  
η
Efficiency  
vs Output Current  
vs Input Voltage  
vs Output curent  
Figure 7, Figure 8, Figure 9,  
Figure 10  
η
Efficiency  
Figure 11, Figure 12, Figure 13,  
Figure 14  
VOUT  
Output voltage  
IQ  
Operating quiescent current  
Shutdown current  
vs Input voltage  
vs Input voltage  
Figure 1  
ISD  
Figure 2  
Automatic Transition into 100% Mode  
Switching frequency  
Figure 18, Figure 19, Figure 20  
Figure 15, Figure 16, Figure 17  
FSW  
vs Output current  
Figure 21, Figure 22, Figure 23,  
Figure 24, Figure 25, Figure 26,  
Figure 27, Figure 28, Figure 29,  
Figure 30  
Line and Load Transient Performance  
AC load regulation performance  
LOAD Output Behavior  
Figure 31, Figure 32  
LOAD  
Figure 33, Figure 34, Figure 35  
Figure 36, Figure 37, Figure 38,  
Figure 39  
Input Voltage Ramp up / down  
6
Copyright © 2014, Texas Instruments Incorporated  
TPS82740A, TPS82740B  
www.ti.com.cn  
ZHCSCJ5A JUNE 2014REVISED JUNE 2014  
Typical Characteristics (continued)  
1000  
200  
180  
160  
140  
120  
100  
80  
TA = -40C  
TA = 25C  
TA = 60C  
TA = -40C  
TA = 25C  
TA = 60C  
TA = 85C  
900  
800  
TA = 85C  
700  
600  
500  
400  
300  
200  
100  
0
60  
40  
20  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Input Voltage VIN (V)  
Input Voltage VIN (V)  
D019  
D020  
EN = VIN  
CTRL = GND  
Device not switching  
EN = GND  
Figure 1. TPS82740 Quiescent Current IQ  
Figure 2. TPS82740 Shutdown current ISD  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
VIN = 2.7V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
VIN = 2.7V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
40  
0.001  
0.01  
0.1  
1
10  
100 300  
0.001  
0.01  
0.1  
1
10  
100 300  
Output Current (mA)  
Output Current (mA)  
D008  
D009  
CTRL = GND  
CTRL = GND  
Figure 3. TPS82740A Efficiency VOUT = 1.8V  
Figure 4. TPS82740A Efficiency VOUT = 2.1V  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
VIN = 3.0V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
0.001  
0.01  
0.1  
1
10  
100 300  
0.001  
0.01  
0.1  
1
10  
100 300  
Output Current (mA)  
Output Current (mA)  
D001  
D002  
CTRL = GND  
CTRL = GND  
Figure 5. TPS82740B Efficiency VOUT = 2.6V  
Figure 6. TPS82740B Efficiency VOUT = 3.3V  
Copyright © 2014, Texas Instruments Incorporated  
7
TPS82740A, TPS82740B  
ZHCSCJ5A JUNE 2014REVISED JUNE 2014  
www.ti.com.cn  
Typical Characteristics (continued)  
100  
90  
80  
70  
60  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
IOUT = 1mA  
IOUT = 1mA  
IOUT = 2mA  
IOUT = 2mA  
40  
30  
20  
10  
0
IOUT = 5mA  
IOUT = 5mA  
IOUT = 10mA  
IOUT = 100mA  
IOUT = 1mA  
IOUT = 10mA  
IOUT = 200mA  
IOUT = 10mA  
IOUT = 100mA  
IOUT = 1mA  
IOUT = 10mA  
IOUT = 200mA  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Input Voltage VIN (V)  
Input Voltage VIN (V)  
D010  
D011  
CTRL = GND  
CTRL = GND  
Figure 7. TPS82740A Efficiency VOUT = 1.8V  
Figure 8. TPS82740A Efficiency VOUT = 2.1V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IOUT = 1mA  
IOUT = 1mA  
IOUT = 2mA  
IOUT = 2mA  
IOUT = 5mA  
IOUT = 5mA  
IOUT = 10mA  
IOUT = 100mA  
IOUT = 1mA  
IOUT = 10mA  
IOUT = 200mA  
IOUT = 10mA  
IOUT = 100mA  
IOUT = 1mA  
IOUT = 10mA  
IOUT = 200mA  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
3.5  
4.0  
4.5  
5.0  
5.5  
Input Voltage VIN (V)  
Input Voltage VIN (V)  
D004  
D003  
CTRL = GND  
CTRL = GND  
Figure 9. TPS82740B Efficiency VOUT = 2.6V  
Figure 10. TPS82740B Efficiency VOUT = 3.3V  
1.85  
1.84  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
1.76  
1.75  
2.16  
2.15  
2.14  
2.13  
2.12  
2.11  
2.10  
2.09  
2.08  
2.07  
2.06  
2.05  
2.04  
VIN = 2.7V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
VIN = 2.7V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
0.001  
0.01  
0.1  
1
10  
100 300  
0.001  
0.01  
0.1  
1
10  
100 300  
Output Current IOUT (mA)  
Output Current IOUT (mA)  
D012  
D013  
CTRL = GND  
Figure 11. TPS82740A Output voltage VOUT = 1.8V  
Figure 12. TPS82740A Output voltage VOUT = 2.1V  
8
Copyright © 2014, Texas Instruments Incorporated  
TPS82740A, TPS82740B  
www.ti.com.cn  
ZHCSCJ5A JUNE 2014REVISED JUNE 2014  
Typical Characteristics (continued)  
2.67  
2.66  
2.65  
2.64  
2.63  
2.62  
2.61  
2.60  
2.59  
2.58  
2.57  
2.56  
2.55  
2.54  
2.53  
2.52  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
0.001  
0.01  
0.10.2 0.5 1 2 3 5 10 20 50100 300  
Output Current IOUT (mA)  
0.001  
0.01  
0.1  
1
10  
100 300  
Output Current IOUT (mA)  
D014  
D015  
CTRL = GND  
CTRL = GND  
Figure 13. TPS82740B Output voltage VOUT = 2.6V  
Figure 14. TPS82740B Output voltage VOUT = 3.3V  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
VIN = 2.5V  
VIN = 3.0V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
VIN = 2.7V  
VIN = 3.0V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
0
20  
40  
60  
80 100 120 140 160 180 200  
Output Current (mA)  
0
20  
40  
60  
80 100 120 140 160 180 200  
Output Current (mA)  
D016  
D017  
Figure 15. TPS82740A Switching frequency VOUT = 1.8V  
Figure 16. TPS82740A Switching frequency VOUT = 2.1V  
2.50  
1800  
IOUT = 10mA, rising VIN  
IOUT = 10mA, falling VIN  
IOUT = 50mA, rising VIN  
IOUT = 50mA, falling VIN  
IOUT = 100mA, rising VIN  
IOUT = 100mA, falling VIN  
2.45  
2.40  
2.35  
2.30  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
2.20  
2.25  
2.30  
2.35  
2.40  
2.45  
2.50  
2.55  
0
20  
40  
60  
80 100 120 140 160 180 200  
Output Current (mA)  
Input Voltage VIN (V)  
D018  
D005  
Figure 17. TPS82740B switching frequency VOUT = 3.0V  
Figure 18. TPS82740A 100% Mode Transition VOUT = 2.1V  
Copyright © 2014, Texas Instruments Incorporated  
9
 
TPS82740A, TPS82740B  
ZHCSCJ5A JUNE 2014REVISED JUNE 2014  
www.ti.com.cn  
Typical Characteristics (continued)  
2.90  
3.70  
3.65  
3.60  
3.55  
3.50  
3.45  
3.40  
3.35  
3.30  
3.25  
3.20  
IOUT = 10mA, rising VIN  
IOUT = 10mA, rising VIN  
IOUT = 10mA, falling VIN  
IOUT = 50mA, rising VIN  
IOUT = 50mA, falling VIN  
IOUT = 100mA, rising VIN  
IOUT = 100mA, falling VIN  
2.85  
2.80  
2.75  
2.70  
2.65  
2.60  
2.55  
2.50  
2.45  
IOUT = 10mA, falling VIN  
IOUT = 50mA, rising VIN  
IOUT = 50mA, falling VIN  
IOUT = 100mA, rising VIN  
IOUT = 100mA, falling VIN  
2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90  
Input Voltage VIN (V)  
3.20 3.25 3.30 3.35 3.40 3.45 3.50 3.55 3.60 3.65 3.70  
Input Voltage VIN (V)  
D006  
D007  
Figure 19. TPS82740A 100% Mode Transition VOUT = 2.5V  
Figure 20. TPS82740B 100% Mode Transition VOUT = 3.3V  
VIN = 3.6V  
VOUT = 1.8V  
CTRL = GND  
Load step at VOUT  
VIN = 3.6V  
VOUT = 1.8V  
CTRL = VIN  
Load step at VOUT  
IOUT = 0.5mA to 150mA  
IOUT = 50mA to 10mA  
Figure 21. TPS82740A Load Transient Response VOUT = 1.8V  
Figure 22. TPS82740A Load Transient Response VOUT = 1.8V  
VIN = 3.6V  
VOUT = 2.6V  
CTRL = VIN  
VIN = 3.6V  
VOUT = 2.6V  
CTRL = GND  
Load step at VOUT  
Load step at VOUT  
IOUT = 0.5mA to 150mA  
IOUT = 50mA to 10mA  
Figure 23. TPS82740B Load Transient Response VOUT = 2.6V  
Figure 24. TPS82740B Load Transient Response VOUT = 2.6V  
10  
Copyright © 2014, Texas Instruments Incorporated  
 
TPS82740A, TPS82740B  
www.ti.com.cn  
ZHCSCJ5A JUNE 2014REVISED JUNE 2014  
Typical Characteristics (continued)  
VIN = 3.6V  
VOUT = 1.8V  
CTRL = GND  
Load step at VOUT  
VIN = 3.6V  
VOUT = 1.8V  
CTRL = VIN  
Load step at VOUT  
0mA to 100mA  
1ms rise/fall time  
70ms / 10ms  
IOUT = 0mA to 100mA  
1ms rise/fall time  
70ms / 10ms  
Figure 26. TPS82740A Load Transient Response VOUT = 1.8V  
Figure 25. TPS82740A Load Transient Response VOUT = 1.8V  
VIN = 3.6V  
VOUT = 2.6V  
CTRL = GND  
Load step at VOUT  
0mA to 100mA  
1ms rise/fall time  
70ms / 10ms  
VIN = 3.6V  
VOUT = 2.6V  
CTRL = VIN  
Load step at VOUT  
0mA to 100mA  
1ms rise/fall time  
70ms / 10ms  
Figure 27. TPS82740B Load Transient Response VOUT = 2.6V  
Figure 28. TPS82740B Load Transient response VOUT = 2.6V  
VIN = 3.6V / 4.2V  
VOUT = 2.1 V  
VIN = 3.6V / 4.2V  
VOUT = 2.1 V  
IOUT = 100mA  
CTRL = GND  
IOUT = 10mA  
CTRL = GND  
Figure 29. TPS82740A Line Transient Response  
IOUT = 10mA  
Figure 30. TPS82740A Line Transient Response  
IOUT = 100mA  
Copyright © 2014, Texas Instruments Incorporated  
11  
TPS82740A, TPS82740B  
ZHCSCJ5A JUNE 2014REVISED JUNE 2014  
www.ti.com.cn  
Typical Characteristics (continued)  
VIN = 3.6V  
VIN = 3.6V  
VOUT = 1.8V  
VOUT = 2.6V  
IOUT = 50mA to 200mA  
CTRL = GND  
IOUT = 50mA to 200mA  
CTRL = GND  
Figure 31. TPS82740A AC Load Sweep VOUT = 1.8V  
Figure 32. TPS82740B AC Load Sweep VOUT = 2.6V  
VIN = 3.6V  
VIN = 3.6V  
VOUT = VLOAD = 1.8 V  
ILOAD = 0 to 50mA  
IOUT = 0mA  
VOUT = VLOAD = 2.6V  
ILOAD = 0 to 50mA  
IOUT = 0mA  
CTRL = VIN  
CTRL = VIN  
Figure 33. TPS82740A Load Step at LOAD Output  
Figure 34. TPS82740B Load Step at LOAD Output  
VIN = 3.6V  
VOUT = 2.6V  
IOUT = 0mA  
VIN ramp up/down  
0V to 5V in 150ms  
VOUT = 1.8V  
ROUT = 50W  
CTRL = GND  
ILOAD = 0mA  
CLOAD = 10mF  
controlled  
slew rate  
VLOAD discharged  
Figure 35. TPS82740B Load Output ON / OFF  
Figure 36. TPS82740A Input Voltage Ramp Up / Down  
12  
Copyright © 2014, Texas Instruments Incorporated  
TPS82740A, TPS82740B  
www.ti.com.cn  
ZHCSCJ5A JUNE 2014REVISED JUNE 2014  
Typical Characteristics (continued)  
VIN ramp up/down  
0V to 5V in 150ms  
VOUT = 2.6V  
VIN ramp up/down  
0V to 5V in 150ms  
VOUT = 3.3V  
ROUT = 50W  
CTRL = GND  
ROUT = 50W  
CTRL = GND  
100% mode operation  
High side MOS-FET turned on  
100% mode operation  
High side MOS-FET turned on  
Figure 37. TPS82740B Input Voltage Ramp Up / Down  
Figure 38. TPS82740B Input Voltage Ramp Up / Down  
VIN ramp up/down  
2.8V to 3.7V  
VOUT = 3.0V  
ROUT = 50W  
CTRL = GND  
High side MOSFET turned on  
100% Mode  
Exit / Enter  
Figure 39. TPS82740B Enter / Exit 100% Mode Operation  
Copyright © 2014, Texas Instruments Incorporated  
13  
TPS82740A, TPS82740B  
ZHCSCJ5A JUNE 2014REVISED JUNE 2014  
www.ti.com.cn  
9 Parameter Measurement Information  
TPS82740  
DC/DC Converter  
L
V
V
IN  
2.2 V to 5.5 V  
OUT  
up to 200mA  
VIN  
SW  
VOUT  
LOAD  
GND  
Switched Supply Rail  
ENABLE  
VSEL1  
VSEL2  
VSEL3  
EN  
CLOAD  
VSEL1  
VSEL2  
VSEL3  
10mF  
Control for  
Switched Supply Rail  
CTRL  
GND  
Measurement Configuration with Passive Components  
14  
Copyright © 2014, Texas Instruments Incorporated  
TPS82740A, TPS82740B  
www.ti.com.cn  
ZHCSCJ5A JUNE 2014REVISED JUNE 2014  
10 Detailed Description  
10.1 Overview  
The TPS82740 is the first fully integrated step down converter module with an ultra low quiescent current  
consumption (360nA typ.) while maintaining a regulated output voltage and featuring TI's DCS-Control™  
topology. The device extends high efficiency operation to output currents down to a few micro amperes.  
10.2 Functional Block Diagram  
CTRL  
UVLO  
EN  
Ultra Low Power  
Reference VREF = 1.2V  
Softstart  
ENABLE  
VSEL1  
VOUT  
Discharge  
VOUT  
Load Switch  
Slew Rate  
Control  
Internal  
VFB feedback  
divider  
network  
(typ. 50MW)  
CTRL  
Auto 100% Mode  
UVLO  
Comp  
VSEL2  
VSEL3  
LOAD  
Comp  
100%  
Mode  
EN  
VIN  
VIN  
Discharge  
UVLO  
UVLO  
VTH_100  
VTH_UVLO  
Power Stage  
PMOS  
Current  
Limit Comparator  
VIN  
Timer  
Min. On  
UVLO  
DCS  
Control  
VIN  
Limit  
High Side  
VOUT  
Min. OFF  
VOUT  
L
Control  
Logic  
Direct Control  
& Compensation  
Gate Driver  
Anti  
EN  
VOUT  
Shoot-Through  
VFB  
VREF  
NMOS  
Limit  
Low Side  
Error  
amplifier  
Main  
Comparator  
Current  
Limit Comparator  
GND  
10.3 Feature Description  
10.3.1 DCS-Control™  
TI's DCS-Control™ (Direct Control with Seamless Transition into Power Save Mode) is an advanced regulation  
topology, which combines the advantages of hysteretic and voltage mode control. Characteristics of DCS-  
Control™ are excellent AC load regulation and transient response, low output ripple voltage and a seamless  
transition between PFM and PWM mode operation. DCS-Control™ includes an AC loop which senses the output  
voltage (VOUT pin) and directly feeds the information to a fast comparator stage. This comparator sets the  
switching frequency, which is constant for steady state operating conditions, and provides immediate response to  
dynamic load changes. In order to achieve accurate DC load regulation, a voltage feedback loop is used.  
The DCS-Control™ topology supports PWM (Pulse Width Modulation) mode for medium and high load  
conditions and Power Save Mode at light loads. During PWM mode, it operates in continuous conduction. The  
switching frequency goes up to 1.7MHz with a controlled frequency variation depending on the input voltage. If  
the load current decreases, the converter seamlessly enters Power Save Mode to maintain high efficiency down  
to very light loads. In Power Save Mode, the switching frequency varies nearly linearly with the load current.  
Since DCS-Control™ supports both operation modes within one single building block, the transition from PWM to  
Power Save Mode is seamless without effects on the output voltage. The TPS82740 offers both excellent DC  
Copyright © 2014, Texas Instruments Incorporated  
15  
TPS82740A, TPS82740B  
ZHCSCJ5A JUNE 2014REVISED JUNE 2014  
www.ti.com.cn  
Feature Description (continued)  
voltage and superior load transient regulation, combined with very low output voltage ripple, minimizing  
interference with RF circuits. At high load currents, the converter operates in quasi fixed frequency PWM mode  
operation and at light loads in PFM (Pulse Frequency Modulation) mode to maintain highest efficiency over the  
full load current range. In PFM Mode, the device generates a single switching pulse to ramp up the inductor  
current and recharge the output capacitor, followed by a sleep period where most of the internal circuits are  
shutdown to achieve the lowest quiescent current. During this time, the load current is supported by the output  
capacitor. The duration of the sleep period depends on the load current and the inductor peak current.  
During the sleep periods, the quiescent current of the TPS82740 is reduced to 360nA. This low quiescent current  
consumption is achieved by an ultra low power voltage reference, an integrated high impedance (typ. 50M)  
feedback divider network and an optimized DCS-Control™ block.  
10.3.2 LOAD Switch  
The LOAD pin can be used to power an additional, temporarily used sub-system. If the CTRL pin is set high, the  
LOAD pin is connected to the VOUT pin via an integrated load switch. The load switch is slew rate controlled to  
support soft switching and not impacting the regulated output VOUT. If the CTRL pin is set to low, the LOAD pin  
is disconnected from the VOUT pin and internally connected to GND by an internal discharge switch. The CTRL  
pin can be controlled by a micro controller and must be terminated. With CTRL pin high, the quiescent current is  
increased to improve the transient response.  
10.3.3 Output Voltage Selection (VSEL1, VSEL2, VSEL3)  
The TPS82740 provides an integrated, high impedance (typ. 50M) feedback resistor divider network which is  
programmed by the pins VSEL1-3. The TPS82740A supports an output voltage range of 1.8V to 2.5V in 100mV  
steps, while the TPS82740B supports an output voltage range from 2.6V to 3.3V in 100mV steps. The output  
voltage can be changed during operation and supports a simple dynamic output voltage scaling, shown in  
Figure 44. The output voltage is programmed according to Table 2 and Table 3.  
10.3.4 Output Discharge Function (VOUT and LOAD)  
Both the VOUT pin and the LOAD pin feature a discharge circuit to connect each rail to GND, once they are  
disabled. This feature prevents residual charge voltages on capacitors connected to these pins, which may  
impact proper power up of the main- and sub-system. With the CTRL pin pulled low, the discharge circuit at the  
LOAD pin activates. With the EN pin pulled low, the discharge circuit at the pin VOUT activates.  
10.3.5 Internal Current Limit  
The TPS82740 integrates a current limit in the high side, as well as in the low side MOSFETs to protect the  
device against overload or short circuit conditions. The peak current in the switches is monitored cycle by cycle.  
If the high side MOSFET current limit is reached, the high side MOSFET is turned off and the low side MOSFET  
is turned on until the current decreases below the low side MOSFET current limit.  
Table 4. Load Pin Condition Table  
Pin condition  
Operating condition  
VIN  
Remark  
LOAD  
EN  
CTRL  
load switch enabled  
and slew rate  
controlled  
Connected  
to VOUT  
high  
high  
> VUVLO  
load switch turned  
off  
high  
low  
low  
high or low  
high  
> VUVLO  
> VUVLO  
< VUVLO  
Connected  
to GND  
device and load  
switch disabled  
device disabled due  
to UVLO  
high  
16  
Copyright © 2014, Texas Instruments Incorporated  
TPS82740A, TPS82740B  
www.ti.com.cn  
ZHCSCJ5A JUNE 2014REVISED JUNE 2014  
10.3.6 CTRL / DVS (Dynamic Voltage Scaling TPS62741)  
In TPS62741, the CTRL pin controls beside the load switch as well Dynamic Voltage Scaling. The CTRL pin  
selects between two different voltage setting banks. The voltage of each bank are set with the VSEL pins 1-4  
according to .  
The output LOAD is controlled with the CTRL pin. The pin is internally connected either to VOUT pin or GND and  
can be used to power up/down temporarily used external circuits to reduce leakage current consumption of the  
system.  
10.4 Device Functional Modes  
10.4.1 Enable / Shutdown  
The TPS82740 is activated when the EN pin is set high. For proper operation, the pin must be terminated and  
must not be left floating. With the EN pin set low, the device enters shutdown mode with less than typ. 70nA  
current consumption.  
10.4.2 Softstart  
When the device is enabled, the internal reference is powered up and after the startup delay time tStartup_delay has  
expired, the device enters softstart, starts switching and ramps up the output voltage. During softstart, the device  
operates with a reduced current limit, ILIM_softstart, of typ. 1/3 of the nominal current limit. This reduced current limit  
is active during the time tSoftstart. The current limit is increased to its nominal value, ILIMF, once this time has  
expired or the nominal output voltage is reached.  
10.4.3 POWER GOOD OUTPUT (PG)  
The Power Good comparator features an open drain output. The PG comparator is active with EN pin set to high  
and VIN is above the threshold VTH_UVLO+. It is driven to high impedance once VOUT trips the threshold VTH_PG+ for  
rising VOUT. The output is pulled to low level once VOUT falls below the PG hysteresis, VPG_hys. The output is also  
pulled to low level in case the input voltage VIN falls below the undervoltage lockout threshold VTH_UVLO- or the  
device is disabled with EN = low. The power good output (PG) can be used as an indicator for the system to  
signal that the converter has started up and the output voltage is in regulation.  
Table 5. PG condition table  
Pin condition  
Operating condition  
Remark  
PG  
hiz  
EN  
CTRL  
high  
IOUT / ILOAD  
don't care  
VIN  
VOUT  
PG comparator  
active, pull up resistor  
pulls PG to high  
high  
high  
> VUVLO  
VOUT > VTH_PG+  
PG comparator  
active, pull up resistor  
pulls PG to high  
medium load (>  
1mA)  
hiz  
hiz  
low  
> VUVLO  
VOUT > VTH_PG+  
PG comparator  
disabled for low Iq  
operation, pull up  
resistor pulls PG to  
high  
high  
low  
light load (< 1mA)  
> VUVLO  
VOUT > VTH_PG+  
0mA < IOUT <  
100mA  
startup, overload or  
ramp down  
low  
low  
low  
high  
low  
don't care  
> VUVLO  
VIN > 1.2V  
< VUVLO  
VOUT < VTH_PG-  
VOUT = 0  
don't care output disabled  
device disabled  
device disabled, due  
to UVLO  
high  
don't care output disabled  
VOUT not present  
Table 6. VOUT Output Discharge Condition Table  
VOUT pin  
EN  
low  
VIN condition  
1.5V < VIN < VUVLO  
< VUVLO  
remark  
connected to GND, output discharged  
connected to GND, output discharged  
high  
Copyright © 2014, Texas Instruments Incorporated  
17  
TPS82740A, TPS82740B  
ZHCSCJ5A JUNE 2014REVISED JUNE 2014  
www.ti.com.cn  
remark  
Table 6. VOUT Output Discharge Condition Table (continued)  
VOUT pin  
EN  
VIN condition  
during regulator start  
up, the discharge  
switch is enabled and  
VOUT pulled to low,  
until the regulator  
start up time tStart  
expires. During the  
softstart time and  
later, the discharge  
switch is disabled.  
hiz, discharge switch disabled  
high  
> VUVLO  
10.4.4 Automatic Transition into 100% Mode  
Once the input voltage comes close to the output voltage, the TPS82740 stops switching and enters 100% duty  
cycle operation. It connects the output VOUT via the inductor and the internal high side MOSFET switch to the  
input VIN, once the input voltage VIN falls below the 100% mode enter threshold, VTH_100- . In 100% mode  
switching stops eliminating output voltage ripple. Because the output is connected to the input, the output voltage  
tracks the input voltage minus the voltage drop across the internal high side switch and the inductor caused by  
the output current. Once the input voltage increases and trips the 100% mode exit threshold, VTH_100+ , the  
TPS82740 turns on and starts switching again. See Figure 40, Figure 18, Figure 19 and Figure 20.  
VIN  
VIN,  
VOUT  
100%  
Mode  
100%  
Mode  
VTH_100+  
VTH_100-  
Step Down Operation  
VOUT  
tracks VIN  
VOUT  
tracks VIN  
VUVLO+  
VUVLO-  
VOUT  
discharge  
tsoftstart  
Figure 40. Automatic Transition into 100% Mode  
18  
Copyright © 2014, Texas Instruments Incorporated  
 
TPS82740A, TPS82740B  
www.ti.com.cn  
ZHCSCJ5A JUNE 2014REVISED JUNE 2014  
11 Application and Implementation  
11.1 Application Information  
The device is designed to operate from an input voltage supply range between 2.2V and 5.5V with a maximum  
output current of 200mA. Once the input voltage comes close to the output voltage, the DC/DC converter stops  
switching and enters 100% duty cycle operation. The integrated slew rate controlled load switch can distribute  
the selected output voltage to a temporarily used sub-system. The TPS82740 module operates in PWM mode for  
medium and high load conditions and in power save mode at light load currents.  
At high load currents, the converter operates in quasi fixed frequency PWM mode operation. The switching  
frequency is up to 1.7MHz with a controlled frequency variation depending on the input voltage. If the load  
current decreases, the converter seamlessly enters Power Save Mode by varying the switching frequency  
linearly to maintain high efficiency over the full load current range. At very light load conditions the device  
generates a single switching pulse to ramp up the inductor current and recharge the output capacitor, followed by  
a sleep period where most of the internal circuits are shutdown to achieve 360nA quiescent current consumption.  
11.2 Typical Application  
TPS82740  
LCD  
Display + Driver  
DC/DC Converter  
L
Main Supply  
V
IN  
VIN  
SW  
2.2 V ... 5.5 V  
VOUT  
GND  
ADC  
MCU  
Control Subsystem  
Switched Supply  
CTRL  
LOAD  
ENABLE  
VSEL1  
VSEL2  
VSEL3  
EN  
VSEL1  
VSEL2  
VSEL3  
Radio  
SOC  
GND  
Acceleration  
Sensor  
Electronic  
Compass  
Temperature  
Sensor  
Example of Implementation in a SOC Based System  
11.2.1 Design Requirements  
TPS82740 is a complete step-down converter module including all passive components (inductor, input and  
output capacitor). For most applications no additional input / output capacitors are required. Use the following  
typical application design procedure to select additional external components in case further performance  
improvement of the module is desired.  
11.2.2 Detailed Design Procedure  
11.2.2.1 Input Capacitor Selection  
For most applications, the integrated input capacitor at the VIN pin is sufficient.  
Copyright © 2014, Texas Instruments Incorporated  
19  
TPS82740A, TPS82740B  
ZHCSCJ5A JUNE 2014REVISED JUNE 2014  
www.ti.com.cn  
Typical Application (continued)  
TPS82740 uses a tiny ceramic input capacitor. When a ceramic capacitor is combined with trace or cable  
inductance, such as that from a wall adapter, a load step at the output can induce ringing at the VIN pin. This  
ringing can couple to the output and be mistaken as loop instability or can even damage the module. In this  
circumstance, additional ceramic 'bulk" capacitance, such as electrolytic or tantalum, should be placed between  
the input of the module and the power source lead to reduce ringing that occurs between the inductance of the  
power source leads and the module.  
11.2.2.1.1 Input Buffer Capacitor Selection  
In addition to the small ceramic input capacitor a larger buffer capacitor CBuf is recommended to reduce voltage  
drops and ripple voltage. When using battery chemistries like Li-SOCl2, Li-SO2, Li-MnO2, the impedance of the  
battery has to be considered. These battery types tend to increase their impedance depending on discharge  
status and often can support output currents of only a few mA. Therefore a buffer capacitor is recommended to  
stabilize the battery voltage during DC/DC operations e.g. for a RF transmission. A voltage drop on the input of  
the TPS82740 during DC/DC operation impacts the advantage of the step down conversion for system power  
reduction. Furthermore the voltage drops can fall below the minimum recommended operating voltage of the  
device and leads to an early system cut off. Both effects reduce the battery life time. To achieve best  
performance and to extract the most energy out of the battery a good procedure is to select the buffer capacitor  
value for an voltage drop below 50mVpp during DC/DC operation. The capacitor value strongly depends on the  
used battery type, as well the current consumption during a RF transmission as well the duration of the  
transmission.  
11.2.2.2 Output Capacitor Selection  
For most applications, the integrated output capacitor at the VOUT pin is sufficient.  
In order to further reduce the output voltage ripple and improve the load transient performance an additional  
external output capacitance may be used. For most applications an additional 4.7µF or 10µF capacitor will be  
sufficient. Care should be taken that the total effective capacitance present at the output does not exceed 10µF  
in order to guarantee loop stability. Ceramic capacitors with low ESR values have the lowest output voltage ripple  
and are recommended.  
At the LOAD output pin, no additional output capacitor is required. For applications demanding external  
capacitance connected to the LOAD pin, the total capacitance should not exceed 10µF.  
11.2.3 Application Curves  
VIN = 3.6V  
VIN = 3.6V  
VOUT = 2.6V  
ROUT = 100W  
CTRL = GND  
VOUT = 2.6V  
ROUT = 100W  
CTRL = GND  
Figure 41. TPS82740B Device Enable and Start up  
Figure 42. TPS82740B VOUT Ramp after Enable  
20  
Copyright © 2014, Texas Instruments Incorporated  
TPS82740A, TPS82740B  
www.ti.com.cn  
ZHCSCJ5A JUNE 2014REVISED JUNE 2014  
Typical Application (continued)  
VIN = 3.6V,  
VOUT = 1.8V / 2.5V ramp up / down  
IOUT = 5mA  
VIN = 3.6V, VOUT = VLOAD = 2.6V  
CTRL = VIN  
ROUT = 100W  
ILOAD = 0mA  
CLOAD = 10mF  
VSEL 2+3 toggled, VSEL1 = GND  
CTRL = GND  
Figure 43. TPS82740B VOUT Ramp with activated LOAD  
Switch  
Figure 44. TPS82740A Dynamic Output Voltage Scaling:  
VOUT = 1.8V / 2.5V  
Copyright © 2014, Texas Instruments Incorporated  
21  
TPS82740A, TPS82740B  
ZHCSCJ5A JUNE 2014REVISED JUNE 2014  
www.ti.com.cn  
12 Power Supply Recommendations  
The TPS82740 device is a complete and optimized power supply module working within the given  
specification range without additional components. Please use the information given in the Application  
Information section to connect the input and output circuitry appropriately.  
13 Layout  
13.1 Layout Guidelines  
In making the pad size for the uSiP LGA balls, it is recommended that the layout use a non-solder-mask defined  
(NSMD) land. With this method, the solder mask opening is made larger than the desired land area, and the  
opening size is defined by the copper pad width. Figure 45 shows the appropriate diameters for a MicroSiPTM  
layout. Figure 46 shows a suggestion for the PCB layout.  
13.2 Layout Example  
Figure 45. Recommended Land Pattern Image and Dimensions  
(5)  
(6)  
SOLDER PAD  
SOLDER MASK  
OPENING  
COPPER  
THICKNESS  
STENCIL  
COPPER PAD  
STENCIL THICKNESS  
DEFINITIONS(1)(2)(3)(4)  
OPENING  
Non-solder-mask  
defined (NSMD)  
0.30mm  
0.360mm  
1oz max (0.032mm)  
0.34mm diameter  
0.1mm thick  
(1) Circuit traces from non-solder-mask defined PWB lands should be 75μm to 100μm wide in the exposed area inside the solder mask  
opening. Wider trace widths reduce device stand off and affect reliability.  
(2) Best reliability results are achieved when the PWB laminate glass transition temperature is above the operating the range of the  
intended application.  
(3) Recommend solder paste is Type 3 or Type 4.  
(4) For a PWB using a Ni/Au surface finish, the gold thickness should be less than 0.5mm to avoid a reduction in thermal fatigue  
performance.  
(5) Solder mask thickness should be less than 20 μm on top of the copper circuit pattern.  
(6) For best solder stencil performance use laser cut stencils with electro polishing. Chemically etched stencils give inferior solder paste  
volume control.  
22  
Copyright © 2014, Texas Instruments Incorporated  
 
TPS82740A, TPS82740B  
www.ti.com.cn  
ZHCSCJ5A JUNE 2014REVISED JUNE 2014  
GND  
LOAD  
VOUT  
Pin A1  
VIN  
GND  
Figure 46. PCB Layout Suggestion  
13.3 Surface Mount Information  
The TPS82740 MicroSIP™ module uses an open frame construction for a fully automated assembly process and  
provides a large surface area for pick and place operations. See the "Pick Area" in the package drawing.  
Package height and weight have been kept to a minimum, allowing MicroSIP™ device handling similar to a 0805  
footprint component.  
For reflow recommendations, see document J-STD-20 from the JEDEC/IPC standard.  
版权 © 2014, Texas Instruments Incorporated  
23  
TPS82740A, TPS82740B  
ZHCSCJ5A JUNE 2014REVISED JUNE 2014  
www.ti.com.cn  
14 器件和文档支持  
14.1 文档支持  
14.1.1 相关链接  
以下表格列出了快速访问链接。 范围包括技术文档、支持与社区资源、工具和软件,以及样片或购买的快速访问。  
7. 相关链接  
部件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
TPS82740A  
TPS82740B  
14.2 商标  
DCS-Control, MicroSIP are trademarks of Texas Instruments.  
is a registered trademark of ~Bluetooth SIG, Inc..  
14.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
14.4 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
15 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
24  
版权 © 2014, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS82740ASIPR  
TPS82740ASIPT  
TPS82740BSIPR  
TPS82740BSIPT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
uSiP  
uSiP  
uSiP  
uSiP  
SIP  
SIP  
SIP  
SIP  
9
9
9
9
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
E7  
E7  
E8  
E8  
Samples  
Samples  
Samples  
Samples  
NIAU  
NIAU  
NIAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Mar-2023  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Mar-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS82740ASIPR  
TPS82740ASIPT  
TPS82740BSIPR  
TPS82740BSIPT  
uSiP  
uSiP  
uSiP  
uSiP  
SIP  
SIP  
SIP  
SIP  
9
9
9
9
3000  
250  
178.0  
178.0  
178.0  
178.0  
9.0  
9.0  
9.0  
9.0  
2.5  
2.83  
2.5  
3.1  
3.18  
3.1  
1.35  
1.2  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q2  
Q2  
3000  
250  
1.35  
1.2  
2.83  
3.18  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Mar-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS82740ASIPR  
TPS82740ASIPT  
TPS82740BSIPR  
TPS82740BSIPT  
uSiP  
uSiP  
uSiP  
uSiP  
SIP  
SIP  
SIP  
SIP  
9
9
9
9
3000  
250  
223.0  
223.0  
223.0  
223.0  
194.0  
194.0  
194.0  
194.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS82740BSIPR

具有 360nA Iq 的 200mA 降压转换器模块 | SIP | 9 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS82740BSIPT

具有 360nA Iq 的 200mA 降压转换器模块 | SIP | 9 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS830

Si Monolithic Photo−IC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TPS830(F)

Photo IC, LOGIC OUTPUT PHOTO DETECTOR, LEAD FREE, 0-6A1, 3 PIN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TPS830F

Si Monolithic Photo−IC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TPS831

TOSHIlBA PHOTO IC SI MONOLITHIC PHOTO IC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TPS831(F)

Photo IC, LOGIC OUTPUT PHOTO DETECTOR, LEAD FREE, 0-6A1, 3 PIN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TPS832

Photo IC, LOGIC OUTPUT PHOTO DETECTOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TPS841

Silicon Epitaxial Planar

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TPS841(F)

Photo IC, LOGIC OUTPUT PHOTO DETECTOR, LEAD FREE, PLASTIC, 0-3H1, 3 PIN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TPS841F

Silicon Epitaxial Planar

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TPS842

Photo IC, LOGIC OUTPUT PHOTO DETECTOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA