TPS92511DDA [TI]

500mA 30W 阳极恒流降压型 LED 驱动器 | DDA | 8 | -40 to 125;
TPS92511DDA
型号: TPS92511DDA
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

500mA 30W 阳极恒流降压型 LED 驱动器 | DDA | 8 | -40 to 125

驱动 驱动器
文件: 总27页 (文件大小:746K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS92511  
ZHCSC49A MARCH 2014REVISED MAY 2014  
TPS92511 500mA65V 共阳极恒定电流降压发光二极管 (LED) 驱动器,  
无外部电流感测电阻器  
1 特性  
3 说明  
1
宽输入电压范围:4.5V 65V  
TPS92511 是一款易于使用的 65V 恒定电流降压转换  
器,用于驱动电流高达 0.5A 且效率高达 95% 的单个  
LED 灯串。 对于基本运行,只需 5 个外部组件,而且  
由于集成了一个 N-MOSFET,无外部电流感测电阻  
器,没有外部补偿,以及适当的端子分配,可实现单层  
PCBLED 电流由一个高值外部电阻器设定,这样的  
话,可实现 LED 电流的微调。 另外一个高值外部电阻  
器将恒定开关频率设定在 50kHz 500kHz 之间。 电  
磁干扰 (EMI) 的设计由于恒定开关频率的原因而变得  
更加简单。 TPS92511 提供 4.5V 65V 的宽输入电  
压范围。 通过添加简单的外部电路,此器件甚至能够  
处理具有更高输入电压的应用。  
无需外部电流感测电阻器  
无需外部环路补偿  
易于使用,最少需要 5 个组件  
1000:1 对比率可行  
单层印刷电路板 (PCB) 可行  
可作为高压降压稳压器运行  
可作为线性电流并联稳压器运行  
集成低端 N 通道金属氧化物半导体场效应晶体管  
(MOSFET)  
LED 电流可设定为高达 0.5A  
典型值为 ±3.6% LED 电流精度  
开关频率可在 50kHz 500kHz 之间进行编程  
电流限制保护  
TPS92511 采用私有控制机制来调节 LED 电流,而无  
需直接感测 LED 电流。 它采用一个具有低端 N 通道  
功率 MOSFET 的浮动降压拓扑结构,此拓扑结构无需  
自举电容器。 对于多通道系统,浮动降压拓扑结构连  
同私有控制机制可在无需外部电流感测网络的前提下实  
LED 灯串的共阳极连接。 这极大地减少了接线数  
量,以及整体制造成本。  
VCC 欠压闭锁  
热关断保护  
支持模拟调光和热折返  
带有外露散热焊盘的功率增强型小外形尺寸集成电  
(SOIC)-8 封装(带散热片小外形尺寸封装  
(HSOP)-8)  
TPS92511 具有极快速的脉宽调制 (PWM) 调光响应时  
间。 例如,如果开关频率为 500kHz,最小 DIM 脉宽  
6µs,并且调光频率为 150Hz,那么可实现大于  
1000:1 的对比率。  
2 应用范围  
高功率 LED 驱动器  
建筑照明  
办公室嵌入式照明  
汽车照明  
TPS92511 采用带有外露散热焊盘的功率增强型  
SOIC-8 封装。  
MR-16 LED 灯  
器件信息(1)  
简化应用  
部件号  
封装  
封装尺寸(标称值)  
VIN  
TPS92511  
HSOP (8)  
4.89mm × 3.90mm  
TPS92511  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
VCC  
VIN  
LX  
LED string  
L1  
ILED  
CVCC  
D1  
PGND  
IADJ  
GND  
DIM  
FS  
PWM dimming signal  
RIADJ  
RFS  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SNVS901  
 
 
 
 
 
TPS92511  
ZHCSC49A MARCH 2014REVISED MAY 2014  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 10  
7.4 Device Functional Modes........................................ 17  
Application and Implementation ........................ 18  
8.1 Application Information............................................ 18  
8.2 Typical Application .................................................. 18  
Power Supply Recommendation........................ 21  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ..................................... 4  
6.2 Handling Ratings....................................................... 4  
6.3 Recommended Operating Conditions ...................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 8  
7.1 Overview ................................................................... 8  
7.2 Functional Block Diagram ......................................... 9  
8
9
10 Layout................................................................... 22  
10.1 Layout Guidelines ................................................. 22  
10.2 Layout Example .................................................... 22  
11 器件和文档支持 ..................................................... 23  
11.1 ....................................................................... 23  
11.2 静电放电警告......................................................... 23  
11.3 Glossary................................................................ 23  
12 机械封装和可订购信息 .......................................... 23  
7
4 修订历史记录  
Changes from Original (March 2014) to Revision A  
Page  
已更正图形数字排序 ............................................................................................................................................................... 1  
已更新器件信息................................................................................................................................................................... 1  
Changed Terminal to Pin........................................................................................................................................................ 3  
2
Copyright © 2014, Texas Instruments Incorporated  
 
TPS92511  
www.ti.com.cn  
ZHCSC49A MARCH 2014REVISED MAY 2014  
5 Pin Configuration and Functions  
DDA (SO THERMAL PAD) PACKAGE  
8 PINS  
(TOP VIEW)  
VCC  
PGND  
IADJ  
1
2
3
4
8
7
6
5
VIN  
LX  
DIM  
FS  
GND  
Pin Functions  
PIN  
DESCRIPTION  
NAME  
NO.  
DIM  
6
PWM Dimming Control. Apply logic level PWM signal to this pin dims the LED string. This pin is internally pulled up.  
Switching Frequency Setting. An external resistor RFS connecting the FS pin to ground programs the switching  
frequency from 50 kHz to 500 kHz.  
FS  
5
4
3
GND  
IADJ  
Analog Signal Ground.  
Average LED Current Setting. An external resistor RIADJ connecting the IADJ pin to ground programs the average  
LED current.  
Integrated MOSFET Drain. Internally connected to the drain of the integrated MOSFET. Connect this pin to the  
output inductor and anode of the Schottky diode.  
LX  
7
2
Power Ground. Must be connected to the GND pin for normal operation. The PGND and GND pins are not internally  
shorted.  
PGND  
Internal Regulator Output. Typically regulated to 5.4 V. Connect a capacitor of larger than 1 µF between the VCC  
and GND pins.  
VCC  
VIN  
1
8
Input Voltage. Supply pin to the device. The input voltage range is from 4.5 V to 65 V.  
Thermal Connection Pad. Connect to a ground plane for heat dissipation.  
Thermal pad  
Copyright © 2014, Texas Instruments Incorporated  
3
TPS92511  
ZHCSC49A MARCH 2014REVISED MAY 2014  
www.ti.com.cn  
6 Specifications  
(1)  
6.1 Absolute Maximum Ratings  
Unless otherwise specified, TJ = TA = 25°C  
MIN  
–0.3  
NOM  
MAX  
UNIT  
V
VIN to GND  
65  
67  
65  
67  
5
VIN to GND (Transient)  
LX to PGND  
–0.3  
V
–0.3  
V
Pin voltage range  
Temperature range  
LX to PGND (Transient)  
–3(2ns)  
–0.3  
V
FS, IADJ to GND  
DIM to GND  
V
–0.3  
6
V
VCC to GND  
–0.3  
7
V
Internally  
limited  
Operating junction temperature range, TJ  
–40  
°C  
(1) Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions under which  
operation of the device is intended to be functional. For specified specifications and test conditions, see the Electrical Characteristics.  
6.2 Handling Ratings  
MIN  
MAX  
150  
1.5  
UNIT  
°C  
Tstg  
Storage temperature range  
-65  
(1)  
(2)  
VESD  
Human Body Model (HBM) ESD stress voltage  
kV  
Charged Device Model (CDM) ESD stress voltage(3)  
1.5  
kV  
(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges in  
to the device.  
(2) Level listed above is the passing level per ANSI, ESDA, and JEDEC JS-001. JEDEC document JEP155 states that 500-V HBM allows  
safe manufacturing with a standard ESD control process.  
(3) Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 250-V CDM allows safe  
manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
4.5  
NOM  
MAX  
65  
UNIT  
V
VIN  
TA  
TJ  
Supply voltage range  
Operating free air temperature  
Operating junction temperature  
–40  
-40  
125  
125  
°C  
°C  
6.4 Thermal Information  
TPS92511  
DDA  
8 PINS  
59.9  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
RθJCtop  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
59.1  
30.6  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
11.0  
ψJB  
30.5  
RθJCbot  
4.2  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
版权 © 2014, Texas Instruments Incorporated  
TPS92511  
www.ti.com.cn  
ZHCSC49A MARCH 2014REVISED MAY 2014  
6.5 Electrical Characteristics  
Unless otherwise specified, -40°C TJ = TA 125°C, VIN = 48 V  
PARAMETER  
SYSTEM  
CONDITIONS  
MIN  
TYP  
MAX UNIT  
IIN-DIM-HIGH  
IIN-DIM-LOW  
ILX-OFF  
VIN Operating Current  
VIN Standby Current  
LX Pin Current  
4.5 V VIN 65 V, RIADJ = 3 k, VDIM = High  
4.5 V VIN 65 V, RIADJ = 3 k, VDIM = Low  
Main switch turned OFF, VLX = VIN = 65 V  
VFS = 4.6V, RIADJ = 3 k, TA = 25°C  
VFS = 4.6V, RIADJ = 3 kΩ  
2.8  
2.3  
3.15  
2.7  
mA  
mA  
µA  
mA  
mA  
mA  
mA  
mA  
mA  
V
0.1  
1.0  
484  
477  
502  
502  
249  
249  
149  
149  
520  
528  
262  
268  
160  
166  
VFS = 4.6V, RIADJ = 6 k, TA = 25°C  
VFS = 4.6V, RIADJ = 6 kΩ  
236  
ILED  
Average LED Current  
233  
VFS = 4.6V, RIADJ = 10 k, TA = 25°C  
VFS = 4.6V, RIADJ = 10 kΩ  
138  
133  
VIADJ  
IADJ Pin voltage  
1.224  
0.85  
0.44  
1.25 1.278  
VDIM-ON  
VDIM-OFF  
VDIM-HYS  
fSW  
DIM Pin Upper Threshold  
DIM Pin Lower Threshold  
DIM Pin Threshold Hysteresis  
Switching frequency  
VDIM Increasing  
VDIM Decreasing  
1.0  
1.25  
V
V
325  
500  
250  
mV  
RFS = 20 kΩ  
450  
550 kHz  
ton(min)  
Minimum On-time  
400  
ns  
INTERNAL REGULATOR  
VCC  
VCC Regulated Output Voltage  
CVCC =1 µF, no load  
CVCC =1 µF, VIN = 4.5V, 2 mA load  
VCC rising  
4.7  
3.7  
5.4  
4.1  
6.0  
V
V
VCC-UVLO-ON  
VCC-UVLO-OFF  
VCC-UVLO-HYS  
VCC UVLO Upper Threshold  
VCC UVLO Lower Threshold  
VCC UVLO Hysteresis  
3.50  
3.05  
3.75  
4.00  
V
VCC falling  
V
275  
1.4  
mV  
INTEGRATED MOSFET  
RLX  
Resistance Across LX and GND  
Main Switch Turned ON, TA = 25°C  
2.15  
THERMAL SHUTDOWN  
TSD  
Thermal shutdown temperature  
Thermal shutdown hysteresis  
TJ Rising  
TJ Falling  
165  
10  
°C  
TSD-HYS  
版权 © 2014, Texas Instruments Incorporated  
5
TPS92511  
ZHCSC49A MARCH 2014REVISED MAY 2014  
www.ti.com.cn  
6.6 Typical Characteristics  
Unless otherwise specified, all curves are taken at VIN = 48V with configuration in the application circuit for driving 12 LEDs  
with ILED = 0.5A and fSW = 300 kHz as shown in this datasheet, and TA = 25°C.  
3
2.8  
2.6  
2.4  
2.2  
2
6
5
4
3
2
1
0
LED string open  
VCC externally loaded  
DIM pin open, LED string open  
DIM = High  
DIM = Low  
0
10  
20  
30  
40  
50  
60  
70  
0
4
8
12  
16  
VIN (V)  
IVCC (mA)  
C001  
C003  
1. IIN vs VIN  
2. VCC vs IVCC  
6
5.5  
5
1.265  
1.26  
1.255  
1.25  
VCC not loaded externally  
DIM pin open, LED string open  
4.5  
4
1.245  
0
10  
20  
30  
40  
50  
60  
70  
-50  
0
50  
100  
150  
VIN (V)  
Temperature (ºC)  
C002  
C008  
3. VCC vs VIN  
4. VIADJ vs Temperature  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
510  
505  
500  
495  
490  
0
50  
100  
150  
0
50  
100  
150  
±50  
±50  
Temperature (ºC)  
Temperature (ºC)  
C009  
C010  
5. RLX vs Temperature  
6. fSW vs Temperature  
6
版权 © 2014, Texas Instruments Incorporated  
TPS92511  
www.ti.com.cn  
ZHCSC49A MARCH 2014REVISED MAY 2014  
Typical Characteristics (接下页)  
Unless otherwise specified, all curves are taken at VIN = 48V with configuration in the application circuit for driving 12 LEDs  
with ILED = 0.5A and fSW = 300 kHz as shown in this datasheet, and TA = 25°C.  
505.0  
504.0  
503.0  
502.0  
501.0  
500.0  
499.0  
498.0  
497.0  
496.0  
495.0  
252.5  
252.0  
251.5  
251.0  
250.5  
250.0  
249.5  
249.0  
248.5  
248.0  
247.5  
0
50  
100  
150  
0
50  
100  
150  
±50  
±50  
Temperature (ºC)  
Temperature (ºC)  
C011  
C012  
7. ILED at 500 mA vs Temperature  
8. ILED at 250 mA vs Temperature  
151.5  
151.2  
150.9  
150.6  
150.3  
150.0  
149.7  
149.4  
149.1  
148.8  
148.5  
0.16  
0.14  
0.12  
0.1  
0.08  
0.06  
0.04  
0.02  
0
0
50  
100  
150  
0
10  
20  
30  
40  
50  
60  
70  
±50  
Temperature (ºC)  
VIN (V)  
C013  
C014  
9. ILED at 150 mA vs Temperature  
10. IIN vs VIN at LED Short  
500  
400  
300  
200  
100  
0
5
4
3
2
1
0
0
20  
40  
60  
80  
100  
0
0.2  
0.4  
0.6  
0.8  
1
Dimming ratio (%)  
Dimming ratio (%)  
C015  
C016  
11. PWM Dimming Linearity (0-100%) (fSW = 500kHz, L1 =  
12. PWM Dimming Linearity (under 1%) (fSW = 500kHz, L1  
68 µH  
= 68 µH  
版权 © 2014, Texas Instruments Incorporated  
7
TPS92511  
ZHCSC49A MARCH 2014REVISED MAY 2014  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS92511 is an easy to use constant current buck converter for driving a single LED string with current up  
to 0.5A and efficiency up to 95%. Only 5 external components are required for basic operation and single layer  
PCB layout is feasible because of the integration of a N-MOSFET, no external current sensing resistor, no  
external compensation and the proper pin assignment. A high-value external resistor programs the LED current  
so that fine tuning of the LED current can be achieved. Another high-value external resistor programs a constant  
switching frequency from 50kHz to 500kHz. As a result of constant switching frequency, EMI design becomes  
easy. The TPS92511 provides a wide input voltage range from 4.5V to 65V. By adding simple external circuits,  
it can handle applications with even higher input voltages.  
The TPS92511 employs a proprietary Pulse-Level-Modulation (PLM) control scheme under continuous  
conduction mode (CCM) to regulate the LED current without the need of sensing the LED current directly. It  
applies a floating buck topology with a low-side N-channel power MOSFET, which does not need boot-strapping  
capacitor, so that driving LED string under drop-out conditions and very high input voltages are feasible. For  
multiple channel systems, the floating buck topology without external current sensing network together with the  
proprietary control scheme allows a common-anode connection of the LED strings without external current  
sensing network. This saves high-side current sensing wirings for separate driver boards and LED board  
systems and significantly reduces the number of wiring, which can lower overall manufacturing cost.  
The TPS92511 has very fast PWM dimming response time. There is almost no delay between the DIM pin  
voltage rising edge and the start of the LED current conduction, so it can dim down to nearly zero current. In  
order to maintain good dimming linearity, the minimum LED current pulse width is suggested to be three  
switching cycles. For example, if the switching frequency is 500 kHz, the minimum DIM pulse width is 6µs and  
the dimming frequency is 150Hz, a contrast ratio of more than 1000:1 can be achieved.  
8
版权 © 2014, Texas Instruments Incorporated  
TPS92511  
www.ti.com.cn  
ZHCSC49A MARCH 2014REVISED MAY 2014  
7.2 Functional Block Diagram  
FS  
VIN  
VCC  
Voltage  
Regulator  
VCC  
LX  
Clock  
Generator  
Pulse Ref.  
S
Q
UVLO  
VCC  
+
-
Switch  
Control logic  
R
+
3.75V  
-
RISNS  
VCC  
6
VCC  
+
-
DIM  
+
-
1.0V  
Pulse Ref.  
Current Mirror  
Slope Comp.  
PLM module  
-
gm  
+
+
-
1.25V  
+
-
IADJ  
PGND  
GND  
版权 © 2014, Texas Instruments Incorporated  
9
TPS92511  
ZHCSC49A MARCH 2014REVISED MAY 2014  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Pulse Level Modulation (PLM) Control  
A proprietary Pulse-Level-Modulation (PLM) control method is used in the TPS92511. It can regulate the  
average LED current by sensing only the inductor current at the on-period (13). The integrated MOSFET and  
the sensing and control circuits in the TPS92511 implement the whole PLM control internally so the control does  
not suffer from tolerance and noise issues that may be coming from external components. As compared with the  
conventional method which regulates average LED current by sensing the current over the entire switching cycle,  
the power dissipation on the sensing circuit in PLM is much lower. For example, consider a duty cycle of 0.5, the  
power dissipation on current sensing in PLM can be reduced by half. PLM requires no external loop  
compensation circuit. Besides, the accuracy of the regulated LED current is high (typically ±3.5% in the  
TPS92511).  
I
I
LX  
L1  
I
LED(avg)  
1/f  
t
SW .  
ON  
Time  
13. Waveforms of a Floating Buck LED Driver with PLM  
7.3.2 Pulse Level Modulation (PLM) Operaion Principles  
The Pulse-Level-Modulation is a patented method to ensure an accurate average output current regulation  
without the need of direct output current sensing. 13 shows the current waveforms of a typical buck converter  
under steady state, where, IL1 is the inductor current and ILX is the current flowing into the LX pin. For a buck  
converter operating in steady state, the mid-point of the RAMP portion of IL1 equals to the average value of IL1  
and hence the average LED current ILED(avg). In short, by regulating the mid-point with respect to a precise  
reference level, PLM achieves LED current regulation by sensing the main MOSFET current solely, instead of  
the entire cycle of IL1.  
7.3.3 PLM Control enable Common-Anode Low-Side Sensing (CALS)Technique to Save Wiring  
For multi-channel systems with separated driver boards and LED array boards, the Pulse-Level-Modulation  
(PLM) control scheme enable Common-Anode Low-Side Current Sensing to save inter-board wirings. 14  
shows a conventional configuration with a Low-side switching and High-Side Current Sensing. For an n channel  
system with separated driver and an LED array boards, 2n inter-board wirings are required. For example, an  
128-channel system needs 256 inter-board wirings, which implies a high material and manufacturing cost. 15  
shows the PLM configuration with Low-side switching and Low-Side Current Sensing. A Common-Anode  
configuration is used for the LED array board. As shown in the figure, an n channel system with separated driver  
and LED array boards requires only n+1 inter-board wirings. For an 128-channel system, only 129 inter-board  
wirings are required. The wiring cost is cut by half, and the cost of the end product can be reduced.  
10  
版权 © 2014, Texas Instruments Incorporated  
 
TPS92511  
www.ti.com.cn  
ZHCSC49A MARCH 2014REVISED MAY 2014  
Feature Description (接下页)  
LED String  
1
LED String  
2
LED String  
n
LED array board  
LED driver board  
Sensing  
resistor 1  
Sensing  
resistor 2  
Sensing  
resistor n  
LED Driver n  
LED Driver 1  
LED Driver 2  
VIN  
14. Conventional Configuration with Low-Side Switching and High-Side Current Sensing Requires 2×n  
Inter-Board Wirings  
LED String  
1
LED String  
2
LED String  
n
LED array board  
LED driver board  
LED Driver n  
LED Driver 1  
LED Driver 2  
VIN  
15. PLM Configuration with Common-Anode Low-Side Switching Requires n+1 Inter-Board Wirings  
版权 © 2014, Texas Instruments Incorporated  
11  
TPS92511  
ZHCSC49A MARCH 2014REVISED MAY 2014  
www.ti.com.cn  
Feature Description (接下页)  
7.3.4 Internal Regulator  
The TPS92511 integrates an internal voltage regulator for powering internal circuitry. For stability, an external  
capacitor CVCC of at least 1 μF should be connected between the VCC and PGND pins The output of the internal  
regulator VCC is 5.4V when VIN is larger than 6V. If VIN is lower than 6V, VCC decreases. The TPS92511 will  
trigger the VCC under-voltage lock-out if VCC falls below typically 3.5V. VCC can be used to bias external circuits  
subject to a loading of maximum 2 mA, while it has a short circuit current limit at typically 16 mA.  
7.3.5 Setting The Switching Frequency  
The switching frequency fSW of the TPS92511 is programmable in the range of 50 kHz to 500 kHz by a single  
resistor RFS connecting the FS pin and ground. The following equation shows the relationship between fSW and  
RFS  
:
6
10 u10  
f
 
kHz  
SW  
R
FS  
(1)  
16 plots fsw against RFS. 1 shows values of RFS for commonly used switching frequencies.  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
20 40 60 80 100 120 140 160 180 200  
RFS (k:)  
C006  
16. Switching Frequency vs RFS  
1. Commonly Used fSW And RFS  
fSW (kHz)  
50  
RFS (k)  
200  
100  
100  
300  
33.2  
20  
500  
7.3.6 Setting The LED Current  
The LED current ILED of the TPS92511 is programmable by a single resistor RIADJ connecting the IADJ pin and  
ground. The IADJ pin is internally biased to 1.25 V. 公式 2 shows the relationship between ILED and RIADJ  
:
1500  
I
 
A
LED  
R
IADJ  
(2)  
To ensure stability, RIADJ must be less that 30 kΩ, implying a minimum ILED of 50 mA can be programmed. The  
tolerance of ILED of 150 mA is shown in the ELECTRICAL CHARACTERISTICS. Larger tolerance should be  
expected for lower ILED. 17 plots ILED against RIADJ. 2 shows values of RIADJ for commonly used ILED  
.
12  
版权 © 2014, Texas Instruments Incorporated  
 
 
 
TPS92511  
www.ti.com.cn  
ZHCSC49A MARCH 2014REVISED MAY 2014  
0.5  
0.45  
0.4  
0.35  
0.3  
0.25  
0.2  
0.15  
0.1  
3
4
5
6
7
8
9
10  
RIADJ (k:)  
C007  
17. LED Current vs  
RIADJ  
2. Commonly Used ILED And RIADJ  
ILED (mA)  
150  
RIADJ (k)  
10  
350  
4.32  
500  
3.01  
7.3.7 Integrated MOSFET  
The TPS92511 integrates a N-channel power MOSFET, the drain of which is connected to the LX pin. When the  
integrated MOSFET is turned on, the resistance across the LX and GND pins is typically 1.4. The integrated  
MOSFET has a fixed current limit of 1.2A to protect the application circuit during critical operation conditions like  
short circuit of the LED string. Once the limit is hit, the integrated MOSFET turns off immediately for 34 µs to let  
the inductor discharge.  
The minimum on-time of the integrated MOSFET is 400 ns. It may be hit at a high switching frequency and a  
high VIN/VLED ratio. Once hit, the ILED regulation may be affected. In the worst case, ILED may be boost up to a  
level higher than the programmed value, and the LED string and/or the inductor may be damaged as a result.  
Hence, it is recommened that the ratio between VIN and VLED should be designed under the following constraint:  
VLED  
t 400nsu fSW  
V
IN  
(3)  
7.3.8 Inductor Selection  
Operating in the continuous conduction mode (CCM) is required in the TPS92511 application circuit. In the CCM,  
considering the on-period, the peak-to-peak inductor current ripple (2ΔIL1) is shown in 公式 4.  
t
V
 V  
on IN  
LED  
2'I  
 
L1  
L
1
(4)  
(5)  
Because  
V
LED  
  t  
f
on SW  
V
IN  
L1 can be a function of VIN, VLED, fSW and ΔIL1 as shown in 公式 6 .  
 VLED VLED  
2'IL1VINfSW  
V
IN  
L1   
(6)  
The value of L1 is selected by designers with the consideration of all above parameters. The minimum L1  
calculated by the following equation is a good starting point for designing L1:  
版权 © 2014, Texas Instruments Incorporated  
13  
 
 
 
TPS92511  
ZHCSC49A MARCH 2014REVISED MAY 2014  
www.ti.com.cn  
RFSRIADJ  
L1 ! 1PH:1  
u
106  
(7)  
The following table shows some typical examples of using RFS and RIADJ to estimate the minimum L1:  
3. Estimation Of Minimum L1 Using RFS And RIADJ  
Estimated Minimum L1  
RFS (k)  
RIADJ (k)  
Recommended L1 (µH)  
(µH)  
1000  
100  
86  
100  
33.2  
20  
10  
1000  
100  
100  
68  
3.01  
4.32  
3.01  
20  
60  
To maintain the CCM, ΔIL1 must be smaller than the average LED current ILED(avg). Hence, the minimum  
inductance used is:  
V
 V  
V
IN  
LED LED  
L
 
1(min)  
2I  
V f  
LED(avg) IN SW  
(8)  
In the absence of output capacitors, the TPS92511 can maintain a continuous ILED throughout the entire  
switching cycle because in such case the inductor current is the same as ILED (floating buck topology operating in  
the CCM). However, the LED peak current must not exceed the rated current of the LED. The peak LED current  
can be found by the following equation:  
V
IN  VLED  
2L1VINfSW  
VLED  
ILED(peak)   ILED(avg)  
(9)  
7.3.9 Integrated MOSFET Current Limit  
The current limit of the integrated MOSFET is internally fixed at 1.2A to protect the LED string, the inductor and  
the integrated MOSFET from overdriven. Once triggered, the integrated MOSFET turns off immediately for 34 µs  
to let the inductor to discharge. The triggering of the current limit cycles repetitively until all overdriven conditions  
disappear.  
7.3.10 PWM Dimming Control  
The TPS92511 implements PWM dimming by applying a PWM dimming signal to the DIM pin. A low input  
applying to the DIM pin disables the switching of the integrated MOSFET, and as a result discharges the inductor  
and then turns off the LED string. To turn on the LED string, the DIM pin should be connected to high or left open  
(since it is internally pulled high by a current of typically 40 µA and 90 µA when the DIM pin is low and high  
respectively). The PWM dimming frequency is recommended to be lower than 0.1fSW to ensure normal operation.  
7.3.11 Analog Dimming  
Analog dimming can be implemented by injecting a current to RIADJ (18) and as a result reduces the current of  
the IADJ pin, IADJ, which is controlled internally by the TPS92511 to bias the voltage on the IADJ pin to be  
1.25V. If the CCM can be maintained, the minimum IADJ can achieve 15 µA, which refers to an ILED of 18 mA. If  
IADJ is further decreased, ILED may not follow due to the presence of the minimum on-time of the integrated  
MOSFET. If the CCM cannot be maintained, ILED can still decrease monotonically with IADJ. However, if good  
line and load regulations are required, the CCM should be maintained by using a large inductance.  
14  
版权 © 2014, Texas Instruments Incorporated  
TPS92511  
www.ti.com.cn  
ZHCSC49A MARCH 2014REVISED MAY 2014  
VIN  
4.5V-  
65VDC  
TPS92511  
VCC  
VIN  
LX  
LED string  
L1  
ILED  
CVCC  
D1  
CIN  
PGND  
IADJ  
IADJ  
DIM  
FS  
PWM dimming signal  
RADIM  
RIADJ  
GND  
RFS  
VADIM  
18. Circuit Configuration for Analog Dimming  
7.3.12 High Voltage Buck Configuration  
The TPS92511 can handle applications with an input voltage higher than 65V, which is the maximum VIN of the  
recommended operating condition of the TPS92511, by adding an external high voltage N-channel MOSFET to  
the application circuit as shown in 19. PWM dimming can be implemented in this circuit without additional  
efforts, and analog dimming is also feasible by referencing to additional circuits shown in 18.  
VSUPPLY  
High  
Voltage  
DC  
D1  
High Voltage  
Switching  
Diode  
VBIAS  
LED string  
L1  
ILED  
8V-25VDC  
Q1  
TPS92511  
High Voltage  
N-MOSFET  
CIN  
VCC  
VIN  
LX  
D2  
CVCC  
PGND  
IADJ  
DIM  
FS  
PWM dimming signal  
RIADJ  
GND  
RFS  
19. Circuit Configuration for Very High Voltage Buck  
版权 © 2014, Texas Instruments Incorporated  
15  
 
 
TPS92511  
ZHCSC49A MARCH 2014REVISED MAY 2014  
www.ti.com.cn  
7.3.13 Thermal Foldback  
Thermal foldback is useful to prevent over-temperature of LEDs during operation by sensing the temperature of  
LEDs and, if the sensed temperature is high, reducing ILED to decrease the power and as well as the temperature  
of LEDs. Thanks to the feature of analog dimming, thermal foldback can be implemented by embedding a  
negative temperature coefficient (NTC) resistor, RNTC, into a circuit as shown in 20. When the sensed  
temperature increases, RNTC decreases and thus the emitter current of QT1 increases to reduce ILED by means of  
analog dimming. The resistor RTF can adjust the loop gain of the thermal foldback control loop, which should be  
high enough to avoid oscillation and maintain stability.  
VIN  
4.5V-  
65VDC  
TPS92511  
VCC  
VIN  
LX  
LED string  
L1  
ILED  
CVCC  
RNTC  
D1  
CIN  
PGND  
IADJ  
IADJ  
DIM  
FS  
QT1  
PWM dimming signal  
RIADJ  
GND  
RT1  
RTF  
RFS  
20. Circuit Configuration for Thermal Foldback  
7.3.14 EMI Consideration  
Conductive and radiative EMI can be major concerns for lighting applications. The TPS92511 application circuit  
can be designed for the EN 55022 class B standard by adding a few external components, as shown in 21.  
The input filter which consists of an inductor L2 and two capacitors CIN2 and CIN3 takes care of the conductive  
EMI, while the output capacitor CLED and the ferrite bead FB1 which inserts between the LX pin and D1 take care  
of the radiative EMI.  
Input EMI filter  
L
2
VIN  
48V  
10 PH  
D
1
100V  
2A  
C
LED  
I
TPS92511  
LED  
C
C
C
IN2  
IN  
IN3  
1 PF  
50V  
2.2 PF  
2.2 PF  
2.2 PF  
100V  
100V  
100V  
FB  
1
VCC  
VIN  
LX  
100:ꢀ@  
100 MHz  
L
1
PGND  
IADJ  
100 PH  
PWM  
DIM  
FS  
dimming  
signal  
C
VCC  
1PF  
16V  
GND  
R
IADJ  
3.01 k:  
R
FS  
33.2 k:  
21. Circuit Configuration with EMI Design Consideration  
16  
版权 © 2014, Texas Instruments Incorporated  
 
 
TPS92511  
www.ti.com.cn  
ZHCSC49A MARCH 2014REVISED MAY 2014  
7.4 Device Functional Modes  
7.4.1 Operation with VIN < 4.5 V (minimum VIN)  
For the typical application circuit, when the input voltage drops so that the VCC voltage regulator is under drop-  
out mode, and the VCC voltage drops below the “VCC UVLO Lower Threshold” (typically 3.48V), the switching of  
the main MOSFET is stopped, and the LED current will become zero. At the same time, the voltages of both the  
FS and IADJ pins will become zero .  
When the input voltage increases from zero and the VCC voltage is increased to cross over the “VCC UVLO  
Upper Threshold” (typically 3.75V), the voltages on the FS and IADJ pins will rise to their regulation voltage  
(typically 1.25V), the switching of the main MOSFET is started upon the DIM pin voltage is HIGH, and the LED  
current will ramp up to its preset value set by RIADJ  
.
7.4.2 Operation with DIM control  
For the typical application circuit, when the VCC voltage is not under UVLO condition, the switching of the main  
MOSFET is enabled and the LED current is conducted if the DIM pin voltage is higher than the “DIM Pin Upper  
Threshold” (typically 1V).  
Alternaltively, the switching is disabled and the LED current is cut off if the voltage of the DIM pin is lower than  
the “DIM Pin Lower Threshold” (typically 0.675V).  
7.4.3 Linear Mode  
When the VCC voltage is not under UVLO condition and the voltage on the FS pin is forced to be higher than  
4.2V but lower than 5V, the switching of the main MOSFET is disabled, and the TPS92511 is working in the  
Linear Mode. In the Linear Mode, if the voltage on the DIM pin is higher than the “DIM Pin Upper Threshold”  
(typically 1V), the TPS92511 will regulate the LX pin in-going current according to the preset value set by RIADJ  
.
Alternatively, if the voltage on the DIM pin is lower than the “DIM Pin Lower Threshold” (typically 0.675V), the LX  
pin will open and its in-going current will become zero.  
Below is the simple configuration to have the TPS92511 working as a linear current shunt regulator.  
VIN  
4.5V-  
65VDC  
TPS92511  
VCC  
LED string  
ILED  
VCC  
VIN  
LX  
CIN  
CVCC  
PGND  
IADJ  
GND  
PWM dimming signal  
DIM  
FS  
VCC  
1 k:  
RIADJ  
5V  
sharp  
knee  
point  
22. Circuit Configuration for Working as a Linear Current Shunt Regulator  
版权 © 2014, Texas Instruments Incorporated  
17  
TPS92511  
ZHCSC49A MARCH 2014REVISED MAY 2014  
www.ti.com.cn  
8 Application and Implementation  
8.1 Application Information  
The TPS92511 is an LED driver which provides a regulated output current to drive a single string of LED with the  
forward voltage lower than the input voltage. The following procedures design a TPS92511 application circuit  
with an input voltage of 48V, driving an LED string of 38V at an LED current of 0.5A. The switching frequency is  
300 kHz.  
8.2 Typical Application  
8.2.1 TPS92511 LED driver for 12 LEDs at 0.5A  
VIN  
48V  
D
1
I
LED  
C
IN  
TPS92511  
100V  
2A  
2.2 PF  
100V  
VCC  
VIN  
LX  
L
1
PGND  
IADJ  
100 PH  
PWM  
dimming  
signal  
DIM  
FS  
C
VCC  
1PF  
16V  
GND  
R
IADJ  
3.01 k:  
R
FS  
33.2 k:  
23. Application Circuit of TPS92511 (fSW = 300 kHz and ILED = 0.5A)  
18  
版权 © 2014, Texas Instruments Incorporated  
TPS92511  
www.ti.com.cn  
ZHCSC49A MARCH 2014REVISED MAY 2014  
Typical Application (接下页)  
8.2.1.1 Design Requirements  
4. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
Input voltage range  
LED current  
43V to 53V  
0.5A  
LED string forward voltage  
Operating frequency  
38V  
300 kHz  
8.2.1.2 Detailed Design Procedure  
CIN : The function of the input capacitor CIN is to reduce the input voltage ripple. Ceramic capacitors are  
recommended owing to the concern of product lifetime. A 100V 2.2 µF ceramic capacitor is selected in this  
circuit.  
CVCC : The capacitor on the VCC pin provides noise filtering and stabilizes the internal regulator. It also prevents  
false triggering of the VCC UVLO. CVCC is recommended to be a 1 μF good quality and low ESR ceramic  
capacitor.  
D1 : The diode D1 should have a reverse voltage larger than VIN in the floating buck topology. In this circuit, a  
100V diode is selected.  
RFS and RIADJ : In this circuit, the switching frequency and LED current are designed to be 300 kHz and 0.5A.  
From 1 and 2, RFS is 33.2 kΩ and RIADJ is 3.01 kΩ.  
L1 : The selection of inductor mainly affects the inductor current ripple. In this circuit, we design the peak to peak  
inductor current ripple to be 50% of ILED, i.e. 0.25A. From (6), L1 is calculated to be 106 µH, and a 100 µH  
inductor is selected.  
版权 © 2014, Texas Instruments Incorporated  
19  
TPS92511  
ZHCSC49A MARCH 2014REVISED MAY 2014  
www.ti.com.cn  
8.2.1.3 Application Curves  
100  
90  
80  
70  
60  
50  
40  
5
4
3
2
1
0
1 LEDs  
3 LEDs  
7 LEDs  
10 LEDs  
12 LEDs  
19 LEDs  
1 LEDs  
3 LEDs  
7 LEDs  
10 LEDs  
12 LEDs  
19 LEDs  
-1  
-2  
-3  
-4  
-5  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
VIN (V)  
VIN (V)  
C004  
C005  
24. Efficiency vs VIN  
25. LED Current Regulation vs VIN  
VIN  
VLX  
VLX  
ILED  
ILED  
26. Steady State Operation  
27. Power Up  
VDIM  
VDIM  
VLX  
VLX  
ILED  
ILED  
28. PWM Dimming (VDIM Rising)  
29. PWM Dimming (VDIM Falling)  
20  
版权 © 2014, Texas Instruments Incorporated  
TPS92511  
www.ti.com.cn  
ZHCSC49A MARCH 2014REVISED MAY 2014  
VDIM  
VDIM  
VLX  
VLX  
ILED  
ILED  
31. PWM Dimming (9 µs dimming pulse) (fSW = 500kHz,  
30. PWM Dimming (fDIM = 1 kHz, 50% Duty Cycle)  
L1 = 68 µH)  
9 Power Supply Recommendation  
This device is designed to operate from an input voltage supply range between 4.5 V and 65 V. The input supply  
should be well regulated. If the input supply is located more than a few inches from the TPS92511 application  
board, additional bulk capacitance may be required in addition to the input capacitor. A ceramic capacitor with a  
value of 2.2 μF is a typical choice.  
版权 © 2014, Texas Instruments Incorporated  
21  
TPS92511  
ZHCSC49A MARCH 2014REVISED MAY 2014  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
The PCB layout of the TPS92511 application circuit plays an important role in optimizing the performance.  
The external components should be placed as close to the TPS92511 as possible to minimize resistance and  
parasitic inductance of copper traces.  
For example, D1 and L1 should be near the LX pin, and CVCC should be near the VCC pin, and the connecting  
copper traces are short and thick.  
The exposed pad of the TPS92511, which is internally connected to the die substrate, should be connect to a  
ground plane, and the plane should be extended as much as possible on the same copper layer around the  
TPS92511.  
Using numerous vias beneath the exposed pad to dissipate heat to another copper layer is also a good  
practice.  
10.2 Layout Example  
LED-  
VIN, LED+  
GND  
CIN  
L1  
D1  
CVCC  
DIM  
RIADJ  
RFS  
32. TPS92511 Board Layout  
10.2.1 Thermal Consideration  
ΨJT (shown in session 6.4 Thermal Information) is a relatively small value for package with exposed pad since  
most of the heat is dissipated through the exposed pad to the copper plate of the PCB (assuming optimized PCB  
layout), relatively little heat goes to the top of the device. The top of the device mold compound temperature is  
physically close to the device junction temperature.  
For example, a 30W output TPS92511 end system at 95% power efficiency (can be estimated from the efficiency  
curves of Figure 13), power loss is 1.6W. Assuming all the heat is generated from the TPS92511 (which is true  
for high VLED), and assuming half of the heat generated is dissipated through the top of the device. Now ΨJT is  
11 °C/W, the device junction temperature is estimated to be higher than the package’s top-surface temperature  
by 11 x 1.6 x 0.5 = 8.8 (°C). If the package top-surface temperature is measured to be 90 °C (for example by an  
IR camera), the device junction temperature is around 99 °C, which is within the 125°C maximum junction  
temperature requirement with margin.  
22  
版权 © 2014, Texas Instruments Incorporated  
TPS92511  
www.ti.com.cn  
ZHCSC49A MARCH 2014REVISED MAY 2014  
11 器件和文档支持  
11.1 商标  
All trademarks are the property of their respective owners.  
11.2 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.3 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms and definitions.  
12 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014, Texas Instruments Incorporated  
23  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2014, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS92511DDA  
ACTIVE SO PowerPAD  
ACTIVE SO PowerPAD  
DDA  
DDA  
8
8
95  
RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
92511  
92511  
TPS92511DDAR  
2500 RoHS & Green  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS92511DDAR

500mA 30W 阳极恒流降压型 LED 驱动器 | DDA | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92512

用于 LED 照明的 42V 2.5A 降压型电流调节器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92512DGQR

用于 LED 照明的 42V 2.5A 降压型电流调节器 | DGQ | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92512DGQT

用于 LED 照明的 42V 2.5A 降压型电流调节器 | DGQ | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92512HV

用于 LED 照明的 65V 2.5A 降压电流调节器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92512HVDGQR

用于 LED 照明的 65V 2.5A 降压电流调节器 | DGQ | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92512HVDGQT

用于 LED 照明的 65V 2.5A 降压电流调节器 | DGQ | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92513

42V 1.5A 模拟电流可调节降压型 LED 驱动器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92513DGQR

42V 1.5A 模拟电流可调节降压型 LED 驱动器 | DGQ | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92513DGQT

42V 1.5A 模拟电流可调节降压型 LED 驱动器 | DGQ | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92513HV

65V 1.5A 模拟电流可调节降压 LED 驱动器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92513HVDGQR

65V 1.5A 模拟电流可调节降压 LED 驱动器 | DGQ | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI