TPS92515AHV-Q1 [TI]

具有集成 NFET 的 65V 汽车类 2A 分流 PWM 可调光 LED 驱动器;
TPS92515AHV-Q1
型号: TPS92515AHV-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成 NFET 的 65V 汽车类 2A 分流 PWM 可调光 LED 驱动器

驱动 驱动器
文件: 总41页 (文件大小:2367K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS92515AHV-Q1  
ZHCSIY0 OCTOBER 2018  
具有集成 N 沟道 FET、高侧电流检测和分流 FET PWM 调光功能的  
TPS92515AHV-Q1 2A 降压 LED 驱动器  
1 特性  
此稳压器具有恒定关断时间和峰值电流控制功能。工作  
原理十分简单:在基于输出电压的一段关断时间后,即  
开始导通时间。达到电感峰值电流阈值后,导通时间立  
即结束。TPS92515AHV-Q1 器件可配置为在分流 FET  
调光周期的导通和关断时间内保持恒定的峰间纹波。此  
周期非常适合在整个分流 FET 调光范围内保持线性响  
应。  
1
符合 AEC-Q100 1 级标准  
集成 290mΩ(典型值)内部 N 沟道场效应晶体管  
(FET)  
输入电压范围  
TPS92515AHVx5.5V 65V  
启动后工作电压低至 5.15V  
低偏移高侧峰值电流比较器  
高达 2A 的恒定平均电流  
固有逐周期电流限制  
多种调光方法  
低失调电压的高侧比较器有助于实现稳态精度。可单独  
使用模拟或 PWM 调光技术或者同时使用这两种技术  
来调制 LED 电流。其他 特性 包括欠压闭锁 (UVLO)、  
宽输入电压操作、固有 LED 开路操作和热关断功能,  
其工作温度范围较宽。  
10,000:1 分流脉宽调制 (PWM) 调光范围  
1000:1 PWM 调光范围  
TPS92515AHV-Q1 器件采用热增强型 10 引脚  
HVSSOP 封装,提供高电压选件,输入电压范围高达  
65V。  
200:1 模拟调光范围  
简单的恒定关断时间控制  
无环路补偿  
器件信息(1)  
快速瞬态响应  
散热增强型 HVSSOP 封装  
器件型号  
封装  
封装尺寸(标称值)  
集成热保护  
TPS92515AHV-Q1  
HVSSOP (10)  
3mm x 3mm  
(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。  
2 应用  
简化的降压 LED 驱动器应用  
汽车照明:LED 开关矩阵 AFS 头灯,DRL,远光  
/近光灯,雾灯,尾灯,转向信号灯,轮廓灯,售  
后市场  
TPS92515AHV-Q1  
VOUT  
6
7
DRN  
CSN  
SW  
5
工业照明:工厂自动化、飞行时间 (TOF)、电器、  
零售照明、机器视觉检测、紧急出口和/或安全照  
明、医用照明、舞台和场地照明  
BOOT  
GND  
4
3
农业、航海和重工业照明  
8
9
VIN  
VIN  
高对比度分流 FET 调光  
PWM  
VCC  
2
1
10 IADJ  
COFF  
3 说明  
PAD  
TPS92515AHV-Q1 是一款包含低电阻 N 沟道  
MOSFET 的紧凑型单片开关稳压器。此器件适用于高  
亮度 LED 照明 应用 ,满足效率、高带宽、PWM 或模  
拟调光和小尺寸方面的要求。  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLUSDG2  
 
 
 
 
TPS92515AHV-Q1  
ZHCSIY0 OCTOBER 2018  
www.ti.com.cn  
目录  
1
2
3
4
5
6
7
特性.......................................................................... 1  
9
Application and Implementation ........................ 22  
9.1 Application Information............................................ 22  
9.2 Typical Application ................................................. 22  
9.3 Dos and Don'ts ....................................................... 30  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings ............................................................ 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 9  
8.1 Overview ................................................................... 9  
8.2 Functional Block Diagram ......................................... 9  
8.3 Feature Description................................................. 10  
8.4 Device Functional Modes........................................ 21  
10 Power Supply Recommendations ..................... 31  
10.1 Input Source Direct from Battery........................... 31  
10.2 Input Source from a Boost Stage ......................... 31  
11 Layout................................................................... 31  
11.1 Layout Guidelines ................................................. 31  
11.2 Layout Example .................................................... 32  
12 器件和文档支持 ..................................................... 33  
12.1 文档支持 ............................................................... 33  
12.2 接收文档更新通知 ................................................. 33  
12.3 社区资源................................................................ 33  
12.4 ....................................................................... 33  
12.5 静电放电警告......................................................... 33  
12.6 术语表 ................................................................... 33  
13 机械、封装和可订购信息....................................... 34  
8
4 修订历史记录  
日期  
修订版本  
说明  
2018 10 月  
*
最初发布版本。  
2
Copyright © 2018, Texas Instruments Incorporated  
 
TPS92515AHV-Q1  
www.ti.com.cn  
ZHCSIY0 OCTOBER 2018  
5 Device Comparison Table  
MAXIMUM  
VOLTAGE (V)  
AUTOMOTIVE  
QUALIFIED  
DEVICE  
CONTROL METHOD  
TPS92515AHV-Q1  
TPS92515-Q1  
TPS92515HV  
TPS92515  
65  
42  
65  
42  
75  
42  
75  
42  
75  
42  
75  
42  
Y
Y
N
N
Y
Y
N
N
Y
Y
N
N
Internal N-channel FET, constant OFF-time  
LM3409HV-Q1  
LM3409-Q1  
LM3409HV  
External P-channel FET, constant OFF-time  
External P-channel FET, constant OFF-time  
LM3409  
LM3406HV-Q1  
LM3406-Q1  
LM3406HV  
Internal N-channel FET, controlled ON-time  
LM3406  
6 Pin Configuration and Functions  
DGQ Package  
HVSSOP 10-Pin with PowerPAD  
Top View  
COFF  
VCC  
1
2
3
4
5
10  
9
IADJ  
PWM  
VIN  
GND  
BOOT  
SW  
8
7
CSN  
DRN  
Thermal Pad  
6
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
BOOT  
COFF  
CSN  
NO.  
4
Connect a ceramic capacitor between BOOT and SW and a diode from VCC to BOOT to power the high-  
side FET drive circuitry.  
I
I
I
1
Connect a resistor from VOUT, and a capacitor to GND to set the OFF-time.  
Current sense negative input. Connect current sense resistor from VIN to CSN for high-side current  
sense control.  
7
DRN  
GND  
IADJ  
6
3
I
G
I
Internal FET drain. Connect to CSN node  
Ground  
10  
Output current adjust. Connect to an external divider, reference or tie to VCC.  
PWM dimming input. Connect to PWM control signal. Output current is pulse-width modulated (PWM)  
dimmed from the maximum analog controlled level. Connect to VCC if not used.  
PWM  
SW  
9
5
2
8
I
O
O
Internal FET Source. Connect to output inductor  
5-V Regulator Output. Use a decoupling capacitor from VCC to ground. See section on VCC capacitor  
selection.  
VCC  
VIN  
I
Connect to input voltage. VIN is also the current sense positive input.  
Connect to ground  
Thermal pad  
Copyright © 2018, Texas Instruments Incorporated  
3
TPS92515AHV-Q1  
ZHCSIY0 OCTOBER 2018  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–1.0  
–0.3  
–0.3  
–0.3  
–0.3  
-0.3  
–0.3  
–2.0  
–40  
MAX  
UNIT  
VIN, DRN, CSN to GND  
SW to GND  
65.0  
65.0  
65.0  
70.5  
5.5  
DRN to SW  
BOOT to GND  
COFF, IADJ, PWM to GND  
BOOT to SW  
V
5.5  
VCC to GND  
5.5  
VIN to CSN  
0.3  
(2)  
SW to GND, 10-ns transient  
Storage temperature, Tstg  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) DRN to SW. Absolute maximum not to be exceeded.  
7.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
Electrostatic  
discharge  
V(ESD)  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
5.5  
NOM  
MAX  
65  
UNIT  
V
VIN  
TA  
TJ  
Input voltage  
Operating ambient temperature  
Operating junction temperature  
–40  
–40  
125  
150  
°C  
°C  
7.4 Thermal Information  
TPS92515AHV-  
Q1  
THERMAL METRIC(1)  
UNIT  
HVSSOP  
10 PINS  
56.2  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
44.7  
Junction-to-board thermal resistance  
32.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.5  
ψJB  
31.8  
RθJC(bot)  
5.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and device Package Thermal Metrics  
application report, SPRA953.  
4
Copyright © 2018, Texas Instruments Incorporated  
TPS92515AHV-Q1  
www.ti.com.cn  
ZHCSIY0 OCTOBER 2018  
7.5 Electrical Characteristics  
VIN = 40 V, –40°C TJ 150°C, VBOOT is referenced to SW pin, unless otherwise specified.  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
PEAK CURRENT COMPARATOR  
VIADJ = VCC  
222  
205  
240  
220  
0.1  
75  
257  
234  
mV  
mV  
V/V  
ns  
VCST  
VIN– VCSN peak current threshold  
VIADJ = 2.2 V  
AADJ  
tDEL  
tLEB  
VIADJ to VIN – VCSN threshold gain 0.1 VIADJ 2.2 V  
CSN pin falling delay  
Minimum ON-time  
CSN fall to SW fall  
130  
275  
Minimum pulse width  
75  
195  
ns  
SYSTEM CURRENTS  
Icq  
Operating current  
Not switching, VIADJ = VVCC  
0.85  
1.5  
mA  
INTEGRATED N-Channel MOSFET AND DRIVER  
IDRN-SW = 200 mA, VBOOT = 5 V,  
TJ = 25°C  
290  
290  
310  
500  
600  
500  
650  
IDRN-SW = 200 mA, VBOOT = 5 V,  
TJ = 150°C  
RDS(on)  
FET ON-resistance  
FET leakage current  
mΩ  
IDRN-SW = 200 mA, VBOOT = 3.5 V,  
TJ = 25°C  
IDRN-SW = 200 mA, VBOOT = 3.5 V,  
TJ = 150°C  
310  
10  
IDRN-SW(off)  
VDRN-SW = 6 V, VSW = 0 V  
µA  
V
Voltage where gate drive is  
disabled  
VBOOT-UVLO  
VBOOT falling  
2.0  
2.8  
125  
100  
3.5  
VBOOT-UVLO(hys)  
IPD(PWM/UVLO)  
IPD(BOOT)  
IBOOT_Q  
BOOT pin UVLO Hysteresis  
mV  
µA  
Pull down from SW when PWM  
low.  
PWM low, VBOOT = 5 V , VSW = 8 V  
130  
Pull down from SW when VBOOT  
reaches VBOOT-UVLO  
PWM high, VBOOT < BOOT-UVLO, VSW  
= 8 V  
5
7
mA  
µA  
BOOT pin quiescent current  
VBOOT = 5.5 V, 0 V VSW 65 V  
60  
90  
VCC/REFERENCE REGULATOR  
VCC  
Regulated pin voltage  
I
VCC(ext) 500 µA  
VCC(ext) 500 µA  
4.8  
4.0  
5.0  
0.1  
4.2  
5.2  
0.2  
4.4  
V
V
V
VCCDO  
VCCUVLO  
Drop out voltage  
I
VCC undervoltage lockout  
Falling threshold, VIN = 10 V  
VCC undervoltage lockout  
hysteresis  
VCCUVLO_hys  
0.22  
V
IVCC(ILIM)  
VINUVLO  
VINUVLO_hys  
OFF-TIMER  
VOFT  
VCC regulator current limit  
VIN UVLO Falling Threshold  
VIN UVLO Hysteresis  
VCC shorted to GND  
14  
4.65  
150  
19  
4.90  
190  
23  
5.15  
225  
mA  
V
mV  
OFF-time threshold  
COFF threshold  
0.95  
1.00  
68  
1.05  
120  
V
tD(off)  
COFF to SW rising delay  
ns  
µs  
tOFF(max)  
Maximum OFF-time  
230  
PWM/UVLO (Enable)  
IPWM(uvlo) PWM/UVLO pin current  
VPWM(uvlo)  
VPWM(uvlo) = 5.5 V  
PWM pin rising  
10  
nA  
V
PWM/UVLO pin threshold  
PWM/UVLO pin hysteresis  
0.95  
50  
1.0  
1.05  
150  
Difference between rising and falling  
threshold  
VPWM(uvlo-hys)  
100  
mV  
PWM pin rising to SW pin rising  
PWM pin falling to SW pin falling  
VPWM(uvlo) = 2 V  
75  
100  
–20  
130  
170  
–15  
ns  
ns  
μA  
tPWM(uvlo)  
PWM/UVLO pin delay  
IPWM(uvlo-hys)  
PWM/UVLO hysteresis current  
–25  
Copyright © 2018, Texas Instruments Incorporated  
5
 
TPS92515AHV-Q1  
ZHCSIY0 OCTOBER 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
VIN = 40 V, –40°C TJ 150°C, VBOOT is referenced to SW pin, unless otherwise specified.  
THERMAL SHUTDOWN  
TSD  
Thermal shutdown temperature  
Thermal shutdown hysteresis  
175  
10  
°C  
TSD(hyst)  
6
Copyright © 2018, Texas Instruments Incorporated  
TPS92515AHV-Q1  
www.ti.com.cn  
ZHCSIY0 OCTOBER 2018  
7.6 Typical Characteristics  
TJ = TA = 25°C unless otherwise specified.  
225  
245  
244  
243  
242  
241  
240  
239  
238  
237  
236  
235  
Randomly sampled devices  
Randomly sampled devices  
224  
223  
222  
221  
220  
219  
218  
217  
216  
215  
214  
213  
212  
-40 -20  
0
20  
40  
60  
80 100 120 140  
-40 -20  
0
20  
40  
60  
80 100 120 140  
Junction Temperature (èC)  
Junction Temperature (èC)  
D001  
D001  
VIADJ = 2.2 V  
VIN = 40 V  
VIADJ = VCC  
VIN = 40 V  
Figure 1. VCST vs. Junction Temperature  
Figure 2. VCST vs. Junction Temperature  
5.1  
5.09  
5.08  
5.07  
5.06  
5.05  
5.04  
5.03  
5.02  
5.01  
5
4.99  
4.98  
4.97  
4.96  
4.95  
1.004  
1.002  
1
IVCC= 0mA  
IVCC=4mA  
0.998  
0.996  
0.994  
0.992  
0.99  
Vin=6  
Vin=40  
Vin=65  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Junction Temperature (oC)  
Junction Temperature (oC)  
D021  
D011  
Figure 3. VCC vs. Junction Temperature  
Figure 4. VOFF vs. Junction Temperature  
74  
73.5  
73  
72.5  
72  
71.5  
71  
70.5  
70  
69.5  
69  
68.5  
68  
67.5  
67  
66.5  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Junction Temperature (oC)  
Junction Temperature (oC)  
D012  
D013  
VIN = 40 V  
VIN = 6 V  
Figure 5. CSN Pin Falling Delay Time vs. Junction  
Temperature  
Figure 6. Off-Time Delay vs. Junction Temperature  
Copyright © 2018, Texas Instruments Incorporated  
7
TPS92515AHV-Q1  
ZHCSIY0 OCTOBER 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
TJ = TA = 25°C unless otherwise specified.  
1.05  
1.03  
1.01  
0.99  
0.97  
0.95  
0.93  
0.91  
0.89  
0.87  
205  
202.5  
200  
197.5  
195  
ILED  
Efficiency (%)  
192.5  
190  
187.5  
185  
182.5  
180  
Vin=6  
Vin=40  
Vin=65  
177.5  
175  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
30  
35  
40  
45  
50  
55  
60  
65  
Junction Temperature (oC)  
VIN  
D014  
D015  
VLED = 22 V  
VIADJ=2.4 V  
RSENSE = 0.196 Ω  
Figure 7. Leading-Edge Blanking Time vs. Junction  
Temperature  
Figure 8. EVM Configuration Result  
1.04  
1.02  
1
1.04  
1.02  
1
ILED (Amps)  
Efficiency  
ILED (Amps)  
Efficiency  
0.98  
0.96  
0.94  
0.92  
0.98  
0.96  
0.94  
0.9  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
38  
40  
42  
44  
46  
48  
50  
VIN (V)  
VIN (V)  
D017  
D016  
VLED = 13 V  
VIADJ=2.4 V  
RSENSE = 0.196 Ω  
VLED = 35 V  
VIADJ=2.4 V  
RSENSE = 0.196 Ω  
Figure 10. EVM Configuration Result  
Figure 9. EVM Configuration Result  
8
Copyright © 2018, Texas Instruments Incorporated  
TPS92515AHV-Q1  
www.ti.com.cn  
ZHCSIY0 OCTOBER 2018  
8 Detailed Description  
8.1 Overview  
The TPS92515AHV-Q1 is an internal N-channel MOSFET (monolithic NFET) hysteric control, buck regulator.  
Hysteretic operation allows a high control bandwidth and is ideal for shunt FET and LED matrix applications  
(series LED switched network). The high-side differential current sense with low adjustable threshold voltage via  
a 10:1 divider, provides an excellent method for regulating output current while maintaining high system  
efficiency. The device uses a controlled OFF-time (COFT) architecture to allow the converter to operate in both  
continuous conduction mode (CCM) and discontinuous conduction mode (DCM) with no external control loop  
compensation, and provides an inherent cycle-by-cycle current limit.  
The adjustable current sense threshold provides the capability for analog dimming the LED current over the full  
range and the PWM dimming input allows for high-frequency PWM dimming control requiring no external  
components. Configuration options allow for easy implementation of external shunt FET dimming. See also the  
OFF-Timer, Shunt FET Dimming or Shunted Output Condition section.  
The device does not internally limit the maximum attainable average LED current. It does have a thermal limit  
based on the maximum junction temperature. The maximum junction temperature is a function of the system  
operating points (efficiency, ambient temperature, thermal management), component choices, and switching  
frequency. This functionality allows the device to provide constant currents up to 1 A in a wide variety of  
applications and up to 2 A in a smaller sub-set of applications. This simple regulator contains all the features  
necessary to implement a high-efficiency, versatile, high-performance LED driver.  
8.2 Functional Block Diagram  
R
VIN  
+
IADJ  
VCC  
+
+
R
2.4 V  
CSN  
10 R  
DRN  
LEB  
Thermal  
Shutdown  
VCCUVLO  
VCC  
Regulator  
T
T
Thermal  
Shutdown  
Gate  
Internal  
N-channel FET  
20 µA  
+
5 kΩ  
SW  
PWM  
Control  
Logic  
Boot  
1.0 V  
UVLO  
BOOT  
COFF  
+
5 mA  
100 µA  
1.0 V  
Gate  
250-µs (max)  
off-time  
VCCUVLO  
PWM  
GND  
Copyright © 2018, Texas Instruments Incorporated  
9
 
TPS92515AHV-Q1  
ZHCSIY0 OCTOBER 2018  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 General Operation  
The TPS92515AHV-Q1 operates using a peak-current, constant OFF-time as described in Figure 11. Two states  
dictate the high-side FET control. The switch remains on until the programmed peak current is reached. The  
device controls the peak current by monitoring the voltage across the sense resistor. When the voltage drop is  
higher than the programmed threshold, the peak current is reached, and the switch is turned OFF, which begins  
the OFF-time period. A capacitor on the COFF pin is then charged through a resistor connected to the output.  
When the COFF pin voltage reaches the 1-V (typical) threshold, the OFF-time ends. The COFF pin capacitor  
resets and the main switch turns ON, and the next cycle begins.  
The average output current  
VIADJ and RSENSE  
adjust  
the peak inductor  
current  
The Inductance  
(L) and tOFF define  
equals the peak minus half  
the peak to peak inductor  
ripple  
DI  
L-PP  
ILave = ILED = IL-Peak œ (ûIL-PP / 2)  
ûIL-PP = (VLED * tOFF ) / L  
IL-Peak = [ VIADJ /10 ] / RSENSE  
t
t
t
OFF  
ON  
Figure 11. Hysteretic Operation  
Although commonly referred to as constant OFF-time, it is the output votage that determines the OFF-time. This  
connection ensures constant peak-to-peak ripple. To maintain a constant ripple over various input and output  
voltages, the converter OFF-time becomes shorter or longer resulting in a change in frequency. If the input  
voltage and output voltage are relatively constant, the frequency also remains constant. If either the input voltage  
or the output voltage changes, the frequency changes. For a fixed input voltage, the device operates at the  
maximum frequency at 50% duty cycle and the frequency reduces as the duty cycle becomes shorter or longer.  
A graphical representation is shown in Figure 12. For a fixed output voltage (VLED), the frequency is always the  
maximum at the highest input voltage as shown in Figure 13.  
10  
Copyright © 2018, Texas Instruments Incorporated  
 
TPS92515AHV-Q1  
www.ti.com.cn  
ZHCSIY0 OCTOBER 2018  
Feature Description (continued)  
0
V /2  
IN  
Maximum  
65  
Output Voltage (V)  
Input Voltage (V)  
Fixed input voltage  
Fixed LED voltage  
Figure 12. Frequency vs LED Output Voltage  
Figure 13. Frequency vs Input Voltage (VIN  
)
Because the OFF-time is proportional to the output voltage, it is possible to illustrate how VLED can be removed  
from the output current equation. When VLED >> VOFT , the output ripple can be defined as shown in Equation 1.  
ΔIL-PP = (VLED x dt)/L  
where  
dt is defined by the OFF-timer  
(1)  
(2)  
.
COFF(1V) COFFROFF(1V)  
Cdv  
dt =  
=
=
i
VLED  
»
ÿ
V
LED Ÿ  
ROFF  
Substitute dt in Equation 1 to create Equation 3.  
»
ÿ
COFFROFF(1V)  
VLED …  
Ÿ
VLED  
L
COFFROFF(1V)  
L
Vdt VLEDdt  
DIL-PP  
=
=
=
=
L
L
(3)  
(4)  
V
IADJ  
COFFROFF(1V)  
2 L  
10  
RSENSE  
ILED  
=
-
When VLED >10 V, use the ILED calculation Equation 4. The Detailed Design Procedure section describes a  
design example that uses the more detailed equation. A VLED > 10 V ensures a linear charging ramp below 1 V.  
If VLED <10 V, use Equation 5 that considers the exponential charging characteristic.  
»
ÿ
Ÿ
Ÿ
Ÿ
Ÿ
»
ÿ
Ÿ
»
ÿ
Ÿ
»
ÿ
Ÿ
VOFT  
VLED  
V
»
ÿ
Ÿ
Ÿ
Ÿ
VLED -ROFFCOFF ln 1-  
IADJ  
⁄ Ÿ  
10  
RSENSE  
ILED  
=
-
2L  
Ÿ
(5)  
Because the control method relies on thresholds to control the main switch, offsets and delays must also be  
considered when examining the output accuracy. The ILED equation can be expanded to include these error  
sources as shown in Equation 6. ILED equations include several passive components, so it is important to  
consider the tolerance of each component. The VCST_Offset parameter is the variation in the VCST threshold  
between the typical and maximum or minimum values as defined in the Electrical Characteristics table.  
Copyright © 2018, Texas Instruments Incorporated  
11  
 
 
 
 
TPS92515AHV-Q1  
ZHCSIY0 OCTOBER 2018  
www.ti.com.cn  
Feature Description (continued)  
»
ÿ
Ÿ
»
ÿ
Ÿ
»
ÿ
Ÿ
»
ÿ
Ÿ
VOFT  
VLED  
V
»
ÿ
Ÿ
Ÿ
Ÿ
VLED -ROFFCOFF ln 1-  
+ t  
IADJ  
D(OFF) Ÿ  
ê V  
(
)
+
CST _Offset  
(V - VLED)(tDEL  
)
⁄ Ÿ  
10  
IN  
ILED  
=
-
Ÿ
Ÿ
RSENSE  
L
2L  
Ÿ
(6)  
8.3.2 Current Sense Comparator  
A comparator, two resistors and a current source create a peak current detection circuit block. See the  
Functional Block Diagram for details. A current source controlled by VIADJ draws a current across a resistor in  
series with a comparator, forcing a proportional offset. The resistor in the current source (10 R) and in series with  
the comparator (R) are sized with a 10:1 ratio. This ratio allows for a practical voltage range of operation for the  
IADJ pin and maintains a small current sense voltage for low losses and less impact on efficiency.  
The ON cycle begins with the offset in place via IADJ across the resistor R at the VIN pin. When the current rises  
enough to create a voltage across the sense resistor to match the offset, the comparator trips. The end of the  
ON-time period starts an OFF-time cycle.  
Trace resistance can have an impact on accuracy, be careful when routing the traces to VIN and CSN from the  
sense resistor. Because the sense resistor value is typically in milli-ohms, use a short kelvin connection to CSN  
and place the sense resistor as close as possible to VIN.  
8.3.3 OFF Timer  
The converter OFF-time is controlled via the COFF pin. The output voltage charges a capacitor to 1 V through a  
resistor creating a delay. Deriving the OFF-time from the output voltage creates a ramp representing the inductor  
current. If the output voltage cannot be used, another voltage fixed source may be implemented to create a truly  
constant OFF-time. However, this configuration reduces output current accuracy. When the device is first  
enabled (when VCC rises above the VCC undervoltage lockout threshold) the pull-down on the COFF pin is  
disabled, allowing a voltage to build up on the COFF capacitor. At the same time, the maximum off timer begins.  
If the voltage source is sufficiently above the 1-V threshold, the ramp becomes linear and approximates the  
inductor current. If the 1-V nominal COFF threshold is reached, or the COFF capacitor charge time duration is  
greater than tOFF(max) (maximum OFF-time timer expires), a switching cycle starts.  
The timer reaches the maximum OFF-time during start-up when the output is completely discharged or when  
shunt FET dimming and the shunt FET shunts the output for the required period.  
Equation 7 calculates ROFF for a desired OFF-time.  
tOFF  
ROFF  
=
»
ÿ
Ÿ
»
ÿ
VOFT  
VLED  
-COFF ln 1-  
Ÿ
(7)  
8.3.4 OFF-Timer, Shunt FET Dimming or Shunted Output Condition  
The OFF-time is derived from the output voltage to create a constant inductor ripple. A constant inductor ripple  
ensures linearity when dimming. When the dimming method selected requires the output to be shorted, (shunt  
FET or Switched Matrix approach) it is necessary to derive the OFF-time ramp from an alternate source. When  
the output is shunted, the output voltage becomes very low and possibly less than the 1 V OFF-timer threshold  
voltage. If this occurs, the off timer is not able to trip and the OFF-time reaches the maximum OFF-time before  
the switch is turned on again. The system is able to operate in this mode, but constant inductor current ripple and  
linear shunt-FET dimming is not possible. To avoid this situation, VCC can be used as a parallel source to  
charge the COFF capacitor and maintain a constant ripple even when the output is shorted. This ensures precise  
dimming linearity. Refer to Figure 14 for connection information.  
It is not recommended to apply power to the OFF-timer circuitry while the VIN pin is not powered. The device  
includes an internal diode between the COFF pin and the VCC pin. If the COFF pin receives power with no input  
voltage (VIN) applied, VCC pin voltage could inadvertently be pulled up and cause the device to attempt  
operation. This attempt could negatively affect the application if this operation is not desired.  
12  
Copyright © 2018, Texas Instruments Incorporated  
 
 
TPS92515AHV-Q1  
www.ti.com.cn  
ZHCSIY0 OCTOBER 2018  
Feature Description (continued)  
Selecting the value for ROFF2 is a two-step process.  
The first step is to compute the OFF-time required when the output is shunted (tOFF-Shunt).  
DILpk-pk ìL  
tOFF-Shunt  
=
VSHUNT + (0.7)  
where  
VSHUNT is the output voltage when the shunt device or LED Matrix device is ON  
(8)  
(9)  
The second steps is to compute ROFF2 using (tOFF-Shunt).  
-tOFF-Shunt  
ROFF2  
=
»
ÿ
Ÿ
»
ÿ
1
COFF ìln 1-  
Ÿ
VCC  
Ÿ
The value of ROFF1 becomes the previously calculated value of ROFF  
.
The result of these calculations produce an inductor current that maintains the same DC value when shunted or  
when not shunted as shown in Figure 15.  
ROFF1  
1
2
3
4
5
COFF  
VCC  
ROFF2  
COFF  
GND  
BOOT  
SW  
VLED  
Ch1: PWM Signal  
Time: 400 µs/div  
Ch4: Inductor current  
No Output Capacitor  
Figure 14. Shunt Dimming COFF Connection  
8.3.5 Internal N-channel MOSFET  
Figure 15. Shunt FET Dimming with Optimized  
Inductor Current  
Integrated in the TPS92515AHV-Q1 is a low on-resistance (RDS(on)) N-channel MOSFET. The resistance  
specified in the Electrical Characteristics table for the drive voltage and temperature is important to consider  
because the actual on-resistance for a given operating point affects efficiency and the transition point into drop-  
out when operating at high currents. A sensing element for thermal shutdown circuitry has been located close to  
the internal FET to better assist in part protection.  
8.3.5.1 Drop-Out  
The TPS92515AHV-Q1 can operate safely even when the input voltage enters the drop-out region. As VIN  
approaches VLED, ΔIL-PP falls to a level much lower than during normal operation. Because the average output  
current is based on Equation 10, as ΔIL-PP becomes smaller, the average current tends to increase. The amount  
of increase depends on the value of ΔIL-PP used in the design. If drop-out performance is a concern, performance  
can be improved by lowering the ΔIL-PP design parameter.  
ILED= ILPEAK – (ΔIL-PP/2)  
(10)  
Copyright © 2018, Texas Instruments Incorporated  
13  
 
 
TPS92515AHV-Q1  
ZHCSIY0 OCTOBER 2018  
www.ti.com.cn  
Feature Description (continued)  
8.3.6 VCC Internal Regulator and Undervoltage Lockout (UVLO)  
The device incorporates a linear regulator to generate the 5-V (typ) VCC voltage. The VCC output voltage is  
monitored to implement undervoltage lockout (UVLO) protection. The UVLO thresholds are fixed and cannot be  
adjusted. The device has been designed to supply current for the device operation as well as additional power  
for external circuitry. If a 5-V rail is required in an application, the device can allow up to 500 µA to be drawn in  
addition to the device load. A capacitance of 1 µF or 10× the BOOT capacitance to a maximum of 10 µF is  
recommended.  
The device requires adequate input decoupling in order to lower ΔVIN-PP ripple for the best VCC supply voltage  
performance. ΔVIN-PP must not exceed 10% of the input voltage VIN or 2 V, whichever is lower.  
8.3.7 Analog Adjust Input  
The analog adjust pin (IADJ) provides the reference for the peak current trip point. Through the use of an internal  
10:1 divider, a wider range and finer control of the peak current sense threshold is created. For example,  
applying 2.2 V to the IADJ pin creates a 220-mV, peak-current-sense trip point. The lower sense voltage also  
lowers the power (V2/R) losses at the sense resistor. There is a practical lower limit to the IADJ pin voltage  
choice due to circuit non-idealities. For example, using VIADJ = 0.5 V results in a sense voltage of 50 mV, which  
does not allow accurate operation.  
8.3.7.1 IADJ Pin Clamp  
The IADJ pin incorporates an internal 2.4-V clamp. An area of inaccuracy in the clamp knee point voltage  
requires the designer to consider how to mitigate this situation when selecting an IADJ pin voltage. The most  
accurate method is to apply 2.2 V to the IADJ pin, which allows it to remain below the clamp knee-point voltage  
area. If an accurate, external, 2.2-V (or lower) reference is not available, use the next most accurate control  
method which is the internal clamp. The least accurate method uses a resistor divider on the VCC pin. The  
Analog and PWM Dimming - Normalized Results and Comparison section includes measured analog dimming  
results.  
14  
Copyright © 2018, Texas Instruments Incorporated  
 
TPS92515AHV-Q1  
www.ti.com.cn  
ZHCSIY0 OCTOBER 2018  
Feature Description (continued)  
8.3.7.2 IADJ Pin Clamp Characteristic  
Figure 16 shows the clamping characterization. Figure 28 shows an application measurement. The translation is  
straightforward, with the exception of the knee-point voltage area. For voltages 2.2 V, the internal VIN to CSN  
peak current sense voltage equals VIADJ/10. For voltages 2.4 V the voltage equals 240 mV. For the area 2.2 ≤  
VIADJ2.4 the voltage approximates VIADJ/10, but varies slightly more than the other regions of operation.  
240  
220  
Lower Limit of  
Knee  
100  
1
2.2  
3
5.5  
VIADJ (V)  
Figure 16. IADJ Pin Internal Clamp Characteristic  
Copyright © 2018, Texas Instruments Incorporated  
15  
 
TPS92515AHV-Q1  
ZHCSIY0 OCTOBER 2018  
www.ti.com.cn  
Feature Description (continued)  
8.3.7.3 Analog Adjust (IADJ Pin) Control Methods  
This section describes several analog adjust (IADJ) control methods configurations.  
Table 1. IADJ Pin Connection Schematics  
FIGURE  
Figure 17  
IADJ PIN CONNECTION  
IADJ pin tied directly to the VCC pin using the internal 2.4-V clamp.  
Figure 18  
Figure 19  
Figure 20  
Figure 21  
Figure 22  
IADJ pin tied through a voltage divider to the VCC pin allowing a lower peak current sense voltage  
IADJ pin tied through a resistor and thermistor divider, implementing thermal foldback function.  
IADJ pin is connected to a micro controller. A GPI/GPIO is connected to a filter to create an analog adjust voltage.  
IADJ pin connection to implement a soft-start sequence  
IADJ pin is connected to a precision reference. This configuration yields the highest accuracy.  
.
TPS92515  
VCC  
TPS92515  
2 VCC  
2
10 IADJ  
10 IADJ  
Figure 17.  
Figure 18.  
TPS92515  
TPS92515  
2
VCC  
2
VCC  
10 IADJ  
10 IADJ  
µC supplied  
Figure 19.  
Figure 20.  
TPS92515  
TPS92515  
2
VCC  
2 VCC  
10 IADJ  
External  
Reference  
10 IADJ  
Figure 21.  
Figure 22.  
8.3.7.4 IADJ Control Method Notes  
Connecting the IADJ pin directly to VCC is simple and is the most accurate stand-alone implementation.  
Using a resistor divider circuit can lower the sense voltage and improve efficiency if the converter output  
currents are high. The trade-off is an increased variation in the peak trip voltage. Note that there are also  
practical limitations to how low the sense voltage can be and maintain a reasonable accuracy.  
16  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
TPS92515AHV-Q1  
www.ti.com.cn  
ZHCSIY0 OCTOBER 2018  
The simple thermal foldback method sizes the divider to set the IADJ voltage above 2.4 V. This method uses  
the internal clamp when thermal foldback is not required and sets the IADJ voltage below 2.4 V when  
foldback is required. Match the temperature characteristic of the thermistor to the second resistor in the  
divider. As an alternative, use a positive temperature coefficient (PTC) thermistor as the upper resistor in the  
divider.  
By using a micro-controller to control the timing output, the duty cycle can be controlled and the voltage can  
be filtered and connected to the IADJ pin. Use a filter pole of 1/10th the micro-controller control pin output  
switching frequency, or use R 1 kΩ and C 4.7 µF as a starting point.  
Simply add a capacitor to the IADJ pin and size the R-C constant to produce the desired soft-start time.  
Consider the maximum current is reached when VIADJ = 2.4 V.  
To get the highest accuracy, use an external, high-precision reference and power it from the TPS92515AHV-  
Q1 VCC if required. A 1% or 2% Zener diode, TL431 device, or an existing precision reference circuit can be  
used.  
8.3.8 Thermal Protection  
The TPS92515AHV-Q1 device incorporates thermal protection circuitry. If the TPS92515AHV-Q1 thermal pad is  
not soldered, or not soldered correctly, the device reaches the thermal shutdown temperature prematurely. Use  
X-ray inspection or some other means to verify the device thermal pad soldering to ensure correct assembly.  
Two internal sensing elements ensure proper temperature measurement across the die. One sensing element is  
located near the internal FET. The other sensing element is located near the VCC regulator. Power dissipation the  
FET and internal regulator contribute the most to device temperature rise.  
When the device temperature reaches the thermal shut-down level at the FET sense point, the high-side FET  
and internal regulator become disabled and switching stops. When thermal shut-down temperature is reached at  
the regulator sense point, the VCC regulator becomes disabled, and switching stops when VCC falls below the  
VCCUVLO level. In both cases, after the device lowers 10°C (typical) from the trip temperature, normal operation  
resumes.  
8.3.8.1 Maximum Output Current and Junction Temperature  
As with all power converter controllers and regulators, practical limits to specification maximums must be  
considered for each application. For example, it is not possible to operate the TPS92515AHV-Q1 with a  
switching frequency of 1 MHz, output current of 2 A, at an ambient temperature of 125°C and stay within  
operating limits. Conversion factors and environment must be considered. This section describes two conversion  
scenarios with different operating conditions that can result in approximately the same junction temperature. In  
each case all of the power loss factors combine to develop the device junction temperature.  
Figure 24 describes a design with half the output current and a lower switching frequency compared to that  
shown in Figure 23. However, the design shown in Figure 24 has a higher ambient temperature, higher VIN and  
an additional external VCC load, resulting in similar junction temperature. Table 2 lists trade-offs and impact on  
temperature. In general, applications requiring high current (2 A) or a high switching frequency (> 1 MHz) provide  
reduced maximum ambient temperature levels.  
VccEXT  
fSW  
ILED  
fSW  
VIN  
TA  
VIN  
TA  
ILED  
ILED = 500 mA  
fSW = 300 kHz  
VIN = 60 V  
TA = 125°C  
External VCC load = 500 µA  
ILED = 1 A  
VIN = 14 V  
TA = 85°C  
fSW = 500 kHz  
Figure 23. Power Balanced  
Figure 24. Power Unbalanced  
Copyright © 2018, Texas Instruments Incorporated  
17  
 
TPS92515AHV-Q1  
ZHCSIY0 OCTOBER 2018  
www.ti.com.cn  
Table 2. Device Junction Temperature Factors  
FACTOR  
AFFECT ON TEMPERATURE AND TRADE-OFFS  
TA  
Ambient temperature  
An increase in the ambient temperatre increases the junction temperature by the same amount.  
A higher input voltage results in more power developed across the internal regulator resulting in  
higher internal losses. A higher voltage often yields a larger step-down conversion and lower  
efficiency.  
VIN  
Input voltage  
A higher LED output current results in higher power (I2R) losses in current carrying elements like the  
internal MOSFET.  
ILED  
LED current  
Current used to supply additional loads external to the TPS92515AHV-Q1 device draw from the  
internal regulator. More external current results in an increased junction temperature. When an  
external source supplies the BOOT current internal power dissipation decreases.  
IVCC(ext)  
External VCC current  
Each time the internal FET is turned ON and OFF, current must flow from VCC to the gate driver.  
The current drawn by a switching gate approximately equals the gate charge times the switching  
frequency. Power loss associated with the switching edge transitions also increase with frequency.  
fSW  
Switching frequency  
Efficiency  
Switching conversions requiring difficult conversions (small duty cycles) have higher overall losses.  
These losses increase the overall temperature of the application and the device temperature.  
η
8.3.9 Junction Temperature Relative Estimation  
The dominant power loss factors predict the junction temperature. These equations offer an estimate of device  
temperature for the use of considering different conversion scenarios. By adding the losses and using the device  
thermal impedance, a temperature can be predicted. In this case we consider losses internal to the device:  
Conduction loss in the MOSFET, an estimate of switching losses and Icq losses.  
»
ÿ
+ (IGate + Icq) * V * QJA + TA  
LOSSSW IN  
TJ-Estimate = P  
+ P  
LOSSCOND  
(11)  
By expanding the terms an estimate can be calculated using Equation 12. Equation 12 is a good prediction in a  
design and layout similar to the orderable EVM. If other sources of heat rise are located near the TPS92515AHV-  
Q1 the device temperature also rises accordingly.  
»
ÿ
»
ÿ
Ÿ
»
ÿ
VLED  
-9  
2x 0.6 x  
0.5 x V x ILED x 60E-9x fSW ) x 1.2 + (3E x f +1E-3) * V  
x 56.2 + T  
»
+
ÿ
»
ÿ
TJ-Estimate  
=
I
Ÿ
(
)
LED  
Ÿ
IN  
SW  
IN  
Ambient  
V
Ÿ
IN  
Ÿ
(12)  
8.3.10 BOOT and BOOT UVLO  
The TPS92515AHV-Q1 contains circuitry to ensure proper operation of the internal MOSFET. Typically a  
capacitor tied to the switchnode (SW pin) and a diode connected to the VCC supply powers the BOOT pin. Each  
time the diode conducts current, a path is created from the VCC pin to charge the BOOT capacitor. The  
connection allows the BOOT capacitor to float with the switch-node voltage and internal FET source. Anytime the  
main switching diode conducts current, the switch-node falls to a diode drop below ground. This creates a path  
for the boot capacitor to be charged in approximately 150 ns or less. A typical BOOT capacitance of 0.1 µF can  
maintain the ON-state of the FET for approximately 5 ms. This timing allows conversion duty-cycles of >> 99%.  
Anytime the BOOT voltage reaches a level that does not allow proper FET turn-on, the high-side FET turns off.  
Although the internal VCC regulator typically supplies power to the BOOT drive circuitry, that power can be  
supplied by a suitable external source. Use this configuration to save power dissipation in the device and to  
lower the junction temperature. Ensure the external source does not exceed 5 V and that it can supply an  
adequate average current equal to or greater than 3 × 10-9 × fSW  
.
8.3.10.1 Start-Up, BOOT-UVLO and Pre-Charged Condition  
If a pre-charge condition occurs (a voltage exists on the output at turn-on) a resulting undervoltage lockout of the  
BOOT pin activates an internal, 5-mA (typical) pulldown. The pulldown reduces the time required to bring the  
output voltage low enough to charge the BOOT capacitor and begin operation. The device activates this strong  
pulldown any time undervoltage lockout of the BOOT pin occurs. However, in most situations the diode turn-on  
does most of the work to lower the switch node voltage. The pulldown does not act as a synchronous FET.  
18  
Copyright © 2018, Texas Instruments Incorporated  
 
TPS92515AHV-Q1  
www.ti.com.cn  
ZHCSIY0 OCTOBER 2018  
Internal  
N-FET  
DRN  
SW  
Gate  
BOOT  
UVLO  
BOOT  
VCC  
5 mA  
100 µA  
VCCUVLO  
PWM  
Figure 25. BOOT and PWM Pull-Downs  
8.3.11 PWM (UVLO and Enable)  
If PWM dimming or ON/OFF control is not needed in the application, tie the PWM pin to the VCC pin.  
Use the PWM pin for PWM dimming. Use a signal above 1 V (typical) and below 900 mV (typical) when  
measured at the PWM pin. Standard PWM frequency ranges can also be used (100 Hz to 2 kHz). Higher  
frequencies can cause the delays from PWM to gate turn ON and turn OFF to limit the achievable duty cycle.  
For example, the PWM to gate delay (turn on + turn off 100 ns) and the time to slew the switchnode up and  
down (approximately 100 ns) total approximately 200 ns.  
For example, if a 10 kHz PWM frequency is desired having a period of 100 μs, the minimum duty cycle is 200  
ns/100 μs = 0.2%. This is sometimes referred to as 500:1 dimming. As the PWM signal width becomes smaller,  
the converter ON and OFF time are eventually controlled by the PWM input signal directly. For example, if the  
PWM ON-time is shorter than the converter natural demanded ON-time, the PWM signal itself becomes the  
control signal for the high-side switch. The PWM pin activates a weak pulldown, as shown in Figure 25. Because  
the PWM pin also controls UVLO (undervoltage lockout and device enable), when pulled low it is necessary to  
ensure the output is 100% OFF. The high-side FET driver has a small leakage path to the output. Although very  
small (<<100 μA), the LEDs can glow if the current was not eliminated. The device activates the 100-μA (typical)  
pulldown circuitry and it remains ON while PWM is low. This activation ensures that the LED emits no light.  
8.3.11.1 Using PWM for UVLO (Undervoltage Lockout) Protection  
When the PWM pin exceeds the 1-V (typical) threshold, the device activates a 100-mV (typical) fixed hysteresis  
and an adjustable hysteresis based on an internal current source (IPWM(uvlo-hys)). This functionality provides noise  
immunity to the PWM control and adjustability to the UVLO hysteresis. The two thresholds can be designed as  
described in the UVLO Programming Resistors section.  
8.3.11.1.1 UVLO Programming Resistors  
The value of resistors R2 and R3 establish the undervoltage lockout level as shown in Figure 26. Include a small  
level of capacitance (approximately 0.1 µF) at the UVLO pin for noise immunity. If the application does not  
require drop-out operation (operation when VIN approximates VLED) program a UVLO level allows no switching to  
occur until there is adequate input voltage available.  
Copyright © 2018, Texas Instruments Incorporated  
19  
 
 
TPS92515AHV-Q1  
ZHCSIY0 OCTOBER 2018  
www.ti.com.cn  
POR  
VIN  
R2  
20 A  
PWM  
5 kΩ  
+
1.0 V  
R3  
Figure 26. UVLO Programming Resistors  
Select the desired amount of voltage hysteresis and the desired turn-ON threshold (VIN-RISE_THRESHOLD). Because  
of the small amount of fixed-voltage hysteresis and fixed-hysteresis current, some combinations of turn-ON and  
turn-OFF thresholds are not possible. If the calculation results in values that are zero or negative, the  
combinations selected are not possible. Choose a turn-ON point and an amount of voltage hysteresis (VHYST).  
Use Equation 13 and Equation 14 to calculate R3 and R2.  
»
IN-RISE_ THRESHOLD ÿ  
VHYST - 0.1 x V  
R3 =  
»
ÿ
-1  
IN-RISE_ THRESHOLD  
20  
m
A x  
V
(13)  
(14)  
»
ÿ
-1 x R3  
R2 = V  
IN-RISE_ THRESHOLD  
8.3.11.2 Using PWM for Digitally Controlled Enable  
If using the PWM pin as to provide and enable function, ensure the signal edge rate is adequate (< 100 ns) when  
measured at the device PWM pin to prevent the device from turning ON and turning OFF when the level  
transitions through the 1-V threshold region. If the edge is too slow or if the high level is not adequately above  
the 1-V threshold, a small capacitor may be required on the PWM pin to avoid multiple turn-ON and turn-OFF  
cycles when passing through this region.  
8.3.11.3 UVLO: VIN, VCC and BOOT UVLO  
The TPS92515AHV-Q1 contains 3 internal under voltage lock-outs which must be satisfied for the device to  
operate: VIN UVLO ensures adequate voltage to power the high-side comparator. VCC UVLO ensures internal  
rails are adequate for the device to function, and BOOT UVLO ensures proper high-side FET operation and  
smooth dropout operation. All of the UVLO's operate independently and automatically. Under normal operation  
they do not require any specific user attention.  
8.3.11.4 Analog and PWM Dimming - Normalized Results and Comparison  
When the PWM applied signal is less than the switching cycle period and falls during an OFF-time it has no  
impact on the current for that cycle as the switch is already OFF. This situation can be avoided by increasing the  
switching frequency. Shunt FET PWM dimming avoids this issue. Current adjustment that maintains a constant  
ripple when shunted (see the OFF-Timer, Shunt FET Dimming or Shunted Output Condition section), creates a  
linear relation to the PWM shunt FET duty cycle and the average output current. Shunt FET PWM dimming can  
out-perform PWM dimming as characterized in Figure 27 through Figure 29, but is more complicated to  
implement.  
Another impact on linearity can occur when using the analog dimming function. Discontinuous conduction mode  
(DCM) occurs when the inductor current reaches 0 A during each cycle,. When the device enters DCM, the  
output current is no longer the peak current minus half the ripple. The linear range can be extended by lowering  
the ripple, ΔIL-PP. If the system is being digitally controlled, the applied IADJ pin voltage can be adjusted when it  
is known the DCM operation occurs. In either case, a lower limit is eventually reached when the measured peak  
threshold voltage is approximately < 50 mV. At this point, the offset error becomes a significant portion of the  
peak current trip point voltage being measured.  
20  
Copyright © 2018, Texas Instruments Incorporated  
 
 
TPS92515AHV-Q1  
www.ti.com.cn  
ZHCSIY0 OCTOBER 2018  
1
0.1  
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.01  
0.001  
0.0001  
1E-5  
1E-6  
1E-7  
1E-8  
30% Ripple  
12% Ripple  
Ideal  
IDEAL  
PWM, L=47mH. Fsw=228kHz Fpwm=200Hz  
PWM, L=47mH. Fsw=390kHz, Fpwm=200Hz  
PWM, L=100mH. Fsw=390kHz, Fpwm=200Hz  
PWM, L=100mH. Fsw=800kHz, Fpwm=500Hz  
Shunt FET. L=47mH Fsw=350kHz Fpwm=500Hz  
5E-10  
1
2 3 5 710 20 50 100  
1000  
10000  
100000  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Applied Dimming Signal Ratio [x:1]  
VIADJ (V)  
D021  
DADIM  
VLED = 15 V  
VIN = 55 V  
Figure 27. PWM Dimming Performance with Shunt Dim  
Comparison  
Figure 28. Analog Dimming Performance  
2
1
0.7  
0.5  
0.3  
0.2  
30% Ripple  
12% Ripple  
Ideal  
0.1  
0.07  
0.05  
0.03  
0.02  
0.01  
0.007  
0.005  
0.003  
0.002  
DCMäCCM  
0.001  
0.020.03 0.05  
0.1  
0.2 0.3 0.5 0.7  
VIADJ (V)  
1
2
3
4 5  
DADLG  
VLED = 15 V  
VIN = 55 V  
Figure 29. Analog Dimming Performance (Log Scale)  
8.4 Device Functional Modes  
This device has no additional functional modes.  
Copyright © 2018, Texas Instruments Incorporated  
21  
TPS92515AHV-Q1  
ZHCSIY0 OCTOBER 2018  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Be sure to  
validate and test the design implementation to confirm system functionality.  
9.1 Application Information  
This section presents a simplified design process using the TPS92515AHV-Q1 buck current regulator for an LED  
driver with the following specifications:  
Buck converter topology  
Input voltage: 65 V  
Output voltage: 22 V (7 LEDs)  
Output current 1 A  
Use the following design procedure to select component values for this and similar buck applications.  
9.2 Typical Application  
VCC  
VIN  
65 V (max)  
TPS92515  
COFF IADJ 10  
R10  
R12  
1
2
3
4
5
VIN  
C6  
C10  
VCC  
GND  
BOOT  
SW  
R2  
R3  
C7  
PWM  
VIN  
9
8
7
6
ROFF1  
D4  
C8  
C5  
C1  
LED+  
CSN  
DRN  
R5  
L1  
C9  
D1  
PAD  
Copyright © 2016, Texas Instruments Incorporated  
Figure 30. TPS92515AHV-Q1 BUCK LED Driver  
9.2.1 General Design Procedure  
This procedure includes the fundamental design equations required for a TPS92515AHV-Q1 buck converter  
design.  
9.2.1.1 Calculating Duty Cycle  
Start with an efficiency of n estimation of 0.9.  
VLED  
D =  
V x n  
IN  
where  
VOUT = VLED  
(15)  
9.2.1.2 Calculate OFF-Time Estimate  
Equation 16 uses the switching period T to derive the OFF-time (tOFF) .  
22  
Copyright © 2018, Texas Instruments Incorporated  
TPS92515AHV-Q1  
www.ti.com.cn  
ZHCSIY0 OCTOBER 2018  
Typical Application (continued)  
1
tOFF  
=
x 1-D  
» ÿ  
fSW  
derived from:  
T = [tOFF + tON ]= [tOFF+ (D × T)] and  
T = 1/fSW  
(16)  
9.2.1.3 Calculate OFF-Time Resistor ROFF  
Select a COFF between 100 pF and 1 nF. The preferred value is 470 pF. The EC table specifies the OFF-time  
threshold (VOFT) at 1 V.  
tOFF  
ROFF  
=
VOFT  
VLED  
»
ÿ
»
ÿ
-COFF ln 1-  
(17)  
9.2.1.4 Calculate the Minimum Inductance Value  
Where ΔIL-PP is in Amperes. For example, a 1-A solution with 20% inductor ripple: set ΔIL-PP = 0.2A  
VLED x tOFF  
L =  
DIL-PP  
(18)  
When selecting the inductor, ensure the ratings for both peak and average current are adequate. Equation 19  
calculates the peak inductor current.  
V
»
IADJ ÿ  
Ÿ
10  
ILPEAK=  
RSENSE  
(19)  
9.2.1.5 Calculate the Sense Resistance  
Always use the highest VIADJ voltage the application allows without exceeding 5.5 V. The device clamps any  
higher value to a level 2.4 V. See also the Analog Adjust Input for details.  
V
»
IADJ ÿ  
Ÿ
10  
RSENSE  
=
DI  
»
L-PP ÿ  
2
ILED  
+
(20)  
9.2.1.6 Calculate Input Capacitance  
NOTE  
Input voltage ripple (ΔVIN-PP) must not exceed 10% of the input voltage (VIN) or 2 V,  
whichever is lower.  
For example, VIN = 50 V, 50 x 0.1 = 5 V; the maximum ΔVIN-PP remains 2 V.  
»
ÿ
1
ILED  
x
- tOFF Ÿ  
fSW  
CIN-MIN  
=
DV  
IN-PP  
(21)  
9.2.1.7 Calculate Output Capacitance  
Because current is being regulated and is continuous, no output capacitance is required to supply the load and  
maintain output voltage. This regulation helps when designing a high-frequency PWM dimming on the LED load.  
When no output capacitor is used, the same design calculations for ΔIL-PP also apply to ΔILED-PP  
.
Copyright © 2018, Texas Instruments Incorporated  
23  
 
 
TPS92515AHV-Q1  
ZHCSIY0 OCTOBER 2018  
www.ti.com.cn  
Typical Application (continued)  
A capacitor placed in parallel with the LED load can be used to reduce ΔILED-PP while keeping the same average  
current through both the inductor and the LED load. With an output capacitor, the inductance can be lowered,  
making the magnetic smaller and less expensive. Alternatively, the circuit can be run at lower frequency with the  
same inductor value, improving the efficiency and increasing the maximum allowable average output voltage. A  
parallel output capacitor is also useful in applications where the inductor or input voltage tolerance is poor.  
Adding a capacitor that reduces ΔILED-PP to well below the target provides headroom for changes in inductance or  
VIN that might otherwise push the maximum ΔILED-PP too high.  
Figure 31. Calculating Dynamic Resistance rD from LED Characteristics.  
Determine the output capacitance by establishing the desired ΔILED-PP and the LED dynamic resistance, rD.  
Calculate the dynamic resistance as the slope of the LED exponential DC characteristic at the nominal operating  
point as shown in Figure 31. Simply dividing the forward voltage by the forward current at the nominal operating  
point results in an incorrect value that is between 5 times and 10 times too high. Calculate total dynamic  
resistance for a string of n LEDs connected in series as the dynamic resistance of one device multiplied by n.  
Use Equation 22 and Equation 23 to estimate ΔILED-PP when using a parallel capacitor:  
DIL-PP  
1
DILED-PP  
=
and ZC =  
rD  
2p  
fSWCO  
1+  
ZC  
(22)  
(23)  
DIL-PP - DI  
LED-PP ÿ  
»
CO=  
DILED-PP  
2p  
f
r
SW ÿ  
D
»
24  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
TPS92515AHV-Q1  
www.ti.com.cn  
ZHCSIY0 OCTOBER 2018  
Typical Application (continued)  
9.2.2 Design Requirements  
Table 3 shows the design parameters for an example Buck LED driver application.  
Table 3. Design Parameters  
PARAMETER  
INPUT CHARACTERISTICS  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VIN  
Input voltage range  
Input UVLO setting  
30  
65  
4
65  
29  
V
V
VULVO  
VUVLO-HYST Input UVLO hysteresis  
OUTPUT CHARACTERISTICS  
VFLED  
n
LED forward voltage  
Number of LEDs in series  
Output voltage  
3.14159  
7
V
VLED  
ILED  
PMAX  
LED+ to LED–  
22  
V
mA  
W
Output current  
1000  
22  
Maximum output power  
25  
SYSTEMS CHARACTERISTICS  
ΔILEDpk-pk  
ΔILpk-pk  
ΔVIN-PP  
fSW  
LED current ripple  
Inductor current ripple  
Input voltage ripple  
Switching frequency  
10%  
45%  
2
V
580  
kHz  
9.2.3 Detailed Design Procedure  
This procedure describes the fundamental component selections for the design specifications noted in  
Equation 17.  
9.2.3.1 Calculating Duty Cycle  
Solve for D: VOUT = VLED. Assume a target efficiency of 90%. (η = 0.9)  
VLED  
22  
D =  
=
= 0.37 = 37%  
V x n 65 x 0.9  
IN  
(24)  
9.2.3.2 Calculate OFF-Time Estimate  
Equation 25 uses the switching period T to derive the OFF-time (tOFF) .  
1
1
tOFF  
=
x 1-D =  
x 1-.376 = 1.076 ms  
» ÿ  
»
ÿ
fSW  
580kHz  
where  
T = tOFF+ tON  
tOFF+ (D x T), and T = 1/fSW  
(25)  
9.2.3.3 Calculate OFF-Time Resistor ROFF  
Select a COFF between 100 pF and 1 nF. The preferred value is 470 pF. The EC table specifies the OFF-time  
threshold (VOFT) at 1 V.  
tOFF  
1.076  
m
ROFF  
=
=
= 49212W  
VOFT  
VLED  
1
»
ÿ
»
ÿ
-470p ln 1-  
»
ÿ
»
22 ÿ  
-COFF ln 1-  
(26)  
9.2.3.4 Calculate the Inductance Value  
this example uses a 1-A solution with 45% inductor ripple. Set ΔIL-PP = 0.45A  
Copyright © 2018, Texas Instruments Incorporated  
25  
 
 
TPS92515AHV-Q1  
ZHCSIY0 OCTOBER 2018  
www.ti.com.cn  
VLED x tOFF 22 x 1.076  
m
L =  
=
= 52mH  
DIL-PP  
1.0 x .45  
where  
ΔIL-PP is in A  
(27)  
When selecting an inductor ensure the ratings for both peak and average current are adequate. It is best to  
select an inductance value of at least the calculated value or higher. For example, most cases use 56 µH or 68  
µH given the 52 µH calculation. However, in this example size and efficiency are a concern and the application  
allows for the use of an output capacitor. Because a value of 52 µH not close to any common values, and output  
capacitance is allowed, 47 µH is selected. 47 µH has a lower winding resistance (DCR) for the same case size.  
9.2.3.5 Calculate the Sense Resistance  
Always use the highest VIADJ voltage that the application allows. Do not exceed 5.5 V. A value higher than 2.4 V  
is clamped to 2.4 V. Refer back to Analog Adjust Input for details.  
V
2.4  
10  
»
IADJ ÿ  
»
ÿ
Ÿ
Ÿ
10  
RSENSE  
=
=
= 0.196W  
DI  
0.45  
2
»
L-PP ÿ  
»
ÿ
ILED  
+
1.0 +  
2
(28)  
9.2.3.6 Calculate Input Capacitance  
NOTE  
Inductor ripple current (ΔVIN-PP) must not exceed 10% of the input voltage (VIN) or 2 V,  
whichever is lower.  
For example, VIN = 65 V, 65 x 0.1 = 6.5 V; the maximum ΔVIN-PP remains 2 V.  
»
ÿ
1
1
»
ÿ
ILED  
x
- tOFF Ÿ  
1 x  
-1.076m  
Ÿ
fSW  
580k  
CIN-MIN  
í
í
í 324nF  
DV  
2
IN-PP  
(29)  
9.2.3.7 Verify Peak Current for Inductor Selection  
When selecting in inductor consider these three specifications.  
the required inductance  
the average current rating  
the peak current rating  
Equation 30calculates the peak current rating  
V
2.4  
10  
»
IADJ ÿ  
»
ÿ
Ÿ
Ÿ
10  
ILPEAK=  
=
= 1.22A  
RSENSE  
.196W  
(30)  
26  
Copyright © 2018, Texas Instruments Incorporated  
 
TPS92515AHV-Q1  
www.ti.com.cn  
ZHCSIY0 OCTOBER 2018  
9.2.3.8 Calculate Output Capacitance  
Figure 32. Calculating Dynamic Resistance (rD) from LED Specifications  
Solve for rD, using the slope of the tangent line, then multiply by the number of LEDs.  
3.83 - 3.63  
1.5 - 0.6  
rD =  
= .0222W x 7 = 1.55W  
(31)  
Substitute the value of rD with other parameters to solve for the required minimum output capacitor to meet the  
required LED ripple current level:  
DIL-PP - DI  
LED-PP ÿ  
0.45 - 0.15  
ÿ
»
»
CO=  
=
í 354 nF  
DILED-PP  
2p  
f
r
0.15 2p 580k 1.55  
»
SW ÿ  
» ÿ  
D
(32)  
9.2.3.9 Calculate UVLO Resistance Values  
Consider the rising threshold of VIN to be 29 V and the hysteresis to be 4 V, calculate R2 and R3 to create the  
desired operation:  
»
IN-RISE_ THRESHOLD ÿ  
VHYST - 0.1 x V  
4 - 0.1 x 29  
»
ÿ
R3 =  
=
= 1964W  
20mA x 29 -1  
»
ÿ
» ÿ  
20  
m
A x  
V
IN-RISE_ THRESHOLD -1  
(33)  
(34)  
»
ÿ
-1 x R = 29 -1 x 1964 = 54.9kW  
» ÿ  
3
R2 = V  
IN-RISE_THRESHOLD  
The final schematic is shown in Figure 33 and performance curves in the Application Curves section:  
Copyright © 2018, Texas Instruments Incorporated  
27  
TPS92515AHV-Q1  
ZHCSIY0 OCTOBER 2018  
www.ti.com.cn  
VCC  
VIN  
65 V (max)  
R10  
100 kΩ  
TPS92515  
COFF IADJ 10  
1
2
3
4
5
VIN  
R2  
COFF  
470 pF  
DNP  
DNP  
VCC  
GND  
BOOT  
SW  
54.9 kΩ  
1 mF  
PWM  
VIN  
9
8
7
6
ROFF1  
49 kΩ  
D4  
R3  
CIN  
0.1 mF  
2 kΩ  
L1  
47 µH  
RSENSE  
0.196 Ω  
CIN  
2.2 mF  
CSN  
DRN  
0.1 mF  
LED+  
CO  
1 mF  
D1  
PAD  
Copyright © 2016, Texas Instruments Incorporated  
Figure 33. Application Schematic  
9.2.4 Application Curves  
Buck LED driver example: VOUT = 22 V (7 LEDs), IOUT = 1 A  
100  
96  
92  
88  
84  
80  
76  
72  
68  
64  
60  
1.2  
1.17  
1.14  
1.11  
1.08  
1.05  
1.02  
0.99  
0.96  
0.93  
0.9  
Efficiency  
ILED  
Ch1: SW Voltage; Ch2: VIN Ripple Voltage (AC Coupled);  
Ch3: ILED-PP; Ch4: Inductor current;  
Time: 1 µs/div  
30  
35  
40  
45  
VIN (V)  
50  
55  
60  
65  
Figure 35. Normal Operation  
D0068  
VLED = 22 V  
IOUT = 1.0 A  
Figure 34. Efficiency and Output Current vs. Input Voltage  
28  
Copyright © 2018, Texas Instruments Incorporated  
TPS92515AHV-Q1  
www.ti.com.cn  
ZHCSIY0 OCTOBER 2018  
Ch1: SW Voltage; Ch2: VIN (DC Coupled);  
Ch4: Inductor current; UVLO designed limit attained.  
Time: 1 ms/div  
Ch1: SW Voltage; Ch2: VIN (DC Coupled);  
Ch4: Inductor current; UVLO designed limit attained.  
Time: 1 ms/div  
Figure 36. Startup Transient  
Figure 37. Shut-Down Transient  
Ch1: SW Voltage; Ch2: VIN (DC Coupled);  
Ch4: Inductor current;  
Ch1: SW Voltage; Ch2: PWM pin;  
Ch4: Inductor current;  
Time: 8 µs/div  
Time: 10 µs/div  
Figure 38. First 15 SW Node Pulses at Turn-On  
Figure 39. PWM Dimming: 250Hz, 0.25% Duty Cycle  
Copyright © 2018, Texas Instruments Incorporated  
29  
TPS92515AHV-Q1  
ZHCSIY0 OCTOBER 2018  
www.ti.com.cn  
Ch1: SW Voltage; Ch2: PWM pin;  
Ch4: Inductor current;  
Time: 10 µs/div  
Ch1: SW Voltage; Ch2: PWM pin;  
Ch4: Inductor current;  
Time: 1 ms/div  
Figure 40. PWM Dimming: 250Hz, 1% Duty Cycle  
Figure 41. PWM Dimming: 250Hz, 50% Duty Cycle  
Ch1: PWM Signal  
Ch4: Inductor current; ΔIL-PP Maintained  
Time: 20 µs/div  
Figure 42. Shunt FET Dimming - Optimized Inductor  
Current Waveform  
Ch1: PWM Signal  
Ch4: Inductor current; OFF-time reaching Maximum OFF-Time  
Time: 400 µs/div  
Figure 43. Shunt FET Dimming - Non-Optimized Inductor  
Current  
9.3 Dos and Don'ts  
Dos  
Don'ts  
Check soldering of thermal pad in production  
Check device case and junction temperature during and after  
prototyping of any solution.  
30  
Copyright © 2018, Texas Instruments Incorporated  
TPS92515AHV-Q1  
www.ti.com.cn  
ZHCSIY0 OCTOBER 2018  
10 Power Supply Recommendations  
The TPS92515AHV-Q1 can operate via two main input source options:  
from the battery directly  
from the output of a boost stage  
Make sure that either application meets the input voltage ripple requirements. The input ripple must go no higher  
than 10% of the input voltage to a maximum of 2 V.  
10.1 Input Source Direct from Battery  
The TPS92515AHV-Q1 can operate directly from a battery. The device ratings are such that load dump and  
other battery voltage excursions do not exceed the ratings of the device. When the battery voltage drops, no  
device damage occurs, and the device recovers in a controlled manner. The BOOT UVLO protection allows duty  
cycles over 99%.  
10.2 Input Source from a Boost Stage  
The TPS92515AHV-Q1 maximum input voltage of 65 V makes it a suitable second stage buck regulator for a  
variety of applications and LED output configurations. For an average LED forward voltage of 3.5 V, and allowing  
for some headroom below the 65-V maximum input, the TPS92515AHV-Q1 can successfully control up to 17  
LEDs connected in series.  
11 Layout  
11.1 Layout Guidelines  
The performance of any switching converter depends as much upon the layout of the PCB as it does on the  
component selection. Follow these simple guidelines to maximize noise rejection and minimize the generation of  
EMI within the circuit.  
Figure 44 shows a sample layout and the associated current loops.  
Discontinuous currents are the type of current most likely to generate EMI. Be careful when routing these  
paths.  
The main path for discontinuous current contains the input capacitor (CIN), the recirculating diode (D1), the  
internal MOSFET (DRN pin to SW pin), and the sense resistor (RSENSE) shown as LOOP2. Make LOOP2  
as small as possible.  
Make the connections between all three components short and thick to minimize parasitic inductance. In  
particular, the switch node (where L1, D1 and the SW pin connect, shown as LOOP1). Make them large  
enough to connect the components without producing excessive heat from the current it carries.  
The IADJ, COFF, CSN and VIN pins are all high-impedance control inputs, therefore minimize the loops  
containing these high impedance nodes. The most sensitive loop contains the sense resistor (RSENSE) Place  
the sense resistor as close as possible to the CSN and VIN pins to maximize noise rejection.  
Place the OFF-time capacitor (connected from the COFF pin to ground) close to the COFF and GND pins to  
maximize noise rejection.  
External resistors (if used) bias the IADJ pin. Place them close to the IADJ and GND pins and use a small  
capacitor to decouple.  
In some applications the LED load can be far away (several inches or more) from the device, or on a  
separate PCB connected by a wiring harness. When an output capacitor is used and the LED load is large or  
separated from the main converter, place the output capacitor close to the LEDs to reduce the effects of  
parasitic inductance on the AC impedance of the capacitor.  
Copyright © 2018, Texas Instruments Incorporated  
31  
TPS92515AHV-Q1  
ZHCSIY0 OCTOBER 2018  
www.ti.com.cn  
11.2 Layout Example  
Minimize discontinuous current loops  
Components close to Device  
Ground plane + thermal vias  
GND  
LOOP1  
TPS92515  
1
10  
PWM  
GND  
COFF  
IADJ  
ILED  
2
3
4
5
9
8
7
6
VCC  
PWM  
D1  
CIN  
GND  
BOOT  
SW  
VIN  
VIN  
CSN  
Kelvin Connection to  
RSENSE  
LED+  
DRN  
DAP  
LOOP2  
Figure 44. TPS92515AHV-Q1 Layout Example  
32  
版权 © 2018, Texas Instruments Incorporated  
TPS92515AHV-Q1  
www.ti.com.cn  
ZHCSIY0 OCTOBER 2018  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
12.1.1.1 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链  
接。  
4. 相关链接  
器件  
产品文件夹  
请单击此处  
样片与购买  
请单击此处  
技术文档  
工具与软件  
请单击此处  
支持和社区  
请单击此处  
TPS92515AHV-Q1  
请单击此处  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
E2E is a trademark of Texas Instruments.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
版权 © 2018, Texas Instruments Incorporated  
33  
TPS92515AHV-Q1  
ZHCSIY0 OCTOBER 2018  
www.ti.com.cn  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
34  
版权 © 2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS92515AHVQDGQRQ1  
TPS92515AHVQDGQTQ1  
ACTIVE  
ACTIVE  
HVSSOP  
HVSSOP  
DGQ  
DGQ  
10  
10  
2500 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
1NIX  
1NIX  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
DGQ 10  
3 x 3, 0.5 mm pitch  
PowerPADTM HVSSOP - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224775/A  
www.ti.com  
PACKAGE OUTLINE  
DGQ0010E  
PowerPADTM - 1.1 mm max height  
S
C
A
L
E
3
.
7
0
0
PLASTIC SMALL OUTLINE  
C
5.05  
4.75  
TYP  
SEATING PLANE  
PIN 1 ID  
AREA  
A
0.1 C  
8X 0.5  
10  
1
3.1  
2.9  
NOTE 3  
2X  
2
5
6
0.27  
0.17  
10X  
3.1  
2.9  
1.1 MAX  
0.08  
C A  
B
B
NOTE 4  
0.23  
0.13  
TYP  
SEE DETAIL A  
EXPOSED  
THERMAL PAD  
4
5
0.25  
GAGE PLANE  
2.1  
1.9  
0.15  
0.05  
0.7  
0.4  
8
0 - 8  
1
DETAIL A  
TYPICAL  
1.83  
1.63  
4221816/A 08/2015  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-187, variation BA-T.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGQ0010E  
PowerPADTM - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
(2.2)  
NOTE 9  
(1.83)  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED PAD  
SEE DETAILS  
10X (1.45)  
10X (0.3)  
1
10  
(1.3)  
TYP  
(2.1)  
SOLDER MASK  
OPENING  
SYMM  
(3.1)  
NOTE 9  
8X (0.5)  
6
5
(R0.05) TYP  
SYMM  
METAL COVERED  
BY SOLDER MASK  
(
0.2) TYP  
VIA  
(1.3) TYP  
(4.4)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4221816/A 08/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGQ0010E  
PowerPADTM - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
(1.83)  
BASED ON  
0.125 THICK  
STENCIL  
10X (1.45)  
10X (0.3)  
1
10  
(2.1)  
SYMM  
BASED ON  
0.125 THICK  
STENCIL  
8X (0.5)  
5
6
(R0.05) TYP  
SEE TABLE FOR  
SYMM  
(4.4)  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
METAL COVERED  
BY SOLDER MASK  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:15X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
2.05 X 2.35  
1.83 X 2.1 (SHOWN)  
1.67 X 1.92  
0.125  
0.150  
0.175  
1.55 X 1.77  
4221816/A 08/2015  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS92515AHVQDGQRQ1

具有集成 NFET 的 65V 汽车类 2A 分流 PWM 可调光 LED 驱动器 | DGQ | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92515AHVQDGQTQ1

具有集成 NFET 的 65V 汽车类 2A 分流 PWM 可调光 LED 驱动器 | DGQ | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92515DGQR

具有集成 NFET、高侧电流感应和分流 PWM 调光功能的 42V 2A LED 驱动器 | DGQ | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92515DGQT

具有集成 NFET、高侧电流感应和分流 PWM 调光功能的 42V 2A LED 驱动器 | DGQ | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92515HV

具有集成 NFET、高侧电流感应和分流 PWM 调光功能的 65V 2A LED 驱动器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92515HV-Q1

具有集成 NFET 和电流校准功能的 65V 汽车类 2A 分流 PWM 可调光 LED 驱动器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92515HVDGQR

具有集成 NFET、高侧电流感应和分流 PWM 调光功能的 65V 2A LED 驱动器 | DGQ | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92515HVDGQT

具有集成 NFET、高侧电流感应和分流 PWM 调光功能的 65V 2A LED 驱动器 | DGQ | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92515HVQDGQRQ1

具有集成 NFET 和电流校准功能的 65V 汽车类 2A 分流 PWM 可调光 LED 驱动器 | DGQ | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92515HVQDGQTQ1

具有集成 NFET 和电流校准功能的 65V 汽车类 2A 分流 PWM 可调光 LED 驱动器 | DGQ | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92515QDGQRQ1

具有集成 NFET 和电流校准功能的 42V 汽车类 2A 分流 PWM 可调光 LED 驱动器 | DGQ | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92515QDGQTQ1

具有集成 NFET 和电流校准功能的 42V 汽车类 2A 分流 PWM 可调光 LED 驱动器 | DGQ | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI