TPS92520QDADRQ1 [TI]

具有 SPI 的 1.6A 双路同步降压 LED 驱动器

| DAD | 32 | -40 to 125;
TPS92520QDADRQ1
型号: TPS92520QDADRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 SPI 的 1.6A 双路同步降压 LED 驱动器

| DAD | 32 | -40 to 125

驱动 驱动器
文件: 总68页 (文件大小:3249K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
SPI 控制功能TPS92520-Q1 4.5V 65V、双路、1.6A 同步降LED 驱动  
TPS92520-Q1 整合了高级 SPI 可编程诊断和故障保护  
功能其中涉及逐周期电流限制、自举欠压保护、  
LED 开路、LED 短路、热警告和热关断功能。板载 10  
ADC 对监测和诊断系统运行状况所需的重要输入参  
数进行采样。  
1 特性  
• 符合面向汽车应用AEC-Q100 标准  
1 40°C 125°C 的工作环境温度范围  
– 器HBM 分类等H1C  
– 器CDM 分类等C5  
提供功能安全  
TPS92520-Q1 采用 8.1mm x 11mm 热增强型 32 引脚  
HTSSOP 封装具有 2.75mm x 3.45mm 的顶部外露  
散热焊盘和底部外露散热焊盘。  
可帮助进行功能安全系统设计的文档  
4.5V 65V 的宽输入电压范围  
• 持续输出电流最高1.6A且精度4%  
• 自适应导通时间平均电流控制  
• 可编程开关频率范围100kHz 2.2MHz  
• 高级调光操作  
器件信息  
器件型号(1)  
封装尺寸标称值)  
封装  
TPS92520-Q1  
HTSSOP  
8.1mm × 11mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
10 位精密模拟调光  
10 位精密内PWM 调光  
– 支持外PWM 调光输入  
– 为外部分流调光LED 矩阵管理器而优  
LED1+  
CCOMP1  
1
2
32  
COMP1  
UDIM1  
CSN1  
COUT1  
RCS1  
31  
30  
CSP1  
BST1  
RUV12  
RUV11  
3
4
PGND  
PGND  
• 开关逐周期过流保护  
• 开关过热保护  
• 串行外设接(SPI)  
L1  
GND  
VIN  
CBST1  
29  
28  
SW1  
SW1  
CIN1  
5
6
7
VIN1  
VIN1  
GND  
V5D  
V5A  
– 可配置模拟基准、开关频率PWM 调光占空比  
– 故障监控和报告  
• 支持跛行回(LH) 和独立模式运行  
27  
26  
25  
24  
23  
22  
FLT  
LHI  
CV5D  
5V  
Supply  
8
9
SSN  
SCK  
MISO  
MOSI  
SPI  
BUS  
CV5A  
2 应用  
10  
11  
12  
GND  
VIN2  
VIN2  
汽车前照灯和自适LED 驱动模块  
21  
20  
VIN  
SW2  
SW2  
3 说明  
CIN2  
13  
14  
GND  
PGND  
PGND  
CBST2  
L2  
19  
18  
BST2  
CSP2  
RUV21  
RUV22  
TPS92520-Q1 是一款单片双路同步降压 LED 驱动  
4.5V 65V 宽工作输入电压范围可独立为  
两串串联的 LED 供电。TPS92520-Q1 实施自适应导  
通时间平均电流模式控制功能经设计可与分流 FET  
调光技术和基于 LED 矩阵管理器的动态光束前照灯兼  
容。自适应导通时间控制功能可提供近乎恒定的开关频  
频率设置范围为 100kHz 2.2MHz。电感器电流  
感应和闭环反馈功能可在较宽的输入电压、输出电压和  
环境温度范围内实±4% 以上的精度。  
15  
16  
UDIM2  
RCS2  
CCOMP2  
COUT2  
17  
COMP2  
CSN2  
LED2+  
简化版原理图  
高性能 LED 驱动器可使用模拟调光或 PWM 调光技术  
来单独调制 LED 电流。通过 SPI 10 IADJ 数值  
进行编程可获得高于 16:1 的线性模拟调光响应。通过  
借助所需占空比直接调制相应的 UDIM 输入引脚或通  
过启用内部 PWM 发生器电路来实现 LED 电流的  
PWM 调光。通过比较 10 PWM 寄存器与可编程数  
字计数器的数值PWM 发生器可将 10 PWM 寄存  
器值转化为相应的占空比。  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSD66  
 
 
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
Table of Contents  
7.6 Register Maps...........................................................35  
8 Application and Implementation..................................55  
8.1 Application Information............................................. 55  
8.2 Typical Application.................................................... 59  
8.3 Initialization Setup.....................................................63  
9 Power Supply Recommendations................................65  
10 Layout...........................................................................65  
10.1 Layout Guidelines................................................... 65  
10.2 Layout Example...................................................... 66  
11 Device and Documentation Support..........................67  
11.1 Documentation Support.......................................... 67  
11.2 Receiving Notification of Documentation Updates..67  
11.3 支持资源..................................................................67  
11.4 Trademarks............................................................. 67  
11.5 术语表..................................................................... 67  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings ....................................... 5  
6.2 ESD Ratings .............................................................. 5  
6.3 Recommended Operating Conditions ........................5  
6.4 Thermal Information ...................................................6  
6.5 Electrical Characteristics ............................................6  
6.6 Typical Characteristics..............................................10  
7 Detailed Description......................................................14  
7.1 Overview...................................................................14  
7.2 Functional Block Diagram.........................................15  
7.3 Feature Description...................................................15  
7.4 Device Functional Modes..........................................29  
7.5 Programming............................................................ 31  
Information.................................................................... 67  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision C (June 2020) to Revision D (February 2021)  
Page  
• 更新了整个文档的表、图和交叉参考的编号格式................................................................................................ 1  
Updated the minimum on-time specification from 90-ns typical to 105-ns typical.............................................. 5  
Added "SWx to PGND (< 10 µs)" row to Absolute Maximum Ratings table....................................................... 5  
Added "CSPx to CSNx (< 100 µs)" row to Absolute Maximum Ratings table.....................................................5  
Updated tONx(MIN) MIN value from "75" to "87"....................................................................................................5  
Updated tONx(MIN) TYP value from "90" to "105"................................................................................................. 5  
Updated tONx(MIN) MAX value from "105" to "123".............................................................................................. 5  
Updated 6-17 .............................................................................................................................................. 10  
Updated the Functional Block Diagram ........................................................................................................... 15  
Updated "90 ns" to 105 ns" in Minimum On-Time, Off-Time, and Inductor Ripple section...............................17  
Updated "1.24 V" to "1.22 V" in the External PWM Dimming and Input Undervoltage Lockout section...........19  
Updated "!~ 220 µA" to "10 µA" in the External PWM Dimming and Input Undervoltage Lockout section.......19  
Updated "2.8 V" to "2.95 V" in the BSTx Undervoltage Lockout description.................................................... 23  
Updated "2.8 A" to "2.7 A" in the High-Side Switch Current Limit description.................................................. 23  
Updated "2.5 A" to "1.5 A" in the Low-Side Switch Current Limit description...................................................23  
Updated "4 ms" to "3.6 ms" in the Faults and Diagnostics section...................................................................23  
Updated "32 ms" to "28.8 ms" in the Faults and Diagnostics section...............................................................23  
Changes from Revision B (May 2020) to Revision C (June 2020)  
Page  
• 增加DAP 封装................................................................................................................................................ 1  
Changes from Revision A (January 2020) to Revision B (May 2020)  
Page  
• 将器件状态从“预告信息”更改为“量产数据”................................................................................................ 1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS92520-Q1  
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
COMP1  
UDIM1  
PGND  
PGND  
VIN1  
1
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
CSN1  
CSP1  
BST1  
SW1  
SW1  
FLT  
COMP2  
UDIM2  
PGND  
PGND  
VIN2  
1
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
CSN2  
CSP2  
BST2  
SW2  
SW2  
MOSI  
MISO  
SCK  
2
2
3
3
4
4
5
5
VIN1  
6
VIN2  
6
GND  
7
LHI  
GND  
7
V5D  
8
SSN  
V5A  
8
V5A  
9
SCK  
V5D  
9
SSN  
GND  
10  
11  
12  
13  
14  
15  
16  
MISO  
MOSI  
SW2  
SW2  
BST2  
CSP2  
CSN2  
GND  
10  
11  
12  
13  
14  
15  
16  
LHI  
VIN2  
VIN1  
FLT  
VIN2  
VIN1  
SW1  
SW1  
BST1  
CSP1  
CSN1  
PGND  
PGND  
UDIM2  
COMP2  
PGND  
PGND  
UDIM1  
COMP1  
5-1. DAD Package 32-Pin HTSSOP (Top-Exposed 5-2. DAP Package 32-Pin HTSSOP (Top-Exposed  
PAD) Top View  
PAD) Top View  
5-1. Pin Functions  
PIN  
NO.  
DAP  
19  
I/O  
DESCRIPTION  
NAME  
DAD  
BST1  
BST2  
30  
P
P
Supply input for high-side MOSFET gate drive circuit. Connect a ceramic capacitor  
between BSTx and SWx pins. An internal diode is connected between V5D and  
BSTx.  
19  
30  
COMP1  
COMP2  
CSN1  
1
16  
1
I/O  
Output of internal transconductance error amplifier. Connect an integral  
compensation network to ensure stability.  
16  
32  
17  
31  
18  
I/O  
17  
32  
18  
31  
I
I
I
I
Negative input () of internal rail-to-rail transconductance error amplifier. Connect  
directly to the negative node of the LED current sense resistor, RCS  
.
CSN2  
CSP1  
Positive input (+) of internal rail-to-rail transconductance error amplifier. Connect  
directly to the positive node of the LED current sense resistor, RCS  
.
CSP2  
Open-drain fault indicator. Connect to V5D with a resistor to create an active low  
fault signal output.  
FLT  
27  
22  
O
G
Signal ground. Return for the internal voltage reference and analog circuits.  
Connect to circuit ground to complete return path.  
GND  
7, 10  
7, 10  
Limp-home and standalone mode LED current reference set point. The voltage can  
be used instead of SPI registers to set LED current. The operation is configured  
through the LHCFG1 register. Setting voltage below 148 mV disables both  
channels and setting the voltage above 200 mV enables both channels.  
LHI  
26  
23  
I
Open-drain SPI slave data output. Connect a 4.7-kΩresistor to V5D digital supply  
voltage.  
MISO  
23  
22  
26  
27  
O
MOSI  
PGND  
SCK  
I
G
I
SPI slave data input  
3, 4, 13, 14 3, 4, 13, 14  
Ground returns for low-side MOSFETs  
SPI clock input  
24  
25  
SSN  
25  
24  
I
SPI chip select input  
SW1  
SW2  
28, 29  
20, 21  
20, 21  
28, 29  
P
P
Switching output of the regulator. Internally connected to both power MOSFETs.  
Connect to the power inductor.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS92520-Q1  
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
NO.  
I/O  
DESCRIPTION  
NAME  
DAD  
DAP  
UDIM1  
UDIM2  
2
15  
I
I
Undervoltage lockout and external PWM dimming input. Connect to VIN through a  
resistor divider to implement input undervoltage protection. Diode couple external  
PWM signal to enable dimming. Do not float.  
15  
9
2
8
Analog supply voltage. Locally decouple to GND using a 100-nF to 1-µF ceramic  
capacitor located close to the controller.  
V5A  
V5D  
P
P
Digital supply voltage. Locally decouple to GND using a 2.2-µF to 4.7-µF ceramic  
capacitor located close to the controller.  
8
9
VIN1  
VIN2  
5, 6  
11, 12  
5, 6  
P
P
Power inputs and connections to high-side MOSFET drain node. Connect to the  
power supply and bypass capacitors CIN. The path from the VIN pin to high  
frequency bypass CIN and PGND must be as short as possible.  
11, 12  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS92520-Q1  
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.5  
0.75  
3.5  
0.3  
MAX  
5.5  
5.5  
70  
UNIT  
V
Supply Voltage  
Boot voltage  
V5A, V5D to GND  
BSTx to SWx  
V
BSTx to PGND  
V
SWx to PGND  
65  
V
Switch node voltage  
SWx to PGND (< 10 µs)  
SWx to PGND (< 10 ns)  
VINx to PGND  
V
V
Drain node voltage  
Current  
65  
1.5  
430  
0.5  
65  
V
CSNx to VINx (< 10 µs)  
GND to CSPx, GND to CSNx (< 10 µs)  
CSNx - VINx  
A
mA  
V
CSPx, CSNx to GND  
CSPx to CSNx  
V
0.5  
0.3  
0.5  
0.3  
0.3  
0.3  
0.3  
0.3  
0.5  
60  
V
CSPx to CSNx (< 100 µs)  
UDIMx to GND  
V
Inputs  
V
COMPx, LHI to GND  
MOSI, SCK, SSN to GND  
MISO, FLT to GND  
TJ  
5.5  
5.5  
5.5  
150  
260  
150  
V
V
Outputs  
V
Junction temperature  
Lead temperature  
Storage temperature  
°C  
°C  
°C  
Soldering, 10 s  
Tstg  
65  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE UNIT  
Human body model (HBM), per AEC Q100-002(1)  
±2000  
±750  
±500  
V(ESD) Electrostatic discharge  
Corner pins (1, 16, 17, and 32)  
Other pins  
V
Charged device model (CDM), per  
AEC Q100-011  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
MAX  
63  
UNIT  
V
VIN  
Input voltage  
Bias supply  
V5A, V5D  
4.5  
5
5.3  
V
V(CSP-  
CSN)  
Sensed inductor current ripple  
20  
mV  
dvCSP/dt  
ILED  
CSP slew-rate  
LED current  
5
1.6  
V/µs  
A
fSW  
Switching frequency  
100  
2200  
kHz  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS92520-Q1  
 
 
 
 
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
6.3 Recommended Operating Conditions (continued)  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
Hz  
fUDIM  
TA  
External PWM dimming frequency  
Ambient temperature  
1000  
125  
°C  
40  
40  
TJ  
Junction temperature  
150  
°C  
6.4 Thermal Information  
DEVICE  
DAD (HTSSOP) DAP (HTSSOP)  
THERMAL METRIC(1)  
UNIT  
32  
56.7  
1.8  
28.1  
1.1  
27.8  
-
32  
26.2  
16.3  
8.3  
RθJA  
Junction-to-ambient thermal resistance(2) (3)  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ΨJT  
8.2  
ΨJB  
RθJC(bot)  
1.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) The package thermal impedance is calculated in accordance with JESD51-7 standard with a 4-layer board and 2 W power dissipation.  
(3) A heatsink or airflow would yield a much better RθJA  
.
6.5 Electrical Characteristics  
-40°C TJ 150°C, V5D = V5A = 5 V, VIN = 24 V, VUDIMx = 5 V, CV5D =CV5A = 4.7 µF CBSTx = 0.1 µF, CCOMPx = 1 nF, RCSx  
100 mΩ, no load on SWx, LHI pin floating (unless otherwise noted)  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
EXTERNAL ANALOG AND GATE DRIVE SUPPLIES (V5D, V5A)  
Rising  
4.10  
4.00  
100  
4
4.26  
V
VV5D,A(UVLO) V5D and V5A UVLO threshold  
Falling  
3.84  
V
Hysteresis  
mV  
mA  
mA  
nA  
µA  
μA  
IV5A(STBY)  
IV5D(STBY)  
IV5A(SLEEP)  
IV5D(SLEEP)  
Analog supply stand-by current  
Gate drive supply stand-by current  
Analog supply sleep state current  
Gate drive supply sleep state current  
VUDIM1 = VUDIM2 = 0 V  
VUDIM1 = VUDIM2 = 0 V  
5
1.3  
300  
24  
0.9  
16  
17  
IVINx(SLEEP) VIN pin sleep state current  
IV5D(SW) Gate drive supply switching current  
VINx = 15 V  
2
4
VV5D = 5 V, fSW = 1 MHz, CH1  
and CH2 switching  
12  
20  
mA  
HIGH-SIDE FET (SWx, BOOTx)  
VINx = 6 V, VBSTx = 11 V, IHSx  
100 mA  
=
RDSx(ON-HS) High-side MOSFET on resistance  
227  
2.95  
184  
250  
440  
3.30  
250  
300  
mΩ  
V
Falling, VINx = 6 V, VSWx = 0 V  
2.60  
120  
200  
VBSTx(UV)  
Bootstrap UVLO threshold  
Hysteresis, VINx = 6 V, VSWx = 0  
V
mV  
µA  
IQ(xBST)  
Bootstrap pin quiescent current  
VBSTx = 5 V, VSWx = 0 V  
VINx = 6 V, ILSx = 100 mA  
VINx = 6 V  
LOW-SIDE FET (SWx)  
RDSx(ON-LS) Low-side MOSFET on resistance  
HIGH-SIDE FET CURRENT LIMIT  
227  
2.7  
440  
3.5  
mΩ  
IHSx(ILIM)  
High-side current limit threshold  
2.1  
A
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS92520-Q1  
 
 
 
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
-40°C TJ 150°C, V5D = V5A = 5 V, VIN = 24 V, VUDIMx = 5 V, CV5D =CV5A = 4.7 µF CBSTx = 0.1 µF, CCOMPx = 1 nF, RCSx  
100 mΩ, no load on SWx, LHI pin floating (unless otherwise noted)  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
High-side current sense leading-edge  
blanking period  
tHSx(LEB)  
tHSx(RES)  
VINx = 6 V  
VINx = 6 V  
35  
60  
80  
ns  
Current limit response time  
20  
ns  
LOW-SIDE FET CURRENT LIMIT  
ILSx(ILIM)  
tLSx(LEB)  
Low-side sinking current limit threshold VINx = 6 V  
1.00  
1.50  
76  
2.15  
A
Low-side current sense leading-edge  
VINx = 6 V  
ns  
blanking period  
OSCILLATOR  
fOSC  
Oscillator frequency  
9.2  
10.8  
12.4  
2.52  
MHz  
ANALOG TO DIGITAL CONVERTER (VDD, VIN1, VIN2, VCSN1, VCSN2, LHI, TEMP)  
tCONV  
ADC conversion time  
ADC full scale  
18  
2.45  
2.4  
µs  
V
VADC(FS)  
qADC  
2.38  
ADC LSB  
mV  
ADCINL  
ADCDNL  
qTEMP  
Integral nonlinearity  
Differential nonlinearity  
Temperature LSB  
2
2
LSB  
LSB  
count  
count  
count  
2  
2  
1.4  
414  
553  
0.037  
0.45  
1
TJ = 25 °C  
ADCTEMP  
ADC measurement output  
TJ = 125 °C  
KVINx  
KV5D  
KLHI  
VINx sense resistor divider ratio  
V5D sense resistor divider ratio  
LHI sense resistor divider ratio  
ANALOG ADJUST SETTING AND CURRENT SENSE AMPLIFIER (CSPx, CSNx)  
VDACx(FS)  
qDAC  
DAC full scale  
2.38  
2.33  
1  
2.45  
2.40  
2.52  
2.47  
1
V
DAC resolution  
Integral nonlinearity  
mV  
LSB  
DACxINL  
CHxADJ stepped (63-64,  
127-128, 255-256, 511-512,  
1022-1023)  
DACxDNL  
Differential nonlinearity  
0.85  
LSB  
0.85  
VCSPx = 6 V,  
ILED_REF_DACx = 1023  
167.5  
83.0  
29.0  
6.5  
173.0  
88.5  
34.5  
12.5  
178.5  
94.0  
40.0  
18.5  
mV  
mV  
mV  
mV  
VCSPx = 6 V,  
ILED_REF_DACx = 512  
V(CSPx-CSNx) Current sense threshold  
VCSPx = 6 V,  
ILED_REF_DACx = 192  
VCSPx = 6 V,  
ILED_REF_DACx = 63  
gmx(LV)  
Level shift amplifier transconductance VINx = 63 V, VCSNx = 5 V  
50  
2.65  
2.45  
µA/V  
V
Rising  
Output short circuit detection threshold  
Falling  
VCSPx(SHT)  
V
VALLEY CURRENT COMPARATOR (CSPx, CSNx)  
VVALx(OS) Systematic comparator offset voltage  
ON-TIME GENERATOR  
VCSNx < 2.4 V  
VINx = 4.5 V  
17  
mV  
ns  
tONx(MIN)  
Minimum on-time.  
87  
105  
123  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS92520-Q1  
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
-40°C TJ 150°C, V5D = V5A = 5 V, VIN = 24 V, VUDIMx = 5 V, CV5D =CV5A = 4.7 µF CBSTx = 0.1 µF, CCOMPx = 1 nF, RCSx  
100 mΩ, no load on SWx, LHI pin floating (unless otherwise noted)  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VINx = 50 V, VCSPx = 38 V,  
tonx_DAC = 39  
295  
375  
460  
ns  
tONx  
Programmed on-time  
VINx = 50 V, VCSPx = 25 V,  
tonx_DAC = 7  
900  
44  
1155  
57  
1400  
ns  
ns  
OFF-TIME GENERATOR  
tOFFx(MIN) Minimum off-time  
VINx = 4.5 V  
68  
PWM DIMMING and PROGRAMMABLE UVLO INPUT (DIMx)  
Rising  
1.22  
1.27  
V
V
VUDIMx(EN)  
UDIM input threshold  
Falling  
1.075  
8
1.120  
UDIM source current (UVLO  
hysteresis)  
IUDIMx(UVLO)  
VUDIMx = 1.5 V  
10  
12  
µA  
ERROR AMPLIFIER (COMPx)  
gM Transconductance  
VINx = 63 V  
450  
45  
µA/V  
µA  
VINx = 63 V, V(CSPxCSNx) = 0 V,  
CHxIADJ = 578  
ICOMPx(SRC) COMPx current source capacity  
ICOMPx(SINK) COMPx current sink capacity  
VINx = 63 V, V(CSPxCSNx) = 200  
mV, CHxIADJ = 578  
45  
3
µA  
EAx(BW)  
EA(VD)  
EA(CM)  
Bandwidth  
Unity gain  
MHz  
mV  
V
Input differential sense range  
Input common mode range  
225  
225  
VINx = 63 V  
VUDIMx = 0 V  
Rising  
0
VINx 0.5  
ICOMPx(LKG) COMPx leakage current  
2.5  
2.45  
250  
3.2  
nA  
V
VCOMPx(ST) COMPx startup threshold  
Hysteresis  
Rising  
mV  
V
3.0  
COMPx over-voltage detection  
VCOMPx(OV)  
threshold  
Hysteresis  
60  
mV  
RCOMPx(DCH) COMPx discharge FET resistance  
VCOMPx(RST) Reset voltage  
230  
100  
Ω
Falling  
mV  
LIMP HOME CURRENT SET POINT (LHI)  
ILHI  
Source current  
VIN = 6 V  
8
174  
119  
10  
200  
148  
12  
227  
176  
µA  
mV  
mV  
Rising, VIN = 6 V  
Falling, VIN = 6 V  
VLHI(SD)  
Shutdown threshold  
FAULT INDICATOR (FLT)  
R(FLT)  
TOC  
Fault pin pull-down resistance  
Hiccup retry delay time  
3
7
Ω
3.6  
ms  
SERIAL PERIPHERAL INTERFACE (MOSI, MISO, SCK, SSN)  
VOL-MISO  
Output low voltage threshold  
IMISO = 10 mA  
IMISO = 10 mA  
Rising  
0.5  
50  
V
RDS-MISO  
Ω
V
VINPUT(RISE)  
VINPUT(FALL)  
1.8  
Logic threshold (SSN, SCK, MOSI)  
Falling  
0.8  
V
Falling edge of SSN to 1st SCK  
rising edge  
tSS-SU  
tSS-H  
tSS-HI  
tSCK  
SSN setup time  
SSN hold time  
500  
ns  
ns  
Falling edge of 16th SCK to SSN  
rising edge  
250  
Time SSN must remain high  
between transactions  
SSN high time  
SCK period  
1000  
500  
ns  
ns  
Clock period  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS92520-Q1  
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
-40°C TJ 150°C, V5D = V5A = 5 V, VIN = 24 V, VUDIMx = 5 V, CV5D =CV5A = 4.7 µF CBSTx = 0.1 µF, CCOMPx = 1 nF, RCSx  
100 mΩ, no load on SWx, LHI pin floating (unless otherwise noted)  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DSCK  
tSU  
SCK duty cycle  
Clock duty cycle  
40  
60  
%
MOSI setup time  
MOSI hold time  
MOSI valid to rising edge SCK  
MOSI valid after rising edge SCK  
125  
140  
ns  
tH  
ns  
Time to tri-state MISO after SSN  
rising edge  
tHI_Z  
MISO tri-state time  
110  
320  
320  
ns  
ns  
Time to place valid "0" on MISO  
after falling SCK edge  
tMISO_HL  
MISO valid high-to-low  
Time to tri-state MISO after  
falling SCK edge  
tMISO_LH  
tZO_HL  
MISO valid low-to-high  
320+tRC  
320  
ns  
ns  
MISO drive time high-to-low  
SSN Falling Edge to MISO falling  
THERMAL SHUTDOWN  
TSD  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
175  
16  
°C  
°C  
TSD(HYS)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS92520-Q1  
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
6.6 Typical Characteristics  
TA = TJ = 25°C, V5D = V5A = 5 V, VIN = 24 V, VUDIMx = 5 V, CV5D = CV5A = 4.7 µF CBSTx = 0.1 µF, CCOMPx = 1 nF, RCSx = 100  
mΩ, no load on SWx, LHI pin floating (unless otherwise noted)  
174.5  
10  
7.5  
5
174  
173.5  
173  
2.5  
0
-2.5  
-5  
172.5  
172  
-7.5  
-10  
171.5  
-40 -20  
0
20  
40  
60  
Temperature (°C)  
80 100 120 140 160  
100 200 300 400 500 600 700 800 900 1000 1100  
CHxIADJ Count  
VCSN = 3 V  
VCSN = 3 V  
VIN = 60 V  
6-1. V(CSPCSN) Current Sense Threshold vs Temperature  
6-2. V(CSPCSN) Current Sense Error vs IADJ Count  
140  
120  
100  
80  
2.25  
2.2  
7
6
5
4
3
2
1
0
2.15  
2.1  
60  
40  
2.05  
2
20  
0
1.95  
1.9  
VCSN  
ICSN  
-20  
-40  
0
0.25 0.5 0.75  
1
1.25 1.5 1.75  
CSN Voltage, VCSN (V)  
2
2.25 2.5  
0
200  
400  
600  
IADJ Count  
800  
1000  
1200  
CHxEN = 0, CHxIADJ = 0  
0 V < VCSN < 2.5 V  
ChxEN = 0  
6-3. CSN Source Current vs CSN Voltage  
6-4. CSN Voltage and Leakage Current vs IADJ Count  
24  
4.22  
1 LED  
3 LED  
6 LED  
9 LED  
12 LED  
15 LED  
Rising  
Falling  
21  
18  
15  
12  
9
4.18  
4.14  
4.1  
4.06  
4.02  
3.98  
3.94  
3.9  
6
3
0
-40 -20  
0
20  
40  
Temperature (°C)  
60  
80 100 120 140 160  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
Average Inductor Current (A)  
0.8  
0.9  
1
6-6. V5D,A POR Threshold vs Temperature  
L = 68 µH  
VIN = 60 V  
6-5. Minimum Ripple Voltage vs Average Inductor Current  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS92520-Q1  
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
TA = TJ = 25°C, V5D = V5A = 5 V, VIN = 24 V, VUDIMx = 5 V, CV5D = CV5A = 4.7 µF CBSTx = 0.1 µF, CCOMPx = 1 nF, RCSx = 100  
mΩ, no load on SWx, LHI pin floating (unless otherwise noted)  
19.8  
19.5  
19.2  
18.9  
18.6  
18.3  
18  
450  
425  
400  
375  
350  
325  
300  
275  
250  
225  
200  
175  
150  
17.7  
17.4  
17.1  
16.8  
16.5  
16.2  
-40 -20  
0
20  
40  
60  
Temperature (°C)  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
Temperature (°C)  
80 100 120 140 160  
6-7. V5D Sleep Current vs Temperature  
6-8. High Side MOSFET On Resistance vs Temperature  
2.965  
2.955  
2.945  
2.935  
2.925  
2.915  
2.905  
2.895  
2.885  
2.875  
220  
215  
210  
205  
200  
195  
190  
185  
180  
175  
170  
165  
160  
155  
-40 -20  
0
20  
40  
Temperature (°C)  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
Temperature (°C)  
60  
80 100 120 140 160  
6-9. Bootstrap UVLO Threshold vs Temperature  
6-10. Bootstrap UVLO Hysteresis vs Temperature  
3.2  
425  
400  
375  
350  
325  
300  
275  
250  
225  
200  
175  
150  
3.1  
3
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
-40 -20  
0
20  
40  
Temperature (°C)  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
Temperature (°C)  
60  
80 100 120 140 160  
6-11. High-Side Current Limit Threshold vs Temperature  
6-12. Low-Side MOSFET On Resistance vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS92520-Q1  
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
TA = TJ = 25°C, V5D = V5A = 5 V, VIN = 24 V, VUDIMx = 5 V, CV5D = CV5A = 4.7 µF CBSTx = 0.1 µF, CCOMPx = 1 nF, RCSx = 100  
mΩ, no load on SWx, LHI pin floating (unless otherwise noted)  
2
1.8  
1.6  
1.4  
1.2  
1
10.875  
10.85  
10.825  
10.8  
10.775  
10.75  
10.725  
10.7  
10.675  
10.65  
10.625  
10.6  
10.575  
0.8  
-40 -20  
0
20  
40  
Temperature (°C)  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
Temperature (°C)  
60  
80 100 120 140 160  
6-14. Oscillator Frequency vs Temperature  
6-13. Low-Side Sinking Current Limit Threshold vs  
Temperature  
2.452  
2.451  
2.45  
2.452  
2.451  
2.45  
2.449  
2.448  
2.447  
2.446  
2.445  
2.449  
2.448  
2.447  
2.446  
2.445  
-40 -20  
0
20  
40  
60  
Temperature (°C)  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
Temperature  
80 100 120 140 160  
6-15. ADC Full Scale vs Temperature  
6-16. DAC Full Scale vs Temperature  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
64  
62  
60  
58  
56  
54  
52  
50  
48  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
Temperature (°C)  
60  
80 100 120 140 160  
Temperature (°C)  
6-17. Minimum On-time vs Temperature  
6-18. Minimum Off-time vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS92520-Q1  
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
TA = TJ = 25°C, V5D = V5A = 5 V, VIN = 24 V, VUDIMx = 5 V, CV5D = CV5A = 4.7 µF CBSTx = 0.1 µF, CCOMPx = 1 nF, RCSx = 100  
mΩ, no load on SWx, LHI pin floating (unless otherwise noted)  
1.28  
1.26  
1.24  
1.22  
1.2  
3.24  
3.23  
3.22  
3.21  
3.2  
Rising  
Falling  
1.18  
1.16  
1.14  
1.12  
1.1  
3.19  
3.18  
3.17  
3.16  
1.08  
1.06  
-40 -20  
0
20  
40  
60  
Temperature (°C)  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
Temperature (°C)  
80 100 120 140 160  
6-19. UDIM Input Threshold vs Temperature  
6-20. COMP Overvoltage Detection Threshold vs  
Temperature  
0.975  
0.95  
30  
27.5  
25  
0.925  
0.9  
22.5  
20  
17.5  
15  
0.875  
0.85  
12.5  
10  
0.825  
3 LEDs  
6 LEDs  
9 LEDs  
12 LEDs  
7.5  
5
0.8  
0.775  
0.75  
2.5  
0
0
200 400 600 800 1000 1200 1400 1600 1800  
LED Current (mA)  
-40 -20  
0
20  
40  
Temperature (°C)  
60  
80 100 120 140 160  
VIN = 60 V  
fSW = 437 kHz  
6-21. COMP Leakage Current vs Temperature  
6-22. Efficiency vs LED Current  
0.9675  
0.967  
0.9665  
0.966  
0.9655  
0.965  
0.9645  
0.964  
0.9635  
0.963  
ILED = 750 mA  
ILED = 1 A  
0.9625  
0.962  
150  
200  
250  
300  
350  
400  
Switching Frequency (kHz)  
450  
500  
550  
VCSN = 45 V  
VIN = 60 V  
6-23. Efficiency vs Switching Frequency  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS92520-Q1  
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS92520-Q1 is a dual synchronous buck LED driver with a 4.5-V to 65-V input voltage range. It can deliver  
up to 1.6 A of continuous current per channel and power two independent strings of one to 16 series-connected  
LEDs. The device implements an adaptive on-time current regulation control technique to achieve fast transient  
response. This architecture uses a comparator and a one-shot on-timer that varies inversely with input and  
output voltage to maintain a near-constant frequency. The integrated low offset rail-to-rail error amplifier enables  
closed-loop regulation of LED current and ensures better than 4% accuracy over a wide input, output, and  
temperature range.  
The LED current reference is set by the 10-bit IADJ DAC and is programmed by the CHxIADJ register to achieve  
over a 16:1 linear analog dimming range. Pulse width modulation (PWM) dimming of the LED current is achieved  
by either programming the internal PWM generator or by modulating the duty cycle of external voltage signal at  
UDIMx input. When enabled, the internal PWM generator sets the LED current duty cycle based on the 10-bit  
CHxPWM command. The external UDIMx input acts as an enable and directly controls the LED current. This  
device optimizes the inductor current response and is capable of achieving over a 1000:1 PWM dimming ratio.  
The device incorporates an enhanced programmable fault feature including the following:  
Cycle-by-cycle switch overcurrent limit  
Input undervoltage protection  
Boot undervoltage protection  
Comp overvoltage warning  
Thermal warning  
LED short circuit indication  
In addition, thermal shutdown (TSD) protection is implemented to limit the junction temperature at 175°C  
(typical). For each fault, there is an associated fault read-bit in the status registers that can be easily accessed  
via SPI read commands.  
The TPS92520-Q1 includes a communication watchdog timer that enables standalone and limp-home (LH)  
function. When enabled, the watchdog timer monitors the SPI communication during start-up and normal  
operation. Communication failure at start-up forces the device in stand-alone mode operation. In this mode, the  
operation of each channel is controlled by UDIMx and LHI inputs while the SPI communication is disabled. Limp-  
home (LH) mode is activated on detection of communication failure during normal operation. In LH mode, the  
device operation is controlled by the limp-home registers that are initialized and loaded during the device start-up  
sequence.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS92520-Q1  
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
7.2 Functional Block Diagram  
V5D  
BST1  
VIN1  
+
UVLO  
por  
clk_m  
Oscillator  
Rising: 4.1 V  
Falling: 4.0 V  
BST  
UVLO  
uvlo  
Hys: 100 mV  
Digital Supply  
ch1_en  
V5A  
Analog Supply  
Sleep Enable  
slp_o  
LEB  
bstuv1  
lsilim1  
hsilim1  
VBG  
2VBG  
Switch  
Control  
and  
Switch  
Fault  
slp_o  
slp_o  
Bandgap  
VIN1  
HS Current  
Limit  
Circuit  
V5A  
+
Thermal  
Sensor  
VBST(UV)  
SW1  
Logic  
LHI  
VLHI  
V5A  
+
LS Current  
Limit  
Circuit  
VBG  
pwm1  
+
V5D  
LEB  
UDIM1  
UDIM2  
ch1_en  
ton1  
UVLO &  
PWM  
INPUT  
VIN1  
PGND  
On Time  
Control  
VIN1  
ton1  
udim1  
CSP1  
CSN1  
bstuv1  
lsilim1  
hsilim1  
toffmin1  
Valley Current  
Control  
2VBG  
MOSI  
SCK  
Toffmin1  
V-I Converter  
5 V  
Logic  
IO  
VIADJ1  
VCSN1  
+
+
iadj1  
VIADJ1  
PWM  
DAC  
IADJ1  
SSN  
open1  
LED Fault  
Detection  
short1  
adc_sel  
Digital Logic adcout  
ADC  
VIN1  
MISO  
COMP1  
VIN2  
VCSN1  
VCSN2  
V5D  
VLHI  
VTMP  
fault  
Channel 1  
FLT  
BST2  
VIN2  
fpin  
ch2_en  
open2  
short2  
ton2  
udim2  
open1  
short1  
open2  
short2  
uvlo  
SW2  
bstuv2  
lsilim2  
hsilim2  
toffmin2  
PGND  
CSP2  
CSN2  
COMP2  
Channel 2  
por  
slp  
ts1  
ts2  
iadj2  
DAC  
IADJ2  
VIADJ2  
GND  
7.3 Feature Description  
7.3.1 Buck Converter Switching Operation  
The following operating description of the TPS92520-Q1 refers to the Functional Block Diagram and the  
waveforms in 7-1. The main control loop of the TPS92520-Q1 is based on an adaptive on-time pulse width  
modulation (PWM) technique that combines a constant on-time control with an inductor valley current sense  
circuit for pseudo-fixed frequency operation. This proprietary control technique enables closed-loop regulation of  
LED current and fast dynamic response necessary to meet the requirements for LED pixel control and LED  
matrix beam applications.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS92520-Q1  
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
V(CSP-CSN)  
IL(PK) ìRCS  
V
IN - VCSN  
L
VCSN  
L
ìRCS  
ìRCS  
VVAL  
t
VSW  
VIN  
0
t
tON  
tOFF  
tSW  
7-1. Adaptive On Time Control Buck Converter Waveforms  
In steady state, the high-side MOSFET is turned on at the beginning of each cycle. The on-time duration of this  
MOSFET is controlled by an internal one-shot timer and the high-side MOSFET is turned off after the timer  
expires. The one-shot timer duration is set by the output voltage measured at the CSP pin, VCSP, and the input  
voltage measured at the VIN pin, VIN, to maintain a pseudo-fixed frequency. During the on-time interval, the  
inductor current increases with a slope proportional to the voltage applied across its terminals (VIN VCSP).  
The low-side MOSFET is turned on after a fixed deadtime and the inductor current then decreases with the  
constant slope proportional to the output voltage, VCSP. Inductor current measured by the external sense resistor  
is compared to the valley threshold, VVAL, by an internal high-speed comparator. This MOSFET is turned off and  
the one-shot timer is initiated when the sensed inductor current falls below the valley threshold voltage. The  
high-side MOSFET is turned on again after a fixed deadtime.  
The internal rail-to-rail error amplifier sets the valley threshold voltage and regulates the average inductor current  
based on a reference value set by CHxIADJ-DAC. A simple integral loop compensation circuit consisting of a  
capacitor connected from the COMP pin to GND provides a stable and high-bandwidth response. As the inductor  
current is directly sensed by an external resistor, the device operation is not sensitive to the ESR of the output  
capacitors and is compatible with common multi-layered ceramic capacitors (MLCC).  
7.3.2 Switching Frequency and Adaptive On-Time Control  
The TPS92520-Q1 uses an adaptive on-time control scheme and does not have a dedicated on-board oscillator.  
The one-shot timer incorporates a 6-bit current steering DAC and is programmed by the CHxTON registers. The  
on-time is calculated internally using 方程式 1 and is inversely proportional to the measured input voltage, VIN,  
and proportional to the measured CSP voltage, VCSP  
.
4ì10-8 ìCHxTON 5 : 0 +18ì10-6  
[
]
VCSP  
tON  
=
ì
CHxTON 5 : 0 +1  
V
IN  
[
]
(1)  
Given the duty ratio of the buck converter is VCSP / VIN, the switching period, TSW, remains nearly constant over  
all operating points. Use 方程2 to calculate the switching period.  
4ì10-8 ìCHxTON 5 : 0 +18ì10-6  
V
[
]
IN  
TSW = tON  
ì
=
VCSP  
CHxTON 5 : 0 +1  
[
]
(2)  
Use 方程3 to calculate the switching frequency.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS92520-Q1  
 
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
CHxTON 5 : 0 +1  
[
]
fSW  
=
4ì10-8 ìCHxTON 5 : 0 +18ì10-6  
[
]
(3)  
TI recommends a switching frequency setting between 110 kHz and 2.2 MHz, corresponding to a decimal value  
of the CHxTON register ranging from 1 to 43.  
7.3.3 Minimum On-Time, Off-Time, and Inductor Ripple  
Buck converter operation is impacted by minimum on-time, minimum off-time, and minimum peak-to-peak  
inductor ripple limitations. The converter reaches the minimum on-time of 105 ns (typ) when operating with high  
input voltage and low-output voltage. In this control scheme, the off-time continues to increase and the switching  
frequency reduces to regulate the inductor current and LED current to the desired value.  
VOUT(MIN)  
fSW(MIN)  
=
; tON = tON(MIN)  
tON(MIN) ì V  
IN(MAX)  
(4)  
The converter reaches the minimum off-time of 57 ns (typ) when operating in dropout (low input voltage and high  
output voltage). As the on-time and off-time are fixed, the duty cycle is constant and the buck converter operates  
in open-loop mode. The inductor current and LED current are not in regulation. The CHxTOFFMIN bit is set to  
indicate operation at maximum duty cycle. The converter continues to switch unless disabled by resetting the  
CHxEN bit. Upon detection of a minimum off-time operation, the device disables the error amplifier and  
disconnects the COMP pin to maintain charge on the compensation network. This ensures fast response with  
minimum LED current overshoot as the converter recovers from dropout condition.  
The behavior and response of valley comparator is dependent on sensed peak-to-peak voltage ripple,  
ΔV(CSP-CSN), and is a function of current sense resistor, RCS, and peak-to-peak inductor current ripple,  
ΔiL(PK-PK). To ensure periodic switching, the sensed peak-to-peak ripple needs to exceed the minimum value,  
specified in Minimum Ripple Voltage vs Average Inductor Current. At high (near 100%) or low (near 0%) duty  
cycles, the inductor current ripple may not be sufficient to ensure periodic switching. Under such operating  
conditions, the converter transitions from periodic switching to a burst sequence, forcing multiple on-time and off-  
time cycles at a rate higher than the programmed frequency. Although the converter may not operate in a  
periodic manner, the closed-loop control continues regulating the average LED current with a larger ripple value  
corresponding to higher peak-to-peak inductor ripple. TI recommends choosing an inductor, output capacitor,  
and switching frequency to ensure minimum sensed peak-to-peak ripple voltage under nominal operating  
condition is greater than 20 mV. The Application and Implementation section summarizes the detailed design  
procedure.  
7.3.4 LED Current Regulation and Error Amplifier  
The reference voltage, VIADJ, set by the 10-bit CHxIADJ-DAC, is internally scaled by a gain factor of 1/14 via a  
resistor network. An internal rail-to-rail error amplifier generates an error signal proportional to the difference  
between the scaled reference voltage (VIADJ / 14) and the inductor current measured by the differential voltage  
drop between CSP and CSN, V(CSP-CSN). This error drives the COMP pin voltage, VCOMP, and directly controls  
the valley threshold of the inductor current. Zero average DC error and closed-loop regulation is achieved by  
implementing an integral compensation network consisting of a capacitor connected from the output of the error  
amplifier to GND. As a good starting point, TI recommends a capacitor value between 1 nF and 10 nF between  
the COMP pin and GND. The choice of compensation network must ensure a minimum of 60° of phase margin  
and 10 dB of gain margin. The Application and Implementation section summarizes the detailed design  
procedure.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS92520-Q1  
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
CSP1  
CSN1  
Current Sense Amplifier  
500uS  
Valley Current  
Control  
10k  
10k  
+
COMP1  
2.45 V  
Division by 14  
V-I Converter  
+
VIADJ  
DAC  
IADJ1  
0 V to 2.45 V  
140k  
7-2. Closed-loop LED Current Regulation  
LED current is dependent on the current sense resistor, RCS. Use 方程5 to calculate the LED current.  
V CSP-CSN  
VDAC(FS)  
1024  
CHxIADJ 9 : 0  
[
V
]
(
)
IADJ  
ILED  
=
=
=
ì
RCS  
14ìRCS  
14ìRCS  
(5)  
LED current accuracy is a function of the tolerance of the external sense resistor, RCS, and the variation in the  
sense threshold, V(CSP-CSN), caused by internal mismatch and temperature dependency of the analog  
components. The TPS92520-Q1 incorporates low offset rail-to-rail amplifiers, and is capable of achieving LED  
current accuracy of ±4% over common-mode range and a junction temperature range of 40°C to 150°C. The  
internal offset of the device can be measured and compensated using the lower LSBs of the 10-bit CHxIADJ-  
DAC. Therefore, the error can be further reduced and the LED current accuracy can be improved to be better  
than ±3%.  
7.3.5 Start-up Sequence  
The start-up circuit allows the COMP pin voltage to gradually increase, thus reducing the LED current overshoot  
and current surges. The switching operation is initiated after the COMP pin voltage exceeds 2.45 V. A 250-mV  
hysteresis window allows the device to operate when COMP voltage is within the expected operating range of  
2.2 V to 2.7 V. Switching is disabled on detection of low COMP voltage to avoid excessive negative inductor  
current.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS92520-Q1  
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
VCOMP  
2.45  
250 mV  
t
VSW  
VIN  
0
t
ILED  
t
7-3. Soft-Start Sequence  
The duration of soft start, tss, depends on the size of the compensation capacitor and the error amplifier source  
current, ICOMP(SRC)  
.
2.45ìCCOMP  
ICOMP(SRC)  
tSS  
=
(6)  
The source current, ICOMP(SRC) is a function of the transconductance, gM, of the error amplifier and error  
generated between the reference and the current sensed voltage.  
V
IADJ  
ICOMP(SRC) = gM ì  
- V  
(CSP-CSN) ÷  
«
14  
(7)  
With no current flowing through the LEDs, the soft start duration depends on the choice of compensation  
capacitor, CCOMP, and the reference voltage, VIADJ  
.
The CHxCOMPOV bit in the STATUS1 register is set when the COMP voltage deviates from the nominal range  
and exceeds 3.2 V. This indicates a fault condition where the converter is operating in open-loop and the LED  
current is out of regulation. The corresponding channel can be disabled by resetting the CHxEN bit via a SPI  
command or controlling the UDIMx input.  
7.3.6 Analog Dimming and Forced Continuous Conduction Mode  
Analog dimming is accomplished by the SPI interface through the adjustment of the 10-bit CHxIADJ registers.  
The TPS92520-Q1 improves the linear range of analog dimming by supporting forced continuous conduction  
mode of operation. With synchronous MOSFETs, the inductor current is allowed to go negative for part of the  
switching cycle, thus enabling linear dimming with over 16:1 dimming range.  
7.3.7 External PWM Dimming and Input Undervoltage Lockout (UVLO)  
The UDIM pin is a dual-function input that features an accurate 1.22-V threshold with programmable hysteresis  
as shown in 7-4. This pin functions as both the external PWM dimming input for the LEDs and as a VIN  
UVLO. When the rising pin voltage exceeds the 1.22-V threshold, 10 µA (typical) of current is driven out of the  
UDIM pin into the resistor divider providing programmable hysteresis.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS92520-Q1  
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
Standard  
PWM  
VIN  
V5A  
RUV2  
VBG  
pwm  
10 A  
+
DDIM  
RUVH  
UDIM  
QDIM  
RUV1  
Inverted  
PWM  
7-4. External PWM Dimming  
The brightness of LEDs can be varied by modulating the duty cycle of the signal directly connected to the UDIM  
input. In addition, either an n-channel MOSFET or a Schottky diode can be used to couple an external PWM  
signal when using UDIM input in conjunction with UVLO functionality. With an n-channel MOSFET, the  
brightness is proportional to the negative duty cycle of the external PWM signal. With an Schottky diode, the  
brightness is proportional to the positive duty cycle of the external PWM signal.  
When using the UDIM pin for UVLO and PWM dimming concurrently, the UVLO circuit can have an extra resistor  
to set the hysteresis. This allows the standard resistor divider to have smaller values, minimizing PWM delays. TI  
recommends at least 1 V of hysteresis when PWM dimming if you are operating near the UVLO threshold. Use  
方程8 to define the rising threshold.  
RUV1 + RUV2  
RUV1  
V
= VUDIM(RISE) ì  
IN(RISE)  
(8)  
Use 方程9 to define the hysteresis.  
UVLO only:  
VHYS = IUDIM(UVLO) ìRUV2  
(9)  
PWM and UVLO:  
«
RUVH ì RUV1 + RUV2  
(
)
VHYS = IUDIM(UVLO) ì R  
+
÷
÷
UV2  
RUV1  
(10)  
7.3.8 Internal PWM Dimming  
The TPS92520-Q1 incorporates an internal 10-bit counter to independently configure PWM dimming for each  
channel. To use the internal PWM, set the CHxINTPWM bit in the SYSCFG1 register. The duty cycle of the  
internal PWM can be set using a 10-bit value in the CHxPWML and CHxPWMH registers. Since CHxPWM is a  
10-bit value, a PWM duty cycle update can require two SPI writes, one to the CHxPWMH and another to the  
CHxPWML register. In order to prevent transferring unintentional values, the contents of the two registers are  
only transferred to the CHxPWM counter upon the write to the CHxPWML register. Therefore, to update the  
PWM duty cycle, it is required to write a value to the CHxPWMH first, and in a consecutive command, write a  
value to the CHxPWML register. In addition, to avoid corrupting the progress of the current PWM duty cycle, the  
update from the CHxPWM register to the CHxPWM counter occurs two PWMCLK counts before the end of each  
PWM period (at the count of 1022).  
The clock to the 10-bit PWM counter is set by a 3-bit value in the PWMDIV register. 方程式 11 and 方程式 12  
show the relationship between the PWMCLK and PWM frequency with a 10.8-MHz oscillator, CLKM.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS92520-Q1  
 
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
CLKM  
PWMCLK  
=
PWMDIV  
(11)  
(12)  
PWMCLK  
PWMFREQ  
=
1024  
For example, a PWMDIV[2:0] register setting of decimal value 5 sets the division ratio to 24 and results in a  
PWM frequency of 439 Hz. Refer to 7.6.3.7 for more details.  
The device can be controlled through the input of the UDIM independent of the internal PWM setting. The signal  
at the UDIM input is ANDed with the internal PWM to generate a combined output which controls the switching  
operation. Therefore, each channel can be independently disabled based on the external UDIM signal, even  
when the device is configured to operate based on internal PWM settings.  
7.3.9 Shunt FET Dimming or Matrix Beam Application  
VCSN  
VLED12  
VLED1  
t
V(CSP-CSN)  
VVAL  
0
t
7-5. Shunt FET Dimming Transient Response  
The TPS92520-Q1 is compatible with shunt FET dimming and LED Matrix Manager devices. The fast dynamic  
response and adaptive on-time control topology ensure near ideal current source behavior with minimum  
inductor current overshoot or undershoot. In contrast to constant off-time control, the control loop is able to  
maintain LED current regulation under shorted output condition. The off-time of the converter naturally adapts to  
the inductor slope and valley command while keeping the average LED current constant. 7-5 shows the  
shunt-FET dimming transient with all LEDs switched from on to off.  
The device behavior is impacted by the falling slew-rate of CSN node, VCSN. A large slew-rate in conjunction  
with the parasitic capacitances from CSP and CSN to GND results in differential voltage forcing the converter to  
burst with minimum on-time and minimum off-time. To avoid switch node bursting TI recommends a maximum  
slew-rate (dv/dt) of 5 V/µs.  
7.3.10 Bias Supply  
The device is powered by an external 5-V supply connected to V5D and V5A pins. Operation is enabled when  
V5D and V5A exceed the 4.1-V (typ) rising threshold and is disabled when either V5D or V5A drops below the 4-  
V (typ) falling threshold. The comparator provides 100-mV of hysteresis to avoid chatter during transitions. The  
V5D supply powers the internal digital logic, a 10.8-MHz oscillator, and the high-side and low-side gate driver  
circuits. The V5A supply powers the analog-to-digital converter (ADC), the digital-to-analog converters (DACs),  
and the sensitive analog circuits. The two bias pins can be connected together on the PCB or through a series  
10-Ωresistor between V5D and V5A with 5-V external supply connected directly to the V5D pin. TI recommends  
a capacitor from each pin to GND . The recommended range for the bypass capacitor from V5D pin to ground is  
between 1 µF and 4.7 µF. The recommended range from the V5A pin to ground is between 100 nF and 1 µF.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS92520-Q1  
 
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
The bypass capacitor from V5D to GND must be 10 times larger than the bootstrap capacitor, CBST, to support  
proper operation during PWM dimming. The voltage on V5D and V5A must never exceed 5.5 V.  
The power cycle (PC) bit indicates a fault condition when both V5D and V5A are below the 4 V. At power up, the  
PC bit is set and must be cleared before enabling the operation of individual channels. Reading the STATUS3  
register clears the PC bit.  
In device sleep state, the V5A input is internally disconnected to reduce power consumption. As the internal  
voltage drops below the 4-V threshold, the V5AUV bit is set in the STATUS3 register to indicate bias  
undervoltage condition. The fault clears when the device is programmed to exit the sleep state and assumes  
normal operation. See the Device Functional Modes section for more details.  
7.3.11 Bootstrap Supply  
The TPS92520-Q1 contains both high-side and low-side N-channel MOSFETs. The high-side gate driver works  
in conjunction with an internal bootstrap diode and an external bootstrap capacitor, CBST. During the on-time of  
the low-side MOSFET, the SW pin voltage is approximately 0 V and CBST is charged from the V5D supply  
through the internal diode. TI recommends a 0.1-µF to 1-µF capacitor connected with short traces between the  
BST and SW pins. A larger capacitor is required to prevent a bootstrap undervoltage fault when operating at low  
PWM dimming frequencies.  
7.3.12 ADC  
The TPS92520-Q1 incorporates a 10-bit successive approximation register (SAR) ADC. The single ADC is  
multiplexed to sample the following signals:  
VINx  
CSNx  
V5D  
LHI  
Internal temperature sensor nodes  
The SAR ADC sampling and conversion require 18 µs typical. Priority is given to CSNx inputs to ensure  
accurate output voltage measurement when operating at low PWM duty cycles. The ADC scheduler samples  
CSN1 and CSN2 inputs four times consecutively followed by other input parameters. The complete round-robin  
sampling sequence is illustrated in 7-6.  
1
2
3
4
5
6
7
8
9
10 11  
18 19 20  
27 28 29  
36 37 38  
45 46 47  
7-6. ADC Sampling Sequence  
The CSN1 and CSN2 inputs are sampled at an interval of 36 µs with an additional delay occurring every 9th  
sample. All other parameters are sampled at a rate of 810 µs. For example, VIN1 input is sampled after 45 ADC  
conversion cycles. The round robin sampling scheme ensures an adequate sampling speed to allow for very fast  
failure detection without data link loss, even when PWM dimming.  
7.3.12.1 Input Voltage Measurement: VINx  
The VINx ADC input is a measurement of the VINx pin voltage. The VINx pin voltage is internally attenuated by  
0.037 to achieve an 8-bit conversion ratio of 65/255 (V/dec). The CHxVIN register is updated based on the 8  
MSBs of ADC conversion. The last 2 LSBs are ignored. The contents of the register provide diagnostics of input  
power supply or, in many applications, the pre-regulator boost converter output voltage.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS92520-Q1  
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
7.3.12.2 LED Voltage Measurement: CSNx  
The ADC updates the CHxVLED register every time after sampling the CSNx input. The CSNx pin voltage is  
internally attenuated by 0.037 to achieve an 8-bit conversion ratio of 65/255 (V/dec). Since the sampling interval  
is asynchronous to the PWM operation, the logic incorporates two additional registers, CHxVLEDON and  
CHxVLEDOFF, to save the output voltage information based on the PWM operation. The contents of the  
CHxVLED register are copied to CHxVLEDON on the falling edge of the PWM signal to record the CSNx voltage  
when the PWM input was high. Similarly, the CHxVLED register is copied to CHxVLEDOFF on the rising edge of  
the PWM signal to record the CSNx voltage when the PWM input was low. This ensures the most consistent  
LED voltage reading during PWM operation.  
7.3.12.3 Bias Supply Measurement: V5D  
The V5D pin measurement indicates the status of the external bias converter. The V5D pin voltage is internally  
attenuated by 0.45 to achieve an 8-bit conversion ratio of 5.33/255 (V/dec).  
7.3.12.4 External Limp-Home Input Measurement: LHI  
The ADC monitors the LHI pin and sets the internal current reference in limp-home mode. The LHI input voltage  
is digitized to achieve a 10-bit reference with resolution of 2.45/1023 (V/dec). The LHIL and LHIH registers are  
updated based on the ADC output.  
7.3.12.5 Junction Temperature Measurement: TEMP  
The combined TEMPL and TEMPH register values represent the 10-bit junction temperature measurement with  
a resolution of 1°C/LSB. The register is only updated when TEMPL is read. Therefore, TEMPL must be read first  
followed by TEMPH to read the junction temperature. Use 方程13 to calculate the junction temperature.  
TJ = 0.7168ì TEMP[9 : 0] - 271.51  
(13)  
7.3.13 Faults and Diagnostics  
7-1 summarizes the device behavior under fault conditions.  
7-1. Fault Description  
FAULT  
DETECTION  
DESCRIPTION  
Thermal warning (TW) bit is set in the STATUS3 register when the junction  
temperature exceeds the threshold programmed by TWLMT[9:2].  
Thermal Warning  
TJ > TJ(LMT)  
Each channel is protected by an individual thermal sensor located close to the  
switching MOSFETs. The thermal protection is activated in the event the maximum  
MOSFET temperature exceeds the typical value of 175°C. The corresponding channel  
is forced into shutdown mode and the CHxTS bit is set in the STATUS2 register. This  
feature is designed to prevent overheating and damage to the internal switching  
MOSFETs.  
Thermal Protection  
SPI Error  
TJ > 175°C  
A communication error is indicated by the SPE bit and it is set high. The device enters  
stand-alone mode or LIMP-HOME mode of operation when the watchdog timer  
duration expires (CMWTAP register) and the watchdog timeout event counter  
(CMWTO[1:0] in the STATUS3 register).  
V5D(RISE) < 4.1 V  
V5D(FALL) > 4 V  
V5A(RISE) < 4.1 V  
V5A(FALL) > 4 V  
The device enters the undervoltage lockout (UVLO). The switching operation is  
disabled, the COMP capacitor is discharged, and the digital logic is reset to default  
values. The power cycle (PC) bit is set in the STATUS3 register.  
V5D Undervoltage  
Lockout  
In SLEEP mode, the internal V5A node is disconnected to reduce the current  
consumption. The switching operation is disabled and the COMP capacitor is  
discharged. The V5AUV bit is set in the STATUS3 register.  
V5A Undervoltage  
Lockout  
VINx Undervoltage  
Lockout  
The device disables switching operation for the corresponding channel. Switching is  
VUDIMx < 1.12 V  
enabled when the input voltage rises above the turnon threshold, VIN(RISE)  
.
VBSTx(RISE) > 3.14V  
VBSTx(FALL) < 2.95 V  
The device turns off the high-side MOSFET and turns on the low-side MOSFET for the  
corresponding channel. The CHxBSTUV bit is set in the STATUS2 register. Normal  
switching operation is resumed once the bootstrap voltage exceeds 2.95 V.  
BSTx Undervoltage  
Lockout  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS92520-Q1  
 
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
7-1. Fault Description (continued)  
FAULT  
DETECTION  
DESCRIPTION  
The CHxCOMPOV bit in the STATUS1 register is set to indicate that the COMP  
voltage exceeded the normal operating range. This information is provided for device  
diagnostics.  
COMPx  
Overvoltage  
VCOMPx > 3.2 V  
The CHxSHORT bit is set in the STATUS1 register to indicate an output short circuit  
condition based on sensed CSNx voltage.  
Short CHx Output  
VCSNx < 2.45 V  
IHS > 2.7 A  
The device turns off the high-side MOSFET and discharges the COMP capacitor when  
the drain current exceeds 2.7 A typical. The low-side switch is turned on to discharge  
the inductor and output capacitor. The CHxHSILIM bit is set in the STATUS1 register.  
The fault recovery is based on the device configuration.  
High-Side Switch  
Current Limit  
The device turns off both high-side and low-side MOSFETs and discharges the COMP  
capacitor when the drain current exceeds 1.5 A typical. The CHxLSILIM bit is set in the  
STATUS1 register. The fault recovery is based on the device configuration.  
Low-Side Switch  
Current Limit  
ILS > 1.5 A  
The CHxTOFFMIN bit is set in the STATUS2 register when the corresponding channel  
reaches the maximum possible duty cycle. This usually occurs during dropout  
condition or PWM dimming operation. The compensation network is disconnected from  
the output of the error amplifier to prevent COMP voltage from exceeding the normal  
operating range. Normal operation is resumed once the off-time increases above the  
minimum limit.  
Minimum Off-Time  
All the faults and diagnostics features, except V5D UVLO and VINx UVLO, have an associated Fault-Read bit in  
the STATUS1, STATUS2, and STATUS3 registers. Upon occurrence of a fault, the associated Fault-Read bit is  
set in the register map. Reading these registers clears the bits if the condition no longer exists. The clearing of  
the Fault-Read bits happens at the end of the SPI transfer read response, not at the end of the read command.  
The TPS92520-Q1 can be configured to auto-restart or latch-off on detection of the thermal shutdown, high-side,  
or low-side current limit faults. The device enters the latched-off state when the bit associated with the fault and  
channel is set high in the SYSCFG2 register. This forces the device to disable the channel and remain off upon  
the detection of the fault condition. The channel can be turned back on by clearing the fault bit in STATUS1 and  
by re-setting the CHxEN bit in the SYSCFG1 register.  
If the fault is configured as non-latched (the CHxTS, CHxHSILIMFL, or CHxLSILIMFL bit is set to 0 in the  
SYSCFG2 register), a restart sequence is initiated to attempt recovery from the fault condition. In the case of  
thermal shutdown fault, the restart is initiated after the MOSFET temperature decreases by the fixed hysteresis  
of 10°C. A soft-start sequence is initiated and switching operation is enabled. For a high-side or low-side current  
limit fault, a fixed timer is initiated on detection of the fault. The fault timer is programmable with a range of 3.6  
ms to 28.8 ms by IFT[1:0] bits in SYSCFG2 register. A restart is initiated by the expiration of the fault timer and  
switching operation is enabled.  
The TPS92520-Q1 logic has a communication watchdog timer that is based on the system clock (CLK). The  
watchdog timer is enabled by default upon power-up (the CMWEN bit is set to 1 in the SYSCFG1 register). The  
communications watchdog timer tap point is programmed by writing the desired value to the CMWTAP register.  
The tap point defines the timing of the communication watchdog timer (a 25-bit counter). By default, the tap point  
is set to bit 24 corresponding to 1.67 s of duration. The communication watchdog monitors the status of SPI bus  
and defines the device operation in case of SPI communication error (SPE bit set to 1). See the Device  
Functional Modes for more details.  
The high-side current limit, low-side current limit, and thermal protection faults force the FLT pin low when biased  
through an external resistor and connected to a 5-V supply. The FLT output can be used in conjunction with a  
microcontroller or system basis chip (SBC) as an interrupt and can be used to aid in fault diagnostics. Setting the  
FPINRST bit to one in SYSCFG1 register resets the FLT pin out when no active faults are detected by the  
device.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS92520-Q1  
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
LIST  
7-2. Faults and Diagnostics Summary  
ENABLE  
FAULT  
TIMER  
FAULT OR FAULT READ  
FLT  
INDICATION  
ENABLE  
LATCH  
DESCRIPTION  
DIAGNOSTIC  
BIT  
TW  
CHxTP  
Thermal Warning  
Thermal Protection  
Diagnostics  
Fault  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
Yes  
No  
No  
No  
No  
Yes  
Yes  
No  
No  
Yes  
No  
No  
No  
Yes  
No  
No  
No  
No  
Yes  
Yes  
No  
No  
Yes  
No  
No  
VINx(UVLO)  
CHxBSTUV  
CHxCOMPOV  
CHxSHORT  
CHxHSILIM  
CHxLSILIM  
CHxTOFFMIN  
V5AUV  
VIN Supply Undervoltage Lockout  
BST Supply Undervoltage Lockout  
COMP Overvoltage  
Fault  
Fault  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Diagnostics  
Diagnostics  
Fault  
Short Circuit Detected  
High-side Current Limit  
Low-side Current Limit  
Fault  
Minimum Off Time  
Diagnostics  
Diagnostics  
Fault  
V5A Undervoltage  
PC  
Power On Reset (Power Cycle)  
SPI Communication Error  
Limp-Home Mode (Communication Error)  
SPE  
Diagnostics  
Fault  
LHSW  
7.3.14 Output Short Circuit Fault  
The TPS92520-Q1 monitors the CSNx voltage to detect output short circuit faults. A short failure is indicated  
when the CSNx voltage drops below 2.45 V. The corresponding CHxSHORT bit is set in the STATUS1 register.  
The device continues to regulate current and operate without interruption in case of short circuit. The  
microcontroller can detect short circuit either by reading the STATUS1 register or by reading the CSNx voltage  
measured by the ADC (CHxVLED register). Upon detection of a short, the microcontroller is required to take  
action by writing to SYSCFG1 register via SPI. A short circuit fault in standalone mode or limp-home mode does  
not impact the device behavior. The device continues to operate and regulate current without interruption.  
CSNx  
CSPx  
VINx  
LPAR  
RCS  
LED+  
SWx  
tSH  
COUT  
LPAR  
PGNDx  
LEDÅ  
7-7. Cable harness parasitic inductance  
The voltage transient imposed on CSPx and CSNx inputs during short circuit is dependent on the output  
capacitance and is influenced by the cable harness impedance. The inductance associated with a long cable  
harness resonates with the charge stored on the output capacitor and forces CSPx and CSNx voltage to ring  
below ground. The negative voltage and current are dependent on the parasitic cable harness inductance and  
resistance.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS92520-Q1  
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
VCSN  
VLED  
0
tSH  
t
7-8. Short Circuit Fault Transient Behavior  
When using a long cable harness, a diode is recommended to clamp the negative voltage across CSPx and  
CSNx input, as shown in 7-9. TI recommends a low forward voltage Schottky diode or a fast recovery silicon  
diode with reverse blocking voltage rating greater than the maximum output voltage. The diode is required to be  
placed close to the output capacitor and should ensure that the current flowing through CSP and CSN nodes  
under negative transient condition is below the absolute maximum rating of the device.  
VINx  
LED+  
SWx  
COUT  
DRP  
PGNDx  
LEDÅ  
7-9. CSP and CSN Transient Protection Using an External Diode  
7.3.15 Output Open Circuit Fault  
An LED open circuit fault ultimately causes the output voltage to increase and settle close to the input voltage.  
When this occurs, the TPS92520-Q1 switching operation is then controlled by the fixed on-time and minimum  
off-time resulting in a duty cycle close to 100%. However during open circuit, the dynamic behavior of the device  
and buck converter is influenced by the input voltage, VIN, and the output capacitor, COUT, value. The device  
response to open circuit can be categorized into the following three distinct cases.  
Case 1: For a Buck converter design with a small output capacitor, the switching operation in open load  
condition excites the inductor and the output capacitor resonance, forcing the output voltage to oscillate. The  
frequency and amplitude of the oscillation are based on the resonant frequency and Q-factor of the tank. The  
open-circuit is detected by checking the CHxCOMPOV, CHxTOFFMIN bits in STATUS1 and STATUS2 registers  
and by polling the CHxVLED register to verify the output voltage measured by internal ADC.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS92520-Q1  
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
VCSN  
VIN  
t
t
VCOMP  
tOC  
VCOMPx(OV)  
7-10. Open Circuit Condition with Output Voltage Oscillation  
Case 2: For a buck converter design with larger output capacitor, the inductor Q-factor and resonant frequency  
are much lower than the switching frequency. In this case, output voltage rises to input voltage and the converter  
continues to switch with minimum off-time. The open-circuit fault is detected by checking the CHxTOFFMIN bit in  
STATUS2 register and by polling the CHxVLED register to verify the output voltage measured by internal ADC.  
VCSN  
VIN  
t
7-11. Open circuit Condition with Minimum Off-time Operation  
Case 3: When operating at higher input voltage, the larger gate-to-drain charge depletes the bootstrap capacitor  
and triggers bootstrap UVLO protection. When bootstrap voltage is below 2.95 V, undervoltage protection is  
triggered. Due to insufficient gate drive supply, the high-side MOSFET RDSON is larger than typical value tripping  
the high side current limit circuit. On detection of high-side current limit, the low-side FET is turned on, causing  
the output capacitor to discharge and trip the low-side current limit. Further attempts to restart the converter  
cause the low-side protection to trigger and the sequence continues until the output capacitor is discharged to  
ground. The operation is illustrated in 7-12.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS92520-Q1  
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
VBST  
5 V  
2.8 V  
t
VCSN  
VIN  
t
tOC  
ISW  
0
t
-1.6 A  
7-12. Open Circuit Condition with Bootstrap Undervoltage Lockout Fault  
The open circuit can be detected by reading the CHxHSILIM, CHxLSILIM bits in the STATUS1 register and  
CHxBSTUV bit in the STATUS2 register in conjunction with the CHxTOFFMIN and CHxVLED register. The  
microcontroller can detect and respond to open circuit by polling CHxVLED register in conjunction with reading  
CHxTOFFMIN, CHxLSILIM, and CHxBSTUV bits.  
7-3 summarizes the device response to open circuit faults. The device can transition between different modes  
near the input voltage range of 40 V to 50 V. TI recommends polling STATUS1, STATUS2, and STATUS3  
registers to correctly identify an open circuit fault based on the specified input voltage range and choice of output  
capacitor.  
7-3. Open Circuit Fault Detection Summary  
VCSNx ADC  
CHxCOMPOV CHxTOFFMIN  
CHxBSTUV  
CHxHSILIM  
CHxLSILIM  
CHxSHORT  
Read CSNx ADC  
measurement  
Case 1  
Case 2  
Case 3  
1
0
x
1
1
x
0
0
0
0
Read CSNx ADC  
measurement  
0
1
0
1
0
1
0
1
Ignore CSNx ADC  
measurement  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS92520-Q1  
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
7.4 Device Functional Modes  
POR  
DEFAULT  
POR  
READ CMWTO  
& RESET[7:0] =  
0xD4  
STAND  
ALONE  
MODE  
DETECT  
SPI  
COMMS  
224 clk  
SPE = 1  
&& CMWTO =1  
R
ESET  
[
7
:
0
]
=
0
xC  
3
LOAD  
(CHx Disabled)  
SL  
EEP  
3
=
[
O
1
SL  
EEP  
:
T
0
]
=
MW  
0
C
[
0
|
1
:
|
b
0
]
1
=
=
0
1
b
SW  
H
&&  
PC  
L
=
0
RC CMWTO &&  
LHSW = 0  
LIMP  
HOME  
MODE  
RUN  
MODE  
SLEEP  
MODE  
SLEEP[1:0] = 01b  
LHSW = 1 ||  
CMWTO = 3  
Fault Timer  
timeout  
7-13. TPS92520-Q1 Functional Modes  
7.4.1 Power On Reset (POR)  
The device is in POR state when V5A or V5D input is below the undervoltage lockout threshold. In POR, all of  
the register settings are reset to the default values and both channels are turned off. The device exits POR and  
enters functional modes when the V5D supply exceeds 4.1 V.  
7.4.2 Detect SPI Communication  
After the existing POR state, the device waits for an SPI transaction. If no transaction with an correct SPI frame  
is received for 224 system clock cycles (approximately 1.55 s), the communication watchdog timer times out and  
the device enters stand-alone mode of operation. Receiving a valid SPI frame before the watchdog timeout  
resets the timer and the device transitions to LOAD mode.  
7.4.3 Standalone Mode  
The TPS92520-Q1 is designed to operate in stand-alone mode without the need for an external microcontroller  
or SPI-based communication. In this mode, the watchdog timer circuit is disabled and each channel is  
individually controlled by external inputs. The reference current is set based on the LHI pin voltage and the  
outputs are enabled using the UDIM inputs. The default value for the on-timer is selected and the channels  
operate at a fixed switching frequency of 437 kHz. The device also defaults to auto-restart mode for all faults  
with the fault timer set to 3.6 ms typical. Connecting the LHI pin to GND (below 148-mV threshold) disables both  
channels and turns off both outputs. If the logic is in Standalone Mode, writing 0xC3 to the RESET register sets  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS92520-Q1  
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
all values to default and returns the state machines to the LOAD state. Likewise, if the logic is in Standalone  
Mode, reading STATUS3 register first to clear the CMWTO bits and then writing 0xD4 to the RESET register sets  
all values to default and returns the state machine to the DETECT state.  
7.4.4 Load Mode  
The device operation in normal-run mode and limp-home mode is programmed by loading information into the  
configuration and control registers via SPI. The CHxEN bit is set low to prevent the converters from turning on  
and operating with default system parameters. The PC bit in the STATUS3 register must be cleared by sending a  
read command in order to exit this mode. Writing "01" bits to the SLEEP register skips the run mode and the  
device directly enters a low-power sleep state.  
7.4.5 Run Mode  
The device advances to run mode when the CHxEN bit is set to "1" in the SYSCFG1 register. In this mode, all  
the necessary conditions for initiating the soft-start sequence are checked. The LHSW bit in the SYSCFG1  
register must be "0" and cannot have any active latched faults present to initiate switching operation. If a latched  
fault occurs in this state, the CHxEN bit is reset and the COMP capacitor is discharged, thus forcing the device  
back to load mode. Otherwise, the device attempts to resume operation after waiting for the fault timer to  
timeout.  
In the event of SPI communication failure, the device transitions to limp-home mode. For this to occur, the  
watchdog timer must be enabled (the CMWEN bit equals 1 in the SYSCFG1 register). The device enters limp-  
home mode after counting three consecutive watchdog timeout events. Alternatively, the device can be forced  
into limp-home mode by setting the LHSW bit high in the SYSCFG1 register.  
Transition to sleep mode is initiated by writing "01" bits to the SLEEP register via SPI. This causes the device to  
enter a low-power state.  
7.4.6 Sleep Mode  
In sleep mode, the following occurs:  
1. The internal regulators are disconnected from the V5A pin.  
2. The oscillator is disabled.  
3. The CHxEN bit is set low.  
4. The channels are disabled.  
5. ADC and DAC operation are disabled.  
6. The MOSFETs are turned off.  
In addition, the resistor divider networks for VINx measurements and V5D measurement are disconnected to  
conserve power. Only the SPI communication logic, powered by V5D supply, is active and the SPI bus is  
monitored to check command writes to the SLEEP register. Upon receiving the wake command (writing "00" to  
SLEEP[1:0] bits in SLEEP register), the device transitions from sleep mode to load mode. In sleep mode, the  
output voltage will rise above 3 V as all internal loads are switched off and the leakage current associated with  
high-side gate drive is forced through the switch node, SWx.  
7.4.7 Limp-Home Mode  
The TPS92520-Q1 enters the limp-home mode after detecting three consecutive watchdog timeout events or  
when the LHSW bit is set high in the SYSCFG1 register. In limp-home mode, the device sets the operation  
based on the SPI-programmable LH-registers (register address 0x1E to 0x2D). The limp-home registers must be  
programmed upon the initialization of the device in load mode.  
The LED current reference can be programmed through the LHxIADJ registers or set by external voltage  
measured at the LHI pin by the ADC. To enable LED control by the LHI pin, set the LHEXTIADJ bit in the  
LHCFG1 register to "1". 方程式 14 expresses the relationship between the LED current and voltage at the LHI  
pin, VLHI  
.
VLHI  
ILED  
=
14ìRCS  
(14)  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS92520-Q1  
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
The LHI voltage measured by the ADC is converted to a 10-bit value and stored in the LHI registers. An internal  
digital low pass filter attenuates any switching noise coupled to the LHI pin. The output of the filter is stored in  
the LHIFILT registers.  
When the external LHI pin is selected as the LED current reference, an LHI pin voltage below 148 mV disables  
both channels and turns off the LEDs. In this condition, the device ensures that no light output is generated for  
the associated channels. The LHI pin voltage has to exceed 200 mV to enable both channels. The hysteresis  
rejects external noise on LHI pin and avoids light flickering.  
To exit limp-home mode, the contents of STATUS3 register must be read to clear the CMWTO bits followed by a  
write command to set the LHSW bit in the SYSCFG1 register to "0".  
7.5 Programming  
The programming of the TPS92520-Q1 registers can be performed via a serial interface communication. The 4-  
wire control interface in TPS92520-Q1 is compatible with the Serial Peripheral Interface (SPI) bus. A  
microcontroller unit (MCU) can write to and read from the device registers to configure the channel operation and  
enable or disable a specific channel.  
7.5.1 Serial Interface  
The SPI bus consists of four signals:  
SSN  
SCK  
MOSI  
MISO  
The SSN, SCK, and MOSI pins are TTL inputs into the TPS92520-Q1 while the MISO pin is an open-drain  
output. The SPI bus can be configured for both star-connect and daisy-chain network.  
A bus transaction is initiated by an MCU on a falling edge of SSN. While SSN is low, the input data present on  
the MOSI pin is sampled on the rising edge of SCK with the MS-bit first. The output data is asserted on the  
MISO pin at the falling edge of the SCK. 7-14 shows the data transition and sampling edges of SCK.  
SSN  
15  
16  
1
2
3
4
SCK  
MOSI  
MISO  
D15  
D14  
D13  
D12  
D1  
D0  
D15  
D14  
D13  
D12  
D1  
D0  
7-14. SPI Data Format  
A valid transfer requires a non-zero integer multiple of 16 SCK cycles (that is 16, 32, 48, and so forth). If SSN is  
pulsed low and no SCK pulses are issued before SSN rises, a SPI error is reported. Similarly, if SSN is raised  
before the 16th rising edge of SCK, the transfer is aborted and a SPI error is reported. If SSN is held low after the  
16th falling edge of SCK and additional SCK edges occur, the data continues to flow through the TP92520-Q1  
shift register and out of the MISO pin. When SSN transitions from low to high, the internal digital block decodes  
the most recent 16 bits that were received prior to the SSN rising edge.  
SSN must transition to high only after a multiple of 16 SCK cycles for a transaction to be valid. Otherwise a SPI  
error is reported. In the case of a write transaction, the TPS92520-Q1 logic performs the requested operation  
when SSN transitions high as long as there was no SPI error. In the case of a read transaction, the read data is  
transferred during the next frame, regardless of whether an SPI error has occurred.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS92520-Q1  
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
SSN  
Command 1  
Command 2  
Command 3  
Command 4  
MOSI  
Command 1  
Response  
Command 2  
Response  
Command 3  
Response  
Prev. Response  
MISO  
7-15. SPI Command and Response Sequence  
The data bit on MOSI is shifted into an internal 16-bit shift register (MS-bit first) while data is simultaneously  
shifted out of the MISO pin. While SSN is high (bus idle), MISO is tri-stated by the open-drain driver. While SSN  
is low, MISO is driven according to the 16-bit data pattern being shifted out based on the prior received  
command. To begin a transaction at the falling edge of the SSN, MISO is driven to the MS-bit of the outbound  
data and is updated on each subsequent falling edge of SCK.  
7.5.2 Command Frame  
The command frames are the only defined frame-format that are sent from master to slave on MOSI. A  
command frame can be either a read command or a write command. A command frame consists of a CMD bit,  
six bits of ADDRESS, a PARITY bit (odd parity), and eight bits of DATA. 7-16 shows the format of the  
command frame. The bit sequence is as follows:  
1. The COMMAND bit (CMD). CMD = 1 means the transfer is a write command; CMD = 0 means it is a read  
command.  
2. Six bits of ADDRESS (A5:A0)  
3. The PARITY bit (PAR). This bit is set by the following equation: PARITY = XNOR(CMD, A5..A0, D7..D0).  
4. Eight bits of DATA (D7..D0). For read commands, set the DATA bits to zero.  
Both the read and the write command follow the command frame format.  
SSN  
SCK  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
C
M
D
P
A
R
A
5
A
4
A
3
A
2
A
1
A
0
D
7
D
D
D
D
D
D
D
MOSI  
6
5
4
3
2
1
0
7-16. Command Frame Format  
7.5.3 Response Frame  
There are three possible response frame formats: read response, write response, and write error/POR. These  
formats are further described in Write Response Frame Format through Write Error/POR Frame Format.  
7.5.3.1 Read Response Frame Format  
The read response has the following format:  
1. The SPI Error bit (SPE)  
2. Five reserved bits (always '11000')  
3. The Power-Cycled bit (PC)  
4. The Thermal Warning bit (TW)  
5. Eight bits of DATA (D7..D0) (only valid if SPE = 0)  
7-17 shows the read response format. The frame is sent out by the TPS92520-Q1 following a read command.  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS92520-Q1  
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
SSN  
SCK  
1
2
1
3
1
4
0
5
0
6
0
7
8
9
10 11 12 13 14 15 16  
S
P
E
P
C
T
D
7
D
D
D
D
D
D
D
MISO  
W
6
5
4
3
2
1
0
7-17. Read Response Frame Format  
7.5.3.2 Write Response Frame Format  
The write response frame has the following format:  
1. The SPI Error bit (SPE)  
2. The COMMAND bit (CMD)  
3. Six bits of ADDRESS (A5..A0)  
4. Eight bits of DATA read from the destination register (D7..D0)  
7-18 shows the write response format. This frame is sent out following a write command if the previously  
received frame was a write command and no SPI error occurred during that frame.  
The data bits in the write response are read back from the destination register that was just written. There is no  
need to issue a read command and evaluate the read response in order to check that the destination register  
was written correctly.  
SSN  
SCK  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
S
P
E
C
M
D
A
5
A
4
A
3
A
2
A
1
A
0
D
7
D
D
D
D
D
D
D
MISO  
6
5
4
3
2
1
0
7-18. Write Response Frame Format  
7.5.3.3 Write Error/POR Frame Format  
The write error/POR frame is simply a '1' in the MSB followed by all zeroes (see 7-19). This frame is sent out  
by the TPS92520-Q1 internal digital block during the first SPI transfer following power-on reset, or following a  
write command with a SPI Error.  
SSN  
SCK  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
MISO  
7-19. Write Error/POR Frame Format  
7.5.4 SPI Error  
The TPS92520-Q1 device records a SPI Error if any of the following conditions occur:  
1. The SPI command has a non-integer multiple of 16 SCK pulses.  
2. Any of the DATA bits during a read command are non-zero.  
3. There is a parity error in the previously received command.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS92520-Q1  
 
 
 
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
If any of these conditions are true, the TPS92520-Q1 sets the SPE bit high in the next response frame. A write  
command with a SPI error does not write to the register begin addressed. Similarly, a read command does not  
clear any active fault bits if the command has a SPI error. Additionally, if a read response has SPE = 1, the read  
data bits are invalid and must be disregarded.  
7.5.5 SPI for Multiple Slave Devices in Parallel Configuration  
The TPS92520-Q1 device can be connected in a star configuration where the SSN of each device is  
independently controlled by the microcontroller. 7-20 shows the topology when three devices are connected.  
Device 1  
Device 2  
Device 3  
MASTER  
MOSI  
MISO  
MOSI  
MISO  
MOSI  
MISO  
MOSI  
MISO  
CLK  
GPIO  
GPIO  
GPIO  
7-20. Parallel / Star Configuration  
7.5.6 SPI for Multiple Slave Devices in Daisy Chain Configuration  
The TPS92520-Q1 device can be connected in a daisy chain configuration to keep GPIO ports available when  
multiple devices are communicating to the same microcontroller. 7-21 shows the topology when three devices  
are connected.  
Device 1  
Device 2  
Device 3  
MASTER  
MOSI  
MOSI  
MISO  
MOSI  
MISO  
MOSI  
MISO  
MISO  
CLK  
GPIO  
7-21. Daisy Chain Configuration  
The data is shifted through each slave device, from MOSI input to MISO output through each device's internal  
16-bit shift register. After 16 clock cycles, the data has been transferred from one device to another. The  
sequence continues until all data is passed through from first device, with MOSI connected to the  
microcontroller, to the last device, with MISO connected to the micrcontroller. On the rising edge of SSN, each  
device decodes the last 16 bits that were received and held in the internal shift register.  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS92520-Q1  
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
7.6 Register Maps  
The SPI-accessible registers are each eight bits wide and exist in a six-bit addressable register array (0x00  
through 0x3F). The registers in the TPS92520-Q1 device contain programmed information and operating status.  
Upon power up, the registers are reset to the default values. Writes to unlisted addresses are not permitted and  
can result in undesired operation. Reads of unlisted addresses return the zero value.  
Reserved bits ("RESERVED") must be written with '0' values when writing. Registers are read or write unless  
indicated otherwise in the description of the register. 7-4 lists the TPS92520-Q1 register map.  
7-4. TPS92520-Q1 Register Map  
ADDR  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
REGISTER  
SYSCFG1  
D7  
FPINRST  
D6  
D5  
D4  
D3  
CH2INTPWM  
CH2HSILIMFL CH2LSILIMFL  
D2  
D1  
CH1INTPWM  
CH1HSILIMFL CH1LSILIMFL  
CMWTAP[3:0]  
D0  
DEFAULT  
00010000  
00000000  
00001000  
n/a  
PWMPH  
LHSW  
CMWEN  
CH2EN  
CH1TSFL  
CH1EN  
SYSCFG2  
CMWTAP  
STATUS1  
STATUS2  
STATUS3  
TWLMT  
IFT[1:0]  
CH2TSFL  
RESERVED  
CH2LSILIM  
CH2HSILIM  
V5AUV  
CH2SHORT  
CH2TP  
CH2COMPOV  
CH2BSTUV  
CH1LSILIM  
CH2TOFFMIN  
TW  
CH1HSILIM  
CH1TP  
PC  
CH1SHORT  
CH1BSTUV  
CH2STATUS  
CH1COMPOV  
CH1TOFFMIN  
CH1STATUS  
RESERVED  
n/a  
STANDALONE  
CMWTO[1:0]  
n/a  
TWLMT[9:2]  
10001010  
00000000  
00000000  
00000000  
00000000  
00000000  
00000100  
00000000  
00000000  
00000000  
00000000  
00000111  
00000111  
n/a  
SLEEP  
RESERVED  
RESERVED  
SLEEP[1:0]  
CH1IADJL  
CH1IADJH  
CH2IADJL  
CH2IADJH  
PWMDIV  
CH1IADJ[1:0]  
CH1IADJ[9:2]  
CH2IADJ[9:2]  
CH1PWM[7:0]  
CH2PWM[7:0]  
RESERVED  
CH2IADJ[1:0]  
RESERVED  
PWMDIV[2:0]  
CH1PWML  
CH1PWMH  
CH2PWML  
CH2PWMH  
CH1TON  
RESERVED  
RESERVED  
CH1PWM[9:8]  
CH2PWM[9:8]  
RESERVED  
RESERVED  
CH1TON[5:0]  
CH2TON[5:0]  
CH2TON  
CH1VIN  
CH1VIN[7:0]  
CH1VLED[7:0]  
CH1VLED  
CH1VLEDON  
CH1VLEDOFF  
CH2VIN  
n/a  
CH1VLEDON[7:0]  
CH1VLEDOFF[7:0]  
CH2VIN[7:0]  
n/a  
n/a  
n/a  
CH2VLED  
CH2VLEDON  
CH2VLEDOFF  
TEMPL  
CH2VLED[7:0]  
n/a  
CH2VLEDON[7:0]  
CH2VLEDOFF[7:0]  
n/a  
n/a  
RESERVED  
TEMP[1:0]  
n/a  
TEMPH  
TEMP[9:2]  
V5D[7:0]  
n/a  
V5D  
n/a  
LHCFG1  
LHPWMPH  
LHEXTIADJ  
LH2100DC  
LH2TSFL  
LH2INTPWM  
LH2EN  
LH1100DC  
LH1TSFL  
LH1INTPWM  
LH1EN  
00000000  
00000000  
n/a  
LHCFG2  
LHIFT[1:0]  
LH2HSILIMFL LH2LSILIMFL  
LH1HSILIMFL LH1LSILIMFL  
LHI[1:0]  
LHIL  
RESERVED  
LHIH  
LHI[9:2]  
n/a  
LHIFILTL  
LHIFILT[1:0]  
LH1IADJ[1:0]  
LH2IADJ[1:0]  
n/a  
LHIFILTH  
LH1IADJL  
LH1IADJH  
LH2IADJL  
LH2IADJH  
LHCH1PWML  
LHCH1PWMH  
LHCH2PWML  
LHCH2PWMH  
LH1TON  
LHIFILT[9:2]  
LH1IADJ[9:2]  
RESERVED  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000111  
00000111  
RESERVED  
LH2IADJ[9:2]  
LH1PWM[7:0]  
RESERVED  
RESERVED  
LH1PWM[9:8]  
LH2PWM[9:8]  
LH2PWM[7:0]  
RESERVED  
RESERVED  
LH1TON[5:0]  
LH2TON[5:0]  
LH2TON  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS92520-Q1  
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
7-4. TPS92520-Q1 Register Map (continued)  
ADDR  
0x2E  
REGISTER  
RESET  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DEFAULT  
RESET[7:0]  
00000000  
Complex bit access types are encoded to fit into small table cells. 7-5 shows the codes that are used for  
access types in this section.  
7-5. Access Type Codes  
Access Type  
Code  
Description  
W
R
W
Write  
R
Read  
R/W  
RC  
-n  
R/W  
RC  
Read and Write  
Read to clear  
Value after reset or the default value  
The following sections provide the descriptions for different registers.  
7.6.1 Configuration Registers  
The configuration registers are used to control the device operation and program the fault response.  
Configuration registers are read and write capable.  
7-6. Configuration Registers  
Address  
0x00  
Acronym  
SYSCFG1  
SYSCFG2  
Register Name  
Section  
System Configuration Register 1  
System Configuration Register 2  
Section 7.6.1.1  
Section 7.6.1.2  
0x01  
Communication Watchdog Timer  
Tap Point Register  
0x02  
CMWTAP  
Section 7.6.1.3  
7.6.1.1 SYSCFG1 Register (address = 0x00) [reset = 0x10]  
The SYSCFG1 register is the first system configuration register and it contains bits associated with the enabling  
of channels and several device-related functions. 7-22 shows SYSCFG1. 7-7 describes SYSCFG1.  
7-22. System Configuration Register 1 (SYSCFG1)  
7
6
5
4
3
2
1
0
FPINRST  
W-0b  
PWMPH  
R/W-0b  
LHSW  
R/W-0b  
CMWEN  
R/W-1b  
CH2INTPWM  
R/W-0b  
CH2EN  
R/W-0b  
CH1INTPWM  
R/W-0b  
CH1EN  
R/W-0b  
7-7. System Configuration Register 1 Field Description  
Bit Field  
Type  
Reset  
Description  
7
FPINRST  
W
0
Reset open-drain fault output if there are no active faults in the system. Note that  
this bit is write-only. Any reads of this register return 0 in the FPINRST bit location.  
0 = Do not care  
1 = Reset open-drain fault output  
6
5
PWMPH  
LHSW  
R/W  
R/W  
0
0
PWM phase shift setting for internal PWM generator  
0 = 180° phase shift between internally generated PWM signals  
1 = 0° phase shift between internally generated PWM signals  
Software limp-home mode. The limp-home mode can be activated by writing to the  
register. The bit is also set high in case of communication failure. The bit has to be  
written to zero to return to normal operation.  
0 = Normal Operation  
1 = Operation in limp-home state  
4
CMWEN  
R/W  
1
Communication watch dog timer  
0 = Disable communication watch dog timer  
1 = Enable communication watch dog timer  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPS92520-Q1  
 
 
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
Bit Field  
7-7. System Configuration Register 1 Field Description (continued)  
Type  
Reset  
Description  
3
CH2INTPWM  
R/W  
0
This bit is used to enable internal PWM generator function for channel 2.  
0 = LED current duty cycle of channel 2 controlled by the external signal connected  
to UDIM2 input  
1 = LED current duty cycle of channel 2 controlled by the internal PWM generator  
(registers PWMDIV and CH2PWM). UDIM2 input must be above VUDIM2(UVLO)  
.
2
1
CH2EN  
R/W  
R/W  
0
0
CH2 enable. This bit controls the operation of channel 2.  
0 = Disable LED channel 2  
1 = Enable LED channel 2  
CH1INTPWM  
This bit is used to enable internal PWM generator function for channel 1.  
0 = LED current duty cycle of channel 1 controlled by external signal connected to  
UDIM1 input  
1 = LED current duty cycle of channel 1 controlled by internal PWM generator  
(registers PWMDIV and CH1PWM). UDIM1 input must be above VUDIM1(UVLO)  
.
0
CH1EN  
R/W  
0
CH1 enable. This bit controls the operation of channel 1.  
0 = Disable LED channel 1  
1 = Enable LED channel 1  
7.6.1.2 SYSCFG2 Register (address = 0x01) [reset = 0x00]  
The SYSCFG2 register is the second system configuration register. This register contains bits associated with  
enabling fault handling for both channels and configuring the fault timer. 7-23 shows SYSCFG2. 7-8  
describes SYSCFG2.  
7-23. System Configuration Register 2 (SYSCFG2)  
7
6
5
4
3
2
1
0
IFT  
CH2TSFL  
R/W-0b  
CH2HSILIMFL CH2LSILIMFL  
R/W-0b R/W-0b  
CH1TSFL  
R/W-0b  
CH1HSILIMFL CH1LSILIMFL  
R/W-0b R/W-0b  
R/W - 00b  
7-8. System Configuration Register 2 Field Description  
Bit Field  
Type  
Reset  
Description  
7-6 IFT  
R/W  
00  
IFT sets the counter limit for the fault timer as shown below.  
00 = 3.6 ms fault timer  
01 = 7.2 ms fault timer  
10 = 14.4 ms fault timer  
11 = 28.8 ms fault timer  
5
4
3
2
1
CH2TSFL  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
Channel 2 thermal shutdown fault response  
0 = Channel 2 auto-restarts based on internal temperature hysteresis.  
1 = Channel 2 is latched off; CH2EN bit is reset and channel 2 is disabled until the  
CH2EN bit is programmed high by SPI command.  
CH2HSILIMFL  
CH2LSILIMFL  
CH1TSFL  
Channel 2 high-side FET current limit fault response  
0 = Channel 2 auto-restarts after the ILIM fault timer has expired.  
1 = Channel 2 is latched off; CH2EN bit is reset and channel 2 is disabled until the  
CH2EN bit is programmed high by SPI command.  
Channel 2 low-side FET current limit fault response  
0 = Channel 2 auto-restarts after the ILIM fault timer has expired.  
1 = Channel 2 is latched off; CH2EN bit is reset and channel 2 is disabled until the  
CH2EN bit is programmed high by SPI command.  
Channel 1 thermal shutdown fault response  
0 = Channel 1 auto-restarts based on internal temperature hysteresis.  
1 = Channel 1 is latched off; CH1EN bit is reset and channel 1 is disabled until the  
CH1EN bit is programmed high by SPI command.  
CH1HSILIMFL  
Channel 1 high side FET current limit fault response  
0 = Channel 1 auto-restarts after the ILIM fault timer has expired.  
1 = Channel 1 is latched off; CH1EN bit is reset and channel 1 is disabled until the  
CH1EN bit is programmed high by SPI command.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS92520-Q1  
 
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
7-8. System Configuration Register 2 Field Description (continued)  
Bit Field  
CH1LSILIMFL  
Type  
Reset  
Description  
0
R/W  
0
Channel 1 low side FET current limit fault response  
0 = Channel 1 auto-restarts after the ILIM fault timer has expired.  
1 = Channel 1 is latched off; CH1EN bit is reset and channel 1 is disabled until the  
CH1EN bit is programmed high by SPI command.  
7.6.1.3 CMWTAP Register (address = 0x02) [reset = 0x08]  
The CMWTAP register sets the tap point (that is the bit number, starting from 0) on the 25-bit communication  
watchdog timer to establish the timeout condition. By default, the tap point is set to bit 24. 7-24 shows  
CMWTAP. 7-9 describes CMWTAP.  
7-24. Communication Watchdog Timer Tap Point Register (CMWTAP)  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
CMWTAP[3:0]  
R/W-1000b  
7-9. CMWTAP-to-Tap Point Mapping  
Bit Field  
Type  
Reset  
0000  
1000  
Description  
7-4 RESERVED  
3-0 CMWTAP  
R
Reserved  
R/W  
Mapping of CMWTAP bits to the tap points  
0000 = Tap point set to bit 16 corresponding to 6.1 ms (typical) watch dog period.  
0001 = Tap point set to bit 17 corresponding to 12.1 ms (typical) watch dog period.  
0010 = Tap point set to bit 18 corresponding to 24.3 ms (typical) watch dog period.  
0011 = Tap point set to bit 19 corresponding to 48.5 ms (typical) watch dog period.  
0100 = Tap point set to bit 20 corresponding to 97.1 ms (typical) watch dog period.  
0101 = Tap point set to bit 21 corresponding to 194.2 ms (typical) watch dog period.  
0110 = Tap point set to bit 22 corresponding to 388.3 ms (typical) watch dog period.  
0111 = Tap point set to bit 23 corresponding to 776.7 ms (typical) watch dog period.  
1000 through 1111 = Tap point set to bit 24 corresponding to 1.52 s (typical)  
watchdog period.  
7.6.2 STATUS Registers  
The status registers are used to report warning and fault conditions. Status registers are read-only registers.  
Reading the register clears the bits that are set if the condition that caused them no long exists. The clearing of  
the bits happens at the end of the read response SPI transfer, not at the end of the read command SPI transfer.  
All bits are active-high.  
7-10. Status Registers  
Address  
0x03  
Acronym  
STATUS1  
STATUS2  
STATUS3  
Register Name  
Section  
Status 1 Register (Read-Only)  
Status 2 Register (Read Only)  
Status 3 Register (Read Only)  
Section 7.6.2.1  
Section 7.6.2.2  
Section 7.6.2.3  
0x04  
0x05  
7.6.2.1 STATUS1 Register (address = 0x03)  
7-25 shows STATUS1. 7-11 describes STATUS1.  
7-25. Status 1 Register (Read-Only) (STATUS1)  
7
6
5
4
3
2
1
0
CH2LSILIM  
RC-0b  
CH2HSILIM  
RC-0b  
CH2SHORT  
RC-0b  
CH2COMPOV  
RC-0b  
CH1LSILIM  
RC-0b  
CH1HSILIM  
RC-0b  
CH1SHORT  
RC-0b  
CH1COMPOV  
RC-0b  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TPS92520-Q1  
 
 
 
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
Bit Field  
7-11. Status 1 Register Field Description  
Type  
Reset  
Description  
7
CH2LSILIM  
RC  
0
Indicates low-side switch current limit fault on channel 2. Low-side switch current is  
greater than 1.5 A (typical).  
6
CH2HSILIM  
RC  
0
Indicates high-side switch current limit fault on channel 2. High-side switch current  
is greater than 2.7 A (typical).  
5
4
CH2SHORT  
RC  
RC  
0
0
Indicates output short circuit fault on channel 2. CSP pin voltage is below 2.45 V.  
CH2COMPOV  
Indicates overvoltage condition on COMP2 pin. COMP2 pin voltage is greater than  
3.2 V.  
3
2
CH1LSILIM  
CH1HSILIM  
RC  
RC  
0
0
Indicates low-side switch current limit fault on channel 1. Low-side switch current is  
greater than 1.5 A (typical).  
Indicates high-side switch current limit fault on channel 1. High-side switch current  
is greater than 2.7 A (typical).  
1
0
CH1SHORT  
RC  
RC  
0
0
Indicates output short circuit fault on channel 1. CSP pin voltage is below 2.45 V.  
CH1COMPOV  
Indicates overvoltage condition on COMP1 pin. COMP1 pin voltage is greater than  
3.2 V.  
7.6.2.2 STATUS2 Register (address = 0x04)  
STATUS2 register is a read-only register. 7-26 shows STATUS2. 7-12 describes STATUS2.  
7-26. Status 2 Register (Read Only) (STATUS2)  
7
6
5
4
3
2
1
0
RESERVED  
R-00b  
CH2TP  
RC-0b  
CH2BSTUV  
RC-0b  
CH2TOFFMIN  
RC-0b  
CH1TP  
RC-0b  
CH1BSTUV  
RC-0b  
CH1TOFFMIN  
RC-0b  
7-12. Status 2 Register Field Description  
Bit Field  
Type  
R
Reset  
Description  
7-6 RESERVED  
00  
Reserved  
5
CH2TP  
RC  
0
Indicates overtemperature thermal protection for channel 2. The channel  
automatically restarts when the bit is cleared to 0.  
4
CH2BSTUV  
RC  
0
Indicates bootstrap undervoltage fault condition on channel 2. BST2 pin voltage is  
less than 2.95 V.  
3
2
CH2TOFFMIN  
CH1TP  
RC  
RC  
0
0
Indicates channel 2 operation at maximum duty cycle.  
Indicates overtemperature thermal protection for channel 1. The channel  
automatically restarts when the bit is cleared to 0.  
1
0
CH1BSTUV  
RC  
RC  
0
0
Indicates bootstrap undervoltage fault condition on channel 1. BST1 pin voltage is  
less than 2.95 V.  
CH1TOFFMIN  
Indicates channel 1 operation at maximum duty cycle.  
7.6.2.3 STATUS3 Register (address = 0x05)  
STATUS3 register is a read-only register. 7-27 shows STATUS3. 7-13 describes STATUS3.  
7-27. Status 3 Register (Read Only) (STATUS3)  
7
6
5
4
3
2
1
0
STANDALONE  
R-0b  
V5AUV  
RC-0b  
CMWTO[1:0]  
RC-00b  
TW  
PC  
CH2STATUS  
RC-0b  
CH1STATUS  
RC-0b  
RC-0b  
RC-1b  
7-13. Status 3 Register Field Description  
Bit Field  
Type  
Reset  
Description  
7
STANDALONE  
R
0
Indicates standalone mode. This bit can be cleared by issuing the RESET or  
DETECT command (see RESET register).  
6
V5AUV  
RC  
0
Indicates V5A undervoltage fault condition.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPS92520-Q1  
 
 
 
 
 
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
7-13. Status 3 Register Field Description (continued)  
Bit Field  
Type  
Reset  
Description  
5-4 CMWTO  
RC  
00  
Indicates the number of times the communication watchdog timer has expired.  
00 = Default (normal operation)  
01 = Watchdog has expired 1 time.  
10 = Watchdog has expired 2 times.  
11 = Watchdog has expired 3 times. Device transitions into limp-home mode.  
3
2
TW  
PC  
RC  
RC  
0
1
Indicates overtemperature thermal warning  
Power cycle bit is set at power up and is considered a fault. The PC bit must be  
cleared before the channels can be enabled.  
1
0
CH2STATUS  
CH1STATUS  
RC  
RC  
0
0
Logic OR of the fault bits for channel 2 excluding over temperature thermal warning.  
Logic OR of the fault bits for channel 1 excluding over temperature thermal warning.  
7.6.3 Device Control Registers  
The control registers are used to enable sleep mode and program the temperature warning threshold, LED  
current, and PWM duty cycle set points. The registers are read- and write-capable.  
7-14. Device Control Registers  
Address  
0x06  
Acronym  
TWLMT[9:2]  
SLEEP  
Register Name  
Section  
Thermal Warning Limit  
Sleep Command Register  
Section 7.6.3.1  
Section 7.6.3.2  
0x07  
Channel 1 Analog Current Control  
Register (LSB)  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
CH1IADJL  
CH1IADJH  
CH2IADJL  
CH2IADJH  
PWMDIV  
Section 7.6.3.3  
Section 7.6.3.4  
Section 7.6.3.5  
Section 7.6.3.6  
Section 7.6.3.7  
Section 7.6.3.8  
Section 7.6.3.9  
Section 7.6.3.10  
Section 7.6.3.11  
Channel 1 Analog Current Control  
Register (MSB)  
Channel 2 Analog Current Control  
Register (LSB)  
Channel 2 Analog Current Control  
Register (MSB)  
Internal PWM Clock Divider  
Register  
Channel 1 PWM Width Register  
(LSB)  
CH1PWML  
CH1PWMH  
CH2PWML  
CH2PWMH  
Channel 1 PWM Width Register  
(MSB)  
Channel 2 PWM Width Register  
(LSB)  
Channel 2 PWM Width Register  
(MSB)  
0x11  
0x12  
CH1TON  
CH2TON  
Channel 1 On-Time Register  
Channel 2 On-Time Register  
Section 7.6.3.12  
Section 7.6.3.13  
7.6.3.1 Thermal Warning Limit (address = 0x06) [reset = 0x8A]  
7-28 shows TWLMT[9:2]. 7-15 describes TWLMT[9:2].  
7-28. Thermal Warning Limit Register  
7
6
5
4
3
2
1
0
TWLMT[9:2]  
R/W-10001010b  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TPS92520-Q1  
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
7-15. Thermal Warning Limit Field Description  
Bit Field  
Type  
Reset  
Description  
7-0 TWLMT[9:2]  
R/W  
10001010  
TWLMT[9:2] sets the Thermal Warning (TW) bit when the most significant 8 bits of  
the ADC reading of the TEMP value exceed the programmed value. The default  
value is 138 decimal, or 0x8Ah (corresponding to a temperature of 125°C).  
7.6.3.2 SLEEP Command (address = 0x07) [reset = 0x00]  
7-29 shows the SLEEP register. 7-16 describes the SLEEP register.  
7-29. Sleep Command Register  
7
6
5
4
3
2
1
0
RESERVED  
R-000000b  
SLEEP[1:0]  
R/W-00b  
7-16. Sleep Command Register Field Description  
Bit Field  
Type  
R
Reset  
000000  
00  
Description  
7-2 RESERVED  
1-0 SLEEP  
Reserved  
R/W  
Device sleep mode. The low-power sleep mode can be activated by writing to the  
register.  
00 = Exit sleep mode and return to normal operation (SLEEP OFF).  
01 = Enter sleep mode (SLEEP ON).  
10 = No effect  
11 = No effect  
7.6.3.3 CH1IADJL Control Register (address = 0x08) [reset = 0x00]  
7-30 shows the CH1IADJL register. 7-17 describes the CH1IADJL register.  
7-30. Channel 1 Analog Current Register (LSB)  
7
6
5
4
3
2
1
0
RESERVED  
R-000000b  
CH1IADJ[1:0]  
R/W-00b  
7-17. Channel 1 Analog Current Control Register Field Description  
Bit Field  
Type  
Reset  
000000  
00  
Description  
7-2 RESERVED  
1-0 CH1IADJ[1:0]  
R
Reserved  
R/W  
Channel 1 analog current control. The 2 LSBs of the 10-bit IADJ DAC for channel 1  
can be programmed by writing to the register.  
7.6.3.4 CH1IADJH Control Register (address = 0x09) [reset = 0x00]  
7-31 shows the CH1IADJH register. 7-18 describes the CH1IADJH register.  
7-31. Channel 1 Analog Current Control Register (MSB)  
7
6
5
4
3
2
1
0
CH1IADJ[9:2]  
R/W-00000000b  
7-18. Channel 1 Analog Current Control Register Field Description  
Bit Field  
Type  
Reset  
Description  
7-0 CH1IADJ[9:2]  
R/W  
00000000  
Channel 1 analog current control. The 8 MSBs of the 10-bit IADJ DAC for channel 1  
can be programmed by writing to the register.  
7.6.3.5 CH2IADJL Control Register (address = 0x0A) [reset = 0x00]  
7-32 shows the CH2IADJL register. 7-19 describes the CH2IADJL register.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TPS92520-Q1  
 
 
 
 
 
 
 
 
 
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
7-32. Channel 2 Analog Current Control Register (LSB)  
7
6
5
4
3
2
1
0
RESERVED  
R-000000b  
CH2IADJ[1:0]  
R/W-00b  
7-19. Channel 2 Analog Current Control Register Field Description  
BIT FIELD  
TYPE  
RESET  
000000  
00  
DESCRIPTION  
7-2 RESERVED  
1-0 CH2IADJ[1:0]  
R
Reserved  
R/W  
Channel 2 analog current control. The 2 LSBs of the 10-bit IADJ DAC for channel 2  
can be programmed by writing to the register.  
7.6.3.6 CH2IADJH Control Register (address = 0x0B) [reset = 0x00]  
7-33 shows the CH2IADJH register. 7-20 describes the CH2IADJH register.  
7-33. Channel 2 Analog Current Control Register (MSB)  
7
6
5
4
3
2
1
0
CH2IADJ[9:2]  
R/W-00000000b  
7-20. Channel 2 Analog Current Control Register Field Description  
Bit Field  
Type  
Reset  
Description  
7-0 CH2IADJ[9:2]  
R/W  
00000000  
Channel 2 analog current control. The 8 MSBs of the 10-bit IADJ DAC for channel 2  
can be programmed by writing to the register.  
7.6.3.7 PWMDIV Register (address = 0x0C) [reset = 0x04]  
7-34 shows the PWMDIV register. 7-21 describes the PWMDIV register.  
7-34. Internal PWM Clock Divider Register (LSB)  
7
6
5
4
3
2
1
0
RESERVED  
R-00000b  
PWMDIV[2:0]  
R/W-100b  
7-21. Internal PWM Clock Divider Register Field Description  
Bit Field  
Type  
Reset  
00000  
100  
Description  
7-3 RESERVED  
2-0 PWMDIV[2:0]  
R
Reserved  
R/W  
This 3-bit value selects the clock divider for the internal PWM generator. The PWM  
clock is derived based on typical oscillator frequency of 10.8 MHz.  
000 = Divide oscillator clock by 7 (fPWM = 1507 Hz).  
001 = Divide oscillator clock by 8 (fPWM = 1318 Hz).  
010 = Divide oscillator clock by 10 (fPWM = 1055 Hz).  
011 = Divide oscillator clock by 12 (fPWM = 879 Hz).  
100 = Divide oscillator clock by 16 (fPWM = 659 Hz).  
101 = Divide oscillator clock by 24 (fPWM = 439 Hz).  
110 = Divide oscillator clock by 49 (fPWM = 215 Hz).  
111 = Divide oscillator clock by 98 (fPWM = 108 Hz).  
7.6.3.8 CH1PWML Register (address = 0x0D) [reset = 0x00]  
7-35 shows the CH1PWML register. 7-22 describes the CH1PWML register.  
7-35. Channel 1 PWM Width Register (LSB)  
7
6
5
4
3
2
1
0
CH1PWM[7-0]  
R/W-00000000b  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TPS92520-Q1  
 
 
 
 
 
 
 
 
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
7-22. Channel 1 PWM Width Register Field Description  
Bit Field  
Type  
Reset  
Description  
7-0 CH1PWM[7:0]  
R/W  
00000000  
Channel 1 PWM width control. The 8 LSBs of the 10-bit PWM WIDTH for channel 1  
can be programmed by writing to the register.  
7.6.3.9 CH1PWMH Register (address = 0x0E) [reset = 0x00]  
7-36 shows the CH1PWMH register. 7-23 shows the CH1PWMH register.  
7-36. Channel 1 PWM Width Register (MSB)  
7
6
5
4
3
2
1
0
RESERVED  
R-000000b  
CH1PWM[9:8]  
R/W-00b  
7-23. Channel 1 PWM Width Register Field Description  
Bit Field  
Type  
Reset  
000000  
00  
Description  
7-2 RESERVED  
1-0 CH1PWM[9:8]  
R
Reserved  
R/W  
Channel 1 PWM width control. The 2 MSBs of the 10-bit PWM WIDTH for channel 1  
can be programmed by writing to the register.  
7.6.3.10 CH2PWML Register (address = 0x0F) [reset = 0x00]  
7-37 shows the CH2PWML register. 7-24 describes the CH2PWML register.  
7-37. Channel 2 PWM Width Register (LSB)  
7
6
5
4
3
2
1
0
CH2PWM[7:0]  
R/W-00000000b  
7-24. Channel 2 PWM Width Register Field Description  
Bit Field  
Type  
Reset  
Description  
7-0 CH2PWM[7:0]  
R/W  
00000000  
Channel 2 PWM width control. The 8 LSBs of the 10-bit PWM WIDTH for channel 2  
can be programmed by writing to the register.  
7.6.3.11 CH2PWMH Register (address = 0x10) [reset = 0x00]  
7-38 shows the CH2PWMH register. 7-25 describes the CH2PWMH register.  
7-38. Channel 2 PWM Width Register (MSB)  
7
6
5
4
3
2
1
0
RESERVED  
R-000000b  
CH2PWM[9:8]  
R/W-00b  
7-25. Channel 2 PWM Width Register Field Description  
Bit Field  
Type  
Reset  
000000  
00  
Description  
7-2 RESERVED  
1-0 CH2PWM[9:8]  
R
Reserved  
R/W  
Channel 2 PWM width control. The 2 MSBs of the 10-bit PWM WIDTH for channel 2  
can be programmed by writing to the register.  
7.6.3.12 CH1TON Register (address = 0x11) [reset = 0x07]  
7-39 shows the CH1TON register. 7-26 describes the CH1TON register.  
7-39. Channel 1 On-Time Register  
7
6
5
4
3
2
1
0
RESERVED  
CH1TON[5:0]  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TPS92520-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
7-39. Channel 1 On-Time Register (continued)  
R-00b  
R/W-000111b  
7-26. Channel 1 On-Time Register Field Description  
Bit Field  
Type  
R
Reset  
Description  
7-6 RESERVED  
5-0 CH1TON[5:0]  
00  
Reserved  
R/W  
000111  
Channel 1 on-time control. The pseudo-fixed switching frequency for channel 1 is  
set by writing to this register. Default value is set to ensure 437-kHz switching  
frequency.  
7.6.3.13 CH2TON Register (address = 0x12) [reset = 0x07]  
7-40 shows the CH1TON register. 7-27 describes the CH1TON register.  
7-40. Channel 2 On-Time Register  
7
6
5
4
3
2
1
0
RESERVED  
R-00b  
CH2TON[5:0]  
R/W-000111b  
7-27. Channel 2 On-Time Register Field Description  
Bit Field  
Type  
R
Reset  
Description  
7-6 RESERVED  
5-0 CH2TON[5:0]  
00  
Reserved  
R/W  
000111  
Channel 2 on-time control. The pseudo-fixed switching frequency for channel 2 is  
set by writing to this register. Default value is set to ensure 437 kHz switching  
frequency.  
7.6.4 ADC Measurements  
The output of ADC conversion is stored in the ADC measurement registers. ADC measurement registers are  
read-only registers. Only the 8 MSBs from 10-bit ADC are used and the remaining 2 LSBs are ignored.  
7-28. ADC Measurements  
Address  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
Acronym  
CH1VIN  
Register Name  
Section  
CH1VIN Register  
Section 7.6.4.1  
Section 7.6.4.2  
Section 7.6.4.3  
Section 7.6.4.4  
Section 7.6.4.5  
Section 7.6.4.6  
Section 7.6.4.7  
Section 7.6.4.8  
Section 7.6.4.9  
Section 7.6.4.10  
Section 7.6.4.11  
CH1VLED  
CH1VLEDON  
CH1VLEDOFF  
CH2VIN  
CH1VLED Register  
CH1VLEDON Register  
CH1VLEDOFF Register  
CH2VIN Register  
CH2VLED  
CH2VLEDON  
CH2VLEDOFF  
TEMPL  
CH2VLED Register  
CH2VLEDON Register  
CH2VLEDOFF Register  
TEMPL Register  
TEMPH  
TEMPH Register  
V5D  
V5D Register  
7.6.4.1 CH1VIN Measurement (address = 0x13)  
7-41 shows the CH1VIN register. 7-29 describes the CH1VIN register.  
7-41. CH1VIN Register  
7
6
5
4
3
2
1
0
CH1VIN[7:0]  
R-00000000b  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TPS92520-Q1  
 
 
 
 
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
7-29. CH1VIN Register Field Description  
Bit Field  
Type  
Reset  
Description  
7-0 CH1VIN  
R
00000000  
ADC measurement of the drain voltage node for channel 1. The VIN1 pin voltage is  
internally attenuated by 0.037 to achieve an 8-bit conversion ratio of 65/255 (V/dec).  
The full scale reading represents 65 V at VIN1 node.  
7.6.4.2 CH1VLED Measurement (address = 0x14)  
7-42 shows the CH1VLED register. 7-30 describes the CH1VLED register.  
7-42. CH1VLED Register  
7
6
5
4
3
2
1
0
CH1VLED[7:0]  
R-00000000b  
7-30. CH1VLED Register Field Description  
Bit Field  
Type  
Reset  
Description  
7-0 CH1VLED  
R
00000000  
ADC measurement of the CSN1 node for channel 1. The CSN1 pin voltage is  
internally attenuated by 0.037 to achieve an 8-bit conversion ratio of 65/255 (V/dec).  
The full scale reading represents 65 V at CSN1 node.  
7.6.4.3 CH1VLEDON Measurement (address = 0x15)  
7-43 shows the CH1VLEDON register. 7-31 describes the CH1VLEDON register.  
7-43. CH1VLEDON Register  
7
6
5
4
3
2
1
0
CH1VLEDON[7:0]  
R-00000000b  
7-31. CH1VLEDON Register Field Description  
Bit Field  
Type  
Reset  
Description  
7-0 CH1VLEDON  
R
00000000  
ADC measurement of the CSN1 node for channel 1 before falling edge of PWM  
signal.  
7.6.4.4 CH1VLEDOFF Measurement (address = 0x16)  
7-44 shows the CH1VLEDOFF register. 7-32 describes the CH1VLEDOFF register.  
7-44. CH1VLEDOFF Register  
7
6
5
4
3
2
1
0
CH1VLEDOFF[7:0]  
R-00000000b  
7-32. CH1VLEDOFF Register Field Description  
Bit Field  
Type  
Reset  
Description  
7-0 CH1VLEDOFF  
R
00000000  
ADC measurement of the CSN1 node for channel 1 before rising edge of PWM  
signal.  
7.6.4.5 CH2VIN Measurement (address = 0x17)  
7-45 shows the CH2VIN register. 7-33 describes the CH2VIN register.  
7-45. CH2VIN Register  
7
6
5
4
3
2
1
0
CH2VIN[7:0]  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TPS92520-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
7-45. CH2VIN Register (continued)  
R-00000000b  
7-33. CH2VIN Register Field Description  
Bit Field  
Type  
Reset  
Description  
7-0 CH2VIN  
R
00000000  
ADC measurement of the drain voltage node for channel 2. The VIN2 pin voltage is  
internally attenuated by 0.037 to achieve an 8-bit conversion ratio of 65/255 (V/dec).  
The full scale reading represents 65 V at VIN2 node.  
7.6.4.6 CH2VLED Measurement (address = 0x18)  
7-46 shows the CH2VLED register. 7-34 describes the CH2VLED register.  
7-46. CH2VLED Register  
7
6
5
4
3
2
1
0
CH2VLED[7:0]  
R-00000000b  
7-34. CH2VLED Register Field Description  
Bit Field  
Type  
Reset  
Description  
7-0 CH2VLED  
R
00000000  
ADC measurement of the CSN2 node for channel 2. The CSN2 pin voltage is  
internally attenuated by 0.037 to achieve an 8-bit conversion ratio of 65/255 (V/dec).  
The full scale reading represents 65 V at CSN2 node.  
7.6.4.7 CH2VLEDON Measurement (address = 0x19)  
7-47 shows the CH2VLEDON register. 7-35 describes the CH2VLEDON register.  
7-47. CH2VLEDON Register  
7
6
5
4
3
2
1
0
CH2VLEDON[7:0]  
R-00000000b  
7-35. CH2VLEDON Register Field Description  
Bit Field  
Type  
Reset  
Description  
7-0 CH2VLEDON  
R
00000000  
ADC measurement of the CSN2 node for channel 2 before falling edge of PWM  
signal.  
7.6.4.8 CH2VLEDOFF Measurement (address = 0x1A)  
7-48 shows the CH2VLEDOFF register. 7-36 describes the CH2VLEDOFF register.  
7-48. CH2VLEDOFF Register  
7
6
5
4
3
2
1
0
CH2VLEDOFF[7:0]  
R-00000000b  
7-36. CH2VLEDOFF Register Field Description  
Bit Field  
Type  
Reset  
Description  
7-0 CH2VLEDOFF  
R
00000000  
ADC measurement of the CSN2 node for channel 2 before rising edge of PWM  
signal.  
7.6.4.9 TEMPL Measurement (address = 0x1B)  
7-49 shows the TEMPL register. 7-37 describes the TEMPL register.  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TPS92520-Q1  
 
 
 
 
 
 
 
 
 
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
7-49. TEMPL Register (LSB)  
7
6
5
4
3
2
1
0
RESERVED  
R-000000b  
TEMP[1:0]  
R-00b  
7-37. TEMPL Register Field Description  
Bit Field  
Type  
R
Reset  
000000  
00  
Description  
7-2 RESERVED  
1-0 TEMP[1:0]  
Reserved  
R
ADC measurement of the junction temperature. The register reports the 2 LSBs of  
the junction/exposed pad temperature.  
7.6.4.10 TEMPH Measurement (address = 0x1C)  
7-50 shows the TEMPH register. 7-38 describes the TEMPH register.  
7-50. TEMPH Register  
7
6
5
4
3
2
1
0
TEMP[9:2]  
R-00000000b  
7-38. TEMPH Register Field Description  
Bit Field  
Type  
Reset  
Description  
7-0 TEMP[9:2]  
R
00000000  
ADC measurement of the junction temperature. The register reports the 8 MSBs of  
the junction/exposed pad temperature.  
7.6.4.11 V5D Measurement (address = 0x1D)  
7-51 shows the V5D register. 7-39 describes the V5D register.  
7-51. V5D Register  
7
6
5
4
3
2
1
0
V5D[7:0]  
R-00000000b  
7-39. V5D Register Field Description  
Bit Field  
Type  
Reset  
Description  
7-0 V5D[7:0]  
R
00000000  
ADC measurement of the 5-V bias supply. The V5D pin voltage is internally  
attenuated by 0.45 to achieve an 8-bit conversion ratio of 5.33/255 (V/dec).  
7.6.5 Limp-Home Configuration and Command Registers  
The limp-home registers are used to control the device when operating in limp-home mode. Limp-home registers  
are read and write capable.  
7-40. Limp-Home Configuration and Command Registers  
Address  
Acronym  
Register Name  
Section  
Limp-Home Configuration Register  
1
0x1E  
LHCFG1  
Section 7.6.5.1  
Limp-Home Configuration Register  
2
0x1F  
0x20  
0x21  
0x22  
LHCFG2  
LHIL  
Section 7.6.5.2  
Section 7.6.5.3  
Section 7.6.5.4  
Section 7.6.5.5  
Limp-Home Mode External  
Current Reference (LSB)  
Limp-Home Mode External  
Current Reference (MSB)  
LHIH  
Limp-Home Mode Filtered  
External Current Register (LSB)  
LHIFILTL  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TPS92520-Q1  
 
 
 
 
 
 
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
7-40. Limp-Home Configuration and Command Registers (continued)  
Address  
Acronym  
Register Name  
Section  
Limp-Home Mode Filtered  
External Current Register (MSB)  
0x23  
LHIFILTH  
Section 7.6.5.6  
Channel 1 Limp-Home Mode  
Analog Current Register (LSB)  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
LH1IADJL  
LH1IADJH  
LH2IADJL  
LH2IADJH  
LH1PWML  
LH1PWMH  
LH2PWML  
LH2PWMH  
LH1TON  
Section 7.6.5.7  
Section 7.6.5.8  
Section 7.6.5.9  
Section 7.6.5.10  
Section 7.6.5.11  
Section 7.6.5.12  
Section 7.6.5.13  
Section 7.6.5.14  
Section 7.6.5.15  
Section 7.6.5.16  
Channel 1 Limp-Home Mode  
Analog Current Register (MSB)  
Channel 2 Limp-Home Mode  
Analog Current Register (LSB)  
Channel 2 Limp-Home Mode  
Analog Current Register (MSB)  
Channel 1 Limp-Home Mode  
PWM Width Register (LSB)  
Channel 1 Limp-Home Mode  
PWM Width Register (MSB)  
Channel 2 Limp-Home Mode  
PWM Width Register (LSB)  
Channel 2 Limp-Home Mode  
PWM Width Register (MSB)  
Channel 1 Limp-Home Mode On-  
Time Register  
Channel 2 Limp-Home Mode On-  
Time Register  
LH2TON  
7.6.5.1 LHCFG1 Register (address = 0x1E) [reset =0x00]  
The LHCFG1 register contains bits associated with the enabling of channels and several device-related  
functions when operating in limp-home mode. 7-52 shows the LHCFG1 register. 7-41 describes the  
LHCFG1 register.  
7-52. Limp-Home Configuration Register 1 (LHCFG1)  
7
6
5
4
3
2
1
0
LHPWMPH  
R/W-0b  
LHEXTIADJ  
R/W-0b  
LH2100D  
R/W-0b  
LH2INTPWM  
R/W-0b  
LH2EN  
R/W-0b  
LH1100D  
R/W-0b  
LH1INTPWM  
R/W-0b  
LH1EN  
R/W-0b  
7-41. Limp-Home Configuration Register 1 Field Description  
Bit Field  
Type  
Reset  
Description  
7
LHPWMPH  
R/W  
0
PWM phase shift setting for internal PWM generator in limp-home mode.  
0 = 180° phase shift between internally-generated PWM signals  
1 = 0° phase shift between internally generated PWM signals  
6
LHEXTIADJ  
R/W  
0
This bit is used to select between internal or external current reference set point.  
The external reference is set by voltage on LHI pin and is converted to a 10-bit  
value by internal ADC.  
0 = Use internal LHxIADJ register as the CHxIADJ setting in limp-home mode.  
1 = Use external LHI reference as the CHxIADJ setting in limp-home mode.  
5
4
LH2100D  
R/W  
R/W  
0
0
Set channel 2 PWM duty cycle to 100% in limp-home mode.  
0 = LED current duty cycle based on internal or external command  
1 = LED current duty cycle set to 100%  
LH2INTPWM  
This bit is used to enable internal PWM generator function for channel 2 in limp-  
home mode.  
0 = LED current duty cycle of channel 2 controlled by an external signal connected  
to UDIM2 input  
1 = LED current duty cycle of channel 2 controlled by an internal PWM generator  
(registers PWMDIV and LH2PWM). UDIM2 input must be above VUDIM2(UVLO)  
threshold.  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TPS92520-Q1  
 
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
Bit Field  
7-41. Limp-Home Configuration Register 1 Field Description (continued)  
Type  
Reset  
Description  
3
2
1
LH2EN  
R/W  
0
CH2 enable. This bit controls the operation of channel 2 in limp-home mode.  
0 = Disable LED channel 2.  
1 = Enable LED channel 2.  
LH1100D  
LH1INTPWM  
R/W  
R/W  
0
0
Set channel 1 PWM duty cycle to 100% in limp-home mode.  
0 = LED current duty cycle based on internal or external command  
1 = LED current duty cycle set to 100%  
This bit is used to enable internal PWM generator function for channel 1 in limp-  
home mode.  
0 = LED current duty cycle of channel 1controlled by external signal connected to  
UDIM1 input  
1 = LED current duty cycle of channel 1 controlled by internal PWM generator  
(registers PWMDIV and LH1PWM). UDIM1 input must be above VUDIM1(UVLO)  
threshold.  
0
LH1EN  
R/W  
0
CH1 enable. This bit controls the operation of channel 1 in limp-home mode.  
0 = Disable LED channel 1.  
1 = Enable LED channel 1.  
7.6.5.2 LHCFG2 Register (address = 0x1F) [reset =0x00h]  
The LHCFG2 register contains bits associated with enabling fault handling for both channels and configuring  
fault timer in limp-home mode. 7-53 shows the LHCFG2 register. 7-42 describes the LHCFG2 register.  
7-53. Limp-Home Configuration Register 2 (LHCFG2)  
7
6
5
4
3
2
1
0
LHIFT[1:0]  
R/W-00b  
LH2TSFL  
R/W-0b  
LH2HSILIMFL  
R/W-0b  
LH2LSILIMFL  
R/W-0b  
LH1TSFL  
R/W-0b  
LH1HSILIMFL  
R/W-0b  
LH1LSILIMFL  
R/W-0b  
7-42. Limp-Home Configuration Register 2 Field Description  
Bit Field  
Type  
Reset  
Description  
7-6 LHIFT  
R/W  
00  
LHIFT sets the counter limit for the ILIM fault timer in limp-home mode.  
00 = 3.6 ms fault timer  
01 = 7.2 ms fault timer  
10 = 14.4 ms fault timer  
11 = 28.8 ms fault timer  
5
4
3
2
1
LH2TSFL  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
Channel 2 thermal shutdown fault response in limp-home mode  
0 = Channel 2 auto-restarts based on internal temperature hysteresis.  
1 = Channel 2 is latched off; CH2EN bit is reset and channel 2 is disabled until the  
CH2EN bit is programmed high by SPI command.  
LH2HSILIMFL  
LH2LSILIMFL  
LH1TSFL  
Channel 2 high-side FET current limit fault response in limp-home mode  
0 = Channel 2 auto-restarts after the ILIM fault timer has expired.  
1 = Channel 2 is latched off; CH2EN bit is reset and channel 2 is disabled until the  
CH2EN bit is programmed high by SPI command.  
Channel 2 low-side FET current limit fault response in limp-home mode  
0 = Channel 2 auto-restarts after the ILIM fault timer has expired.  
1 = Channel 2 is latched off; CH2EN bit is reset and channel 2 is disabled until the  
CH2EN bit is programmed high by SPI command.  
Channel 1 thermal shutdown fault response in limp-home mode  
0 = Channel 1 auto-restarts based on internal temperature hysteresis.  
1 = Channel 1 is latched off; CH1EN bit is reset and channel 1 is disabled until the  
CH1EN bit is programmed high by SPI command.  
LH1HSILIMFL  
Channel 1 high-side FET current limit fault response in limp-home mode  
0 = Channel 1 auto-restarts after the ILIM fault timer has expired.  
1 = Channel 1 is latched off; CH1EN bit is reset and channel 1 is disabled until the  
CH1EN bit is programmed high by SPI command.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TPS92520-Q1  
 
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
7-42. Limp-Home Configuration Register 2 Field Description (continued)  
Bit Field  
Type  
Reset  
Description  
0
LH1LSILIMFL  
R/W  
0
Channel 1 low-side FET current limit fault response in limp-home mode  
0 = Channel 1 auto-restarts after the ILIM fault timer has expired.  
1 = Channel 1 is latched off; CH1EN bit is reset and channel 1 is disabled until the  
CH1EN bit is programmed high by SPI command.  
7.6.5.3 LHIL Measurement (address = 0x20)  
7-56 shows the LHI measurement register. 7-43 describes the LHI measurement register.  
7-54. Limp-Home Mode External Current Reference (LSB)  
7
6
5
4
3
2
1
0
RESERVED  
R-000000b  
LHI[1:0]  
R-00b  
7-43. Channel 1 Limp-Home Mode External Current Reference Field Description  
Bit Field  
Type  
Reset  
000000  
00  
Description  
7-2 RESERVED  
1-0 LHI[1:0]  
R
Reserved  
R
External current reference set point in limp-home mode. The LHI input voltage is  
digitized to achieve a 10-bit reference with resolution of 2.45/1023 (V/dec). The 2  
LSBs of the 10-bit ADC measurement of LHI pin voltage.  
7.6.5.4 LHIH Measurement (address = 0x21)  
7-55 shows the LHIH register. 7-44 describes the LHIH register.  
7-55. Limp-Home Mode External Current Reference (MSB)  
7
6
5
4
3
2
1
0
LHI[9:2]  
R-00000000b  
7-44. Limp-Home Mode External Current Reference Field Description  
Bit Field  
Type  
Reset  
Description  
7-0 LHI[9:2]  
R
00000000  
External current reference in limp-home mode. The LHI input voltage is digitized to  
achieve a 10-bit reference with resolution of 2.45/1023 (V/dec). The 8 MSBs of the  
10-bit ADC measurement of LHI pin voltage.  
7.6.5.5 LHIFILTL Register (address = 0x22)  
7-45 shows the LHIFILTL register. 7-46 describes the LHIFILTL register.  
7-45. Limp-Home Mode Filtered External Current Register (LSB)  
7
6
5
4
3
2
1
0
RESERVED  
R-000000b  
LHIFILT[1:0]  
R-00b  
7-46. Limp-Home Mode Filtered External Current Field Description  
Bit Field  
Type  
Reset  
000000  
00  
Description  
7-2 RESERVED  
1-0 LHIFLT[1:0]  
R
Reserved  
R
Filtered ADC measurement of LHI input. The register reports the 2-LSB of the low-  
pass filtered LHI input voltage. This register is only updated when LHIFILTH is read.  
This means that LHIFILTH must always be read first, then LHIFILTL (read LHIFILTL  
only if 10-bit resolution is desired).  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TPS92520-Q1  
 
 
 
 
 
 
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
7.6.5.6 LHIFILTH Register (address = 0x23)  
7-47 shows the LHIFILTH register. 7-48 describes the LHIFILTH register.  
7-47. Limp-Home Mode Filtered External Current Register (MSB)  
7
6
5
4
3
2
1
0
LHIFILT[9:2]  
R-00000000b  
7-48. Limp-Home Mode Filtered External Current Register Field Description  
Bit Field  
Type  
Reset  
Description  
1-0 LHIFLT[9:2]  
R
00000000  
Filtered ADC measurement of LHI input. The register reports the 8-MSB of the low-  
pass filtered LHI input voltage. LHIFILTH register can be read repeatedly without  
reading LHIFILTL register if 8-bit resolution is sufficient.  
7.6.5.7 LH1IADJL Register (address = 0x24) [reset = 0x00]  
7-56 shows the LH1IADJL register. 7-49 describes the LH1IADJL register.  
7-56. Channel 1 Limp-Home Mode Analog Current Register (LSB)  
7
6
5
4
3
2
1
0
RESERVED  
R-000000b  
LH1IADJ[1:0]  
R/W-00b  
7-49. Channel 1 Limp-Home Mode Analog Current Register Field Description  
Bit Field  
Type  
Reset  
000000  
00  
Description  
7-2 RESERVED  
1-0 LH1IADJ[1:0]  
R
Reserved  
R/W  
Channel 1 analog current control in limp-home mode. The 2 LSBs of the 10-bit IADJ  
DAC for channel 1 can be programmed by writing to the register.  
7.6.5.8 LH1IADJH Register (address = 0x25) [reset = 0x00]  
7-57 shows the LH1IADJH register. 7-50 describes the LH1IADJH register.  
7-57. Channel 1 Limp-Home Mode Analog Current Register (MSB)  
7
6
5
4
3
2
1
0
LH1IADJ[9:2]  
R/W-00000000b  
7-50. Channel 1 Limp-Home Mode Analog Current Register Field Description  
Bit Field  
Type  
Reset  
Description  
7-0 LH1IADJ[9:2]  
R/W  
00000000  
Channel 1 analog current control in limp-home mode. The 8 MSBs of the 10-bit  
IADJ DAC for channel 1 can be programmed by writing to the register.  
7.6.5.9 LH2IADJL Register (address = 0x26) [reset = 0x00]  
7-58 shows the LH2IADJL register. 7-51 describes the LH2IADJL register.  
7-58. Channel 2 Limp-Home Mode Analog Current Register (LSB)  
7
6
5
4
3
2
1
0
RESERVED  
R-000000b  
LH2IADJ[1:0]  
R/W-00b  
7-51. Channel 2 Limp-Home Mode Analog Current Register Field Description  
Bit Field  
Type  
Reset  
Description  
7-2 RESERVED  
R
000000  
Reserved  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TPS92520-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
7-51. Channel 2 Limp-Home Mode Analog Current Register Field Description (continued)  
Bit Field  
Type  
Reset  
Description  
1-0 LH2IADJ[1:0]  
R/W  
00  
Channel 2 analog current control in limp-home mode. The 2 LSBs of the 10-bit IADJ  
DAC for channel 2 can be programmed by writing to the register.  
7.6.5.10 LH2IADJH Register (address = 0x27) [reset = 0x00]  
7-59 shows the LH2IADJH register. 7-52 describes the LH2IADJH register.  
7-59. Channel 2 Limp-Home Mode Analog Current Register (MSB)  
7
6
5
4
3
2
1
0
LH2IADJ[9:2]  
R/W-00000000b  
7-52. Channel 2 Limp-Home Mode Analog Current Register Field Description  
Bit Field  
Type  
Reset  
Description  
7-0 LH2IADJ[9:2]  
R/W  
00000000  
Channel 2 analog current control in limp-home mode. The 8 MSBs of the 10-bit  
IADJ DAC for channel 2 can be programmed by writing to the register.  
7.6.5.11 LH1PWML Register (address = 0x28) [reset = 0x00]  
7-60 shows the LH1PWML register. 7-53 describes the LH1PWML register.  
7-60. Channel 1 Limp-Home Mode PWM Width Register (LSB)  
7
6
5
4
3
2
1
0
LH1PWM[7:0]  
R/W-00000000b  
7-53. Channel 1 Limp-Home Mode PWM Width Register Field Description  
Bit Field  
Type  
Reset  
Description  
7-0 LH1PWM[7:0]  
R/W  
00000000  
Channel 1 PWM width control in limp-home mode. The 8 LSBs of the 10-bit PWM  
WIDTH for channel 1 can be programmed by writing to the register.  
7.6.5.12 LH1PWMH Register (address = 0x29) [reset = 0x00]  
7-61 shows the LH1PWMH register. 7-54 describes the LH1PWMH register.  
7-61. Channel 1 Limp-Home Mode PWM Width Register (MSB)  
7
6
5
4
3
2
1
0
RESERVED  
R-000000b  
LH1PWM[9:8]  
R/W-00b  
7-54. Channel 1 Limp-Home Mode PWM Width Register Field Description  
Bit Field  
Type  
Reset  
000000  
00  
Description  
7-2 RESERVED  
1-0 LH1PWM[9:8]  
R
Reserved  
R/W  
Channel 1 PWM width control in limp-home mode. The 2 MSBs of the 10-bit PWM  
WIDTH for channel 1 can be programmed by writing to the register.  
7.6.5.13 LH2PWML Register (address = 0x2A) [reset = 0x00]  
7-62 shows the LH2PWML register. 7-55 describes the LH2PWML register.  
7-62. Channel 2 Limp-Home Mode PWM Width Register (LSB)  
7
6
5
4
3
2
1
0
LH2PWM[7:0]  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TPS92520-Q1  
 
 
 
 
 
 
 
 
 
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
7-62. Channel 2 Limp-Home Mode PWM Width Register (LSB) (continued)  
R/W-00000000b  
7-55. Channel 2 Limp-Home Mode PWM Width Register Field Description  
Bit Field  
Type  
Reset  
Description  
7-0 LH2PWM[7:0]  
R/W  
00000000  
Channel 2 PWM width control in limp-home mode. The 8 LSBs of the 10-bit PWM  
WIDTH for channel 2 can be programmed by writing to the register.  
7.6.5.14 LH2PWMH Register (address = 0x2B) [reset = 0x00]  
7-63 shows the LH2PWMH register. 7-56 describes the LH2PWMH register.  
7-63. Channel 2 Limp-Home Mode PWM Width Register (MSB)  
7
6
5
4
3
2
1
0
RESERVED  
R-000000b  
LH2PWM[9:8]  
R/W-00b  
7-56. Channel 2 Limp-Home Mode PWM Width Register Field Description  
Bit Field  
Type  
Reset  
000000  
00  
Description  
7-2 RESERVED  
1-0 LH2PWM[9:8]  
R
Reserved  
R/W  
Channel 2 PWM width control in limp-home mode. The 2 MSBs of the 10-bit PWM  
WIDTH for channel 2 can be programmed by writing to the register.  
7.6.5.15 LH1TON Register (address = 0x2C) [reset = 0x07]  
7-64 shows the LH1TON register. 7-57 describes the LH1TON register.  
7-64. Channel 1 Limp-Home Mode On-Time Register  
7
6
5
4
3
2
1
0
RESERVED  
R-00b  
LH1TON[5:0]  
R/W-000111b  
7-57. Channel 1 Limp-Home Mode On-Time Register Field Description  
Bit Field  
Type  
Reset  
Description  
7-6 RESERVED  
5-0 LH1TON[5:0]  
R
00  
Reserved  
R/W  
000111  
Channel 1 on-time control in limp-home mode. The pseudo-fixed switching  
frequency for channel 1 is set by writing to this register. Default value is set to  
ensure 437-kHz switching frequency.  
7.6.5.16 LH2TON Register (address = 0x2D) [reset = 0x07]  
7-65 shows the LH2TON register. 7-58 describes the LH2TON register.  
7-65. Channel 2 Limp-Home Mode On-Time Register  
7
6
5
4
3
2
1
0
RESERVED  
R-00b  
LH2TON[5:0]  
R/W-000111b  
7-58. Channel 2 Limp-Home Mode On-Time Register Field Description  
Bit Field  
Type  
Reset  
Description  
7-6 RESERVED  
5-0 LH2TON[5:0]  
R
00  
Reserved  
R/W  
000111  
Channel 2 on-time control in limp-home mode. The pseudo-fixed switching  
frequency for channel 2 is set by writing to this register. Default value is set to  
ensure 437-kHz switching frequency.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TPS92520-Q1  
 
 
 
 
 
 
 
 
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
7.6.6 RESET Register (address = 0x2E) (Write-Only)  
7-66 shows the RESET register. 7-59 describes the RESET register. RESET command does not reset the  
PC bit in the STATUS3 register to the power-on default value.  
7-66. RESET Register  
7
6
5
4
3
2
1
0
RESET[7:0]  
W-00000000b  
7-59. RESET Register Field Description  
Bit Field  
Type  
Reset  
Description  
7-0 RESET  
W
00000000  
Write 0xC3 to the RESET register to reset all writable registers to their default  
values. If the logic is in stand-alone mode, writing 0xC3 returns the channel enable  
state machines to the LOAD state. Watchdog timer is disabled.  
Write 0xD4 to the RESET register to reset all writable registers to their default  
values. If the logic is in stand-alone mode, reading the STATUS3 register to clear  
the CMWTO bits and then writing 0xD4 to the RESET register returns the channel  
enable state machines to the DETECT state. Watchdog timer is enabled.  
This register is write-only. Reads of this register return 0.  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TPS92520-Q1  
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
8-1 shows a schematic of a typical application for the TPS92520-Q1.  
LED1+  
CCOMP1  
1
2
32  
COMP1  
UDIM1  
CSN1  
COUT1  
RCS1  
31  
30  
CSP1  
BST1  
RUV12  
RUV11  
3
4
PGND  
PGND  
L1  
GND  
VIN  
CBST1  
29  
28  
SW1  
SW1  
CIN1  
5
6
7
VIN1  
VIN1  
GND  
V5D  
V5A  
27  
26  
25  
24  
23  
22  
FLT  
LHI  
CV5D  
5V  
Supply  
8
9
SSN  
SCK  
MISO  
MOSI  
SPI  
BUS  
CV5A  
10  
11  
12  
GND  
VIN2  
VIN2  
21  
20  
VIN  
SW2  
SW2  
CIN2  
13  
14  
GND  
PGND  
PGND  
CBST2  
L2  
19  
18  
BST2  
CSP2  
RUV21  
RUV22  
15  
16  
UDIM2  
RCS2  
CCOMP2  
COUT2  
17  
COMP2  
CSN2  
LED2+  
8-1. Buck LED Driver  
8.1.1 Duty Cycle Consideration  
The switch duty cycle, D, defines the converter operation and is a function of the input and output voltages. In  
steady state, the duty cycle is defined using 方程15:  
VCSN  
D =  
V
IN  
(15)  
There is no limitation for small duty cycles, since at low duty cycles, the switching frequency is reduced as  
needed to always ensure current regulation. The maximum duty cycle attainable is limited by the minimum off-  
time duration and is a function of switching frequency.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TPS92520-Q1  
 
 
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
8.1.2 Switching Frequency Selection  
Nominal switching frequency (tON > tON(MIN)) is set by programming the CHxTON register. The switching varies  
slightly over operating range and temperature based on converter efficiency. 8-1 shows common switching  
frequencies and corresponding CHxTON register values.  
8-1. Frequency Setting  
FREQUENCY  
220 kHz  
CHxTON REGISTER VALUE (DECIMAL)  
CHxTON REGISTER VALUE (BINARY)  
3
000011  
000111  
010011  
011111  
101011  
437 kHz  
7
1.064 MHz  
1.66 MHz  
2.23 MHz  
19  
31  
43  
8.1.3 LED Current Set Point  
The LED current is set by the external resistor, RCS, and the CHxIADJ register value. The current sense resistor,  
RCS, is selected to meet the maximum LED current specification and 90% of the full-scale range of CHxIADJ-  
DAC.  
0.9ì VDAC(FS)  
RCS  
=
14ìILED(MAX)  
(16)  
The LED current can be varied between minimum and maximum specified limits by writing to the CHxIADJ  
register.  
8.1.4 Inductor Selection  
The inductor is sized to meet the ripple specification at 50% duty cycle. TI recommends a minimum of 30%  
peak-to-peak inductor ripple to ensure periodic switching operation. Use 方程式 17 to calculate the inductor  
value.  
V
IN(TYP)  
L =  
4ì DiL ì fSW  
(17)  
Use 方程式 18 and 方程式 19 to calculate the RMS and peak currents through the inductor. It is important that  
the inductor is rated to handle these currents.  
2
÷
DiL(MAX)  
2
iL(RMS)  
=
ILED(MAX) +  
«
÷
12  
(18)  
(19)  
DiL(MAX)  
iL(PK) = ILED(MAX)  
+
2
8.1.5 Output Capacitor Selection  
The output capacitor value depends on the total series resistance of the LED string, rD, and the switching  
frequency, fSW. The capacitance required for the target LED ripple current is calculated using 方程20.  
DiL(MAX)  
COUT  
=
8ì fSW ìrD ì DiLED  
(20)  
For applications where the converter supports pixel beam or matrix LED loads, additional design considerations  
influence the selection of output capacitor. The size of the output capacitor depends on the slew-rate control of  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: TPS92520-Q1  
 
 
 
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
the LED bypass switches and must be carefully selected while considering the overshoot current created by the  
dv/dt of the bypass switch.  
When choosing the output capacitors, it is important to consider the ESR and ESL characteristics since they  
directly impact the LED current ripple. Ceramic capacitors are the best choice due to the following:  
Low ESR  
High ripple current rating  
Long lifetime  
Good temperature performance  
With ceramic capacitor technology, it is important to consider the derating factors associated with higher  
temperature and DC bias operating conditions. TI recommends an X7R dielectric with a voltage rating greater  
than maximum LED stack voltage.  
8.1.6 Input Capacitor Selection  
The input capacitor buffers the input voltage for transient events and decouples the converter from the supply. TI  
recommends a 2.2-µF input capacitor across the VIN pin and PGND placed close to the device, and connected  
using wide traces. X7R-rated ceramic capacitors are the best choice due to the low ESR, high ripple current  
rating, and good temperature performance. Additional capacitance can be required to further limit the input  
voltage deviation during PWM dimming operation.  
8.1.7 Bootstrap Capacitor Selection  
The bootstrap capacitor biases the high-side gate driver during the high-side FET on-time. The required  
capacitance depends on the PWM dimming frequency, PWMFREQ, and is sized to avoid boot undervoltage and  
fault during PWM dimming operation. The bootstrap capacitance, CBST, is calculated using 方程21.  
IQ(BST)  
CBST  
=
V
+ VBST(HYS) - VBST(UV) ìPWM  
(
)
5D  
FREQ  
(21)  
8-2 summarizes the TI recommended bootstrap capacitor value for different PWM dimming frequencies.  
8-2. Bootstrap Capacitor Value  
PWM DIMMING FREQUENCY (Hz)  
BOOTSTRAP CAPACITOR (µF)  
1507  
1318  
1055  
879  
0.1  
0.15  
0.22  
0.22  
0.33  
0.47  
1
659  
439  
215  
108  
2
8.1.8 Compensation Capacitor Selection  
A simple integral compensator is recommended to achieve stable operation across the wide operating range.  
The bode plot of the loop gain with different compensation capacitors is shown in Simulated Bode Plot of Loop  
Gain. The buck converter behaves as a single pole system with additional phase lag caused by the switching  
behavior. The gain and phase margin is then determined by the choice of the switching frequency and is  
independent of other design parameters. TI recommends a 1-nF to 10-nF capacitor to achieve bandwidth  
between 4 kHz and 40 kHz. The choice of compensation capacitor impacts the transient response, the shunt  
FET dimming behavior and PWM dimming performance. A larger compensation capacitor (lower bandwidth) is  
recommended to limit the LED current overshoot on the rising edge of internal or external PWM signal. A smaller  
compensation capacitor (higher bandwidth) is recommend to improve shunt FET dimming response.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TPS92520-Q1  
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
60  
40  
100  
2.2 nF  
1 nF  
3.3 nF  
4.7 nF  
6.8 nF  
10 nF  
75  
20  
50  
0
25  
-20  
-40  
-60  
-80  
-100  
-120  
0
-25  
-50  
-75  
-100  
-125  
1000  
2000 3000 5000  
10000  
20000  
50000 100000 200000  
Frequency (Hz)  
500000 1000000 2000000  
5000000 1E+7  
L = 68 µH, fSW = 437 kHz  
8-2. Simulated Bode Plot of Loop Gain  
8.1.9 Input Undervoltage Protection  
8-1 shows that the undervoltage protection threshold is programmed using a resistor divider, RUV1 and RUV2  
,
from the input voltage, VIN, to ground. Use 方程22 and 方程23 to calculate the resistor values.  
VHYS  
RUVx2  
=
IUDIM(UVLO)  
(22)  
(23)  
VUDIM(RISE)  
- VUDIM(RISE)  
RUVx1  
=
ìRUVx2  
V
INx(RISE)  
8.1.10 CSN Protection Diode  
An external Schottky diode is selected to protect the CSP / CSN node by clamping the negative voltage during  
short circuit transient. The Schottky diode should be selected based on the length of the cable harness and the  
choice of output capacitor. A Schottky diode with low forward voltage drop at room-temperature and non-  
repetitive peak surge current rating of 10 A for duration of 5 µs is recommended. The diode should be located  
close to the CSN pin.  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: TPS92520-Q1  
 
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
8.2 Typical Application  
VLED2  
C1  
U1  
COMP1  
D1  
60V  
C2  
1uF  
2200pF  
R1  
0.33W  
0.1  
1
2
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
CSN1  
CSP1  
BST1  
SW1  
SW1  
FLT  
GND  
CH2_EN  
UDIM1  
PGND  
PGND  
VIN1  
C3  
3
0.47uF  
4
L1  
C4  
2.2uF  
GND  
5
VBOOST  
68µH  
6
VIN1  
FLT  
5V  
7
GND  
LHI  
VIREF  
R2  
C5  
4.7µF  
5V  
GND  
8
10.0k  
R3  
V5D  
SSN  
5V  
SSN  
SCK  
R4  
10  
9
V5A  
SCK  
4.7k  
C6  
0.1uF  
10  
11  
12  
13  
14  
15  
16  
GND  
MISO  
MOSI  
SW2  
SW2  
BST2  
CSP2  
CSN2  
MISO  
VIN2  
MOSI  
VIN2  
C7  
2.2uF  
L2  
PGND  
PGND  
UDIM2  
COMP2  
C8  
68µH  
0.47uF  
GND  
CH1_EN  
C9  
R5  
0.33W  
0.1  
D2  
60V  
C10  
1uF  
2200pF  
GND  
TPS92520-Q1  
VLED1  
8-3. Application Schematic  
8.2.1 Design Requirements  
8-3. Design Parameters  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN  
Input Voltage  
58  
1
60  
62  
16  
V
NS  
Number of LEDs  
VFLED  
rD  
VOUT  
ILED  
LED forward voltage drop  
2.8  
0.1  
2.8  
100  
3
3.4  
V
LED string series resistance  
Output voltage  
N x rD(LED)  
Ns x VFLED  
1.6  
Ω
V
54.4  
1600  
LED current  
mA  
Defined as percentage peak-to-peak at  
maximum LED current. 5 % of maximum LED  
current.  
LED current ripple  
80  
mA  
%
ΔiLED  
Defined as percentage peak-to-peak at  
maximum LED current  
Inductor current ripple  
30  
ΔiL  
VIN(RISE)  
VIN(FALL)  
fPWM  
Start input voltage  
Stop input voltage  
PWM frequency  
Input voltage rising  
Input voltage falling  
54  
52  
V
V
439  
Hz  
%
DPWM  
fSW  
PWM dimming duty cycle  
Switching frequency  
Ambient temperature  
4
100  
437  
25  
kHz  
°C  
TA  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TPS92520-Q1  
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
8.2.1.1 Detailed Design Procedure  
8.2.1.1.1 Calculating Duty Cycle  
Solve for duty cycle D, DMAX, and DMIN  
:
VOUT(MAX)  
54.4  
58  
DMAX  
=
=
= 0.938  
V
IN(MIN)  
(24)  
(25)  
VOUT(MIN)  
2.8  
DMIN  
=
=
= 0.0452  
V
62  
IN(MAX)  
8.2.1.1.2 Calculating Minimum On-Time and Off-Time  
Solve for minimum on-time, tON(DMIN) at minimum duty cycle and minimum off-time, tOFF(DMAX) at maximum duty  
cycle:  
VOUT(MIN)  
1
2.8  
62  
1
tON(DMIN)  
=
ì
=
ì
= 103.3ì10-9  
437ì103  
V
fSW  
IN(MAX)  
(26)  
(27)  
VOUT(MAX)  
1
54.4  
58  
1
tON(DMAX)  
=
ì
=
ì
= 142ì10-9  
437ì103  
V
fSW  
IN(MIN)  
8.2.1.1.3 Minimum Switching Frequency  
Confirm minimum switching frequency at tON(DMIN), fSW(MIN)  
:
VOUT(MIN)  
2.8  
103.3ì10-9 ì62  
fSW(MIN)  
=
=
= 437.2ì103  
tON(DMIN) ì V  
IN(MAX)  
(28)  
(29)  
(30)  
For the design specification, tON(DMIN) > tON(MIN) and fSW(MIN) = fSW  
.
8.2.1.1.4 LED Current Set Point  
Solve for sense resistor, RCS  
:
0.9ì VDAC(FS)  
14ìILED(MAX)  
0.9ì 2.45  
14ì1.6  
RCS  
=
=
= 0.0984  
A standard resistor of 100 mΩwith tolerance better than 1 % and low temperature coefficient is selected.  
8.2.1.1.5 Inductor Selection  
The inductor is selected to meet the recommended 30% peak-to-peak inductor ripple specification:  
V
V
IN(TYP)  
60  
4ì0.3ì1.6ì 437x103  
IN(TYP)  
L =  
=
=
= 71.5ì10-6  
4ì DiL ì fSW 4ì0.3ìILED(MAX) ì fSW  
The closest standard capacitor is 68 µH.  
Lower inductor values increase the peak-to-peak inductor current, which minimizes size and cost at the  
expense of reduced efficiency and larger output capacitor.  
Higher inductance values decrease the peak-to-peak inductor current, which increases efficiency but reduces  
the operating range based on minimum sense voltage ripple, ΔV(CSP-CSN) specification.  
8.2.1.1.6 Output Capacitor Selection  
The minimum output capacitance is selected to meet the LED current ripple specification:  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: TPS92520-Q1  
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
DiL(MAX)  
0.48  
8ì 437ì103 ì1.6 ì80 ì10-3  
COUT  
=
=
= 1.07ì10-6  
8ì fSW ìrD(MAX) ì DiLED(MAX)  
(31)  
A standard 1-µF, 100-V X7R capacitor is selected.  
8.2.1.1.7 Bootstrap Capacitor Selection  
Referring to 8-2, a standard 470-nF, 16-V X7R capacitor is selected to support PWM frequency of 439 Hz.  
8.2.1.1.8 Compensation Capacitor Selection  
A compensation capacitor of 2.2 nF is selected to achieve balanced transient response between PWM dimming  
and shunt FET dimming.  
60  
100  
2.2 nF  
1 nF  
3.3 nF  
4.7 nF  
6.8 nF  
10 nF  
40  
75  
20  
50  
0
25  
-20  
-40  
-60  
-80  
-100  
-120  
0
-25  
-50  
-75  
-100  
-125  
1000  
2000 3000 5000  
10000  
20000  
50000 100000 200000  
Frequency (Hz)  
500000 1000000 2000000  
5000000 1E+7  
8-4. Simulated Buck Converter Bode Plot  
8.2.1.1.9 External Channel Enable and PWM dimming  
The device channel enable function and external PWM signal is achieved by controlling UDIM input via  
microcontroller. The device modulates the LED current based on the PWM duty cycle of the external signal.  
Input undervoltage lockout function is implemented by reading the VIN register value sampled by ADC. Refer to  
the 7.3.12 section for further details regarding ADC sampling and measurement.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TPS92520-Q1  
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
8.2.2 Application Curves  
Ch1: SW voltage (10 V/div); Ch2: Output voltage (4 V/div);  
Ch1: SW voltage (10 V/div); Ch3: Inductor current (200 mA/  
div); Ch4: COMP voltage (400 mV/div); Time: 50 µs/div  
Ch3: Inductor current (200 mA/div); Time: 1 µs/div  
8-6. Normal Operation  
8-5. Start-up Transient  
Ch1: SW voltage (10V/div); Ch2: Output voltage (4 V/div);  
Ch3: Inductor current (200 mA/div); Ch4: LED current (200  
mA/div); Time: 500 µs/div  
Ch1: SW voltage (10V/div); Ch2: Output voltage (4 V/div);  
Ch3: Inductor current (200 mA/div); Ch4: LED current (200  
mA/div); Time: 5 µs/div  
8-7. Internal PWM Dimming Transient  
8-8. Internal PWM Dimming (Rising Edge)  
Ch1: SW voltage (10 V/div); Ch2: Output voltage (4 V/div);  
Ch4: LED current (200 mA/div); Time: 400 µs/div  
Ch1: SW voltage (10V/div); Ch2: Output voltage (4 V/div);  
Ch3: Inductor current (200 mA/div); Ch4: LED current (200  
mA/div); Time: 5 µs/div  
8-10. Shunt Dimming with Matrix Manager  
8-9. Internal PWM Dimming (Falling Edge)  
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: TPS92520-Q1  
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
Ch1: SW voltage (10 V/div); Ch2: Output voltage (4 V/div);  
Ch4: LED current (200 mA/div); Time: 400 µs/div  
Ch1: SW voltage (10 V/div); Ch2: Output voltage (4 V/div);  
Ch4: LED current (200 mA/div); Time: 50 µs/div  
8-11. Shunt Dimming (LEDs ON-OFF Transient)  
8-12. Shunt Dimming (LEDs OFF to LEDs ON)  
Ch1: SW voltage (10 V/div); Ch2: Output voltage (4 V/div);  
Ch4: LED current (200 mA/div); Time: 50 µs/div  
Ch1: SW voltage (10V/div); Ch2: Output voltage (4 V/div);  
Ch3: Inductor current (200 mA/div); Ch4: LED current (200  
mA/div); Time: 50 µs/div  
8-13. Shunt Dimming (LEDs ON to LEDs OFF)  
8-14. Output Short Circuit Fault  
Ch1: SW voltage (10V/div); Ch2: Output voltage (4 V/div);  
Ch3: Inductor current (200 mA/div); Ch4: LED current (200  
mA/div); Time: 40 µs/div  
Ch1: SW voltage (10V/div); Ch2:  
Output voltage (4 V/div); Ch3: Inductor  
current (400 mA/div); Ch4: LED current  
(200 mA/div); Time: 40 µs/div  
8-15. Output Short Circuit Fault Recovery  
8-16. Output Open Circuit Fault  
8.3 Initialization Setup  
The device is enabled with default watchdog timer on power up, V5D > V5D(POR)  
.
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TPS92520-Q1  
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
8.3.1 Initialize Device without Watchdog timer  
The following steps must be implemented before the default watchdog timer times out in 1.55 s (typ).  
1. Read register 0x05 to clear the PC (Power Cycle) bit (D2).  
2. Write byte 0x00 to register 0x00. This will set bit D7 to 0 and reset FLT indicator. It also set bit D4 to 0 and  
disable the watchdog timer and bit .  
3. Configure the device by writing to registers 0x00 to 0x02 and 0x06 to 0x12. The channels are disabled by  
setting CHxEN to 0 (register 0x00 bits D2 and D0).  
4. Enable channels by setting ChxEN bits to 1. Write D2 and D0 bits to 1 in register 0x00.  
If the watchdog timer is not disabled or the device does not receive a valid SPI command in 1.55 s after power  
up, the device will transition to standalone mode. The operation in standalone mode can be detected by reading  
register 0x05. If bit D7 is set then the device is operating in standalone mode. To exit standalone mode, write  
byte 0xC3.  
8.3.2 Initialize Device with Watchdog Timer  
The following steps must be implemented before the default watchdog timer times out in 1.55 s (typ).  
1. Read register 0x05 to clear the PC (Power Cycle) bit (D2).  
2. Write byte 0x10 to register 0x00. This will set bit D7 to 0 and reset the FLT indicator. Watchdog timer  
enabled by setting bit D4 to 1.  
3. To change the default watchdog timeout value, modify the contents of register 0x02 to select the desired  
watchdog timeout period.  
4. Repeatedly write or read a register within the specified period in step 2 in order to avoid triggering a  
watchdog timer time out event.  
5. Configure the device by writing to registers 0x00 to 0x02 and 0x06 to 0x12. The channels are disabled by  
setting CHxEN to 0 (register 0x00 bits D2 and D0).  
6. Enable channels by setting ChxEN bits to 1. Write D2 and D0 bits to 1 in register 0x00.  
If the watchdog timer is not disabled or the device does not receive a valid SPI command in 1.55 s after power  
up, the device will transition to standalone mode. The operation in standalone mode can be detected by reading  
register 0x05. If bit D7 is set then the device is operating in standalone mode. To exit standalone mode, write  
byte 0xD4 to register 0x2E.  
8.3.3 Limp-Home Mode  
The following steps must be implemented to program the limp-home mode.  
1. Enable limp-home mode by enabling watchdog timer by setting D4 bit to 1 in register 0x00.  
2. Configure limp-home mode by writing to registers 0x1E to 0x2D.  
3. Test limp-home configuration by toggling LHSW bit (D5) in register 0x00.  
Copyright © 2021 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: TPS92520-Q1  
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
9 Power Supply Recommendations  
This device is designed to operate from an input voltage supply range between 4.5 V and 65 V. The input can be  
a car battery or another preregulated power supply. Additional bulk capacitance or an input filter can be required  
in addition to the ceramic bypass capacitors to address converter stability, noise, and EMI concerns.  
10 Layout  
10.1 Layout Guidelines  
The performance of any switching converter depends as much on the layout of the PCB as the component  
selection. The following guidelines can help you design a PCB with the best power converter performance.  
Place ceramic high-frequency bypass capacitors as close as possible to the TPS92520-Q1 VIN and PGND  
pins. Grounding for both the input and output capacitors must consist of localized top side planes that  
connect to the PGND pins.  
Place bypass capacitors for V5D and V5A close to the pins and ground the capacitors to device ground.  
Differentially route the CSP and CSN pins to sense resistor. Route the traces away from noisy nodes,  
preferably through a layer on the other side of a shielding/ground layer.  
Use ground plane in one of the middle layers for noise shielding.  
Make VIN and ground connection as wide as possible. This reduces any voltage drops on the input of the  
converter and maximizes efficiency.  
10.1.1 Compact Layout for EMI Reduction  
Radiated EMI is generated by the high di/dt from pulsing currents in switching converters. The larger the area  
covered by the path of a pulsing current, the more electromagnetic emission is generated. The key to minimize  
radiated EMI is to identify the pulsing current path and minimize the area of the path. In buck converters, the  
pulsing current path is from the VIN side of the input capacitors through the HS switch, through the LS switch,  
and then returns to the ground of the input capacitor.  
High-frequency ceramic bypass capacitors at the input side provide primary path for the high di/dt components of  
the pulsing current. Placing ceramic capacitors as close as possible to the VIN and PGND pins is the key to EMI  
reduction.  
The PCB copper connection of the SW pin to the inductor must be as short as possible and just wide enough to  
carry the LED current without excessive heating. Short, thick traces or, copper pours (shapes), must be used for  
high current conduction path to minimize parasitic resistance. Place the output capacitor close to the CSN pin  
and grounded closely to the PGND pin.  
10.1.1.1 Ground Plane  
TI recommends using one of the middle layers as a solid ground plane. The ground plane provides shielding for  
sensitive circuits and traces. It also provides a quiet reference potential for the control circuitry. Connect the GND  
and PGND pins to the ground plane using vias right next to the bypass capacitors. PGND pins are connected to  
the source of the internal LS switch. They must be connected directly to the grounds of the input and output  
capacitors. The PGND net contains noise at the switching frequency and can bounce due to load variations.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TPS92520-Q1  
 
 
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
10.2 Layout Example  
COMP1  
UDIM1  
PGND  
PGND  
VIN1  
CSN1  
CSP1  
BST1  
SW1  
SW1  
FLT  
1
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
2
3
4
5
VIN1  
6
GND  
LHI  
7
V5D  
SSN  
8
V5A  
SCK  
9
GND  
MISO  
MOSI  
SW2  
SW2  
BST2  
CSP2  
CSN2  
10  
11  
12  
13  
14  
15  
16  
VIN2  
VIN2  
PGND  
PGND  
UDIM2  
COMP2  
10-1. TPS92520-Q1 Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: TPS92520-Q1  
 
TPS92520-Q1  
ZHCSKD8D SEPTEMBER 2019 REVISED FEBRUARY 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, TPS92520-Q1 Launchpad Evaluation Module User's Guide  
11.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TPS92520-Q1  
 
 
 
 
 
 
 
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS92520QDAPRQ1

具有 SPI 的 1.6A 双路同步降压 LED 驱动器

| DAP | 32 | -40 to 125
TI

TPS92550

450mA 14W Constant Current Buck LED Driver Micro- Module
TI

TPS92550TZ

450mA 14W Constant Current Buck LED Driver Micro-Module
TI

TPS92550TZ/NOPB

450mA 14W 恒流降压型 LED 驱动器微型模块 | NDW | 7 | -40 to 125
TI

TPS92550TZE

450mA 14W Constant Current Buck LED Driver Micro-Module
TI

TPS92550TZX

450mA 14W Constant Current Buck LED Driver Micro-Module
TI

TPS92550TZX/NOPB

450mA 14W 恒流降压型 LED 驱动器微型模块 | NDW | 7 | -40 to 125
TI

TPS92551

450mA 23W Constant Current Buck LED Driver Micro-Module
TI

TPS92551TZ

450mA 23W Constant Current Buck LED Driver Micro-Module
TI

TPS92551TZ/NOPB

450mA 23W 恒流降压型 LED 驱动器微型模块 | NDW | 7 | -40 to 125
TI

TPS92551TZE

450mA 23W Constant Current Buck LED Driver Micro-Module
TI

TPS92551TZX

450mA 23W Constant Current Buck LED Driver Micro-Module
TI