TPS92638-Q1 [TI]

具有 PWM 调光功能的汽车类 8 通道线性 LED 驱动器;
TPS92638-Q1
型号: TPS92638-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 PWM 调光功能的汽车类 8 通道线性 LED 驱动器

驱动 驱动器
文件: 总37页 (文件大小:4921K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS92638-Q1  
ZHCSDK4C SEPTEMBER 2014REVISED JANUARY 2020  
具有 PWM 调光功能的 TPS92638-Q1 8 通道线性 LED 驱动器  
1 特性  
该器件可驱动多达八个灯串,每个灯串上可有一到三个  
1
LED,每个通道的总电流高达 70mA。可通过将多个输  
出并行以提供高达 560mA 的驱动电流。  
符合汽车类应用 要求  
器件温度等级 1–40°C 125°C 的环境工作  
温度范围  
在多灯串 应用中,该器件的优势在于支持 LED 灯串进  
行共阴极连接。因此,对于具有低端电流感应功能的系  
统而言,只需要一条回线即可,而无需为每个 LED 灯  
串配一条回线。  
器件 HBM ESD 分类等级 H2  
器件 CDM ESD 分类等级 C3B  
提供功能安全  
可帮助进行功能安全系统设计的可用文档  
该器件具有在高电流和低电流之间切换 LED 电流的能  
力,适用于停车灯和尾灯 应用。可通过两个基准电阻  
为每个输出设置这两种 LED 电流电平。  
具有模拟和 PWM 调光功能的 8 通道 LED 驱动器  
宽输入电压范围:5V 40V  
由基准电阻器设定的可调恒定输出电流  
最大电流:每通道 70mA  
最大电流:并行工作模式下为 560mA  
精度:每通道 ±3%  
该器件包含温度监控器,可在集成电路 (IC) 结温超过  
温度阈值时降低 LED 驱动电流。温度阈值可通过外部  
电阻进行编程。将 TEMP 引脚接地面可禁用热电流监  
视功能。可在出厂程序中选择将结温以模拟电压的形式  
输出。  
精度:每个器件 ±4%  
PWM 调光输入 (PWM)  
/关延时:25µs(典型值),45µs(最大值)  
器件信息(1)  
封装  
4 PWM 调光功能,可控制 8 个通道  
通过去毛刺脉冲实现 LED 开路和短路检测  
器件型号  
TPS92638-Q1  
封装尺寸(标称值)  
HTSSOP (20)  
6.50mm × 4.40mm  
用于报告开路、短路和热关断故障的故障引脚,允  
许并行总线最多连接 15 个器件  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
高温电流折返功能,可防止热关断,具有可编程阈  
4 典型应用原理图  
Tail  
一个用于停车灯电流设定点的电阻  
一个用于尾灯电流设定点的电阻  
SUPPLY  
EN  
IOUT1  
IOUT2  
IOUT3  
IOUT4  
IOUT5  
IOUT6  
IOUT7  
IOUT8  
PWM1  
PWM2  
PWM3  
PWM4  
工作结温范围:-40°C 150°C  
Stop  
Stop  
封装:20 引脚耐热增强型 PWP 封装 (PDSO)  
STOP  
FAULT  
2 应用  
V(bat)  
TPS92638-Q1  
REFHI  
REF  
LED 照明 应用 (例如,日间行车灯、位置灯、雾  
灯、后灯、刹车灯或尾灯、内部照明)  
TEMP  
GND  
3 说明  
TPS92638-Q1 是一款具有 PWM 调光控制功能的八通  
道线性 LED 驱动器。其设计非常适合用于将多个 LED  
灯串驱动至中等功率范围。  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSCK5  
 
 
 
 
 
 
 
 
 
 
 
TPS92638-Q1  
ZHCSDK4C SEPTEMBER 2014REVISED JANUARY 2020  
www.ti.com.cn  
目录  
9.1 Overview ................................................................. 13  
9.2 Functional Block Diagram ....................................... 13  
9.3 Feature Description................................................. 14  
9.4 Device Functional Modes........................................ 20  
10 Application and Implementation........................ 21  
10.1 Application Information.......................................... 21  
10.2 Typical Applications .............................................. 21  
11 Power Supply Recommendations ..................... 28  
12 Layout................................................................... 28  
12.1 Layout Guidelines ................................................. 28  
12.2 Layout Example .................................................... 28  
12.3 Thermal Information.............................................. 29  
13 器件和文档支持 ..................................................... 30  
13.1 ....................................................................... 30  
13.2 静电放电警告......................................................... 30  
13.3 Glossary................................................................ 30  
14 机械、封装和可订购信息....................................... 30  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
典型应用原理图........................................................ 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Switching Characteristics.......................................... 6  
7.7 Typical Characteristics.............................................. 7  
Parameter Measurement Information ................ 12  
Detailed Description ............................................ 13  
8
9
5 修订历史记录  
Changes from Revision B (March 2015) to Revision C  
Page  
特性 部分添加了功能安全链接 ............................................................................................................................................ 1  
Changes from Revision A (November 2014) to Revision B  
Page  
已更改通道精度和器件精度的值 ............................................................................................................................................. 1  
删除了 说明部分中第四段的文本 ........................................................................................................................................ 1  
Changes from Original (September 2014) to Revision A  
Page  
已更改 更改了 特性列表中的某些项目................................................................................................................................. 1  
已更改 更改了 应用部分中的项目 ....................................................................................................................................... 1  
已更改 用新文本更改了 说明部分的段............................................................................................................................. 1  
Deleted the existing Pin Functions table and replaced with new one ................................................................................... 3  
Added new sections and subsections to the data sheet beginning with the Specifications section ...................................... 4  
2
Copyright © 2014–2020, Texas Instruments Incorporated  
 
TPS92638-Q1  
www.ti.com.cn  
ZHCSDK4C SEPTEMBER 2014REVISED JANUARY 2020  
6 Pin Configuration and Functions  
20-Pin PDSO With PowerPAD Package  
PWP Package  
(Top View)  
SUPPLY  
EN  
1
2
3
4
5
6
7
8
9
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
IOUT1  
IOUT2  
IOUT3  
IOUT4  
IOUT5  
IOUT6  
IOUT7  
IOUT8  
GND  
STOP  
PWM1  
PWM2  
PWM3  
PWM4  
FAULT  
TEMP  
REFHI  
Thermal  
Pad  
10  
REF  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
EN  
NO.  
2
I
I/O  
O
O
O
O
O
O
O
O
I
Enable and shutdown  
Fault pin  
FAULT  
GND  
8
12  
20  
19  
18  
17  
16  
15  
14  
13  
4
Ground  
IOUT1  
IOUT2  
IOUT3  
IOUT4  
IOUT5  
IOUT6  
IOUT7  
IOUT8  
PWM1  
PWM2  
PWM3  
PWM4  
REF  
Current output pin  
Current output pin  
Current output pin  
Current output pin  
Current output pin  
Current output pin  
Current output pin  
Current output pin  
PWM input and channel ON-OFF for CH1 and CH2  
PWM input and channel ON-OFF for CH3 and CH4  
PWM input and channel ON-OFF for CH5 and CH6  
PWM input and channel ON-OFF for CH7 and CH8  
Reference resistor terminal for normal current setting  
Reference resistor pin for stop light current setting  
Signal input for the stop light  
5
I
6
I
7
I
11  
10  
3
I
REFHI  
STOP  
SUPPLY  
TEMP  
I
I
1
I
Input pin – VBAT supply  
9
I
Temperature foldback threshold programming  
Copyright © 2014–2020, Texas Instruments Incorporated  
3
TPS92638-Q1  
ZHCSDK4C SEPTEMBER 2014REVISED JANUARY 2020  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
SUPPLY, IOUTx, PWMx, EN,  
Unregulated input(2) (3)  
STOP  
–0.3  
45  
V
FAULT  
See(2)  
See(2)  
–0.3  
–0.3  
–40  
–40  
–65  
22  
7
V
V
REF, REFHI, TEMP  
TJ  
Virtual junction temperature range  
Operating ambient temperature range  
Storage temperature range  
150  
125  
150  
°C  
°C  
°C  
TA  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to GND.  
(3) Absolute maximum voltage 45 V for 200 ms  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
Corner pins (SUPPLY,  
±2000  
V(ESD)  
Electrostatic discharge  
±750  
±500  
V
Charged device model  
IOUT1, REF and REFHI)  
(CDM), per AEC Q100-011  
Other pins  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
5
NOM  
MAX  
40  
UNIT  
SUPPLY  
V
EN, STOP  
2
40  
VIH  
VIL  
TJ  
FAULT  
2
20  
V
PWMx  
2
40  
EN, STOP  
0
0.7  
0.7  
0.7  
5
FAULT  
0
V
PWMx  
0
REF, REFHI, TEMP  
Operating junction temperature range  
0
V
–40  
150  
°C  
7.4 Thermal Information  
TPS92638-Q1  
THERMAL METRIC(1)  
PWP (HTSSOP)  
UNIT  
20 PINS  
37.8  
25.2  
21.7  
0.8  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
21.5  
2.1  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
4
Copyright © 2014–2020, Texas Instruments Incorporated  
 
TPS92638-Q1  
www.ti.com.cn  
ZHCSDK4C SEPTEMBER 2014REVISED JANUARY 2020  
7.5 Electrical Characteristics  
V(VIN) = 14 V, TJ = –40°C to 150°C (unless otherwise stated)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY VOLTAGE AND CURRENT (SUPPLY)  
I(Quiescent)  
I(Shutdown)  
Quiescent current  
Shutdown current  
V(PWMx), V(EN) = high, I(IOUTx) = 40 mA  
V(PWMx) = 0 V, V(EN) = 0 V  
0.5  
0.6  
0.9  
10  
mA  
µA  
Shutdown current in fault mode  
(device to GND)  
0.5  
0.75  
1
V(PWMx), V(EN) = high, V(FAULT) = low,  
V(SUPPLY) = 5 V to 40 V, I(IOUTx) = 30 mA  
I(fault)  
mA  
Shutdown current in fault mode  
(from SUPPLY)  
1.15  
PWM, EN, STOP  
I(EN-pd)  
EN internal pulldown  
V(EN) = 0 V to 40 V  
0.5  
1.161  
1.119  
5
µA  
V
VIH(PWMx)  
VIL(PWMx)  
V(PWM-hys)  
Logic input, high level(1)  
Logic input, low level(1)  
Hysteresis  
PWMx rising from a low state, IOUTx disabled  
PWMx falling from a high state, IOUTx enabled  
1.222 1.283  
1.178 1.237  
44  
V
mV  
nA  
µA  
µA  
V(PWMx) = 0 V to 20 V  
V(PWMx) = 20 V to 40 V  
V(STOP) = 0 V to 40 V  
180  
0.2  
300  
2
I(PWM-pd)  
PWMx internal pulldown current  
STOP internal pulldown  
I(STOP-PD)  
0.1  
1
CURRENT REGULATION (IOUTx)  
Each channel, V(PWMx) = high, V(EN) = high  
V(SUPPLY) > 5 V, V(IOUTx) > 0.9 V  
I(IOUTx)  
2
16  
70  
560  
7%  
mA  
mA  
Regulated output current range  
8 channels in parallel mode, V(PWMx) = high, V(EN)  
= high, V(SUPPLY) > 5 V, V(IOUTx) > 0.9 V  
I(IOUT_TOTAL)  
5 mA I(IOUTx) < 10 mA, V(SUPPLY) = 5 V–40 V  
Channel accuracy = (I(IOUTx) – I(avg)) / I(avg)  
–7%  
–3%  
–18%  
–8%  
–4%  
–20%  
–10%  
–8%  
–20%  
(2)  
10 mA I(IOUTx) 70 mA, V(SUPPLY) = 5 V–40 V  
Channel accuracy = (I(IOUTx) – I(avg)) / I(avg)  
ΔIO(channel)  
Channel accuracy  
3%  
(2)  
2 mA I(IOUTx) < 5 mA, V(SUPPLY) = 5 V–40 V  
Channel accuracy = (I(IOUTx) – I(avg)) / I(avg)  
18%  
8%  
(2)  
5 mA I(IOUTx) < 10 mA, V(SUPPLY) = 5 V to 20 V  
Device accuracy = (I(IOUTx) – I(setting)) / I(setting)  
(3)  
10 mA I(IOUTx) 70 mA, V(SUPPLY) = 5 V to 20 V  
Device accuracy = (I(IOUTx) – I(setting)) / I(setting)  
4%  
(3)  
2 mA I(IOUTx) < 5 mA, V(SUPPLY) = 5 V to 20 V  
Device accuracy = (I(IOUTx) – I(setting)) / I(setting)  
20%  
10%  
8%  
(3)  
ΔIO(device)  
Device accuracy  
5 mA I(IOUTx) < 10 mA, V(SUPPLY) = 20 V to 40 V  
Device accuracy = (I(IOUTx) – I(setting)) / I(setting)  
(3)  
10 mA I(IOUTx) 70 mA, V(SUPPLY) = 20 V to 40 V  
Device accuracy = (I(IOUTx) – I(setting)) / I(setting)  
(3)  
2 mA I(IOUTx) < 5 mA, V(SUPPLY) = 20 V to 40 V  
Device accuracy = (I(IOUTx) – I(setting)) / I(setting)  
20%  
(3)  
V(REF)  
Reference voltage  
I(IOUTx) = 20 mA  
1.198  
1.198  
1.222 1.246  
1.222 1.246  
V
V
V(REFHI)  
STOP reference voltage  
Ratio of I(IOUTx) to reference  
current  
I(IOUTx) / I(REF) or I(IOUTx) / ( I(REF)  
G(I)  
200  
mA/mA  
+ I(REFHI)  
)
V(DROP_IOUTx)  
V(DROP)  
I(IOUTx) = 70 mA  
I(IOUTx) = 35 mA  
0.71  
0.28  
0.9  
V
V
Dropout voltage  
0.45  
(1) VIH and VIL track each other. That is, both are simultaneously at MAX, MIN, or the same intermediate point. Therefore, there can be no  
overlap of the VIH and VIL values during normal operation.  
(2) I(AVG) = [I(IOUT1) + I(IOUT2) + I(IOUT3) + I(IOUT4) + I(IOUT5) + I(IOUT6) + I(IOUT7) + I(IOUT8)] / 8  
(3) I(setting) is the target current set by R(REF)  
.
Copyright © 2014–2020, Texas Instruments Incorporated  
5
 
TPS92638-Q1  
ZHCSDK4C SEPTEMBER 2014REVISED JANUARY 2020  
www.ti.com.cn  
Electrical Characteristics (continued)  
V(VIN) = 14 V, TJ = –40°C to 150°C (unless otherwise stated)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Current rising from 10% to 90% or falling from  
90% to 10% at I(IOUTx) = 35 mA.(4)  
1.5  
6
12 mA/µs  
Current slew-rate rise and fall  
times  
I(slew)  
Current rising from 10% to 90% or falling from  
90% to 10% at I(IOUTx) = 70 mA.(4)  
3
6
12 mA/µs  
FAULT (FAULT)  
VOL  
Logic output low level  
500-µA external pullup  
1-µA external pulldown  
0.4  
V
V
VOH  
Logic output high level  
Strong pulldown current  
Pullup current  
2
600  
4
I(pulldown)  
I(pullup)  
780  
8
1000  
12  
µA  
µA  
PROTECTION  
Open-load detection voltage  
V(OL_TH) = V(SUPPLY) – V(IOUTx)  
V(OL_th)  
50  
100  
200  
150  
300  
mV  
V(OL_hys)  
Open-load detection hysteresis  
Short-detection voltage  
100  
0.846  
318  
mV  
V
V(SHORT_th)  
V(SHORT_hys)  
0.89 0.935  
Short-detection hysteresis  
335  
352  
mV  
Open-load detection PWM  
deglitch cycle number  
N(SHORT_deg)  
7
8
Cycles  
R(REF_th)  
R(REFHI_th)  
,
REF and REFHI pins, parallel-  
resistor short detection  
1400  
2300  
Ω
THERMAL MONITOR  
T(shutdown) Thermal shutdown  
T(hys)  
155  
170  
15  
°C  
°C  
Thermal shutdown hysteresis  
Thermal foldback activation  
temperature  
T(th)  
I(IOUTx) = 90% × I(setting), TEMP terminal floating  
95  
40%  
0
110  
125  
60%  
0.2  
°C  
Minimum foldback current, ratio  
of I(setting)  
I(TFC-min)  
V(T-disable)  
K(temp1)  
50%  
Thermal-foldback-function  
disable threshold of V(TEMP)  
V
Change of V(TEMP) relative to  
T(J)  
25  
mV/°C  
(4) See Parameter Measurement Information for the load model for the slew-rate test and delay-time test.  
7.6 Switching Characteristics  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
t(startup)  
td(on)  
Start-up time  
V(SUPPLY) > 5 V, I(IOUTx) = 15 mA, I(setting) = 30 mA(1)  
150  
µs  
Delay time between PWM rising  
edge to 10% of I(IOUTx)  
Two LEDs in series, 10-kΩ resistor in parallel  
Two LEDs in series, 10-kΩ resistor in parallel  
20  
45  
µs  
Delay time between PWM falling  
edge to 90% of I(IOUTx)  
td(off)  
20  
45  
3.2  
8
µs  
ms  
1.2  
7
2.2  
Open-load detection deglitch  
Short-detection deglitch  
During PWM, count the number of continuous cycles  
when V(SUPPLY) – V(IOUTx) < V(OL_th)  
Cycles  
ms  
1.2  
7
2.2  
3.2  
8
During PWM, count the number of continuous cycles  
when V(IOUTx) < V(SHORT_th)  
Cycles  
(1) Start-up is complete when I(setting) is 30 mA and I(IOUTx) increases from 0 to 15 mA.  
6
Copyright © 2014–2020, Texas Instruments Incorporated  
TPS92638-Q1  
www.ti.com.cn  
ZHCSDK4C SEPTEMBER 2014REVISED JANUARY 2020  
7.7 Typical Characteristics  
2%  
1%  
0
2%  
1.5%  
1%  
Ch1  
Ch2  
Ch3  
Ch4  
Ch5  
Ch6  
Ch7  
Ch8  
Ch1  
Ch2  
Ch3  
Ch4  
Ch5  
Ch6  
Ch7  
Ch8  
0.5%  
0
-0.5%  
-1%  
-1%  
-1.5%  
-2%  
-2%  
0
5
10  
15  
20  
Supply Voltage (V)  
25  
30  
35  
40  
45  
-50  
0
50  
Ambient Temperature (èC)  
100  
150  
D005  
D002  
V(SUPPLY) = 12 V  
1. I(IOUTx) Accuracy vs V(SUPPLY)  
2. I(IOUTx) Accuracy vs Ambient Temperature  
2%  
1%  
0
2%  
1%  
0
Ch1  
Ch2  
Ch3  
Ch4  
Ch5  
Ch6  
Ch7  
Ch8  
Ch1  
Ch2  
Ch3  
Ch4  
Ch5  
Ch6  
Ch7  
Ch8  
-1%  
-1%  
-2%  
-2%  
-50  
0
50  
Ambient Temperature (èC)  
100  
150  
-50  
0
50  
Ambient Temperature (èC)  
100  
150  
D003  
D004  
V(SUPPLY) = 5 V  
V(SUPPLY) = 40 V  
3. I(IOUTx) Accuracy vs Ambient Temperature  
4. I(IOUTx) Accuracy vs Ambient Temperature  
35.05  
35  
35.05  
35  
34.95  
34.9  
34.95  
34.9  
34.85  
34.8  
34.85  
34.8  
34.75  
34.7  
34.75  
34.7  
34.65  
34.6  
Ch1  
Ch2  
Ch3  
Ch4  
Ch5  
Ch6  
Ch7  
Ch8  
Ch1  
Ch2  
Ch3  
Ch4  
Ch5  
Ch6  
Ch7  
Ch8  
34.65  
34.6  
34.55  
34.55  
34.5  
-50  
0
50  
Ambient Temperature (èC)  
100  
150  
-50  
0
50  
Ambient Temperature (èC)  
100  
150  
D009  
D010  
V(SUPPLY) = 12 V  
V(SUPPLY) = 5 V  
5. I(IOUTx) Current vs Temperature  
6. I(IOUTx) Current vs Temperature  
版权 © 2014–2020, Texas Instruments Incorporated  
7
TPS92638-Q1  
ZHCSDK4C SEPTEMBER 2014REVISED JANUARY 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
36  
35.9  
35.8  
35.7  
35.6  
35.5  
35.4  
35.3  
35.2  
35.1  
4%  
2%  
0
Ch1  
Ch2  
Ch3  
Ch4  
Ch5  
Ch6  
Ch7  
Ch8  
-2%  
-4%  
Ch1  
Ch2  
Ch3  
Ch4  
Ch5  
Ch6  
Ch7  
Ch8  
35  
34.9  
34.8  
-50  
0
50  
Ambient Temperature (èC)  
100  
150  
0
100  
200  
300  
400  
R(REF) (W)  
500  
600  
700  
800  
D011  
D001  
V(SUPPLY) = 40 V  
V(SUPPLY) = 12 V  
TA = 25ºC  
7. I(IOUTx) Current vs Temperature  
8. I(IOUTx) Channel Accuracy vs R(REF)  
40  
35  
30  
25  
20  
15  
10  
5
2%  
1.5%  
1%  
Ch1  
Ch2  
Ch3  
Ch4  
Ch5  
Ch6  
Ch7  
Ch8  
Ch1  
Ch2  
Ch3  
Ch4  
Ch5  
Ch6  
Ch7  
Ch8  
0.5%  
0
-0.5%  
-1%  
-1.5%  
-2%  
0
0
100  
200  
300  
400  
R(REF) (W)  
500  
600  
700  
800  
0
20  
40  
60  
80  
100  
Duty Cycle  
D008  
D006  
9. I(IOUTx) Current vs R(REF)  
10. I(IOUTx) Accuracy vs PWM Duty Cycle  
40  
35  
30  
25  
20  
15  
10  
5
1.4  
1.2  
1
Ch1  
Ch5  
Ch6  
Ch7  
Ch8  
Ch2  
Ch3  
Ch4  
0.8  
0.6  
0.4  
0.2  
0
0
0
20  
40  
60  
80  
100  
80  
90  
100  
110  
120  
130  
140  
150  
Duty Cycle  
Junction Temperature (èC)  
D007  
D012  
11. I(IOUTx) Current vs PWM Duty Cycle  
12. Reference Voltage vs Junction Temperature  
版权 © 2014–2020, Texas Instruments Incorporated  
8
TPS92638-Q1  
www.ti.com.cn  
ZHCSDK4C SEPTEMBER 2014REVISED JANUARY 2020  
Typical Characteristics (接下页)  
CH1: V(IOUT1)  
CH4: FAULT  
CH2: I(IOUT1)  
CH3: V(SUPPLY)  
CH1: V(IOUT1)  
CH4: FAULT  
CH2: I(IOUT1)  
CH3: V(SUPPLY)  
14. Jump Start From 13.5 V to 26 V  
13. Cold Cranking Behavior  
CH1: V(SUPPLY)  
CH4: I(IOUT8)  
CH2: V(REF)  
CH3: V(IOUT8)  
CH1: V(SUPPLY)  
CH4: I(IOUT8)  
CH2: V(REF)  
CH3: V(IOUT8)  
I(IOUTx) = 35 mA  
I(IOUTx) = 35 mA  
15. Superimposed Alternating Voltage, 12 V–18 V, 15 Hz  
16. Superimposed Alternating Voltage, 12 V–18 V, 200 Hz  
CH1: V(SUPPLY)  
CH4: I(IOUT8)  
CH2: V(REF)  
CH3: V(IOUT8)  
CH1: V(SUPPLY)  
CH4: I(IOUT8)  
CH2: V(REF)  
CH3: V(IOUT8)  
I(IOUTx) = 35 mA  
I(IOUTx) = 35 mA  
17. Superimposed Alternating Voltage, 12 V–18 V, 2 kHz  
18. Superimposed Alternating Voltage, 12 V–18 V, 10 kHz  
版权 © 2014–2020, Texas Instruments Incorporated  
9
TPS92638-Q1  
ZHCSDK4C SEPTEMBER 2014REVISED JANUARY 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
CH1: V(SUPPLY)  
CH4: I(IOUT8)  
CH2: V(REF)  
CH3: V(IOUT8)  
CH1: V(SUPPLY)  
CH4: I(IOUT8)  
CH2: V(REF)  
CH3: V(IOUT8)  
I(IOUTx) = 35 mA  
I(IOUTx) = 35 mA  
20. Superimposed Alternating Voltage, 12 V–18 V, 30 kHz  
19. Superimposed Alternating Voltage, 12 V–18 V, 20 kHz  
CH1: V(IOUT1)  
CH4: I(FAULT)  
CH2: I(IOUT1)  
CH3: V(SUPPLY)  
CH1: V(IOUT1)  
CH4: I(FAULT)  
CH2: I(IOUT1)  
CH3: V(SUPPLY)  
21. Transient Overvoltage (16 V – 18 V – 17 V – 16 V)  
22. Transient Undervoltage (10.8 V – 9 V – 10.8 V)  
CH1: V(IOUT1)  
CH4: I(FAULT)  
CH2: I(IOUT1)  
CH3: V(SUPPLY)  
CH1: V(IOUT1)  
CH4: I(FAULT)  
CH2: I(IOUT1)  
CH3: V(SUPPLY)  
24. Slow Decrease and Slow Increase  
23. Slow Decrease and Quick Increase  
10  
版权 © 2014–2020, Texas Instruments Incorporated  
TPS92638-Q1  
www.ti.com.cn  
ZHCSDK4C SEPTEMBER 2014REVISED JANUARY 2020  
Typical Characteristics (接下页)  
CH1: V(SUPPLY)  
CH4: I(IOUT8)  
CH2: V(FAULT)  
CH3: V(REF)  
CH1: V(SUPPLY)  
CH4: I(IOUT8)  
CH2: V(FAULT)  
CH3: V(REF)  
26. Slow Power Down (V(SUPPLY), V(EN), V(PWMx) Fall  
25. Slow Power Up (V(SUPPLY), V(EN), V(PWMx) Rise Together  
Together From 14 V to 0 V by 0.2 V/s)  
From 0 V to 14 V by 0.2 V/s)  
CH1: V(REFHI)  
CH4: I(IOUT8)  
CH2: V(REF)  
CH3: I(IOUT1)  
CH1: V(PWM3)  
CH4: I(IOUT8)  
CH2: V(PWM4)  
CH3: V(REF)  
Duty cycle = 50%  
V(SUPPLY), V(EN) = 14 V  
28. Load Transient, I(IOUTx) Increases From 35 mA to 70  
27. PWM Dimming, Dimming Frequency = 1000 Hz  
mA  
CH1: V(SUPPLY)  
CH2: V(REF)  
CH3: V(FAULT)  
CH1: V(REFHI)  
CH4: I(IOUT8)  
CH2: V(REF)  
CH3: I(IOUT1)  
I(IOUTx) = 35 mA  
30. Line Transient, V(SUPPLY), V(EN), V(PWMx) Ramp From 9  
29. Load Transient, I(IOUTx) Decreases From 70 mA to 35  
V to 16 V to 9 V by 0.1 V/µs  
mA  
版权 © 2014–2020, Texas Instruments Incorporated  
11  
TPS92638-Q1  
ZHCSDK4C SEPTEMBER 2014REVISED JANUARY 2020  
www.ti.com.cn  
8 Parameter Measurement Information  
SUPPLY  
IOUTx  
EN  
ton  
toff  
PWM1  
PWMX  
0.7 V  
17 Ω at 70 mA  
40 Ω at 30 mA  
PWM2  
PWM3  
PWM4  
10  
kΩ  
TPS92638-Q1  
90%  
I2  
I1  
V(bat)  
5.5 V  
STOP  
FAULT  
REFHI  
IOUTX  
REF  
10%  
TEMP  
GND  
t1  
t2  
t3  
t4 t5  
t6  
31. TPS92638-Q1 Test Circuit and Waveforms  
12  
版权 © 2014–2020, Texas Instruments Incorporated  
TPS92638-Q1  
www.ti.com.cn  
ZHCSDK4C SEPTEMBER 2014REVISED JANUARY 2020  
9 Detailed Description  
9.1 Overview  
The TPS92638-Q1 device is an 8-channel constant-current regulator with PWM dimming, designed for high-  
brightness red or white LEDs in automotive lighting applications. Each channel has up to 70-mA current  
capability and 560 mA when paralleled. The device provides excellent current matching between channels and  
devices. The high-side current source allows LED common-cathode connection. The advanced control loop  
allows high accuracy between channels even with different numbers of LEDs connected on the output.  
The design of the TPS92638-Q1 device is specifically for use in STOP-and-TAIL applications where the LED  
current switches between a high current (indicating stop or brake) and a lower current (for normal taillight  
operation).  
The TPS92638-Q1 device monitors fault conditions on the output and reports its status on the FAULT pin. The  
device features output short-to-ground detection, open-load detection, and thermal shutdown. The FAULT pin  
allows maximum flexibility for determining the fault mode and reporting to the MCU in case of an error. For  
applications lacking an MCU, connecting multiple TPS92638-Q1 devices in a bus is an option.  
Integrated thermal foldback protects the device from thermal shutdown by reducing the output current linearly  
when reaching a preset threshold. Provision for programming the temperature foldback threshold is through an  
external resistor. Tying the TEMP pin to ground disables this function.  
9.2 Functional Block Diagram  
V(bat)  
SUPPLY  
TEMP  
Thermal  
Control  
Current Regulator  
REF  
IOUT1  
IOUT2  
IOUT3  
IOUT4  
IOUT5  
IOUT6  
IOUT7  
IOUT8  
R(REF)  
Current  
Reference  
REFHI  
R(REF1)  
PWMx  
EN  
Control Logic  
FAULT  
STOP  
GND  
版权 © 2014–2020, Texas Instruments Incorporated  
13  
TPS92638-Q1  
ZHCSDK4C SEPTEMBER 2014REVISED JANUARY 2020  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 LED Current Setting  
Independent linear current regulators control the eight LED output channels. Global external resistors set the  
current of each channel. The device also features two current levels, intended for stop and tail applications.  
The internal current reference, I(REF), has two possible values depending on the state of the STOP input: When  
STOP is low, REF, the current drawn from the REF pin, controls the output current. When STOP is high, the sum  
of the currents drawn from the REFHI pin and REF pin controls the output current.  
Equations 公式 1 and 公式 2 calculate values for the current-setting resistors:  
when STOP = low  
V
´ G(I)  
ref  
I(OUTx-TAIL)  
=
R(REF)  
V
´ G(I)  
ref  
R(REF)  
=
I(OUTx-TAIL)  
(1)  
when STOP = high  
V
ref ´ G(I)  
Vref ´ G(I)  
I(IOUTx-STOP)  
=
+
R(REFHI)  
R(REF)  
V
ref ´ G(I)  
R(REFHI)  
=
Vref ´ G(I)  
I(IOUTx-STOP)  
-
R(REF)  
(2)  
where  
Vref is the internal reference voltage  
G(I) is the ratio of output current to reference current  
9.3.2 PWM Control  
The device features four independent PWM-bank dimming-control pins, each of which controls one bank  
consisting of two channels. A PWM input can also function as a shutdown pin for an unused bank. Tying PWM to  
ground disables the corresponding outputs. The PWM signal has a precise threshold, which a designer can use  
to define the start-up voltage of an LED as an undervoltage-lockout (UVLO) function with a divider resistor from  
SUPPLY. 1 shows the PWM bank mapping.  
1. PWM Bank Mapping  
PWM INPUT  
PWM1  
CONTROLLED OUTPUTS  
OUT1, OUT2  
PWM2  
OUT3, OUT4  
PWM3  
OUT5, OUT6  
PWM4  
OUT7, OUT8  
9.3.3 Fault Diagnostics  
The TPS92638-Q1 device has a fault pin, FAULT, which is for the short, open, and thermal-shutdown general  
faults. This arrangement allows the maximum flexibility based on all requirements and application conditions.  
Connection the device FAULT pin to the MCU allows for fault reporting. The FAULT pin is an open-drain  
transistor with a weak internal pullup.  
The device releases the FAULT bus when external circuitry toggles the FAULT bus, or on a power cycle of the  
device. In an application that has no MCU, only cycling power clears the fault.  
14  
版权 © 2014–2020, Texas Instruments Incorporated  
 
 
 
TPS92638-Q1  
www.ti.com.cn  
ZHCSDK4C SEPTEMBER 2014REVISED JANUARY 2020  
The following faults result in the FAULT pin going low: thermal shutdown, open load, or output short circuit. For  
thermal shutdown and open LED, release of the FAULT pin occurs when the thermal shutdown or open-LED  
condition no longer exists. For other faults, the FAULT pin remains low even after the condition does not exist,  
and clearing is only possible by toggling FAULT or by power cycling of the device.  
Fault removed  
SUPPLY  
and EN  
FAULT  
LED  
LED  
Open  
2 ms  
Short  
to GND  
2 ms  
Faulty  
Channel  
LED Open  
7-PWM Cycles  
LED Short  
7 PWM Cycles  
Other  
Channels  
PWM  
32. TPS92638-Q1 Device Fault-Handling Behavior, FAULT Bus Floating  
The design of an application with no MCU allows the connecting together of up to 15 TPS92638-Q1 FAULT  
When one or more devices have errors, their corresponding FAULT  
̅
pins.  
̅
pins go low, thus pulling down the connected  
FAULT bus and shutting down all device outputs. 33 illustrates the FAULT line bus connection.  
版权 © 2014–2020, Texas Instruments Incorporated  
15  
TPS92638-Q1  
ZHCSDK4C SEPTEMBER 2014REVISED JANUARY 2020  
www.ti.com.cn  
TPS92638-Q1  
Internal  
Pullup  
SUPPLY  
FAULT  
Fault  
Logic  
GND  
Up to 13 ICs  
TPS92638-Q1  
SUPPLY  
Internal  
Pullup  
FAULT  
Fault  
Logic  
GND  
33. Connection of FAULT Line Bus  
The device releases the FAULT bus by external circuitry pulling the FAULT bus high, by toggling of the EN pin,  
or by a power cycle of the device. In an application without an MCU, only a power cycle clears the fault. 34 is  
a detailed timing diagram.  
16  
版权 © 2014–2020, Texas Instruments Incorporated  
TPS92638-Q1  
www.ti.com.cn  
ZHCSDK4C SEPTEMBER 2014REVISED JANUARY 2020  
Fault removed  
SUPPLY  
and EN  
FAULT  
LED  
Short  
to GND  
2 ms  
Faulty  
Channel  
Current  
LED  
Open  
2 ms  
LED Open  
7-PWM Cycles  
LED Short  
7 PWM Cycles  
Other  
Channel  
Current  
PWM  
34. TPS92638-Q1 Device Fault-Handling Behavior, FAULT Bus Externally Pulled High  
版权 © 2014–2020, Texas Instruments Incorporated  
17  
TPS92638-Q1  
ZHCSDK4C SEPTEMBER 2014REVISED JANUARY 2020  
www.ti.com.cn  
2. Fault Table  
JUDGMENT CONDITION  
FAILURE MODE  
DIAGNOSTIC  
ACTION  
FAILURE  
REMOVED  
SELF  
CLEARING  
FAULT  
DEVICE REACTION  
OUTPUT PIN(1)  
DETECTION  
VOLTAGE  
CHANNEL  
STATUS  
DETECTION  
MECHANISM  
Externally  
pulled high  
Failing strings turned off,  
other CHs on  
Toggle EN,  
power cycle  
Short Circuit:  
1 or several LED  
strings  
V(SUPPLY) > 5 V  
On  
On  
V(IOUTx) < 0.9 V  
FAULT  
FAULT  
Pulled low  
Pulled low  
No  
Toggle EN,  
power cycle  
Floating  
All strings turned OFF  
All strings stay ON  
Failure  
condition  
removed  
Externally  
pulled high  
Open Load:  
1 or several LED  
strings  
V(SUPPLY) – V(IOUTx)  
< 100 mV  
V(SUPPLY) > 5 V  
Yes  
Failure  
condition  
removed  
Failing strings stay ON,  
other CHs turned OFF  
Floating  
Failure  
condition  
removed  
Externally  
pulled high  
All strings stay ON  
Short to Battery:  
1 or several LED  
strings  
V(SUPPLY) – V(IOUTx)  
< 100 mV  
V(SUPPLY) > 5 V  
On or off  
On or off  
FAULT  
FAULT  
Pulled low  
Pulled low  
Yes  
Failure  
condition  
removed  
Failing strings stay ON,  
other CHs turned OFF  
Floating  
Externally  
pulled high  
Temperature  
< 155°C  
Thermal Shutdown  
Thermal Foldback  
V(SUPPLY) > 5 V  
> 170°C  
All strings turned OFF  
Yes  
Floating  
N/A  
Reduced current to all  
strings  
Temperature  
< 100°C  
V(SUPPLY) > 5 V  
V(SUPPLY) > 5 V  
On or off  
On or off  
> 110°C  
N/A  
None  
Yes  
No  
Reference Resistor  
Short  
Toggle EN,  
power cycle  
R(ref) < 1400 Ω  
FAULT  
Pulled low  
N/A  
All strings turned off  
(1) If tying the diagnostic FAULT pin high externally, the pullup must be strong enough to override the internal pulldown.  
9.3.3.1 Open-Load Detection  
The device detects an open-load condition when the voltage across the channel, V(SUPPLY) – V(IOUTx), is less than  
the open-load detection voltage, V(olv). When this condition is present for more than the open-load-detection  
deglitch time, 2 ms when PWM is 100% on or 7 continuous PMW duty cycles when in the PWM dimming mode,  
the device pulls FAULT low and turns off the faulted channel. With the FAULT pin tied high, all channels shut  
down. The channel recovers on removal of the open condition. Note that the device may also detect an open  
load if the sum of the forward voltages of the LEDs in a string is close to or greater than the supply voltage on  
the SUPPLY pin.  
9.3.4 Thermal Foldback  
The TPS92638-Q1 device integrates thermal shutdown protection to prevent the IC from overheating. In addition,  
to prevent LEDs from flickering due to rapid thermal changes, the device includes a programmable thermal  
current foldback feature to reduce power dissipation at high junction temperatures.  
The TPS92638-Q1 device reduces the LED current as the silicon junction temperature of the TPS92638-Q1  
device increases (see 35). Mounting the TPS92638-Q1 device on the same thermal substrate as the LEDs  
allows use of this feature to limit the dissipation of the LEDs. As its junction temperature increases, the  
TPS92638-Q1 device reduces the regulated current level, thereby reducing the dissipated power in the  
TPS92638-Q1 and in the LEDs. The current reduction from the 100% level is typically 2% per degree Celsius  
until the point where the current drops to 50% of the full value, which occurs at T(th) + 20ºC.  
18  
版权 © 2014–2020, Texas Instruments Incorporated  
TPS92638-Q1  
www.ti.com.cn  
ZHCSDK4C SEPTEMBER 2014REVISED JANUARY 2020  
I
(setting)  
90%  
2% of I  
per ºC  
(setting)  
50%  
T
+ 20°C  
T
T
(shutdown)  
(th)  
(th)  
35. Thermal Foldback  
Above this temperature, the device maintains the current at the 50% current level until the junction temperature  
reaches the overtemperature shutdown threshold, T(shutdown). Changing the voltage on the TEMP pin adjusts the  
temperature at which the current reduction begins. With TEMP left open, the definition of thermal monitor  
activation temperature is the temperature at which the current reduction begins, T(th). The specification of T(th) in  
the Electrical Characteristics table is at the 90% current level. T(th) increases as the voltage at the TEMP pin,  
V(TEMP), decreases. 公式 3 provides an approximate calculation of T(th)  
.
T
= -121.7 °C/V ´ V(TEMP) + 228.32°C  
(th)  
(3)  
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0
25  
50  
75  
100  
125  
150  
Thermal Foldback Temperature (èC)  
D004  
36. TEMP Pin Voltage vs Thermal Foldback Temperature  
A resistor connected between TEMP and GND reduces V(TEMP) and increases T(th). A resistor connected between  
TEMP and a reference supply greater than 1 V increases V(TEMP) and reduces T(th)  
.
版权 © 2014–2020, Texas Instruments Incorporated  
19  
 
TPS92638-Q1  
ZHCSDK4C SEPTEMBER 2014REVISED JANUARY 2020  
www.ti.com.cn  
100  
80  
60  
40  
20  
0
V(res)  
0 V  
3.3 V  
5 V  
20  
40  
60  
80  
100  
120  
Thermal Foldback Temperature (ºC)  
140  
160  
D005  
37. Pullup and Pulldown Resistors vs T(th)  
37 shows how the nominal value of the thermal monitor activation temperature varies with the voltage at  
TEMP and with a resistor R(TEMP), either connected to GND or pulled up to 3 V or to 5 V.  
In extreme cases, if the junction temperature exceeds the overtemperature limit, T(shutdown), the device disables all  
regulators. Temperature monitoring continues, and the device re-activates the regulators, when the temperature  
drops below the specified hysteresis threshold.  
Note that it is possible for the TPS92638-Q1 device to transition rapidly between thermal shutdown and normal  
operation. This can happen if the thermal mass attached to the exposed thermal pad is small and T(th) is too  
close to the shutdown temperature. The period of oscillation depends on T(th), the dissipated power, the thermal  
mass of any heatsink present, and the ambient temperature.  
9.4 Device Functional Modes  
The functional modes of the TPS92638-Q1 device are operational and non-operational. The device operates  
normally when V(SUPPLY) is at least 5 V and not greater than 40 V.  
20  
版权 © 2014–2020, Texas Instruments Incorporated  
 
TPS92638-Q1  
www.ti.com.cn  
ZHCSDK4C SEPTEMBER 2014REVISED JANUARY 2020  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The following discussion includes several applications showing how to implement the TPS92638-Q1 device for  
automotive lighting such as stop lights and taillights. Some of the examples demonstrate implementation of the  
fault bus function or detail use of the device for higher-current applications.  
10.2 Typical Applications  
10.2.1 PWM Dimming by Bank  
The TPS92638-Q1 device provides four PWM banks for output dimming. A TLC555-Q1 PWM generator can be  
used on the to avoid the use of an MCU.  
Battery  
Tail  
SUPPLY  
EN  
IOUT1  
IOUT2  
IOUT3  
IOUT4  
IOUT5  
IOUT6  
IOUT7  
IOUT8  
VDD  
PWM1  
PWM2  
TLC555-Q1  
OUT  
PWM3  
PWM4  
STOP  
FAULT  
TPS92638-Q1  
REFHI  
REF  
V(bat)  
R(REF)  
TEMP  
R(TEMP)  
GND  
38. Schematic for PWM Dimming by Bank  
10.2.1.1 Design Requirements  
DESIGN PARAMETER  
EXAMPLE VALUE  
20 mA  
(1)  
I(TAIL)  
(1)  
I(STOP)  
40 mA  
(1) I(TAIL) = tail light curent per channel; I(STOP) = stop light current per  
channel.  
10.2.1.2 Detailed Design Procedure  
The design uses the R(REF) reference resistor to set the maximum output current, and the TLC555-Q1 sets the  
PWM duty cycle to control the dimming ratio.  
G(I)  
200  
R(REF) = V  
´
= 1.222 ´  
= 6.11 kW  
(REF)  
I(STOP)  
0.04  
(4)  
21  
版权 © 2014–2020, Texas Instruments Incorporated  
TPS92638-Q1  
ZHCSDK4C SEPTEMBER 2014REVISED JANUARY 2020  
www.ti.com.cn  
I(TAIL)  
0.02  
Duty cycle =  
=
= 0.5 = 50%  
I(STOP) 0.04  
(5)  
10.2.1.3 Application Performance Plots  
SUPPLY = EN = 14 V PWM freq. = 1 kHz Duty cycle = 50%  
SUPPLY = EN = 14 V PWM freq. = 1 kHz Duty cycle = 50%  
CH1: PWM3  
CH4: IOUT8  
CH2: PWM4  
CH3: Vref  
CH1: PWM1  
CH4: IOUT8  
CH2: PWM2  
CH3: Vref  
40. PWM Dimming by Bank, PWM3, PWM4, Analog  
39. PWM Dimming by Bank, PWM1, PWM2, Analog  
Reference and Output Current  
Reference and Output Current  
10.2.2 Two Brightness Levels for TAIL and STOP Lights  
For a typical TAIL and STOP application, implementation using the TPS92638-Q1 device with an integrated  
STOP and TAIL function is easy. The following schematic depicts the application circuit. In a typical application,  
two independent sources, namely Tail and Stop, power the stop and tail lights. Using blocking diodes D0 and D1  
with the TPS92638-Q1 device allows merging the STOP and TAIL functions, powered by a single supply.  
Blocking diode D2 protects the STOP pin during a reverse battery scenario. The STOP pin has an internal  
pulldown resistor to ensure a low state when STOP is not active.  
22  
版权 © 2014–2020, Texas Instruments Incorporated  
TPS92638-Q1  
www.ti.com.cn  
ZHCSDK4C SEPTEMBER 2014REVISED JANUARY 2020  
D0  
Tail  
Stop  
SUPPLY  
D1  
IOUT1  
IOUT2  
IOUT3  
IOUT4  
IOUT5  
IOUT6  
IOUT7  
IOUT8  
EN  
PWM1  
PWM2  
PWM3  
PWM4  
STOP  
FAULT  
Stop  
TPS92638-Q1  
D2  
REFHI  
REF  
R(REFHI)  
V(bat)  
R(REF)  
TEMP  
R(TEMP)  
GND  
41. Schematic for Two Brightness Levels for TAIL and STOP Lights  
10.2.2.1 Design Requirements  
DESIGN PARAMETER  
EXAMPLE VALUE  
10 mA  
(1)  
I(TAIL)  
(1)  
I(STOP)  
40 mA  
(1) I(TAIL) = tail light curent per channel; I(STOP) = stop light current per  
channel.  
10.2.2.2 Detailed Design Procedure  
Designing the application consists in calculating the values of resistors to be used for the desired output currents.  
G(I)  
200  
R(REF) = V  
´
= 1.222 ´  
= 24.44 kW  
(REF)  
I(TAIL)  
0.01  
(6)  
(7)  
G(I)  
200  
0.04 - 0.01  
R
(REFHI) = V  
´
= 1.222´  
= 8.146 kW  
(REFHI)  
I(STOP) - I(TAIL)  
The recommended value for R(STOP) is 10 kΩ.  
10.2.3 PWM Dimming by Modulated Supply  
The TPS92638-Q1 device supports PWM dimming from the supply as depicted below. A high-side switch in the  
body control module (BCM) usually implements supply dimming. Due to the nature of the high-side switch,  
TPS92638-Q1 supply voltage is not strongly pulled down to ground, but depends on the decoupling capacitor  
and total current consumption. The TPS92638-Q1 device keeps the output current constant as long as supply  
voltage is adequate to overcome the LED forward voltage and dropout voltage.  
When supply voltage drops too low to drive LEDs, the device shuts down the output channels on open-load  
detection. Therefore, TI recommends ensuring channel shutdown using the PWM or EN inputs. Thus a resistor  
string of R1 and R2 is recommended to ensure the lowest divided voltage is lower than PWM threshold.  
版权 © 2014–2020, Texas Instruments Incorporated  
23  
TPS92638-Q1  
ZHCSDK4C SEPTEMBER 2014REVISED JANUARY 2020  
www.ti.com.cn  
BCM  
Battery  
High-Side  
Switch  
TPS1H100-Q1  
R1  
SUPPLY  
TPS92638-Q1  
GND  
EN  
IOUT1  
IOUT2  
IOUT3  
IOUT4  
IOUT5  
IOUT6  
IOUT7  
IOUT8  
PWM1  
PWM2  
R2  
PWM3  
PWM4  
STOP  
FAULT  
REFHI  
REF  
V(bat)  
R(REF)  
TEMP  
R(TEMP)  
42. Schematic for PWM Dimming by Modulated Supply  
10.2.3.1 Design Requirements  
DESIGN PARAMETER  
EXAMPLE VALUE  
30 mA  
(1)  
I(TAIL)  
(1)  
I(STOP)  
50 mA  
(1) I(TAIL) = tail light curent per channel; I(STOP) = stop light current per  
channel.  
10.2.3.2 Design Procedure  
The R(REF) reference resistor sets the current.  
G(I)  
200  
R(REF) = V  
´
= 1.222 ´  
= 4.888 kW  
(REF)  
I(STOP)  
0.05  
(8)  
(9)  
I(TAIL)  
0.03  
Duty cycle =  
=
= 0.6 = 60%  
I(STOP) 0.05  
R2  
V(SUPPLY)min ´  
< V  
(PWM_ threshold)  
R1 + R2  
(10)  
10.2.4 Driving LEDs From a Single Device With Channels in Parallel  
The TPS92638-Q1 device the parallel driving of LED strings supports by combining multiple channels in parallel  
to achieve better thermal performance and higher current-driving capability.  
24  
版权 © 2014–2020, Texas Instruments Incorporated  
TPS92638-Q1  
www.ti.com.cn  
ZHCSDK4C SEPTEMBER 2014REVISED JANUARY 2020  
Battery  
SUPPLY  
IOUT1  
IOUT2  
IOUT3  
IOUT4  
IOUT5  
IOUT6  
IOUT7  
IOUT8  
EN  
PWM1  
PWM2  
PWM3  
PWM4  
STOP  
FAULT  
Stop  
TPS92638-Q1  
REFHI  
REF  
R(REFHI)  
V(bat)  
R(REF)  
TEMP  
R(TEMP)  
GND  
43. Schematic for Driving With a Single Device Using Parallel Channels  
10.2.4.1 Design Requirements  
DESIGN PARAMETER  
EXAMPLE VALUE  
30 mA  
(1)  
I(TAIL)  
(1)  
I(STOP)  
100 mA  
(1) I(TAIL) = tail light curent per channel; I(STOP) = stop light current per  
channel.  
10.2.4.2 Design Procedure  
The R(REF) and R(REFHI) reference resistors set the current. R(REF) sets the tail current, and R(REF) and R(REFHI) set  
the stop current.  
G(I)  
200  
R(REF) = V  
´
= 1.222 ´  
= 16.29 kW  
(REF)  
I(TAIL) / N(channel)  
0.03 / 2  
(11)  
(12)  
10.2.5 Driving LEDs From Multiple Devices With Channels in Parallel  
For design flexibility, there is also support for using multiple TPS92638-Q1 devices in parallel driving between  
different devices. The following diagram shows a combination that uses both devices and channels in parallel to  
drive high-current loads.  
版权 © 2014–2020, Texas Instruments Incorporated  
25  
TPS92638-Q1  
ZHCSDK4C SEPTEMBER 2014REVISED JANUARY 2020  
www.ti.com.cn  
Battery  
SUPPLY  
IOUT1  
IOUT2  
IOUT3  
IOUT4  
IOUT5  
IOUT6  
IOUT7  
IOUT8  
EN  
PWM1  
PWM2  
PWM3  
PWM4  
STOP  
FAULT  
Stop  
TPS92638-Q1  
REFHI  
REF  
R(REFH)  
V(bat)  
R(REF)  
TEMP  
R(TEMP)  
GND  
SUPPLY  
IOUT1  
IOUT2  
IOUT3  
IOUT4  
IOUT5  
IOUT6  
IOUT7  
IOUT8  
EN  
PWM1  
PWM2  
PWM3  
PWM4  
STOP  
FAULT  
TPS92638-Q1  
REFHI  
REF  
R(REFHI)  
R(REF)  
TEMP  
R(TEMP)  
GND  
44. Schematic for Driving With Multiple Devices Using Parallel Channels  
10.2.5.1 Design Requirements  
DESIGN PARAMETER  
EXAMPLE VALUE  
60 mA  
(1)  
I(TAIL)  
(1)  
I(STOP)  
200 mA  
(1) I(TAIL) = tail light curent per channel; I(STOP) = stop light current per  
channel.  
10.2.5.2 Design Procedure  
The R(REFHI) and R(REF) reference resistors set the current. R(REF) by itself sets the tail current. R(REF) and R(REFHI)  
together set the stop current. In different applications, reference resistors can be set to different values for  
different devices to achieve current flexibility. In this document, for simplicity, the application sets the same  
reference current in both devices.  
26  
版权 © 2014–2020, Texas Instruments Incorporated  
TPS92638-Q1  
www.ti.com.cn  
ZHCSDK4C SEPTEMBER 2014REVISED JANUARY 2020  
G(I)  
200  
R(REF) = V  
´
= 1.222 ´  
= 16.29 kW  
(REF)  
I(TAIL) / N(channel)  
0.06 / 4  
(13)  
(14)  
G(I)  
-I(TAIL) / N  
200  
R(REFHI) = V  
´
= 1.222 ´  
= 6.98 kW  
(REFHI)  
(0.2 - 0.06) / 4  
I
(
)
(STOP)  
(channel)  
版权 © 2014–2020, Texas Instruments Incorporated  
27  
TPS92638-Q1  
ZHCSDK4C SEPTEMBER 2014REVISED JANUARY 2020  
www.ti.com.cn  
11 Power Supply Recommendations  
The TPS92638-Q1 device is qualified for automotive applications. The normal power supply connection is  
therefore to an automobile electrical system that provides a voltage within the range specified in Recommended  
Operating Conditions.  
12 Layout  
12.1 Layout Guidelines  
In order to prevent thermal shutdown, TJ must be less than 150°C. If the input voltage is very high, the power  
dissipation might be large. Currently there is the TSSOP-EP package which has good thermal impedance, but at  
the same time, the PCB layout is also very important. Good PCB design can optimize heat transfer, which is  
absolutely essential for the long-term reliability of the device.  
Maximize the copper coverage on the PCB to increase the thermal conductivity of the board, because the  
major heat-flow path from the package to the ambient is through the copper on the PCB. Maximum copper is  
extremely important when there are not any heat sinks attached to the PCB on the other side of the package.  
Add as many thermal vias as possible directly under the package ground pad to optimize the thermal  
conductivity of the board.  
All thermal vias should be either plated shut or plugged and capped on both sides of the board to prevent  
solder voids. To ensure reliability and performance, the solder coverage should be at least 85%.  
12.2 Layout Example  
Power ground  
on both top and  
bottom layers  
IOUT1  
IOUT2  
IOUT3  
IOUT4  
IOUT5  
VIN  
EN  
1
20  
19  
18  
17  
16  
15  
14  
TPS92638-Q1  
VIA to Ground  
2
STOP  
PWM1  
3
4
PWM2  
PWM3  
5
6
IOUT6  
IOUT7  
PWM4  
7
IOUT8  
GND  
REF  
8
13  
12  
11  
FAULT  
TEMP  
REFH  
9
10  
Thermal pad  
45. TPS92638-Q1 Layout Diagram  
28  
版权 © 2014–2020, Texas Instruments Incorporated  
TPS92638-Q1  
www.ti.com.cn  
ZHCSDK4C SEPTEMBER 2014REVISED JANUARY 2020  
12.3 Thermal Information  
This device operates a thermal shutdown (TSD) circuit as a protection from overheating. For continuous normal  
operation, the junction temperature should not exceed the thermal-shutdown trip point. If the junction temperature  
exceeds the thermal-shutdown trip point, the output turns off. When the junction temperature falls below the  
thermal-shutdown trip point minus hysteresis, the output turns on again.  
Calculate the power dissipated by the device according to the following formula:  
8
2
2
V
V
(REFHI)  
(REF)  
P(IC) = V(SUPPLY) ´ I(SUPPLY)  
-
nk ´ V(LEDk) ´ I(LEDk)  
-
-
R(REF)  
R(REFHI)  
å
k=1  
(15)  
where:  
nk = Number of LEDs for x channel  
V(LEDk)= Voltage drop across one LED for x channel  
V(REF) = Reference voltage, typically 1.24 V  
I(LEDk) = Average LED current for channel k  
After determining the power dissipated by the device, calculate the junction temperature from the ambient  
temperature and the device thermal impedance.  
TJ = TA + RqJA ´ P(IC)  
(16)  
where:  
TA = Ambient temperature  
RθJA = Junction-to-ambient thermal impedance  
P(IC) = Dissipated power  
版权 © 2014–2020, Texas Instruments Incorporated  
29  
TPS92638-Q1  
ZHCSDK4C SEPTEMBER 2014REVISED JANUARY 2020  
www.ti.com.cn  
13 器件和文档支持  
13.1 商标  
All trademarks are the property of their respective owners.  
13.2 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.3 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查看左侧的导航面板。  
30  
版权 © 2014–2020, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS92638QPWPRQ1  
ACTIVE  
HTSSOP  
PWP  
20  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
TPS92638  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Dec-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS92638QPWPRQ1 HTSSOP PWP  
20  
2000  
330.0  
16.4  
6.95  
7.1  
1.6  
8.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Dec-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP PWP 20  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
TPS92638QPWPRQ1  
2000  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS92638QPWPRQ1

具有 PWM 调光功能的汽车类 8 通道线性 LED 驱动器 | PWP | 20 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92640

Synchronous Buck Controllers for Precision Dimming LED Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92640PWP

Synchronous Buck Controllers for Precision Dimming LED Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92640PWP/NOPB

用于精密调光 LED 驱动器的同步降压控制器 | PWP | 14 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92640PWPR

Synchronous Buck Controllers for Precision Dimming LED Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92640PWPR/NOPB

用于精密调光 LED 驱动器的同步降压控制器 | PWP | 14 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92640PWPT

Synchronous Buck Controllers for Precision Dimming LED Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92640PWPT/NOPB

用于精密调光 LED 驱动器的同步降压控制器 | PWP | 14 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92641

Synchronous Buck Controllers for Precision Dimming LED Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92641PWP

Synchronous Buck Controllers for Precision Dimming LED Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92641PWP/NOPB

用于精密调光 LED 驱动器的同步降压控制器,带并联 FET 驱动器 | PWP | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92641PWPR

Synchronous Buck Controllers for Precision Dimming LED Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI