TPSI3052SQDWZRQ1 [TI]

具有集成式 15V 栅极电源的汽车类增强型隔离式开关驱动器 | DWZ | 8 | -40 to 125;
TPSI3052SQDWZRQ1
型号: TPSI3052SQDWZRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成式 15V 栅极电源的汽车类增强型隔离式开关驱动器 | DWZ | 8 | -40 to 125

开关 栅 驱动 驱动器 栅极
文件: 总45页 (文件大小:3490K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
TPSI3052-Q1 具有集15-V 栅极电源的汽车类增强型隔离式开关驱动器  
TPSI3052-Q1 根据所需的输入引脚数量支持两种工  
1 特性  
作模式。在双线模式通常用于驱动机械继电器,  
控制开关仅需两个引脚并支6.5V 48V 的宽工作  
电压范围。在三线模式中由外部提供 3V 5.5V 的  
初级侧电源通过独立的使能引脚控制开关。  
TPSI3052S-Q1 具有可实现开关控制的一次性启用功  
且仅在三线模式下可用。此功能对于驱动 SCR 非  
常有用通常只需要一个电流脉冲即可触发。  
• 无需隔离式次级电源  
• 驱动外部功率晶体管SCR  
5-kVRMS reinforced isolation  
• 具1.5/3A 峰值拉电流和灌电流15-V 栅极驱动  
• 适用于外部辅助电路的最50 mW 电源  
• 支持交流或直流开关  
• 支持双线或三线模式  
• 七电平功率传输电阻可选  
功能安全型  
次级侧可为驱动多种电源开关提供 15 V 的浮动稳压电  
源轨无需次级偏置电源。具体用途包括为直流应用驱  
动单个电源开关或为交流应用驱动两个背靠背电源开  
以及各种类型的 SCRTPSI3052-Q1 集成式隔离  
保护功能非常稳健与传统机械继电器和光耦合器相  
其可靠性更高、功耗更低且温度范围更宽。  
可提供用于功能安全系统设计的文档  
• 符合面向汽车应用AEC Q-100 标准:  
– 温度等140 +125°CTA  
• 安全相关认证  
– 计划DIN EN IEC 60747-17 (VDE  
0884-17) 标准7071VPK 增强型隔离  
– 计划UL 1577 标准且长1 分钟的  
5kVRMS 隔离  
使用从 PXFR 引脚到 VSSP 的外部电阻器在七个功率  
等级设置中选择一个以调节 TPSI3052-Q1 的功率传  
输。此操作可根据应用需求权衡功率损耗与次级侧功  
耗。  
器件信息  
封装(1)  
2 应用  
封装尺寸标称值)  
7.50mm × 5.85mm  
7.50mm × 5.85mm  
器件型号  
TPSI3052-Q1  
固态继电(SSR)  
电池管理系统  
车载充电器  
SOIC 8 (DWZ)  
SOIC 8 (DWZ)  
TPSI3052S-Q1 (2)  
混合动力、电动和动力总成系统  
楼宇自动化  
工厂自动化和控制  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
(2) 产品预发布。  
DC Link Pre-charge  
3 说明  
+
TPSI3052-Q1 是一款完全集成的隔离式开关驱动器,  
与外部电源开关结合使用时可构成完整的隔离式固态  
继电器 (SSR)。当标称栅极驱动电压为 15 V、峰值拉  
电流和灌电流为 1.5/3.0A 可以选择多种外部电源  
开关来满足各种应用需求。TPSI3052-Q1 可通过初级  
侧电源自行产生次级偏置电源因此无需隔离式次级电  
源偏置。而且TPSI3052-Q1 可以有选择性地向外部  
配套电路供电以满足不同的应用需求。  
DC Link  
Cap  
-
3–5.5 V  
EN  
VDRV  
VDDH  
Micro  
PWR  
SIGNAL  
PXFR  
VDDP  
3–5.5 V  
VDDM  
VSSS  
VSSP  
TPSI3052-Q1 简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSFY5  
 
 
 
 
 
 
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
Table of Contents  
8 Detailed Description......................................................17  
8.1 Overview...................................................................17  
8.2 Functional Block Diagram.........................................17  
8.3 Feature Description...................................................17  
8.4 Device Functional Modes..........................................24  
9 Application and Implementation..................................25  
9.1 Application Information............................................. 25  
9.2 Typical Application.................................................... 25  
9.3 Power Supply Recommendations.............................33  
9.4 Layout....................................................................... 33  
10 Device and Documentation Support..........................37  
10.1 Related Links.......................................................... 37  
10.2 接收文档更新通知................................................... 37  
10.3 支持资源..................................................................37  
10.4 Trademarks.............................................................37  
10.5 静电放电警告.......................................................... 37  
10.6 术语表..................................................................... 37  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 绝对最大额定值...........................................................4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 热性能信息..................................................................5  
6.5 Power Ratings.............................................................5  
6.6 Insulation Specifications............................................. 5  
6.7 Safety-Related Certifications...................................... 6  
6.8 Safety Limiting Values.................................................6  
6.9 Electrical Characteristics.............................................7  
6.10 开关特性..................................................................10  
6.11 Insulation Characteristic Curves............................. 12  
6.12 Typical Characteristics............................................13  
7 Parameter Measurement Information..........................15  
Information.................................................................... 37  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (April 2022) to Revision A (December 2022)  
Page  
• 将器件状态从预告信更改为量产数.............................................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPSI3052-Q1  
 
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
EN  
VDRV  
1
2
3
8
7
6
PXFR  
VDDP  
VSSP  
VDDH  
VDDM  
VSSS  
4
5
5-1. TPSI3052-Q1, TPSI3052S-Q1 8-Pin SOIC Top View  
5-1. Pin Functions  
PIN  
I/O  
TYPE(1)  
DESCRIPTION  
NO.  
NAME  
1
EN  
I
Active high driver enable  
Power transfer can be adjusted by selecting one of seven power level settings  
using an external resistor from the PXFR pin to VSSP. In three-wire mode, a  
given resistor setting sets the duty cycle of the power converter (see 8-1) and  
hence the amount of power transferred. In two-wire mode, a given resistor  
setting adjusts the current limit of the EN pin (see 8-2) and hence the amount  
of power transferred.  
2
PXFR  
I
3
4
5
6
7
8
VDDP  
VSSP  
VSSS  
VDDM  
VDDH  
VDRV  
P
GND  
GND  
P
Power supply for primary side  
Ground supply for primary side  
Ground supply for secondary side  
Generated mid supply  
O
P
Generated high supply  
Active high driver output  
(1) P = power, GND = ground, NC = no connect  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPSI3052-Q1  
 
 
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
6 Specifications  
6.1 绝对最大额定值  
在自然通风条件下的工作温度范围内测得除非另有说明(1)  
参数(1)  
最小值  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
-40  
最大值  
6
单位  
V
初级侧电流(2)  
初级侧电流(2)  
初级侧电流(2)  
次级侧电流(3)  
次级侧电流(3)  
次级侧电流(3)  
次级侧电流(3)  
结温TJ  
VDDP  
EN  
60  
V
PXFR  
60  
V
VDRV  
18  
V
VDDH  
18  
V
VDDM  
VDDH-VDDM  
结温TJ  
6
V
12  
V
150  
150  
°C  
°C  
-65  
贮存温度Tstg  
(1) 超出绝对最大额定值运行可能会对器件造成永久损坏。绝对最大额定值并不表示器件在这些条件下或在建议运行条件以外的任何其他条  
件下能够正常运行。如果超出建议运行条件但在绝对最大额定值范围内使用器件可能不会完全正常运行这可能影响器件的可靠性、  
功能和性能并缩短器件寿命。  
(2) 所有电压值均VSSP 为基准。  
(3) 所有电压值均VSSS 为基准。  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
HBM ESD classification level 2  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per AEC  
Q100-011  
CDM ESD classification level C4B  
Corner pins (1, 4, 5, and 8)  
Other pins  
±750  
±500  
(1) AEC Q100-002 indicates that HBM stressing must be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.0  
NOM  
MAX  
5.5  
48.0  
5.5  
5.5  
330  
20  
UNIT  
V
VDDP  
EN  
Primary side supply voltage in three-wire mode(1)  
Enable in two-wire mode(1)  
0
V
Enable in three-wire mode(1)  
0
V
PXFR  
CVDDP  
Power transfer control(1)  
0
V
Decoupling capacitance on VDDP and VSSP, two-wire mode(3)  
Decoupling capacitance on VDDP and VSSP, three-wire mode(3)  
Decoupling capacitance across VDDH and VDDM(3)  
Decoupling capacitances across VDDM and VSSS(3)  
Ambient operating temperature  
220  
0.22  
0.004  
0.012  
40  
40  
65  
nF  
µF  
µF  
µF  
°C  
°C  
V/ms  
(2)  
CDIV1  
CDIV2  
TA  
15  
(2)  
40  
125  
150  
TJ  
Operating junction temperature  
EN rise and fall rates, two-wire mode.  
|ΔVEN/Δt|  
(1) All voltage values are with respect to VSSP.  
(2) CDIV1 and CDIV2 should be of same type and tolerance. CDIV2 capacitance value should be at least three times the capacitance value of  
CDIV1 i.e. CDIV2 3 x CDIV1  
(3) All capacitance values are absolute. Derating should be applied where necessary.  
.
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPSI3052-Q1  
 
 
 
 
 
 
 
 
 
 
 
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
6.4 热性能信息  
器件  
热指标(1) (2)  
DWZ(SOIC)  
单位  
8 引脚  
RϴJA  
89.3  
40.3  
45.2  
10.3  
44.4  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
结至环境热阻  
RϴJC(top)  
RΘJB  
ψJT  
结至外壳顶部热阻  
结至电路板热阻  
结至顶部特征参数  
结至电路板特征参数  
ΨJB  
(1) 仅估算。  
(2) 有关新旧热指标的更多信息请参阅半导体IC 封装热指标应用报告。  
6.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VVDDP = 5 V,  
RPXFR = 20 k, three-wire mode,  
CVDRV = 100 pF,  
CDIV1 = 33 nF, CDIV2 = 100 nF  
fEN = 1-kHz square wave, VEN = 5 V peak  
to peak.  
Maximum power dissipation, VDDP.  
250  
mW  
mW  
PD  
RPXFR = 20 k, two-wire mode,  
CVDRV = 100 pF,  
CDIV1 = 33 nF, CDIV2 = 100 nF  
fEN = 1-kHz square wave, VEN = 48 V  
peak to peak.k.  
Maximum power dissipation, EN.  
350  
6.6 Insulation Specifications  
SPECIFIC  
ATION  
PARAMETER  
TEST CONDITIONS  
UNIT  
CREEPAGE AND TRACKING  
CLR  
CPG  
External clearance(1)  
Shortest terminal-to-terminal distance through air  
mm  
mm  
8.5  
Shortest terminal-to-terminal distance across the  
package surface  
External Creepage(1)  
8.5  
DTI  
CTI  
Distance through the insulation  
Comparative tracking index  
Material Group  
Minimum internal gap (internal clearance)  
DIN EN 60112 (VDE 0303-11); IEC 60112  
According to IEC 60664-1  
µm  
V
120  
600  
I
I-IV  
Rated mains voltage 600 VRMS  
Rated mains voltage 1000 VRMS  
Overvoltage category per IEC 60664-1  
I-III  
DIN EN IEC 60747-17 (VDE 0884-17)  
VIORM Maximum repetitive peak isolation voltage  
AC voltage (bipolar)  
1414  
1000  
1414  
7070  
VPK  
VRMS  
VDC  
AC voltage (sine wave)  
DC voltage  
VIOWM  
Maximum isolation working voltage  
Maximum transient isolation voltage  
VTEST = VIOTM; t = 60 s (qualification test)  
VPK  
VIOTM  
VTEST = 1.2 × VIOTM; t = 1 s (100% production  
test)  
8484  
9230  
12000  
VPK  
VPK  
VPK  
Tested in air;  
1.2/50-µs waveform per IEC 62638-1  
VIMP  
Maximum impulse voltage(2)  
Tested in oil (qualification test);  
1.2/50-µs waveform per IEC 62638-1  
VIOSM  
Maximum surge isolation voltage(3)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPSI3052-Q1  
 
 
 
 
 
 
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
6.6 Insulation Specifications (continued)  
SPECIFIC  
ATION  
PARAMETER  
TEST CONDITIONS  
UNIT  
Method a: After input-output safety test subgroup  
2/3,  
Vini = VIOTM, tini = 60 s;  
5  
Vpd(m) = 1.2 × VIORM, tm = 10 s.  
Method a: After environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s;  
Vpd(m) = 1.6 × VIORM, tm = 10 s.  
qpd  
Apparent charge(4)  
pC  
5  
5  
Method b1: At routine test (100% production test)  
and preconditioning (type test), Vini = VIOTM, tini  
=
1 s;  
Vpd(m) = 1.875 × VIORM, tm = 1 s.  
CIO  
RIO  
Barrier capacitance, input to output(5)  
Insulation resistance, input to output(5)  
3
pF  
VIO = 0.4 × sin (2πft), f = 1 MHz  
VIO = 500 V, TA = 25°C  
> 1012  
> 1011  
> 109  
2
VIO = 500 V, 100°C TA 125°C  
VIO = 500 V at TS = 150°C  
Ω
Pollution degree  
Climatic category  
40/125/21  
UL 1577  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application.  
Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the  
isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in  
certain cases. Techniques such as inserting grooves, ribs, or both on a printed-circuit board are used to help increase these  
specifications.  
(2) Testing is carried out in air to determine the intrinsic surge immunity of the package.  
(3) Testing is carried out in oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier tied together creating a two-pin device.  
6.7 Safety-Related Certifications  
VDE  
UL  
Plan to certify according to DIN EN IEC 60747-17 (VDE 0884-17)  
Reinforced insulation; Maximum transient isolation voltage, 7070  
Plan to certify under UL 1577 Component Recognition Program  
VPK; Maximum repetitive peak isolation voltage, 1414 VPK; Maximum Single protection, 5000 VRMS  
surge isolation voltage, 12000 VPK  
Certificate planned  
Certificate planned  
6.8 Safety Limiting Values  
PARAMETER(1) (2)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RθJA = 89.3°C/W, VVDDP = 5.5 V,  
TJ = 150°C, TA = 25°C,  
three-wire mode.  
254  
RθJA = 89.3°C/W, VEN = 24 V,  
IS  
Safety input, output, or supply current  
TJ = 150°C, TA = 25°C,  
two-wire mode.  
58  
mA  
RθJA = 89.3°C/W, VEN = 48 V,  
TJ = 150°C, TA = 25°C,  
two-wire mode.  
29  
R
θJA = 89.3°C/W,  
PS  
Safety input, output, or total power  
1.4  
W
TJ = 150°C, TA = 25°C.  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPSI3052-Q1  
 
 
 
 
 
 
 
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
6.8 Safety Limiting Values (continued)  
PARAMETER(1) (2)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TS  
Maximum safety temperature  
150  
°C  
(1) Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the I/O  
can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and  
damage the isolation barrier, potentially leading to secondary system failures.  
(2) The safety-limiting constraint is the maximum junction temperature specified in the data sheet. The power dissipation and junction-to-  
air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-  
to-air thermal resistance in the Thermal Information table is that of a device installed on a high-K test board for leaded surface-mount  
packages. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient  
temperature plus the power times the junction-to-air thermal resistance.  
6.9 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted). Typicals at TA = 25. CVDDP = 220 nF (two-wire mode),  
CVDDP = 1 µF (three-wire mode) , CDIV1 = 5.1 nF, CDIV2 = 15 nF, CVDRV = 100 pF, RPXFR = 7.32 k±1%  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
COMMON  
VDDP under-voltage threshold  
rising  
VVDDP_UV_R  
VDDP rising  
2.50  
2.35  
2.70  
2.55  
75  
2.90  
2.75  
V
V
VDDP under-voltage threshold  
falling  
VVDDP_UV_F  
VVDDP_UV_HYS  
VVDDH_UV_R  
VDDP falling  
VDDP under-voltage threshold  
hysteresis  
mV  
V
VDDH under-voltage threshold  
rising  
VDDH rising.  
VDDH falling.  
12.5  
9.9  
13  
13.4  
10.9  
VDDH under-voltage threshold  
falling.  
VVDDH_UV_F  
10.4  
V
VDDH under-voltage threshold  
hysteresis.  
VVDDH_UV_HYS  
VVDDM_UV_R  
VVDDM_UV_F  
VVDDM_UV_HYS  
IQ_VDDH  
2.5  
3.3  
3
V
V
VDDM under-voltage threshold  
rising  
VDDM rising.  
VDDM falling.  
2.8  
2.6  
3.7  
3.5  
VDDM under-voltage threshold  
falling  
V
VDDM under-voltage threshold  
hysteresis.  
0.3  
45  
1.7  
2.5  
1.5  
3
V
Internal quiescent current of VDDH  
supply.  
µA  
Force VVDDH = 15 V,  
sink IVDRV = 50 mA.  
Driver on resistance in low state.  
Driver on resistance in high state.  
A
A
RDSON_VDRV  
Force VVDDH = 15 V,  
source IVDRV = 50 mA.  
VDRV peak output current during  
rise  
VVDDH in steady state, transition EN  
low to high, measure peak current.  
IVDRV_PEAK  
VDRV peak output current during  
fall  
VVDDH in steady state, transition EN  
high to low, measure peak current.  
TSD  
Temperature shutdown  
173  
32  
TSDH  
Temperature shutdown hysteresis  
CMTI  
Common-mode transient immunity |VCM| = 1000 V  
100 V/ns  
TWO-WIRE MODE  
Minimum voltage on EN to be  
detected as a valid logic high.  
VIH_EN  
VIL_EN  
6.5  
V
Maximum voltage on EN to be  
detected as a valid logic low.  
2.0  
V
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPSI3052-Q1  
 
 
 
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
6.9 Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted). Typicals at TA = 25. CVDDP = 220 nF (two-wire mode),  
CVDDP = 1 µF (three-wire mode) , CDIV1 = 5.1 nF, CDIV2 = 15 nF, CVDRV = 100 pF, RPXFR = 7.32 k±1%  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
IEN_START  
Enable current at startup  
27  
mA  
EN = 0 V 6.5 V  
EN = 6.5 V,  
RPXFR = 7.32 k,  
1.9  
6.8  
mA  
RPXFR 100 kΩor RPXFR 1 kΩ,  
VVDDH in steady state.  
IEN  
Enable current steady state  
EN = 6.5 V,  
RPXFR = 20 k,  
VVDDH in steady state.  
mA  
V
EN = 6.5 V,  
VVDDH in steady state,  
measure average VDDP voltage.  
VVDDP_AVG  
VDDP average voltage.  
VDDH output voltage  
4.5  
15  
15  
EN = 6.5 V,  
VVDDH in steady state.  
VVDDH  
13.9  
13.9  
16.2  
16.2  
V
V
EN = 6.5 V,  
VVDDH in steady state,  
no DC loading.  
VVDRV_H  
VDRV output voltage driven high  
EN = 6.5 V 0 V,  
VVDDH in steady state,  
sink 10 mA load.  
VVDRV_L  
VDRV output voltage driven low  
0.1  
5.5  
V
V
EN = 6.5 V, steady state.  
RPXFR = 7.32 kΩ,  
Average VDDM voltage when  
sourcing external current.  
RPXFR 100 kΩor RPXFR 1 kΩ,  
4.6  
4.6  
CDIV1 = 75 nF, CDIV2 = 220 nF,  
source 0.20 mA from VDDM,  
measure VDDM voltage.  
VVDDM_IAUX  
EN = 6.5 V, steady state.  
RPXFR = 20 kΩ,  
CDIV1 = 75 nF, CDIV2 = 220 nF,  
source 1.2 mA from VDDM,  
measure VDDM voltage.  
Average VDDM voltage when  
sourcing external current.  
5.5  
V
THREE-WIRE MODE  
Minimum voltage on EN to be  
detected as a valid logic high.  
VIH(min) = 0.7 x VVDDP  
VVDDP = 3 V  
2.1  
V
V
VIH_EN  
VVDDP = 5.5 V  
3.85  
VVDDP = 3 V  
0.9  
V
V
Maximum voltage on EN to be  
detected as a valid logic low.  
VIL_EN  
VVDDP = 5.5 V  
1.65  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPSI3052-Q1  
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
6.9 Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted). Typicals at TA = 25. CVDDP = 220 nF (two-wire mode),  
CVDDP = 1 µF (three-wire mode) , CDIV1 = 5.1 nF, CDIV2 = 15 nF, CVDRV = 100 pF, RPXFR = 7.32 k±1%  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
EN = 3.3 V,  
VVDDP = 3.3 V,  
RPXFR = 7.32 kΩ,  
3.1  
R
PXFR 100 kΩor RPXFR 1 kΩ,  
CVDDP = 10 µF,  
VVDDH in steady state,  
measure IVDDP  
.
mA  
EN = 3.3 V,  
VVDDP = 3.3 V,  
RPXFR = 20 kΩ,  
CVDDP = 10 µF,  
VVDDH in steady state,  
26  
4.8  
37  
measure IVDDP  
.
VDDP average current in steady  
state  
IVDDP  
EN = 5 V,  
VVDDP = 5 V,  
RPXFR = 7.32 kΩ,  
PXFR 100 kΩor RPXFR 1 kΩ,  
mA  
mA  
R
CVDDP = 10 µF,  
VVDDH in steady state,  
measure IVDDP  
.
EN = 5 V,  
VVDDP = 5 V,  
RPXFR = 20 kΩ,  
CVDDP = 10 µF,  
VVDDH in steady state,  
measure IVDDP  
.
VVDDP = 3.3 V, EN = 0.0 V, steady  
state.  
RPXFR = 7.32 k,  
Average VDDM voltage when  
sourcing external current.  
CDIV1 = 75 nF,  
VVDDM_IAUX  
VVDDM_IAUX  
VVDDM_IAUX  
VVDDM_IAUX  
4.6  
4.6  
4.6  
4.6  
5.5  
5.5  
5.5  
5.5  
V
V
V
V
CDIV2 = 220 nF,  
Source 0.35 mA from VDDM  
measure VVDDM  
.
VVDDP = 5.0 V, EN = 0.0 V, steady  
state.  
RPXFR = 7.32 k,  
CDIV1 = 75 nF,  
CDIV2 = 220 nF,  
Source 0.50 mA from VDDM  
Average VDDM voltage when  
sourcing external current.  
measure VVDDM  
.
VVDDP = 3.3 V, EN = 0.0 V, steady  
state.  
RPXFR = 20 kΩ  
CDIV1 = 75 nF,  
CDIV2 = 220 nF,  
Source 3.0 mA from VDDM  
Average VDDM voltage when  
sourcing external current.  
measure VVDDM  
.
VVDDP = 5.0 V, EN = 0.0 V, steady  
state.  
RPXFR = 20 kΩ  
CDIV1 = 75 nF  
Average VDDM voltage when  
sourcing external current.  
CDIV2 = 220 nF  
Source 5.0 mA from VDDM  
measure VVDDM  
.
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPSI3052-Q1  
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
6.9 Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted). Typicals at TA = 25. CVDDP = 220 nF (two-wire mode),  
CVDDP = 1 µF (three-wire mode) , CDIV1 = 5.1 nF, CDIV2 = 15 nF, CVDRV = 100 pF, RPXFR = 7.32 k±1%  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VVDDP = 3.0 V,  
VVDDH  
VDDH output voltage  
EN = 3.0 V,  
VVDDH in steady state.  
13.9  
15  
16.2  
16.2  
V
V
VVDDP = 3.0 V,  
EN = 3.0 V,  
VVDDH in steady state,  
no DC loading.  
VVDRV_H  
VDRV output voltage driven high  
VDRV output voltage driven low  
13.9  
15  
VVDDP = 3.0 V,  
EN = 0 V,  
VVDDH in steady state,  
VDRV sinking 10 mA.  
VVDRV_L  
0.1  
V
6.10 开关特性  
在自然通风条件下的工作温度范围内测得除非另有说明TA = 25的典型值。CVDDP = 220nF双线模式),CVDDP  
1µF三线模式),CDIV1 = 5.1nFCDIV2 = 15nFCVDRV= 100pFRPXFR = 7.32kΩ±1%  
=
参数  
测试条件  
最小值 典型值 最大值 单位  
两线模式  
tLO_EN  
5
µs  
µs  
EN 的低电平时间。  
EN = 0V 6.5V,  
VVDDH = 7.5V。  
50% 电平EN 上升VDDH 的  
传播延迟时间。  
tLH_VDDH  
tLH_VDRV  
tHL_VDRV  
tR_VDRV  
tF_VDRV  
165  
185  
2.4  
6
EN = 0V 6.5V,  
VVDRV = 13.5V。  
90% 电平EN 上升VDRV 的  
传播延迟时间。  
µs  
µs  
ns  
ns  
EN 下降VDRV电平为  
10%的传播延迟时间。  
EN = 6.5V 0V,  
VVDRV = 1.5V。  
3
EN 上升VDRV电平15% EN = 0V 6.5V,  
85%VDRV 上升时间。  
VVDRV = 2.25V 12.75V。  
EN 下降VDRV电平85% EN = 6.5V 0V,  
15%VDRV 下降时间。  
5
VVDRV = 12.75V 2.25V。  
三线模式  
tLO_EN  
5
5
µs  
µs  
EN 的低电平时间。  
EN 的高电平时间。  
VVDDP = 3.3VVVDDH = 稳态。  
VVDDP = 3.3VVVDDH = 稳态。  
tHI_EN  
VDRV 在一次性使能模式下的高电平  
时间。仅限  
TPSI3052S-Q1。  
一次性使能仅在三线模式下可用。  
tHI_VDRV  
2.5  
85  
3
µs  
µs  
µs  
VVDDP = 3.3V稳态。  
EN = 0V1V/µs 时  
VDDP 上升VDDH50% VVDDP = 0V 3.3V,  
电平的传播延迟时间。  
tLH_VDDH  
VVDDH = 7.5V。  
CDIV1 = 3.3nFCDIV2 = 220nF。  
VVDDP = 3.3V,  
VVDDH 稳态,  
90% 电平EN 上升VDRV 的  
传播延迟时间  
tLH_VDRV  
4.5  
3
EN = 0V 3.3V,  
VVDRV = 13.5V。  
VVDDP = 3.3V,  
VVDDH 稳态,  
EN 下降VDRV电平为  
10%的传播延迟时间  
tHL_VDRV  
2.5  
µs  
µs  
EN = 3.3V 0V,  
VVDRV = 1.5V。  
EN = 3.3V-1V/µs 时  
VVDDP = 3.3V 0V,  
VVDRV = 1.5V。  
VDDP 下降VDRV电平为  
10%的传播延迟时间。由于主电源  
断电导致的超时机制。  
tHL_VDRV_PD  
300  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPSI3052-Q1  
 
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
6.10 开关特(continued)  
在自然通风条件下的工作温度范围内测得除非另有说明TA = 25的典型值。CVDDP = 220nF双线模式),CVDDP  
1µF三线模式),CDIV1 = 5.1nFCDIV2 = 15nFCVDRV= 100pFRPXFR = 7.32kΩ±1%  
=
参数  
测试条件  
VVDDP = 3.3V,  
VDDH 稳态,  
EN = 0V 3.3V,  
VVDRV = 2.25V 12.75V。  
最小值 典型值 最大值 单位  
V
EN 上升VDRV电平15%  
85%VDRV 上升时间  
tR_VDRV  
6
5
ns  
ns  
VVDDP = 3.3V,  
VVDDH 稳态,  
EN 下降VDRV电平85%  
15%VDRV 下降时间  
tF_VDRV  
EN = 3.3V 0V,  
VVDRV = 12.75V 2.25V。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPSI3052-Q1  
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
6.11 Insulation Characteristic Curves  
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
80  
60  
40  
20  
0
VEN = 24 V  
VEN = 48 V  
60  
40  
20  
0
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
TA (C)  
TA (C)  
6-1. Thermal Derating Curve for Limiting Current 6-2. Thermal Derating Curve for Limiting Current  
per VDE and IEC, Three-Wire Mode  
per VDE and IEC, Two-Wire Mode  
1500  
1400  
1300  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
25  
50  
75  
100  
125  
150  
TA (C)  
6-3. Thermal Derating Curve for Limiting Power per VDE and IEC  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPSI3052-Q1  
 
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
6.12 Typical Characteristics  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
17  
16  
15  
14  
13  
12  
11  
10  
9
8
8
7
7
6
6
5
5
4
4
3
3
VEN  
VEN  
2
2
VVDDM  
VVDDH  
VVDRV  
VVDDM  
VVDDH  
VVDRV  
1
1
0
0
-1  
-1  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Time (s)  
Time (s)  
Three-wire mode  
CDIV1 = 5.1 nF  
CDIV2 =15 nF  
VDDP = 5.0 V  
CVDRV = 100 pF  
CVDDP = 1 μF  
Three-wire mode  
VDDP = 5.0 V  
CVDRV = 100 pF  
CVDDP = 1 μF  
RPXFR = 7.32 kΩ  
TA = 25°C  
RPXFR = 7.32 kΩ  
TA = 25°C  
CDIV1 = 5.1 nF  
CDIV2 =15 nF  
IAUX = 0 mA  
IAUX = 0 mA  
6-4. tLH_VDRV, Three-Wire Mode  
6-5. tHL_VDRV, Three-Wire Mode  
4.8  
4.6  
4.4  
4.2  
4
5
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4
TA = 25C  
TA = 125C  
TA = 25C  
TA = 125C  
3.8  
3.6  
3.4  
3.2  
3
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
CVDRV (nF)  
CVDRV (nF)  
Three-wire mode  
VDDP = 3.3 V  
Three-wire mode  
VDDP = 3.3 V  
RPXFR = 7.32 kΩ  
RPXFR = 7.32 kΩ  
CDIV1 = 2.2 μF  
CDIV2 = 2.2 μF  
CDIV1 = 2.2 μF  
CDIV2 = 2.2 μF  
6-6. tLH_VDRV versus CVDRV  
6-7. tHL_VDRV versus CVDRV  
16  
15  
14  
13  
12  
11  
10  
9
16  
15  
14  
13  
12  
11  
10  
9
VEN  
VEN  
VVDDM  
VVDDH  
VVDRV  
VVDDM  
VVDDH  
VVDRV  
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
-1  
-1  
-0.3  
0
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
-100 -50  
0
50 100 150 200 250 300 350 400 450 500 550 600  
Time (ms)  
Time (ms)  
Two-wire mode  
EN = 12 V  
Two-wire mode  
EN = 12 V  
RPXFR = 7.32 kΩ  
TA = 25°C  
RPXFR = 7.32 kΩ  
TA = 25°C  
CDIV1 = 33 nF  
CDIV2 =100 nF  
CVDRV = 100 pF  
CVDDP = 220 nF  
CDIV1 = 33 nF  
CDIV2 =100 nF  
CVDRV = 100 pF  
CVDDP = 220 nF  
IAUX = 0 mA  
IAUX = 0 mA  
6-8. tLH_VDRV, Two-Wire Mode  
6-9. tHL_VDRV, Two-Wire Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPSI3052-Q1  
 
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
6.12 Typical Characteristics (continued)  
14  
25  
22.5  
20  
RPXFR = 7.32 k  
RPXFR = 7.32 k  
RPXFR = 9.09 k  
RPXFR = 11 k  
RPXFR = 12.7 k  
RPXFR = 14.7 k  
RPXFR = 16.5 k  
RPXFR = 20 k  
13  
RPXFR = 9.09 k  
RPXFR = 11 k  
RPXFR = 12.7 k  
RPXFR = 14.7 k  
RPXFR = 16.5 k  
RPXFR = 20 k  
12  
11  
10  
9
17.5  
15  
8
7
12.5  
10  
6
5
7.5  
5
4
3
2
2.5  
0
1
0
0
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
0
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
CDIV1 (nF), (CDIV2 = 3 x CDIV1  
)
CDIV1 (nF), (CDIV2 = 3 x CDIV1)  
tSTART represents the time from VDDP rising to VDDM and  
VDDH fully discharged rails reaching > 95% of their final levels.  
tSTART represents the time from VDDP rising to VDDM and  
VDDH fully discharged rails reaching > 95% of their final levels.  
Three-wire mode  
IAUX = 0 mA  
VDDP = 5.0 V  
TA = 25°C  
Three-wire mode  
IAUX = 0 mA  
VDDP = 3.3 V  
TA = 25°C  
6-10. tSTART versus CDIV1, CDIV2  
6-11. tSTART versus CDIV1, CDIV2  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
RPXFR = 7.32 k  
RPXFR = 9.09 k  
RPXFR = 11 k  
RPXFR = 12.7 k  
RPXFR = 14.7 k  
RPXFR = 16.5 k  
RPXFR = 20 k  
0.01  
0.03  
0.05  
0.07  
0.09  
0.11  
0.13  
0.15  
0.17  
0.19  
1/QLOAD (nC)-1  
Three-wire mode  
IAUX = 0 mA  
VDDP = 5.0 V  
TA = 25°C  
Three-wire mode  
IAUX = 0 mA  
VDDP = 5.0 V  
TA = 25°C  
6-13. Max. fEN versus QLOAD = 100 nC to 1000 nC  
6-12. Max. fEN versus QLOAD = 10 nC to 100 nC  
6
5.75  
5.5  
5.25  
5
6
VVDDP = 3.3 V  
VVDDP = 5 V  
VVDDP = 3.3 V  
VVDDP = 5 V  
5.75  
5.5  
5.25  
5
4.75  
4.5  
4.25  
4
4.75  
4.5  
4.25  
4
3.75  
3.5  
3.25  
3
3.75  
3.5  
3.25  
3
2.75  
2.5  
2.25  
2
2.75  
2.5  
2.25  
2
1.75  
1.5  
1.75  
1.5  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
7
IAUX (mA)  
IAUX (mA)  
Three-wire mode  
CDIV1 = 150 nF  
TA = 25°C  
Three-wire mode  
CDIV1 = 150 nF  
TA = 25°C  
RPXFR = 20 kΩ  
RPXFR = 11 kΩ  
CDIV2 = 470 nF  
CDIV2 = 470 nF  
CVDDP = 1 μF  
CVDDP = 1 μF  
6-14. VVDDM versus IAUX  
6-15. VVDDM versus IAUX  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPSI3052-Q1  
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
7 Parameter Measurement Information  
50%  
50%  
EN  
tLH_VDDH  
50%  
VDDH  
tLH_VDRV  
90%  
85%  
85%  
tF_VDRV  
15%  
10%  
15%  
VDRV  
tR_VDRV  
tHL_VDRV  
7-1. Two-Wire Mode Timing, Standard Enable (TPSI3052-Q1 Only)  
50%  
50%  
tLH_VDDH  
VDDP  
50%  
VDDH  
EN  
tHI_EN  
tLO_EN  
50%  
50%  
50%  
tHL_VDRV_PD  
tLH_VDRV  
90%  
tF_VDRV  
85%  
85%  
15%  
10%  
15%  
tR_VDRV  
10%  
VDRV  
tHL_VDRV  
7-2. Three-Wire Mode Timing, Standard Enable (TPSI3052-Q1 Only)  
50%  
50%  
VDDP  
tLH_VDDH  
50%  
VDDH  
EN  
tHI_EN  
tLO_EN  
50%  
50%  
tLH_VDRV  
50%  
tHL_VDRV_PD  
tF_VDRV  
90%  
85%  
50%  
15%  
85%  
50%  
15%  
10%  
VDRV  
tR_VDRV  
tHI_VDRV  
7-3. Three-Wire Mode Timing, One-Shot Enable (TPSI3052S-Q1 Only)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPSI3052-Q1  
 
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
Pass/Fail criteria: Output  
must remain stable.  
EN  
PXFR  
VDRV  
VDDH  
+
VDDP  
CDIV1  
CVDRV  
CVDDP  
RPXFR  
VSSP  
VDDM  
VSSS  
VVDRV  
Modulator  
CDIV2  
-
GNDO  
GNDI  
+ VCM  
-
7-4. Common-Mode Transient Immunity Test Circuit  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPSI3052-Q1  
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPSI3052-Q1 is a fully integrated, reinforced isolated power switch driver, which when combined with an  
external power switch, forms a complete isolated Solid State Relay (SSR). With a nominal gate drive voltage of  
15 V and 1.5/3.0-A peak source and sink current, a large variety of external power switches can be chosen to  
meet a wide range of applications. The TPSI3052-Q1 generates its own secondary supply from the power  
received from its primary side, so no isolated secondary bias supply is required.  
The Functional Block Diagram shows the primary side that includes a transmitter that drives an alternating  
current into the primary winding of an integrated transformer at a rate determined by the setting of the PXFR pin  
and the logic state of the EN pin. The transmitter operates at high frequency to optimally drive the transformer to  
its peak efficiency. In addition, the transmitter uses spread spectrum techniques to greatly improve EMI  
performance, allowing many applications to achieve CISPR 25 - Class 5. During transmission, data information  
transfers to the secondary side alongside with the power. On the secondary side, the voltage induced on the  
secondary winding of the transformer is rectified, and the shunt regulator regulates the output voltage level of  
VDDH. Lastly, the demodulator decodes the received data information and drives VDRV high or low based on  
the logic state of the EN pin.  
8.2 Functional Block Diagram  
EN  
VDRV  
PXFR  
VDDP  
VDDH  
VDDM  
Modulator  
VSSP  
VSSS  
8.3 Feature Description  
8.3.1 Transmission of the Enable State  
The TPSI3052-Q1 and TPSI3052S-Q1 use a modulation scheme to transmit the switch enable state information  
across the isolation barrier. The transmitter modulates the EN signal with an internally generated, high frequency  
carrier (89-MHz typical), and differentially drives the primary winding of the isolation transformer. The receiver on  
the secondary side demodulates the received signal and asserts VDRV high or low based on the data received.  
8.3.2 Power Transmission  
The TPSI3052-Q1 and TPSI3052S-Q1 do not use an isolated supply for their power. The secondary side power  
is obtained by the transferring of the primary side input power across the isolation transformer. The modulation  
scheme uses spread spectrum of the high frequency carrier (89-MHz typical) to improve EMI performance  
assisting applications in meeting the CISPR 25 Class 5 standards.  
8.3.3 Gate Driver  
The TPSI3052-Q1 and TPSI3052S-Q1 have an integrated gate driver that provides a nominal 15-V gate voltage  
with 1.5/3.0-A peak source and sink current sufficient for driving many power transistors or Silicon-Controlled  
Rectifiers (SCR). When driving external power transistors, TI recommends bypass capacitors (CDIV2 = 3 * CDIV1  
)
from VDDH to VDDM and VDDM to VSSS of 20 times the equivalent gate capacitance.  
The gate driver also includes an active clamp keep off circuit. This feature helps to keep the driver output, VDRV,  
low should power be lost on the secondary supply rails e.g. power loss on the VDDP supply prevents power  
transfer. Should power be lost, the active clamp keep off circuit will attempt to clamp the voltage of VDRV to  
under 2 V relative to VSSS.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPSI3052-Q1  
 
 
 
 
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
8.3.4 Modes Overview  
The TPSI3052-Q1 and TPSI3052S-Q1 have two modes of operation: two-wire mode and three-wire mode.  
In two-wire mode, the power on the primary side is provided directly by the EN pin. Setting EN high causes  
power transfer to the secondary side. As power transfers, the secondary rails, VDDM and VDDH, begin to rise.  
After sufficient power is available on the secondary side, VDRV is asserted high. Setting EN low causes VDRV  
to assert low and halts power transfer to the secondary side.  
In three-wire mode, the power on the primary side is provided by a dedicated, low output impedance supply  
connected to VDDP. In this case, power transfer is independent from the enable state. If VDDP power is present,  
power is transferred from the primary side to the secondary side regardless of the EN state. In steady state  
conditions, when sufficient power is available on the secondary side, setting EN high causes VDRV to assert  
high. Setting EN low causes VDRV to assert low.  
In standard enable, available only on the TPSI3052-Q1, VDRV follows the state of the EN pin and is used in  
most load switch applications. In one-shot enable mode, available only on the TPSI3052S-Q1 in three-wire  
mode, when a rising transition occurs on EN, VDRV is asserted high momentarily and then automatically  
asserted low, forming a one-shot pulse on VDRV. This event is useful for driving SCR devices that require only  
one burst of power to trigger. To re-trigger VDRV, EN must first transition low, followed by another rising  
transition.  
8.3.5 Three-Wire Mode  
Three-wire mode is used for applications that require higher levels of power transfer or the shortest propagation  
delay TPSI3052-Q1 can offer. VDDP is supplied independently from the EN pin by a low output impedance  
external supply that can deliver the required power. In this mode, power from the primary side to the secondary  
side always occurs regardless of the state of the EN pin. Setting the EN pin logic high or low asserts or de-  
asserts VDRV, thereby enabling or disabling the external switch, respectively. 8-1 shows the basic setup  
required for three-wire mode operation which requires EN, VDDP, and VSSP signals. EN can be driven up to 5.5  
V which is normally driven from the circuitry residing on the same rail as VDDP. In this example, the TPSI3052-  
Q1 is being used to drive back-to-back MOSFETs in a common-source configuration. CVDDP provides the  
required decoupling capacitance for the VDDP supply rail of the device. CDIV1 and CDIV2 provide the required  
decoupling capacitances of the VDDH and VDDM supply rails that provide the peak current to drive the external  
MOSFETs.  
8-2 and 8-3 show the basic operation from start-up to steady-state conditions. 8-2 shows operation  
using standard enable of the TPSI3052-Q1. After power up, the TPSI3052-Q1 begins to transfer power from  
VDDP to the secondary side for a fixed time period (25-μs typical) at a duty cycle rate determined by RPXFR  
,
which begins to charge up the VDDH (and VDDM) secondary side rails. Power transfer continues as long as  
VDDP is present. The time required to fully charge VDDH depends on several factors including the values of  
VDDP, CDIV1, CDIV2, RPXFR, and the overall power transfer efficiency. When the application drives the EN pin to a  
logic high, the TPSI3052-Q1 signals information from the primary side to the secondary side to assert VDRV and  
drive it high. Similarly, setting EN pin to a logic low causes VDRV to be driven low. 8-3 shows operation using  
one-shot enable of the TPSI3052S-Q1. The start-up behavior is identical. In one-shot enable, when the  
application drives the EN pin to a logic high, VDRV is asserted high (tHI_VDRV), then is automatically asserted low  
by the TPSI3052S-Q1. To assert VDRV high again, the EN pin must transition low first, followed by a transition  
high.  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPSI3052-Q1  
 
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
3–5.5 V  
Micro  
EN  
VDRV  
PWR  
RPXFR  
SIGNAL  
PXFR  
VDDP  
VDDH  
VDDM  
VSSS  
CDIV1  
3–5.5 V  
CVDDP  
CDIV2  
VSSP  
8-1. Three-Wire Mode Simplified Schematic  
VDDP  
VVDDH  
VDDH  
EN  
VVDRV_H  
VDRV  
8-2. Three-Wire Mode with TPSI3052-Q1 (Standard Enable)  
VDDP  
VVDDH  
VDDH  
EN  
VVDRV_H  
VDRV  
8-3. Three-Wire Mode with TPSI3052S-Q1 (One-shot Enable)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPSI3052-Q1  
 
 
 
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
To reduce average power, the TPSI3052-Q1 transfers power from the primary side to the secondary side in a  
burst fashion. The period of the burst is fixed while the burst on time is programmable by selecting one of seven  
appropriate resistor values, RPXFR, from the PXFR to VSSP pins, thereby changing the duty cycle of the power  
converter. This action provides flexibility in the application, allowing tradeoffs in power consumed versus power  
delivered. Higher power converter settings increase the burst on time which, in turn, increases average power  
consumed from the VDDP supply and increases the amount of power transferred to the secondary side VDDH  
and VDDM supplies. Similarly, lower power converter settings decrease the burst on time which, in turn,  
decreases average power consumed from the VDDP supply and decreases the amount of power transferred to  
the secondary side.  
8-1 summarizes the three-wire mode power transfer selection.  
8-1. Three-Wire Mode Power Transfer Selection  
Power Converter Duty Cycle  
(Three-Wire Mode, Nominal)  
(1) (2)  
RPXFR  
Description  
13.3%  
26.7%  
40.0%  
53.3%  
66.7%  
80.0%  
93.3%  
7.32 kΩ  
9.09 kΩ  
11 kΩ  
The device supports seven, fixed power transfer settings, by selection of a  
corresponding RPXFR value . Selecting a given power transfer setting adjusts the  
duty cycle of the power converter and hence the amount of power transferred.  
Higher power transfer settings leads to an increased duty cycle of the power  
converter leading to increased power transfer and consumption. During power  
up, the power transfer setting is determined and remains fixed at that setting until  
VDDP power cycles.  
12.7 kΩ  
14.7 kΩ  
16.5 kΩ  
20 kΩ  
(1) Standard resistor (EIA E96), 1% tolerance, nominal value.  
(2) PXFR 100 kΩor RPXFR 1 kΩsets the duty cycle of the power converter to 13.3%.  
R
8.3.6 Two-Wire Mode  
8-4 shows the basic setup required for two-wire mode operation, which requires the EN signal and VSSP  
ground signal. EN can be driven up to 48 V. No current limiting resistor is required on EN because the  
TPSI3052-Q1 limits the input current based on the values set by the RPXFR resistor (see 8-2). In this example,  
the TPSI3052-Q1 is being used to drive back-to-back MOSFETs in a common-source configuration. CVDDP  
provides the required decoupling capacitance for the VDDP supply rail of the device. CDIV1 and CDIV2 provide the  
required decoupling capacitance of the VDDH and VDDM supply rails that provide the peak current to drive the  
external MOSFETs.  
8-5 shows the typical operation in two-wire mode configured for standard enable. The application drives EN to  
a logic high and the TPSI3052-Q1 begins its power-up sequence. During power up, the current provided by the  
EN pin, IEN, begins to charge up the external capacitance, CVDDP, and the voltage on VDDP begins to rise until it  
reaches VVDDP_H. After VDDP reaches its peak, VVDDP_H, the TPSI3052-Q1 transfers stored energy on CVDDP to  
the secondary side for a fixed time (3.3-μs typical) which begins to charge up the VDDH (and VDDM)  
secondary side rails thereby discharging the voltage on VDDP. In steady state, this results in an average voltage  
on VDDP, VVDDP_AVG. This cycle repeats until the VDDH (and VDDM) secondary side rails are fully charged. The  
time required to fully charge VDDH depends on several factors including the values of CVDDP, CDIV1, CDIV2  
,
RPXFR, and the overall power transfer efficiency. After VDDH is fully charged, VDRV is asserted high and  
remains high while the EN pin remains at a logic high. When the application drives the EN pin to a logic low, the  
charge on VDDP begins to discharge. Prior to VDDP reaching its UVLO falling threshold, TPSI3052-Q1 signals  
information from the primary side to the secondary side to de-assert VDRV and drive it low. Because power is no  
longer being transferred, all rails begin to fully discharge.  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPSI3052-Q1  
 
 
 
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
6.5–48 V  
RPXFR  
EN  
VDRV  
PWR  
SIGNAL  
PXFR  
VDDP  
VDDH  
VDDM  
VSSS  
CDIV1  
CVDDP  
CDIV2  
VSSP  
8-4. Two-Wire Mode Simplified Schematic  
VVDDP_H  
90%  
tLH_VDDP_H  
VDDP  
VVDDH  
VVDDH_UV_R  
VDDH  
50%  
EN  
VVDRV_H  
VDRV  
8-5. Two-Wire Mode with Standard Enable (TPSI3052-Q1 Only)  
In two-wire mode, power is supplied directly by the EN pin. When EN is asserted high, the TPSI3052-Q1  
transfers power to the secondary side for a fixed time (3.3-μs nominal) while the time period varies. The period  
varies due to the hysteretic control of the power transfer that ensures the average current supplied through the  
EN pin is maintained. The amount of average current, and hence the amount of power transferred, is  
programmable by selecting one of seven appropriate resistor values, RPXFR, from the PXFR to VSSP pins.  
Higher settings of RPXFR increase IEN which increases the average power consumed from the EN pin and  
increases the amount of power transferred to the secondary side VDDH supply. Similarly, lower settings of RPXFR  
decrease IEN, which decreases the average power consumed from the EN pin and decreases the amount of  
power transferred to the secondary side.  
8-2 summarizes the two-wire mode power selection.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPSI3052-Q1  
 
 
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
8-2. Two-Wire Mode Power Selection  
(1) (2)  
RPXFR  
7.32 kΩ  
IEN (Two-Wire Mode, Nominal)  
Description  
1.9 mA  
2.8 mA  
3.7 mA  
4.5 mA  
5.2 mA  
6.0 mA  
6.7 mA  
9.09 kΩ  
11 kΩ  
The device supports seven, fixed EN input current limit options selected by the  
corresponding RPXFR specified value. Higher current limit selections lead to  
increased power transfer and consumption. During power up, the EN input current  
limit is determined and remains fixed at that setting until VDDP power cycles.  
12.7 kΩ  
14.7 kΩ  
16.5 kΩ  
20 kΩ  
(1) Standard resistor (EIA E96), 1% tolerance, nominal value.  
(2) PXFR 100 kΩor RPXFR 1 kΩsets the IEN to 1.9 mA.  
R
8.3.7 VDDP, VDDH, and VDDM Undervoltage Lockout (UVLO)  
TPSI3052-Q1 and TPSI3052S-Q1 implement an internal UVLO protection feature for both input and output  
power supplies, VDDP, VDDH, and VDDM. When VDDP is lower than the UVLO threshold voltage, power  
ceases to be transferred to the VDDM and VDDH rails. Over time the VDDH and VDDM rails will begin to  
discharge. If enough charge is available on VDDP, the device will attempt to signal VDRV to assert low. If not  
enough charge is available on VDDP, a timeout mechanism will ensure VDRV asserts low after the timeout has  
been reached. When either VDDH or VDDM are lower than their respective UVLO thresholds, VDRV will be  
asserted low regardless of the EN state. The UVLO protection blocks feature hysteresis, which helps to improve  
the noise immunity of the power supply. During turn-on and turn-off, the driver sources and sinks a peak  
transient current, which can result in voltage drop of the VDDH, VDDM power supplies. The internal UVLO  
protection block ignores the associated noise during these normal switching transients.  
8.3.8 Power Supply and EN Sequencing  
During power up, the device will automatically determine if two-wire or three-wire mode is to be entered. Once  
two-wire or three-wire mode is determined, the mode is maintained until another power cycle is performed.  
Therefore, it is important to understand different scenarios that may affect the device operation.  
In two-wire mode, the device is supplied power from a single external voltage source via EN, which charges the  
CVDDP capacitance on VDDP. The voltage supply is required to meet the power supply needs at the selected  
PXFR setting, as well as, meet the recommended minimum ramp time, |ΔVEN/Δt|. To ensure two-wire mode is  
entered properly, VEN must reach VIH_EN prior to VVDDP reaching VVDDP_UV_R. This is summarized in 8-6.  
Similarly, it is recommend that VEN meet the minimum recommended ramp down time to VIL_EN. Too slow a ramp  
down time may cause insufficient power to be transferred while slowly transitioning between VIH_EN and VIL_EN  
leading to intermittent de-assertions and assertions of VDRV. This may continue until the power transfer reduces  
sufficiently to maintain VDRV low.  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPSI3052-Q1  
 
 
 
 
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
VIH_EN  
VEN  
VIL_EN  
VEN  
t
VVDDP_UV_R  
Two-wire mode  
VVDDP  
8-6. Two-wire Mode Entry  
In most three-wire mode applications, EN and VDDP are supplied by the same voltage rail and source. It is  
recommended that VEN remain below VIL_EN until VVDDP reaches VVDDP_UV_R. It is also possible in some  
applications to connect EN directly to the VDDP supply. These two scenarios are shown in 8-7.  
VVDDP_UV_R  
VVDDP  
VEN = VVDDP  
VIL_EN  
VEN  
8-7. Three-wire Mode Power Sequences  
In three-wire mode applications with separate voltage sources supplying EN and VDDP, it is recommended that  
VEN remain below VIL_EN until VVDDP reaches VVDDP_UV_R. If VEN reaches VIH_EN prior to VVDDP reaching  
VVDDP_UV_R, current from the supply that sources EN will attempt to power VDDP. Depending on the other  
supply's impedance residing on VDDP and the amount of power available from the EN pin, VVDDP may begin to  
rise and eventually exceed VVDDP_UV_R. At that point, the device will begin to transfer power to the secondary  
and start charging the VDDM and VDDH rails. If VDDP remains above VVDDP_UV_R, the device will continue to  
transfer power to the secondary eventually charging the VDDM and VDDH rails and VDRV may assert high.  
8.3.9 Thermal Shutdown  
The device contains an integrated temperature sensor to monitor its local temperature. When the sensor  
reaches its threshold, it automatically ceases power transfer from the primary side to the secondary side. In  
addition, if power is still present on VDDP, the driver is automatically asserted low. The power transfer is disabled  
until the local temperature reduces enough to re-engage.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPSI3052-Q1  
 
 
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
8.4 Device Functional Modes  
8-3 summarizes the functional modes for the TPSI3052-Q1 and TPSI3052S-Q1.  
8-3. TPSI3052-Q1, TPSI3052S-Q1 Device Functional Modes  
VDDP(6)  
VDDH  
EN(6)  
VDRV  
COMMENTS  
L
L
TPSI3052-Q1 normal operation:  
VDRV output state assumes logic state of EN logic  
state.  
H
L
H
L
TPSI3052S-Q1 (7)normal operation (three-wire  
mode only):  
Powered up(2)  
Powered up(4)  
rising edge of EN causes VDRV to be singly pulsed  
high. EN must be asserted low first to assert  
another pulse.  
L H  
L H L  
Disabled operation:  
VDRV output disabled, keep off circuitry applied.  
Powered down(3)  
Powered up(2)  
Powered down(5)  
Powered down(5)  
X(1)  
X(1)  
L
L
Disabled operation:  
VDRV output disabled, keep off circuitry applied.  
Disabled operation:  
when VDDP is powered down, output driver is  
disabled automatically after timeout, keep off  
circuitry applied.  
Powered down(3)  
Powered up(4)  
X(1)  
L
(1) X: do not care.  
(2)  
(3) VVDDP < VDDP undervoltage lockout falling threshold, VVDDP_UV_F  
(4) VDDH VDDH undervoltage lockout rising threshold, VVDDH_UV_R  
(5) VVDDH < VDDH undervoltage lockout falling threshold, VVDDH_UV_F  
VVDDP VDDP undervoltage lockout rising threshold, VVDDP_UV_R.  
.
V
.
.
(6) Refer to Power Supply and EN Sequencing for additional information.  
(7) Product preview.  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPSI3052-Q1  
 
 
 
 
 
 
 
 
 
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The TPSI3052-Q1 is a fully integrated, isolated switch driver with integrated bias, which when combined with an  
external power switch, forms a complete isolated solid state relay solution. With a nominal gate drive voltage of  
15 V with 1.5/3.0-A peak source and sink current, a large variety of external power switches such as MOSFETs,  
IGBTs, or SCRs can be chosen to meet a wide range of applications. The TPSI3052-Q1 generates its own  
secondary bias supply from the power received from its primary side, so no isolated secondary supply bias is  
required.  
The TPSI3052-Q1 supports two modes of operation based on the number of input pins required. In two-wire  
mode, typically found in driving mechanical relays, controlling the switch requires only two pins and supports a  
wide voltage range of operation of 6.5 V to 48 V. In three-wire mode, the primary supply of 3 V to 5.5 V is  
supplied externally, and the switch is controlled through a separate enable. Available in three-wire mode only,  
the TPSI3052S-Q1 features a one-shot enable for the switch control. This feature is useful for driving SCRs that  
typically require only one pulse of current to trigger.  
The secondary side provides a regulated, floating supply rail of 15 V for driving a large variety of power switches  
with no need for a secondary bias supply. The TPSI3052-Q1 can support driving single power switch, dual back-  
to-back, parallel power switches for a variety of AC or DC applications. The TPSI3052-Q1 integrated isolation  
protection is extremely robust with much higher reliability, lower power consumption, and increased temperature  
ranges than those found using traditional mechanical relays and optocouplers.  
The power dissipation of the TPSI3052-Q1 can be adjusted by an external resistor from the PXFR pin to VSSP.  
This feature allows for tradeoffs in power dissipation versus power provided on the secondary depending on the  
needs of the application.  
9.2 Typical Application  
The circuits in 9-1 and 9-2 show a typical application for driving silicon based MOSFETs in three-wire mode  
and two-wire mode, respectively.  
VP  
RGSRC  
RGSNK  
EN  
VDRV  
VSSP  
PWR  
RPXFR  
SIGNAL  
PXFR  
VDDP  
VDDH  
VDDM  
VSSS  
CDIV1  
CVDDP  
+
CDIV2  
VP  
VSSP  
9-1. TPSI3052-Q1 Three-Wire Mode Driving MOSFETs  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPSI3052-Q1  
 
 
 
 
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
RGSRC  
RGSNK  
6.5–48 V  
EN  
VDRV  
PWR  
RPXFR  
SIGNAL  
PXFR  
VDDP  
VDDH  
VDDM  
VSSS  
CDIV1  
CVDDP  
CDIV2  
VSSP  
9-2. TPSI3052-Q1 Two-Wire Mode Driving MOSFETs  
9.2.1 Design Requirements  
9-1 lists the design requirements of the TPSI3052-Q1 gate driver.  
9-1. TPSI3052-Q1 Design Requirements  
DESIGN PARAMETERS  
Total gate capacitance  
FET turn-on time  
100 nC  
1 µs  
Propagation delay  
< 4 µs  
Switching frequency  
Supply voltage (VDDP)  
10 kHz  
5 V ± 5%  
9.2.2 Detailed Design Procedure  
9.2.2.1 Two-Wire or Three-Wire Mode Selection  
The first design decision is to determine if two-wire or three-wire mode can be used in the application. For this  
design, note that the overall propagation delay is less than 4 µs and only three-wire mode is able to meet this  
requirement. In this case, two-wire mode is not applicable. Two-wire mode, due to its limited power transfer, is  
typically limited to very low frequency applications of less than a few kHz or when enable times are not critical.  
9.2.2.2 Standard Enable, One-Shot Enable  
Next, based on the application a decision must be if standard enable or one-shot enable mode is required. In  
this design, assume that after the switch is enabled, it is desired that the switch remain enabled until  
commanded to be disabled. Therefore, standard enable mode is assumed. In most applications that involve  
driving FETs, standard enable is appropriate. If driving SCRs or TRIACS, one-shot mode can be beneficial.  
9.2.2.3 CDIV1, CDIV2 Capacitance  
The CDIV1 and CDIV2 capacitances required depends on the amount of drop that can be tolerated on the VDDH  
rail during switching of the external load. The charge stored on the CDIV1 and CDIV2 capacitances is used to  
provide the current to the load during switching. During switching, charge sharing occurs and the voltage on  
VDDH drops. At a minimum, TI recommends that the total capacitance formed by the series combination of  
CDIV1 and CDIV2 be sized to be at least 30 times the total gate capacitance to be switched. This sizing results in  
an approximate 0.5-V drop of the VDDH supply rail that is used to supply power to the VDRV signal. 方程式 1  
and 方程2 can be to used to calculate the amount of capacitance required for a specified voltage drop.  
CDIV1 and CDIV2 must be of the same type and tolerance.  
Q
n + 1  
n
LOAD  
∆ V  
C
=
×
, n ≥ 3.0  
(1)  
(2)  
DIV1  
DIV2  
C
= n × C  
, n ≥ 3.0  
DIV1  
where  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPSI3052-Q1  
 
 
 
 
 
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
n is a real number greater than or equal to 3.0.  
CDIV1 is the external capacitance from VDDH to VDDM.  
CDIV2 is the external capacitance from VDDM to VSSS.  
QLOAD is the total charge of the load from VDRV to VSSS.  
• ΔV is the voltage drop on VDDH when switching the load.  
备注  
CDIV1 and CDIV2 represent absolute capacitances and components selected must be adjusted for  
tolerances and any derating necessary to achieve the required capacitances.  
Larger values of ΔV can be used in the application, but excessive droop can cause the VDDH undervoltage  
lockout falling threshold (VVDDH_UVLO_F) to be reached and cause VDRV to be asserted low. Note that as the  
series combination of CDIV1 and CDIV2 capacitances increases relative to QLOAD, the VDDH supply voltage drop  
decreases, but the initial charging of the VDDH supply voltage during power up increases.  
For this design, assuming n = 3 and ΔV0.5 V, then  
3 + 1  
3
120 nC  
0.5 V  
C
=
×
= 320 nF  
(3)  
(4)  
DIV1  
C
= 3 × 320 nF = 960 nF  
DIV2  
For this design, CDIV1 = 330 nF and CDIV2 = 1 μF standard capacitor values were selected.  
9.2.2.4 RPXFR Selection  
The selection of RPXFR allows for a tradeoff between power consumed and power delivered, as described in the  
Three-wire Mode section. For this design, one must choose an appropriate RPXFR selection that ensures enough  
power is transferred to support the amount of load being driven at the specified switching frequency.  
During switching of the load, QLOAD of charge on VDDH is transferred to the load and VDDH supply voltage  
droops. After each switching cycle, this charge must be replenished before the next switching cycle occurs. This  
action ensures that the charge residing on VDDH does not deplete over time due to subsequent switching cycles  
of the load. The time it takes to recover this charge, tRECOVER, can be estimated as follows:  
Q
1
LOAD  
t
=
(5)  
RECOVER  
I
f
OUT  
MAX  
where  
QLOAD is the load charge in Coulombs.  
IOUT is the average current available from VDDH supply in Amperes (A).  
fMAX is maximum switching frequency in Hertz (Hz).  
For this design, QLOAD = 100 nC and fMAX = 10 kHz are known, so IOUT required can be estimated as  
I
100 nC × 10 kHz = 1.0 mA  
(6)  
OUT  
IOUT represents the minimum average current required to meet the design requirements. Using the TPSI3052-  
Q1 calculator tool, one can easily find the RPXFR necessary by referring to the IOUT or fMAX columns directly. 表  
9-2 shows the results from the tool, assuming VDDP = 4.75 V, to account for the supply tolerance specified in  
the design requirements. The TPSI3052-Q1 Calculator tool can be found at 10-1.  
9-2. Results from the TPSI3052-Q1 Calculator Tool, TA = 25°C, Three-Wire Mode  
Power  
Converter  
Duty Cycle, %  
fEN_MAX  
kHz  
,
IAUX_MAX  
mA  
,
IVDDP, mA  
PIN, mW  
POUT, mW  
IOUT, mA  
tSTART, µs  
tRECOVER, µs  
RPXFR, kΩ  
7.32  
9.09  
13.3  
21.1  
5.3  
8.3  
25.0  
39.6  
5.9  
10.0  
0.35  
0.62  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPSI3052-Q1  
 
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
9-2. Results from the TPSI3052-Q1 Calculator Tool, TA = 25°C, Three-Wire Mode (continued)  
Power  
Converter  
Duty Cycle, %  
fEN_MAX  
kHz  
,
IAUX_MAX  
mA  
,
IVDDP, mA  
PIN, mW  
POUT, mW  
IOUT, mA  
tSTART, µs  
tRECOVER, µs  
RPXFR, kΩ  
11  
40.0  
53.3  
66.7  
80.0  
93.3  
15.8  
75.1  
26.8  
36.1  
45.5  
58.8  
68.8  
1.74  
2076  
56.3  
17.8  
23.9  
30.2  
39.0  
45.6  
2.3  
4.1  
12.7  
14.7  
16.5  
20  
21.1  
26.4  
31.6  
36.9  
100.1  
125.2  
150.2  
175.2  
2.35  
2.98  
3.86  
4.52  
1581  
1287  
1032  
905  
41.8  
33.2  
25.7  
21.9  
6.0  
8.6  
10.0  
9-3 summarizes the various output parameters of the calculator tool.  
9-3. TPSI3052-Q1 Calculator Tool Parameter Descriptions  
Parameter  
Description  
External resistor setting that controls the amount of power transferred to the load by adjusting the duty  
cycle. Higher RPXFR settings lead to increased power transfer and power consumption.  
RPXFR  
Nominal duty cycle of the power converter. Higher RPXFR settings leads to higher duty cycles of the power  
converter and higher power transfer.  
Power Converter Duty Cycle  
IVDDP  
PIN  
POUT  
IOUT  
Average current consumed from the VDDP supply  
Average power consumed from the VDDP supply  
Average power delivered to the VDDH supply  
Average current delivered to the VDDH supply  
Start-up time from VDDP rising until VDDH supply rail is fully charged. This parameter assumes VDDH and  
VDDM supply rails are fully discharged initially.  
tSTART  
tRECOVER  
fMAX  
Represents the time for the VDDH rail to recover after switching the load present on VDRV  
Maximum switching frequency possible for a given RPXFR setting for the applied loading conditions  
Maximum auxiliary current available at current user input settings. There is an inverse relationship between  
IAUX_MAX  
fMAX and IAUX_MAX  
.
For this design example, RPXFR must be configured to the 9.09-kΩsetting or higher to transfer enough power to  
support switching the specified load at the required 10-kHz frequency.  
9.2.2.5 CVDDP Capacitance  
For two-wire mode, the recommended capacitance CVDDP from VDDP to VSSP is 220 nF.  
For this design, three-wire mode is required to meet the design requirements. For three-wire mode, increasing  
the amount of capacitance, CVDDP, improves the ripple on the VDDP supply. For this design, 1 μF in parallel  
with 100 nF is used.  
9.2.2.6 Gate Driver Output Resistor  
The optional external gate driver resistors, RGSRC and RGSNK, along with the diode are used to:  
1. Limit ringing caused by parasitic inductances and capacitances  
2. Limit ringing caused by high voltage switching dv/dt, high current switching di/dt, and body-diode reverse  
recovery  
3. Fine-tune gate drive strength for sourcing and sinking  
4. Reduce electromagnetic interference (EMI)  
The TPSI3052-Q1 has a pullup structure with a P-channel MOSFET with a peak source current of 1.5 A.  
Therefore, the peak source current can be predicted with:  
V
VDDH  
I
≅ min 1.5 A,  
(7)  
O +  
R
+ R  
+ R  
GFET_INT  
DSON_VDRV  
GSRC  
where  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPSI3052-Q1  
 
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
RGSRC: external turn-on resistance.  
RDSON_VDRV: TPSI3052-Q1 driver on resistance in high state. See Electrical Characteristics.  
VVDDH: VDDH voltage. Assumed 15.1 V in this example.  
RGFET_INT: external power transistor internal gate resistance, found in the power transistor data sheet.  
Assume 0 Ωfor this example.  
IO+: peak source current. The minimum value between 1.5 A, the gate driver peak source current, and the  
calculated value based on the gate drive loop resistance.  
For this example, RDSON_VDRV = 2.5Ω, RGSRC = 10 Ω, and RGFET_INT = 0 Ωresults in:  
15.1 V  
2.5 Ω + 10 Ω + 0 Ω  
I
≅ min 1.5 A,  
= 1.21 A  
(8)  
O +  
Similarly, the TPSI3052-Q1 has a pulldown structure with an N-channel MOSFET with a peak sink current of 3.0  
A. Therefore, assuming RGFET_INT = 0 Ω, the peak sink current can be predicted with:  
1
I
≅ min 3.0 A, V  
× R  
+ R  
− R  
× V ×  
F
(9)  
O −  
VDDH  
GSRC  
GSNK  
GSRC  
R
× R  
GSNK  
+ R  
DSON_VDRV  
× R  
GSRC  
+ R  
GSNK  
GSRC  
where  
RGSRC: external turn-on resistance.  
RGSNK: external turn-off resistance.  
RDSON_VDRV: TPSI3052-Q1 driver on resistance in low state. See Electrical Characteristics.  
VVDDH: VDDH voltage. Assumed 15.1 V in this example.  
VF: diode forward voltage drop. Assumed 0.7 V in this example.  
IO-: peak sink current. The minimum value between 3.0 A, the gate driver peak sink current, and the  
calculated value based on the gate drive loop resistance.  
For this example, assuming RDSON_VDRV = 1.7 Ω, RGSRC = 10 Ω, RGSNK = 5.0 Ω, and RGFET_INT = 0 Ω, results  
in:  
1
I
≅ min 3.0 A, 15.1 V × 10 Ω + 5 Ω 10Ω × 0.7 V ×  
= 2.91 A  
(10)  
O −  
10 Ω × 5 Ω + 1.7 Ω × 10Ω + 5 Ω  
Importantly, the estimated peak current is also influenced by PCB layout and load capacitance. Parasitic  
inductance in the gate driver loop can slow down the peak gate drive current and introduce overshoot and  
undershoot. Therefore, TI strongly recommends to minimize the gate driver loop.  
9.2.2.7 Start-up Time and Recovery Time  
As described in the CDIV1, CDIV2 Capacitance section, the start-up time of the fully discharged VDDH rail  
depends on the amount of capacitance present on the VDDH supply. The rate at which this capacitance is  
charged depends on the amount of power transferred from the primary side to the secondary side. The amount  
of power transferred can be adjusted by choosing RPXFR. Increasing the resistor settings for RPXFR transfers  
more power from the primary supply (VDDP) to the secondary supply (VDDH), thereby reducing the overall start-  
up and recovery times.  
9.2.2.8 Supplying Auxiliary Current, IAUX From VDDM  
The TPSI3052-Q1 is capable of providing power from VDDM to support external auxiliary circuitry as shown in  
9-3. In this case, the required transfer power must include the additional power consumed by the auxiliary  
circuitry on the VDDM rail. The RPXFR value must be set to meet the overall power requirements.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPSI3052-Q1  
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
VP  
RGSRC  
RGSNK  
EN  
VDRV  
VSSP  
PWR  
RPXFR  
SIGNAL  
PXFR  
VDDP  
VDDH  
VDDM  
VSSS  
CDIV1  
IAUX  
CVDDP  
Auxiliary  
Circuit  
+
CDIV2  
VP  
VSSP  
9-3. Supplying Auxiliary Power From VDDM  
As an example, assume that the auxiliary circuitry requires an average current of 4 mA. 9-4 summarizes the  
results from the TPSI3052-Q1 calculator tool. The Calculator tool can be found at 10-1.  
9-4. Results from the TPSI3052-Q1 Calculator Tool, TA = 25°C, Three-Wire Mode with IAUX = 4 mA  
Power  
Converter  
Duty Cycle, %  
fEN_MAX  
kHz  
,
IAUX_MAX  
mA  
,
IVDDP, mA  
PIN, mW  
POUT, mW  
IOUT, mA  
tSTART, µs  
tRECOVER, µs  
RPXFR, kΩ  
7.32  
13.3  
21.1  
40.0  
53.3  
66.7  
80.0  
93.3  
5.3  
25.0  
5.9  
0.35  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
4.1  
9.09  
11  
8.3  
15.8  
21.1  
26.4  
31.6  
36.9  
39.6  
75.1  
10.0  
26.8  
36.1  
45.5  
58.8  
68.8  
0.62  
1.74  
2.35  
2.98  
3.86  
4.52  
N/A  
N/A  
N/A  
N/A  
N/A  
12.7  
14.7  
16.5  
20  
100.1  
125.2  
150.2  
175.2  
3557  
2285  
1549  
1262  
96.0  
60.1  
39.3  
31.2  
10.4  
16.6  
25.5  
32.1  
6.0  
8.6  
10.0  
Based on the results in 9-4, several observations can be made:  
With RPXFR = 7.32 k, RPXFR = 9.09 k, and RPXFR = 11 k, insufficient power is available to meet the  
application power needs specified in the design requirements in 9-1.  
With RPXFR = 12.7 kand higher, sufficient power is transferred to meet the specified design requirements,  
however, for this design, RPXFR = 14.7 kwas selected for additional margin.  
For a given RPXFR, because a significant amount of the transferred power is being provided to the auxiliary  
circuitry, tSTART is longer, and fMAX reduced when compared to the results shown in 9-2 with IAUX = 0 mA.  
9.2.2.9 VDDM Ripple Voltage  
Note that when supplying power from VDDM, that is when IAUX > 0 mA, additional voltage ripple is present on  
the VDDM rail. For a given RPXFR setting, this ripple can be reduced by applying additional capacitance from  
VDDM to VSSS or increasing the RPXFR setting for more power tranfser. For this design example, the ripple on  
VDDM, VDDMripple, computed in the calculator tool is 35 mV.  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPSI3052-Q1  
 
 
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
9.2.3 Application Curves  
Three-wire mode  
CDIV1 = 330 nF  
IAUX = 0 mA  
VDDP = 5.0 V  
Three-wire mode  
CDIV1 = 330 nF  
IAUX = 0 mA  
VDDP = 5.0 V  
RPXFR = 11 kΩ  
RPXFR = 11 kΩ  
CDIV2 = 1 μF  
CDIV2 = 1 μF  
CVDRV = 6.8 nF  
TA = 25°C  
CVDRV = 6.8 nF  
TA = 25°C  
9-4. Power Up, VEN = VVDDP, Three-Wire Mode, TPSI3052-Q1  
9-5. tLH_VDRV, Three-Wire Mode, TPSI3052-Q1  
Three-wire mode  
CDIV1 = 330 nF  
IAUX = 0 mA  
VDDP = 5.0 V  
Three-wire mode  
CDIV1 = 330 nF  
IAUX = 0 mA  
VDDP = 5.0 V  
RPXFR = 11 kΩ  
RPXFR = 11 kΩ  
CDIV2 = 1 μF  
CDIV2 = 1 μF  
CVDRV = 6.8 nF  
TA = 25°C  
CVDRV = 6.8 nF  
TA = 25°C  
9-6. tHL_VDRV, Three-Wire Mode, TPSI3052-Q1  
9-7. Three-Wire Mode, fEN = 10 kHz, TPSI3052-Q1  
Three-wire mode  
CDIV1 = 330 nF  
IAUX = 4 mA  
VDDP = 5.0 V  
Three-wire mode  
CDIV1 = 330 nF  
IAUX = 4 mA  
VDDP = 5.0 V  
RPXFR = 14.7 kΩ  
RPXFR = 14.7 kΩ  
CDIV2 = 1 μF  
CDIV2 = 1 μF  
CVDRV = 6.8 nF  
TA = 25°C  
CVDRV = 6.8 nF  
TA = 25°C  
9-8. Power Up, VEN = VVDDP, Three-Wire Mode,  
9-9. tLH_VDRV, Three-Wire Mode, TPSI3052-Q1  
TPSI3052-Q1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPSI3052-Q1  
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
9.2.3 Application Curves (continued)  
Three-wire mode  
CDIV1 = 330 nF  
IAUX = 4 mA  
VDDP = 5.0 V  
Three-wire mode  
CDIV1 = 330 nF  
IAUX = 4 mA  
VDDP = 5.0 V  
RPXFR = 14.7 kΩ  
RPXFR = 14.7 kΩ  
CDIV2 = 1 μF  
CDIV2 = 1 μF  
CVDRV = 6.8 nF  
TA = 25°C  
CVDRV = 6.8 nF  
TA = 25°C  
9-10. tHL_VDRV, Three-Wire Mode, TPSI3052-Q1  
9-11. Three-Wire Mode, fEN = 10 kHz, TPSI3052-Q1  
9.2.4 Insulation Lifetime  
Insulation lifetime projection data is collected by using industry-standard Time Dependent Dielectric Breakdown  
(TDDB) test method. In this test, all pins on each side of the barrier are tied together creating a two-terminal  
device and high voltage applied between the two sides; See 9-12 for TDDB test setup. The insulation  
breakdown data is collected at various high voltages switching at 60 Hz over temperature. For reinforced  
insulation, VDE standard requires the use of TDDB projection line with failure rate of less than 1 part per million  
(ppm). Even though the expected minimum insulation lifetime is 20 years at the specified working isolation  
voltage, VDE reinforced certification requires additional safety margin of 20% for working voltage and 87.5% for  
lifetime which translates into minimum required insulation lifetime of 37.5 years at a working voltage that's 20%  
higher than the specified value.  
9-13 shows the intrinsic capability of the isolation barrier to withstand high voltage stress over its lifetime.  
Based on the TDDB data, the intrinsic capability of the insulation is 1000 VRMS with a lifetime of 1184 years.  
9-12. Test Setup for Insulation Lifetime Measurement  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPSI3052-Q1  
 
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
9-13. Insulation Lifetime Projection Data  
9.3 Power Supply Recommendations  
In three-wire mode, to help ensure a reliable supply voltage, TI recommends that the CVDDP capacitance from  
VDDP to VSSP consists of a 0.1-μF bypass capacitor for high frequency decoupling in parallel with a 1 μF for  
low frequency decoupling.  
In two-wire mode, TI recommends that the CVDDP capacitance placed from VDDP to VSSP consists of a 220-nF  
capacitor connected close to the device between the VDDP and VSSP pins. The recommended absolute  
capacitance must be 220 nF, so if derating is required, a higher component value can be needed.  
Low-ESR and low-ESL capacitors must be connected close to the device between the VDDP and VSSP pins.  
9.4 Layout  
9.4.1 Layout Guidelines  
Designers must pay close attention to PCB layout to achieve optimum performance for the TPSI3052-Q1. Some  
key guidelines are:  
Component placement:  
Place the driver as close as possible to the power semiconductor to reduce the parasitic inductance of the  
gate loop on the PCB traces.  
Connect low-ESR and low-ESL capacitors close to the device between the VDDH and VDDM pins and the  
VDDM and VSSS pins to bypass noise and to support high peak currents when turning on the external  
power transistor.  
Connect low-ESR and low-ESL capacitors close to the device between the VDDP and VSSP pins.  
Minimize parasitic capacitances on the RPXFR pin.  
Grounding considerations:  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPSI3052-Q1  
 
 
 
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
Limit the high peak currents that charge and discharge the transistor gates to a minimal physical area.  
This limitation decreases the loop inductance and minimizes noise on the gate terminals of the transistors.  
Place the gate driver as close as possible to the transistors.  
Connect the driver VSSS to the Kelvin connection of MOSFET source or IGBT emitter. If the power device  
does not have a split Kelvin source or emitter, connect the VSSS pin as close as possible to the source or  
emitter terminal of the power device package to separate the gate loop from the high power switching  
loop.  
High-voltage considerations:  
To ensure isolation performance between the primary and secondary side, avoid placing any PCB traces  
or copper below the driver device. TI recommends a PCB cutout or groove to prevent contamination that  
can compromise the isolation performance.  
Thermal considerations:  
Proper PCB layout can help dissipate heat from the device to the PCB and minimize junction-to-board  
thermal impedance (θJB).  
If the system has multiple layers, TI also recommends connecting the VDDH and VSSS pins to internal  
ground or power planes through multiple vias of adequate size. These vias must be located close to the IC  
pins to maximize thermal conductivity. However, keep in mind that no traces or coppers from different high  
voltage planes are overlapping.  
9.4.2 Layout Example  
9-14 shows a PCB layout example with the signals and key components labeled.  
9-14. 3-D PCB View  
9-15 and 9-16 show the top and bottom layer traces and copper.  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPSI3052-Q1  
 
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
9-15. Top Layer  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPSI3052-Q1  
 
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
9-16. Bottom Layer  
Copyright © 2023 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPSI3052-Q1  
 
TPSI3052-Q1  
ZHCSMH9A APRIL 2022 REVISED FEBRUARY 2023  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to order now.  
10-1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
TPSI3052-Q1  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
TPSI3052S-Q1  
10.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPSI3052-Q1  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPSI3052QDWZRQ1  
TPSI3052SQDWZRQ1  
ACTIVE  
ACTIVE  
SO-MOD  
SO-MOD  
DWZ  
DWZ  
8
8
1000 RoHS & Green  
1000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
I3052Q1  
I3052SQ1  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Apr-2023  
OTHER QUALIFIED VERSIONS OF TPSI3052-Q1 :  
Catalog : TPSI3052  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPSI3052QDWZRQ1 SO-MOD DWZ  
TPSI3052SQDWZRQ1 SO-MOD DWZ  
8
8
1000  
1000  
330.0  
330.0  
16.4  
16.4  
12.05 6.15  
12.05 6.15  
3.3  
3.3  
16.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPSI3052QDWZRQ1  
TPSI3052SQDWZRQ1  
SO-MOD  
SO-MOD  
DWZ  
DWZ  
8
8
1000  
1000  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DWZ0008A  
SOIC - 2.8 mm max height  
SMALL OUTLINE PACKAGE  
C
SEATING PLANE  
11.75  
11.25  
TYP  
PIN 1 ID  
AREA  
0.1 C  
6X 1.27  
8
1
5.95  
5.75  
NOTE3  
2X  
3.81  
4
5
0.51  
0.31  
8X  
7.6  
7.4  
NOTE4  
0.25  
C A  
A
B
2.8 MAX  
0.33  
0.13  
TYP  
SEE DETAIL A  
(2.286)  
0.25  
GAGE PLANE  
0.46  
0.36  
0 -8  
1
0.5  
DETAIL A  
TYPICAL  
2.1  
(
)
1.9  
4226306/A 09/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Ref. JEDEC registration MS-013  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DWZ0008A  
SOIC - 2.8 mm max height  
SMALL OUTLINE PACKAGE  
8X (1.8)  
SEE DETAILS  
SYMM  
SYMM  
8X (0.6)  
6X (1.27)  
(10.9)  
LAND PATTERN EXAMPLE  
9.1 mm NOMINAL CLEARANCE/CREEPAGE  
SCALE: 6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4226306/A 09/2020  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DWZ0008A  
SOIC - 2.8 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
8X (1.8)  
8X (0.6)  
SYMM  
6X (1.27)  
(10.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 6X  
4226306/A 09/2020  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPSKA4M50B00-R3

Ceramic Traps
MURATA

TPSKA4M50B00-R3_17

Ceramic Traps
MURATA

TPSKA5M50B00-R3

Ceramic Traps
MURATA

TPSKA5M50B00-R3_17

Ceramic Traps
MURATA

TPSKA6M00B00-R3

Ceramic Traps
MURATA

TPSKA6M00B00-R3_17

Ceramic Traps
MURATA

TPSKA6M50B00-R3

Ceramic Traps
MURATA

TPSKA6M50B00-R3_17

Ceramic Traps
MURATA

TPSLF10145

TPSLF Wirewound Power Inductors
TOKEN

TPSLF10145-100M

TPSLF Wirewound Power Inductors
TOKEN

TPSLF10145-101M

TPSLF Wirewound Power Inductors
TOKEN

TPSLF10145-102M

TPSLF Wirewound Power Inductors
TOKEN