TPSM560R6HRDAR [TI]

采用 5mm x 5.5mm x 4mm QFN 封装的 4.2V 至 60V 输入、1V 至 16V 输出、0.6A 降压模块 | RDA | 15 | -40 to 125;
TPSM560R6HRDAR
型号: TPSM560R6HRDAR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 5mm x 5.5mm x 4mm QFN 封装的 4.2V 至 60V 输入、1V 至 16V 输出、0.6A 降压模块 | RDA | 15 | -40 to 125

文件: 总30页 (文件大小:2273K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPSM560R6H  
ZHCSNI2 SEPTEMBER 2021  
TPSM560R6H 采用增强HotRod™ QFN 封装60V 输入、1V 16V 输出、  
600mA 电源模块  
1 特性  
3 说明  
提供功能安全  
TPSM560R6H 是一款高度集成的 600mA 电源模块  
在热增强型 QFN 装内整合了一个带有功率  
MOSFET 60V 输入直流/直流降压转换器、一个屏  
蔽式电感器和多个无源器件。此 5.0mm × 5.5mm ×  
4.0mm15 引脚 QFN 封装采用增强型 HotRod QFN  
技术来实现增强的热性能、小尺寸和低 EMI。封装引  
脚外露具有单个大型散热焊盘方便布局布线和组  
装。  
可帮助进行功能安全系统设计的文档  
5.0mm × 5.5mm × 4.0mm 增强HotRodQFN  
出色的热性能85°C 且无散热的情况下高达  
9.6W 的输出功率  
– 标准封装尺寸单个大型散热焊盘和所有引脚均  
分布在封装外围  
• 专为可靠耐用的应用而设计  
– 宽输入电压范围4.2V 60V  
– 高66V 的输入电压瞬态保护  
– 工作结温范围40°C +125°C  
• 固1MHz 开关频率  
TPSM560R6H 是一款紧凑、易用的电源模块具有  
1.0V 16V 的可调节宽输出电压范围。该总体解决方  
案仅需四个外部元件并且省去了设计流程中的环路补  
偿和磁性器件选型过程。TPSM560R6H 具有全套功  
包括电源正常状态指示、可编UVLO、预偏置启  
动、过流和温度保护因此是为各种应用供电的出色器  
件。空间受限型应用可从 5.0mm × 5.5mm 封装中受  
益。  
FPWM 运行模式  
• 针对超EMI 要求进行了优化  
– 集成屏蔽式电感器和高频旁路电容器  
EN55011 EMI 标准  
26µA 非开关静态电流  
• 单调启动至预偏置输出  
• 无环路补偿或自举组件  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
TPSM560R6H  
QFN (15)  
5.0mm × 5.5mm  
• 具有迟滞功能的精密使能和输UVLO  
• 具有迟滞功能的热关断保护  
• 使TPSM560R6H 并借WEBENCH® Power  
Designer 创建定制设计  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
现场发送器和传感器、PLC 模块  
恒温器、视频监控、HVAC 系统  
交流和伺服驱动器、旋转编码器  
工业运输资产跟踪  
负输出应用  
100  
90  
80  
70  
60  
50  
40  
PGOOD  
VIN  
VIN  
EN  
VOUT  
VOUT  
CIN  
TPSM560R6H  
RFBT  
COUT  
V5V  
FB  
30  
VOUT = 12 V  
20  
VIN = 24 V  
PGND  
AGND  
VIN = 48 V  
VIN = 60 V  
10  
0
RFBB  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Output Current (A)  
典型效(VOUT = 12V)  
典型电路原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSG72  
 
 
 
TPSM560R6H  
ZHCSNI2 SEPTEMBER 2021  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................14  
8 Applications and Implementation................................16  
8.1 Application Information............................................. 16  
8.2 Typical Application.................................................... 16  
9 Power Supply Recommendations................................18  
10 Layout...........................................................................19  
10.1 Layout Guidelines................................................... 19  
10.2 Layout Example...................................................... 19  
11 Device and Documentation Support..........................23  
11.1 Device Support........................................................23  
11.2 Documentation Support.......................................... 23  
11.3 接收文档更新通知................................................... 23  
11.4 支持资源..................................................................23  
11.5 Trademarks............................................................. 23  
11.6 Electrostatic Discharge Caution..............................24  
11.7 术语表..................................................................... 24  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings ....................................... 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions ........................5  
6.4 Thermal Information ...................................................5  
6.5 Electrical Characteristics ............................................6  
6.6 Typical Characteristics (VIN = 12 V)............................7  
6.7 Typical Characteristics (VIN = 24 V)............................8  
6.8 Typical Characteristics (VIN = 48 V)............................9  
6.9 Typical Characteristics (VIN = 60 V)..........................10  
7 Detailed Description......................................................11  
7.1 Overview................................................................... 11  
7.2 Functional Block Diagram......................................... 11  
7.3 Feature Description...................................................12  
Information.................................................................... 24  
4 Revision History  
DATE  
REVISION  
NOTES  
September 2021  
*
Initial release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPSM560R6H  
 
TPSM560R6H  
ZHCSNI2 SEPTEMBER 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
VIN  
VIN  
1
14  
NC  
2
13  
12  
11  
10  
9
EN  
NC  
3
4
5
6
PGOOD  
V5V  
15  
SW  
PGND  
AGND  
FB  
DNC  
NC  
7
VOUT  
VOUT  
8
5-1. 15-Pin QFN RDA Package (Top View)  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NO.  
NAME  
Analog ground. Zero voltage reference for internal references and logic. All electrical parameters are  
measured with respect to this pin. This pin must be connected to PGND at a single point. See 10.2 for  
a recommended layout.  
10  
AGND  
G
Do not connect. Do not connect this pin to ground, to another pin, or to any other voltage. This pin is  
connected to the internal bootstrap capacitor. This pin must be soldered to an isolated pad.  
5
2
DNC  
EN  
Enable pin. This pin turns the converter on when pulled high and turns off the converter when pulled low.  
This pin can be connected directly to VIN. Do not float. This pin can be used to set the input undervoltage  
lockout with two resistors. See 7.3.4.  
I
Feedback input. Connect the mid-point of the feedback resistor divider to this pin. Connect the upper  
resistor (RFBT) of the feedback divider to VOUT at the desired point of regulation. Connect the lower  
resistor (RFBB) of the feedback divider to AGND.  
9
FB  
NC  
I
Not connected. These pins are not connected to any circuitry within the module. Leaving these pins  
unconnected to any other signal increases spacing near the high voltage pins (VIN, SW, EN, and DNC).  
However, if the high voltage spacing is not needed in the application, connecting these pins to the PGND  
plane can help enhance shielding and thermal performance.  
3, 6, 13  
Power ground. This is the return current path for the power stage of the device. Connect this pad to the  
input supply return, load return, and capacitors associated with the VIN and VOUT pins. See 10.2 for a  
recommended layout.  
15  
12  
PGND  
G
O
Power-good pin. An open-drain output that asserts low if the feedback voltage is not within the specified  
window thresholds. A 10-kΩto 100-kΩpullup resistor is required and can be tied to the V5V pin or other  
DC voltage less than 18 V. If not used, this pin can be left open or connected to PGND.  
PGOOD  
4
SW  
VIN  
O
I
Switch node. Do not place any external component on this pin or connect this pin to any signal.  
Input supply voltage. Connect the input supply to these pins. Connect input capacitors between these  
pins and PGND in close proximity to the device.  
1, 14  
Output voltage. These pins are connected to the internal output inductor. Connect these pins to the  
output load and connect external output capacitors between these pins and PGND.  
7, 8  
11  
VOUT  
V5V  
O
O
Internal 5-V LDO output. Supplies internal control circuits. Do not connect to external loads. This pin can  
be used as logic supply for the PGOOD pin.  
(1) G = Ground, I = Input, O = Output  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPSM560R6H  
 
 
TPSM560R6H  
ZHCSNI2 SEPTEMBER 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over the operating ambient temperature range(1)  
PARAMETER  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0
MAX  
UNIT  
VIN to PGND  
66  
VIN + 0.3  
22  
EN to AGND(2)  
Input voltage  
PGOOD to AGND(2)  
FB to AGND  
V
5.5  
AGND to PGND  
VOUT to PGND(2)  
VCC to AGND  
0.3  
30  
Output voltage  
5.5  
Operating IC junction  
temperature, TJ  
125  
°C  
°C  
40  
55  
(3)  
Storage temperature, Tstg  
150  
245  
3
Peak reflow case temperature  
Maximum number or reflows allowed  
Mechanical vibration  
Mechanical shock  
Mil-STD-883H, Method 2007.3, 1 msec, 1/2 sine, mounted  
Mil-STD-883H, Method 2002.5, 20 to 2000Hz  
20  
G
G
500  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) The voltage on this pin must not exceed the voltage on the VIN pin by more than 0.3 V.  
(3) The ambient temperature is the air temperature of the surrounding environment. The junction temperature is the temperature of the  
internal power IC when the device is powered. Operating below the maximum ambient temperature, as shown in the safe operating  
area (SOA) curves in the tTypical Applications sections, ensures that the maximum junction temperature of any component inside the  
module is never exceeded.  
6.2 ESD Ratings  
VALUE  
±1500  
±1500  
UNIT  
Human-body model (HBM)(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM)(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPSM560R6H  
 
 
 
 
 
 
 
 
TPSM560R6H  
ZHCSNI2 SEPTEMBER 2021  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
Over operating ambient temperature range (unless otherwise noted) (1)  
MIN  
4.2  
1
MAX  
60  
UNIT  
V
Input voltage, VIN  
Output voltage, VOUT  
Output current, IOUT  
16 (3)  
0.6  
V
0
A
(2)  
EN voltage, VEN  
0
VIN  
V
(2)  
PGOOD pullup voltage, VPGOOD  
0
18  
V
Operating ambient temperature, TA  
105  
°C  
40  
(1) Recommended operating conditions indicate conditions where the device is intended to be functional, but do not ensure specific  
performance limits. For ensured specifications, see the Electrical Characteristics.  
(2) The voltage on this pin must not exceed the voltage on the VIN pin by more than 0.3 V.  
(3) The recommended maximum output voltage varies depending input voltage.  
6.4 Thermal Information  
TPSM560R6H  
THERMAL METRIC(1)  
RDA (QFN)  
15 PINS  
20.4  
UNIT  
Nat Conv  
100 LFM  
200 LFM  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C  
RθJA  
Junction-to-ambient thermal resistance (2)  
18.9  
17.6  
Junction-to-top characterization parameter (3)  
Junction-to-board characterization parameter (4)  
Thermal shutdown temperature  
3.6  
ψJT  
ψJB  
15.3  
170  
TSHDN  
Recovery temperature  
158  
°C  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) The junction-to-ambient thermal resistance, RθJA, applies to devices soldered directly to a 6.35-cm × 8.25-cm, four-layer PCB with 2-  
oz. copper. Additional airflow and PCB copper area reduces RθJA. See 10.2.1 for more information.  
(3) The junction-to-top board characterization parameter, ψJT, estimates the junction temperature, TJ, of a device in a real system, using a  
procedure described in JESD51-2A (section 6 and 7). TJ = ψJT × Pdis + TT; where Pdis is the power dissipated in the device and TT is  
the temperature of the top of the device.  
(4) The junction-to-board characterization parameter, ψJB, estimates the junction temperature, TJ, of a device in a real system, using a  
procedure described in JESD51-2A (sections 6 and 7). TJ = ψJB × Pdis + TB; where Pdis is the power dissipated in the device and TB  
is the temperature of the board 1 mm from the device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPSM560R6H  
 
 
 
 
 
 
 
 
 
TPSM560R6H  
ZHCSNI2 SEPTEMBER 2021  
www.ti.com.cn  
6.5 Electrical Characteristics  
Limits apply over TA = 40°C to +105°C, VIN = 24 V, VOUT = 3.3 V, IOUT = 600 mA, (unless otherwise noted); minimum and  
maximum limits are specified through production test or by design. Typical values represent the most likely parametric norm  
and are provided for reference only.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT VOLTAGE (VIN  
)
Input voltage range  
VIN turn-on  
Over IOUT range  
4.2 (1)  
60  
V
V
VIN  
VIN increasing, IOUT = 0 A, VEN = VIN  
VIN decreasing, IOUT = 0 A, VEN = VIN  
VEN = 0 V, IOUT = 0 A  
3.8  
3.3  
5
VIN turn-off  
V
ISHDN  
Shutdown supply current  
µA  
INTERNAL LDO (V5V)  
Internal LDO output voltage appearing  
at the V5V pin  
V5V  
4.75  
5
5.25  
V
6 V VIN 60 V  
FEEDBACK  
VFB  
Load regulation  
Line regulation  
0.057  
0.024  
0.2  
%
%
TA = +25°C, 0 A IOUT 0.6 A  
TA = +25°C, IOUT = 0 A, 6 V VIN 60 V  
FB = 1 V  
VFB  
IFB  
Current into FB pin  
nA  
CURRENT  
IOUT  
Output current  
TA = 25ºC  
0
0.6  
A
A
IOUT  
Overcurrent threshold  
VOUT = 3.3 V, TA = 25ºC  
0.89  
0.4  
FB pin voltage required to trip short-  
circuit Hiccup mode  
VHC  
tHC  
V
Time between current-limit hiccup  
burst  
94  
ms  
ENABLE (EN PIN)  
EN input level required to turn on the  
internal LDO  
VEN-VCC-H  
VEN-VCC-L  
VEN-H  
Rising threshold  
Falling threshold  
Rising threshold  
1.14  
1.30  
V
V
V
EN input level required to turn off the  
internal LDO  
0.3  
EN input level required to start  
switching  
1.157  
1.231  
VEN-HYS  
ILKG-EN  
Hysteresis below VEN-H  
Hysteresis below VEN-H; falling  
VEN = 3.3 V  
110  
0.2  
mV  
nA  
Enable input leakage current  
POWER GOOD (PGOOD PIN)  
VPG-LOW-UP  
VPG-HIGH-DN  
VPG-HIGH-UP  
VPG-LOW-DN  
RPG  
VOUT rising (fault)  
% of FB voltage  
% of FB voltage  
% of FB voltage  
% of FB voltage  
VEN = 0 V  
107%  
105%  
95%  
93%  
35  
VOUT falling (good)  
VOUT rising (good)  
VOUT falling (fault)  
Power-good flag, RDSON  
Minimum input voltage for proper  
PGOOD function  
VIN-PG  
IPG = 50 µA, EN = 0 V  
2
V
PERFORMANCE  
Efficiency  
VOUT = 3.3 V, IOUT = 0.75 A, TA = 25ºC  
VOUT = 5.0 V, IOUT = 0.75 A, TA = 25ºC  
81%  
86%  
η
Efficiency  
η
SOFT START  
tSS  
Internal soft-start time  
4.5  
1(2)  
ms  
SWITCHING FREQUENCY  
Switching frequency  
IOUT = 0.75 A, TA = 25ºC  
0.85  
1.15  
MHz  
ƒSW  
(1) The recommended minimum VIN is 4.2 V or (VOUT + 600 mV), whichever is greater.  
(2) The typical switching frequency of this device changes based on operating conditions. See the Switching Frequency section for more  
information.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPSM560R6H  
 
 
 
 
TPSM560R6H  
ZHCSNI2 SEPTEMBER 2021  
www.ti.com.cn  
6.6 Typical Characteristics (VIN = 12 V)  
TA = 25°C, unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
5.0 V  
3.3 V  
2.5 V  
1.8 V  
1.2 V  
VOUT  
5.0 V  
3.3 V  
2.5 V  
1.8 V  
1.2 V  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Output Current (A)  
Output Current (A)  
6-1. Efficiency  
6-2. Power Dissipation  
115  
105  
95  
8
7
6
5
4
3
2
1
0
VOUT  
5.0 V  
3.3 V  
2.5 V  
1.8 V  
1.2 V  
85  
75  
65  
55  
45  
35  
Airflow  
Nat Conv  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
25  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Output Current (A)  
Output Current (A)  
COUT = 4 × 47 µF, 25-V, ceramic  
Device soldered to a 63.5-mm × 82.5-mm, 4-layer PCB  
6-3. Output Voltage Ripple  
6-4. Safe Operating Area (All VOUT  
)
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPSM560R6H  
 
TPSM560R6H  
ZHCSNI2 SEPTEMBER 2021  
www.ti.com.cn  
6.7 Typical Characteristics (VIN = 24 V)  
TA = 25°C, unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.2  
1
VOUT  
15 V  
12 V  
9 V  
5 V  
3.3 V  
2.5 V  
1.8 V  
0.8  
0.6  
0.4  
0.2  
0
VOUT  
15 V  
12 V  
9 V  
5 V  
3.3 V  
2.5 V  
1.8 V  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Output Current (A)  
Output Current (A)  
6-5. Efficiency  
6-6. Power Dissipation  
115  
105  
95  
20  
18  
16  
14  
12  
10  
8
VOUT  
15 V  
12 V  
9 V  
5 V  
85  
3.3 V  
2.5 V  
1.8 V  
75  
65  
6
55  
4
45  
2
35  
Airflow  
Nat Conv  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
25  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Output Current (A)  
Output Current (A)  
COUT = 4 × 47-µF, 25-V, ceramic  
Device soldered to a 63.5-mm × 82.5-mm, 4-layer PCB  
6-7. Output Voltage Ripple  
6-8. Safe Operating Area (All VOUT  
)
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPSM560R6H  
 
TPSM560R6H  
ZHCSNI2 SEPTEMBER 2021  
www.ti.com.cn  
6.8 Typical Characteristics (VIN = 48 V)  
TA = 25°C, unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2
1.8  
1.6  
1.4  
1.2  
1
VOUT  
15 V  
12 V  
9 V  
5 V  
3.3 V  
VOUT  
15 V  
12 V  
9 V  
5 V  
0.8  
0.6  
3.3 V  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Output Current (A)  
Output Current (A)  
6-9. Efficiency  
6-10. Power Dissipation  
115  
105  
95  
18  
16  
14  
12  
10  
8
VOUT  
15 V  
12 V  
9 V  
5 V  
3.3 V  
85  
75  
65  
6
55  
4
45  
2
35  
Airflow  
Nat Conv  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
25  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Output Current (A)  
Output Current (A)  
COUT = 2 × 47-µF, 25-V, ceramic  
Device soldered to a 63.5-mm × 82.5-mm, 4-layer PCB  
6-11. Output Voltage Ripple  
6-12. Safe Operating Area (VOUT < 10 V)  
115  
115  
105  
95  
85  
75  
65  
55  
45  
35  
25  
105  
95  
85  
75  
65  
55  
45  
Airflow  
200 LFM  
100 LFM  
Nat Conv  
Airflow  
100 LFM  
Nat Conv  
35  
25  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Output Current (A)  
Output Current (A)  
Device soldered to a 63.5-mm × 82.5-mm, 4-layer PCB  
Device soldered to a 63.5-mm × 82.5-mm, 4-layer PCB  
6-13. Safe Operating Area (VOUT = 12 V)  
6-14. Safe Operating Area (VOUT = 15 V)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPSM560R6H  
 
TPSM560R6H  
ZHCSNI2 SEPTEMBER 2021  
www.ti.com.cn  
6.9 Typical Characteristics (VIN = 60 V)  
TA = 25°C, unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.5  
2.2  
1.9  
1.6  
1.3  
1
VOUT  
15 V  
12 V  
9 V  
5 V  
3.3 V  
VOUT  
15 V  
12 V  
9 V  
5 V  
3.3 V  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Output Current (A)  
Output Current (A)  
6-15. Efficiency  
6-16. Power Dissipation  
115  
105  
95  
18  
16  
14  
12  
10  
8
VOUT  
15 V  
12 V  
9 V  
5 V  
3.3 V  
85  
75  
65  
6
55  
4
45  
2
Airflow  
100 LFM  
Nat Conv  
35  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
25  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Output Current (A)  
Output Current (A)  
COUT = 2 × 47-µF, 25-V, ceramic  
Device soldered to a 63.5-mm × 82.5-mm, 4-layer PCB  
6-17. Output Voltage Ripple  
6-18. Safe Operating Area (VOUT = 5.0 V)  
115  
115  
105  
95  
85  
75  
65  
55  
45  
35  
25  
105  
95  
85  
75  
65  
55  
45  
35  
25  
Airflow  
Airflow  
400 LFM  
200 LFM  
100 LFM  
Nat conv  
400 LFM  
200 LFM  
100 LFM  
Nat conv  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Output Current (A)  
Output Current (A)  
Device soldered to a 63.5-mm × 82.5-mm, 4-layer PCB  
Device soldered to a 63.5-mm × 82.5-mm, 4-layer PCB  
6-19. Safe Operating Area (VOUT = 12 V)  
6-20. Safe Operating Area (VOUT = 15 V)  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPSM560R6H  
 
TPSM560R6H  
ZHCSNI2 SEPTEMBER 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPSM560R6H converter is an easy-to-use, synchronous buck, DC-DC power module that operates from a  
4.2-V to 60-V supply voltage. The device is intended for step-down conversions from 5-V, 12-V, 24-V, and 48-V  
unregulated, semi-regulated, or fully-regulated supply rails. With an integrated power controller, inductor, and  
MOSFETs, the TPSM560R6H delivers up to 600-mA DC load current, with high efficiency and ultra-low input  
quiescent current, in a very small solution size. Although designed for simple implementation, this device offers  
flexibility to optimize its usage according to the target application. Control-loop compensation is not required,  
reducing design time and external component count.  
The TPSM560R6H incorporates several features for comprehensive system requirements, including the  
following:  
Open-drain power-good circuit for power-rail sequencing and fault reporting  
Monotonic start-up into prebiased loads  
Precision enable with customizable hysteresis for programmable line undervoltage lockout (UVLO)  
Overcurrent and thermal shutdown with automatic recovery  
These features enable a flexible and easy-to-use platform for a wide range of applications. The pin arrangement  
is designed for simple PCB layout, requiring as few as four external components.  
7.2 Functional Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPSM560R6H  
 
 
 
TPSM560R6H  
ZHCSNI2 SEPTEMBER 2021  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Adjustable Output Voltage (FB)  
The TPSM560R6H has an adjustable output voltage range from 1.0 V to 16 V. Setting the output voltage  
requires two resistors, RFBT and RFBB (see 7-1). Connect RFBT between VOUT at the regulation point and the  
FB pin. Connect RFBB between the FB pin and AGND (pin 10). The recommended value of RFBT is 10 kΩ. The  
value for RFBB can be calculated using 方程1.  
1.0  
RFBB  
=
× RFBT  
1.0  
VOUT  
(1)  
VOUT  
RFBT  
10 k  
FB  
RFBB  
AGND  
7-1. FB Resistor Divider  
7-1. Standard RFBB Values  
RFBB (kΩ) (1)  
RFBB (kΩ) (1)  
4.32  
VOUT (V)  
1.0  
VOUT (V)  
3.3  
open  
49.9  
20.0  
12.4  
10.0  
6.65  
4.99  
1.2  
5.0  
2.49  
1.5  
7.5  
1.54  
1.8  
10  
1.10  
2.0  
12  
0.909  
0.715  
0.665  
2.5  
15  
3.0  
16  
(1) RFBT = 10 kΩ  
Select an RFBT value of 10 kΩ for most applications. A larger RFBT value consumes less DC current, which is  
mandatory if light-load efficiency is critical. However, RFBT larger than 1 MΩ is not recommended because the  
feedback path becomes more susceptible to noise. High feedback resistance generally requires more careful  
layout of the feedback path. It is important to keep the feedback trace as short as possible while keeping the  
feedback trace away from the noisy area of the PCB. For more layout recommendations, see 10.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPSM560R6H  
 
 
 
 
 
TPSM560R6H  
ZHCSNI2 SEPTEMBER 2021  
www.ti.com.cn  
7.3.2 Minimum Input Capacitance  
The TPSM560R6H requires a minimum input capacitance of 9.4 μF (2 × 4.7 μF) of ceramic type. High-quality,  
ceramic-type X5R or X7R capacitors with sufficient voltage rating are required. Place the input capacitors, as  
close as possible to both VIN pins of the device between VIN and PGND as shown in 10.1. Applications with  
transient load requirements can benefit from adding additional bulk capacitance to the input as well.  
7.3.3 Minimum Output Capacitance  
The TPSM560R6H requires a minimum amount of ceramic output capacitance for stability, depending on the  
output voltage setting. 7-2 shows the amount of required output capacitance, which is also the amount of  
effective capacitance. The effects of DC bias and temperature variation must be considered when using ceramic  
capacitance. For ceramic capacitors, the package size, voltage rating, and dielectric material contribute to the  
differences between the standard rated value and the actual effective value of the capacitance. Additional output  
capacitance above the minimum can be added to reduce output voltage ripple and to improve transient  
response. When adding additional capacitance above the minimum, the capacitance can be ceramic type, low-  
ESR polymer type, or a combination of the two.  
275  
250  
225  
200  
175  
150  
125  
100  
75  
50  
25  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
Output Voltage (V)  
7-2. Minimum Required Output Capacitance  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPSM560R6H  
 
TPSM560R6H  
ZHCSNI2 SEPTEMBER 2021  
www.ti.com.cn  
7.3.4 Precision Enable (EN), Undervoltage Lockout (UVLO), and Hysteresis (HYS)  
The EN pin provides precision ON and OFF control for the TPSM560R6H. Once the EN pin voltage exceeds the  
threshold voltage, the device starts operation. The simplest way to enable the device is to connect EN directly to  
VIN. This lets the device start up when VIN is within its valid operating range. An external logic signal can also be  
used to drive the EN input to toggle the output on and off and for system sequencing or protection. This input  
must not be allowed to float.  
The TPSM560R6H implements internal undervoltage lockout (UVLO) circuitry on the VIN pin. The device is  
disabled when the VIN pin voltage is below the internal VIN UVLO threshold. The internal VIN UVLO rising  
threshold is 3.8 V (typical) with a typical hysteresis of 500 mV.  
If an application requires a higher UVLO threshold, the EN input supports adjustable UVLO by connecting a  
resistor divider from the VIN to EN pin. Applying a voltage greater than or equal to 1.14 V causes the device to  
enter Standby mode, powering the internal LDO, but not producing an output voltage. Increasing the EN voltage  
to 1.231 V (typical) fully enables the device, letting it enter Start-up mode and start the soft-start period. When  
the EN input is brought below 1.121 V (110-mV hysteresis), the regulator stops running and enters Standby  
mode. Further decrease in the EN voltage to below 0.3 V completely shuts down the device.  
The TPSM560R6H uses a reference-based soft start that prevents output voltage overshoots and large inrush  
currents as the regulator is starting up. The rise time of the output voltage is approximately 4 ms.  
7.3.5 Power Good (PGOOD)  
The TPSM560R6H provides a PGOOD signal to indicate when the output voltage is within regulation. Use the  
PGOOD signal for output monitoring, fault protection, or start-up sequencing of downstream converters. PGOOD  
is an open-drain output that requires a pullup resistor to a DC supply not greater than 18 V. V5V or VOUT can be  
used as the pullup voltage source. The typical range of pullup resistance is 10 kto 100 k. If necessary, use a  
resistor divider to decrease the voltage from a higher voltage pullup rail. If this function is not needed, the  
PGOOD pin must be grounded.  
When the output voltage exceeds 95% (rising) or decreases below 105% (falling) of the setpoint, the internal  
PGOOD switch turns off and PGOOD can be pulled high by the external pullup. If the FB voltage falls below 93%  
or rises above 107% of the setpoint, the internal PGOOD switch turns on, and PGOOD is pulled low to indicate  
that the output voltage is out of regulation.  
Note that during initial power up, a delay of approximately 4 ms (typical) is inserted from the time that EN is  
asserted to the time that the power-good flag goes high. This delay only occurs during start-up and is not  
encountered during normal operation of the power-good function.  
7.3.6 Overcurrent Protection (OCP)  
The TPSM560R6H is protected from overcurrent conditions using cycle-by-cycle current limiting for overload  
conditions and Hiccup mode for short circuits. The current is compared every switching cycle to the current limit  
threshold. During an overcurrent condition, the output voltage decreases.  
7.3.7 Thermal Shutdown  
Thermal shutdown is an integrated self-protection used to limit junction temperature and prevent damage related  
to overheating. Thermal shutdown turns off the device when the junction temperature exceeds 170°C (typical) to  
prevent further power dissipation and temperature rise. Junction temperature decreases after shutdown and the  
TPSM560R6H restarts when the junction temperature falls to 158°C (typical).  
7.4 Device Functional Modes  
7.4.1 Active Mode  
The TPSM560R6H is in Active mode when VIN is above the turn-on threshold and the EN pin voltage is above  
the EN high threshold. Connect the EN pin to VIN to allow the device to start up when a valid input voltage is  
applied. This allows self start-up of the TPSM560R6H when the input voltage is in the operation range of 4.2 V  
to 60 V. Connecting a resistor divider between VIN, EN, and AGND adjusts the UVLO to delay the turn on until  
VIN is closer to its regulated voltage.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPSM560R6H  
 
 
TPSM560R6H  
ZHCSNI2 SEPTEMBER 2021  
www.ti.com.cn  
7.4.2 Standby Mode  
Start-up and shutdown are controlled by the EN input. This input features precision thresholds, allowing the use  
of an external voltage divider to provide an adjustable input UVLO. Applying a voltage greater than or equal to  
1.14 V causes the device to enter Standby mode, powering the internal LDO, but not producing an output  
voltage. Increasing the EN voltage to 1.231 V (typical) fully enables the device, letting it enter Start-up mode and  
start the soft-start period. When the EN input is brought below 1.121 V (110-mV hysteresis), the regulator stops  
running and enters Standby mode. Further decrease in the EN voltage to below 0.3 V completely shuts down the  
device.  
7.4.3 Shutdown Mode  
The EN pin provides ON and OFF control for the TPSM560R6H. When VEN is below the EN low threshold, the  
device is in Shutdown mode. Both the internal LDO and the switching regulator are off. The quiescent current in  
Shutdown mode drops to 5 µA at VIN = 24 V.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPSM560R6H  
TPSM560R6H  
ZHCSNI2 SEPTEMBER 2021  
www.ti.com.cn  
8 Applications and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The TPSM560R6H only requires a few external components to convert from a wide range of supply voltages to a  
fixed output voltage. To expedite and streamline the process of designing of a TPSM560R6H, WEBENCH®  
online software is available to generate complete designs, leveraging iterative design procedures and access to  
comprehensive component databases. The following section describes the design procedure to configure the  
TPSM560R6H power module.  
As mentioned previously, the TPSM560R6H also integrates several optional features to meet system design  
requirements, including precision enable, UVLO, and PGOOD indicator. The following application circuit shows  
TPSM560R6H configuration options suitable for several application use cases. Refer to the TPSM560R6HEVM  
User's Guide for more detail.  
8.2 Typical Application  
8-1 shows the schematic diagram of a 24-V input, 5-V output, 600-mA converter.  
V5V  
TPSM560R6H  
100 k  
VIN = 24 V  
PGOOD  
VOUT  
VIN  
EN  
VOUT = 5 V  
4.7 µF  
100 V  
4.7 µF  
100 V  
10 k  
47 µF  
10 V  
47 µF  
10 V  
FB  
PGND  
AGND  
2.49 k  
8-1. TPSM560R6H Typical Schematic  
8.2.1 Design Requirements  
For this design example, use the parameters listed in 8-1 as the input parameters and follow the design  
procedures in 8.2.2.  
8-1. Design Example Parameters  
DESIGN PARAMETER  
VALUE  
24 V typical  
5 V  
Input voltage VIN  
Output voltage VOUT  
Output current rating  
600 mA  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPSM560R6H  
 
 
 
 
 
TPSM560R6H  
ZHCSNI2 SEPTEMBER 2021  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPSM560R6H device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance.  
Run thermal simulations to understand board thermal performance.  
Export customized schematic and layout into popular CAD formats.  
Print PDF reports for the design, and share the design with colleagues.  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Output Voltage Setpoint  
The output voltage of the TPSM560R6H device is externally adjustable using a resistor divider. The  
recommended value of RFBT is 10 kΩ. The value for RFBB can be selected from 7-1 or calculated using 方程  
2:  
1.0  
RFBB  
=
× RFBT  
1.0  
VOUT  
(2)  
For the desired output voltage of 5 V, the formula yields a value of 2.5 kΩ. Choose the closest available  
standard value of 2.49 kΩfor RFBB  
.
8.2.2.3 Input Capacitor Selection  
The TPSM560R6H requires a minimum input capacitance of 2 × 4.7-µF ceramic type. High-quality ceramic type  
X5R or X7R capacitors with sufficient voltage rating are recommended. The voltage rating of input capacitors  
must be greater than the maximum input voltage.  
For this design, 2 × 4.7-µF, 100-V ceramic capacitors are selected.  
8.2.2.4 Output Capacitor Selection  
The TPSM560R6H requires a minimum amount of output capacitance for proper operation. The minimum  
amount of required output varies depending on the output voltage. See 7-2 for the required output  
capacitance. Additional output capacitance can be added to reduce ripple voltage or for applications with  
transient load requirements.  
For this design example, 2 × 47-µF, 10-V, ceramic capacitors are used.  
8.2.2.5 Power-Good Signal  
Use a pullup resistor between the PGOOD pin and a valid voltage source for applications requiring a power-  
good signal to indicate that the output voltage is present and in regulation.  
For this design, a 100-kΩ resistor is placed between the PGOOD pin and the V5V pin (the internal 5-V LDO  
output).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPSM560R6H  
 
 
TPSM560R6H  
ZHCSNI2 SEPTEMBER 2021  
www.ti.com.cn  
8.2.3 Application Curves  
VIN = 24 V  
VOUT = 5 V  
IOUT = 600 mA  
VIN = 24 V  
VOUT = 5 V  
IOUT = 600 mA  
8-3. Enable Shutdown Waveforms  
8-2. Start-Up Waveforms  
COUT = 2 × 47 µF  
IOUT = 600 mA  
COUT = 2 × 47 µF 400-mA load step  
2.5 A/µs  
8-4. Output Ripple Waveform  
8-5. Transient Response Waveform  
9 Power Supply Recommendations  
The TPSM560R6H is designed to operate from an input voltage supply range between 4.2 V and 60 V. This  
input supply must be able to provide the maximum input current and maintain a voltage above the set UVLO  
voltage. Ensure that the resistance of the input supply rail is low enough that an input current transient does not  
cause a high enough drop at the TPSM560R6H supply rail to cause a false UVLO fault triggering and system  
reset. If the input supply is located more than a few inches from the TPSM560R6H, additional bulk capacitance  
can be required in addition to the ceramic input capacitance. A 47-μF electrolytic capacitor is a typical choice for  
this function because the capacitor ESR provides a level of damping against input filter resonances. A typical  
ESR of 0.5 Ωprovides enough damping for most input circuit configurations.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPSM560R6H  
 
TPSM560R6H  
ZHCSNI2 SEPTEMBER 2021  
www.ti.com.cn  
10 Layout  
The performance of any switching power supply depends as much on the layout of the PCB as the component  
selection. Use the following guidelines to design a PCB with the best power conversion performance, optimal  
thermal performance, and minimal generation of unwanted EMI.  
10.1 Layout Guidelines  
To achieve optimal electrical and thermal performance, an optimized PCB layout is required. 10-1 and 10-2  
show a typical PCB layout. Some considerations for an optimized layout are:  
Use large copper areas for power planes (VIN, VOUT, and PGND) to minimize conduction loss and thermal  
stress.  
Connect all PGND pins together using copper plane.  
Connect the AGND pin to the PGND copper at a single point near the pin.  
Place ceramic input and output capacitors close to the device pins to minimize high frequency noise.  
Locate additional output capacitors between the ceramic capacitor and the load.  
Place RFBT and RFBB as close as possible to their respective pins.  
Use multiple vias to connect the power planes to internal layers.  
10.2 Layout Example  
10-2. Typical Top-Layer  
10-1. Typical Layout  
10-4. Typical PGND-Layer  
10-3. Typical Mid-Layer  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPSM560R6H  
 
 
 
 
 
TPSM560R6H  
ZHCSNI2 SEPTEMBER 2021  
www.ti.com.cn  
10.2.1 Theta JA Versus PCB Area  
The amount of PCB copper as well as airflow affects the thermal performance of the device. 10-5 shows the  
effects of copper area and airflow on the junction-to-ambient thermal resistance (RθJA) of the TPSM560R6H.  
The junction-to-ambient thermal resistance versus PCB area is plotted for a 4-layer PCB.  
To determine the required copper area for an application:  
1. Determine the maximum power dissipation of the device in the application by referencing the power  
dissipation graphs in the Typical Characteristics.  
2. Calculate the maximum θJA using 方程3 and the maximum ambient temperature of the application.  
(125˘C œ TA(max)  
)
JA  
=
(˘C/W)  
PD(max)  
(3)  
3. Reference 10-5 to determine the minimum required PCB area for the application conditions.  
50  
Nat Conv  
100 LFM  
200 LFM  
45  
40  
35  
30  
25  
20  
15  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
PCB Area (cm²)  
10-5. θJA Versus PCB Area  
10.2.2 Package Specifications  
10-1. Package Specifications Table  
TPSM560R6H  
VALUE  
UNIT  
Weight  
429  
mg  
Flammability  
Meets UL 94 V-O  
MTBF Calculated Reliability  
Per Bellcore TR-332, 50% stress, TA = 40°C, ground benign  
87.7  
MHrs  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPSM560R6H  
 
 
 
 
TPSM560R6H  
ZHCSNI2 SEPTEMBER 2021  
www.ti.com.cn  
10.2.3 EMI  
The TPSM560R6H is compliant with EN55011 radiated emissions. 10-6 through 10-9 show typical  
examples of radiated emission plots for the TPSM5601R5H (1.5-A version). Expect slightly better results for the  
TPSM560R6H as it is rated for 600 mA. The graphs include the plots of the antenna in the horizontal and vertical  
positions.  
10.2.3.1 EMI Plots  
EMI plots were measured using the standard TPSM5601R5HEVM.  
10-6. Radiated Emissions 24-V Input, 5-V Output, 1.5-A Load  
10-7. Radiated Emissions 24-V Input, 5-V Output, 1.5-A Load (Spread Spectrum)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPSM560R6H  
 
 
TPSM560R6H  
ZHCSNI2 SEPTEMBER 2021  
www.ti.com.cn  
10-8. Radiated Emissions 24-V Input, 12-V Output, 1.5-A Load  
10-9. Radiated Emissions 48-V Input, 12-V Output, 1.5-A Load  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPSM560R6H  
 
TPSM560R6H  
ZHCSNI2 SEPTEMBER 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.1.2 Development Support  
For development support, see the following:  
For TI's reference design library, visit TI Designs.  
To view a related device of this product, see the TPSM5601R5Hx.  
11.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPSM560R6H device with WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance.  
Run thermal simulations to understand board thermal performance.  
Export customized schematic and layout into popular CAD formats.  
Print PDF reports for the design, and share the design with colleagues.  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, TPSM560R6HEVM User's Guide  
Texas Instruments, Using the TPSM5601R5Hx in an Inverting Buck-Boost Topology Application Report  
Texas Instruments, Using New Thermal Metrics Application Report  
Texas Instruments, Semiconductor and IC Package Thermal Metrics Application Report  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
HotRodand TI E2Eare trademarks of Texas Instruments.  
WEBENCH® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPSM560R6H  
 
 
 
 
 
 
TPSM560R6H  
ZHCSNI2 SEPTEMBER 2021  
www.ti.com.cn  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this datasheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPSM560R6H  
 
 
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Jan-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPSM560R6HRDAR  
ACTIVE  
B3QFN  
RDA  
15  
1000 RoHS & Green  
NIPDAU  
Level-3-245C-168 HR  
-40 to 125  
560R6H  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
RDA0015A  
B3QFN - 4.1 mm max height  
S
C
A
L
E
1
.
8
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
A
B
PIN 1 INDEX AREA  
5.6  
5.4  
4.1 MAX  
0.08 C  
C
SEATING PLANE  
2.5 0.05  
PKG  
0.45  
0.25  
0.1  
2X  
1.5 0.05  
10X  
C A B  
1.3  
1.1  
3X  
(0.16) TYP  
0.05  
C
7
8
2X 0.725  
2.6 TYP  
1.43  
PKG  
4.6 0.05  
15  
2.5 0.05  
8X 0.65  
2X 0.975  
14  
1
0.6  
0.4  
4X  
0.6  
0.4  
10X  
0.1  
C A B  
C
1.3  
1.1  
0.05  
PIN 1 ID  
4224086/C 03/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RDA0015A  
B3QFN - 4.1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(2.5)  
(1.5)  
4X (1.4)  
PKG  
4X (0.5)  
14  
1
2X (0.975)  
10X (0.7)  
10X (0.35)  
(4.6)  
PKG  
15  
(1)  
TYP  
(2.5)  
2X (1.43)  
8X (0.65)  
2X (0.725)  
7
8
(R0.05) TYP  
(1) TYP  
(
0.2) VIA  
TYP  
2X (4)  
(4.7)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 16X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL EDGE  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
S
C
A
L
E
3
0
.
0
0
0
SOLDER MASK DETAILS  
4224086/C 03/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RDA0015A  
B3QFN - 4.1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
PKG  
4X (1.35)  
4X (0.6)  
4X (0.45)  
14  
1
4X  
(1.15)  
2X (0.975)  
10X (0.65)  
15  
10X (0.3)  
PKG  
4X (0.475)  
4X  
(0.95)  
4X  
(0.65)  
2X (1.43)  
8X (0.65)  
4X (1.675)  
2X (0.725)  
7
8
(R0.05) TYP  
4X (0.425)  
4X (0.625)  
2X (4)  
(4.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 15:  
56% PRINTED SOLDER COVERAGE BY AREA  
SCALE: 16X  
4224086/C 03/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPSM560R6RDAR

采用 5mm x 5.5mm x 4mm QFN 封装的 4.2V 至 60V 输入、1V 至 6V 输出、0.6A 降压模块 | RDA | 15 | -40 to 125
TI

TPSM5D1806

4.5V 至 15V 输入、双路 6A/单路 12A 输出电源模块
TI

TPSM5D1806E

工作温度为 -55°C 的 4.5V 至 15V 输入、双路 6A/单路 12A 输出电源模块
TI

TPSM5D1806MRDBR-ET

工作温度为 -55°C 的 4.5V 至 15V 输入、双路 6A/单路 12A 输出电源模块 | RDB | 51 | -55 to 125
TI

TPSM5D1806RDBR

4.5V 至 15V 输入、双路 6A/单路 12A 输出电源模块

| RDB | 51 | -40 to 125
TI

TPSM63602

TPSM63606 High-Density, 3-V to 36-V Input, 1-V to 16-V Output, 6-A Power Module With Enhanced HotRod™ QFN Package
TI

TPSM63602RDHR

TPSM63606 High-Density, 3-V to 36-V Input, 1-V to 16-V Output, 6-A Power Module With Enhanced HotRod™ QFN Package
TI

TPSM63602V3RDHR

采用 4mm x 6mm x 1.8mm 封装的 3.6V 至 36V 输入、1V 至 12V 输出、2A 降压模块 | RDH | 30 | -40 to 125
TI

TPSM63602V5RDHR

采用 4mm x 6mm x 1.8mm 封装的 3.6V 至 36V 输入、1V 至 12V 输出、2A 降压模块 | RDH | 30 | -40 to 125
TI

TPSM63603

TPSM63606 High-Density, 3-V to 36-V Input, 1-V to 16-V Output, 6-A Power Module With Enhanced HotRod™ QFN Package
TI

TPSM63603E

TPSM63606 High-Density, 3-V to 36-V Input, 1-V to 16-V Output, 6-A Power Module With Enhanced HotRod™ QFN Package
TI

TPSM63603EXTRDHR

TPSM63606 High-Density, 3-V to 36-V Input, 1-V to 16-V Output, 6-A Power Module With Enhanced HotRod™ QFN Package
TI