TPSM63608RDFR [TI]

采用 7.5mm x 6.5mm HotRod™ QFN 封装的高密度 36V 输入、1V 至 20V 输出、6A 电源模块 | RDF | 22 | -40 to 125;
TPSM63608RDFR
型号: TPSM63608RDFR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 7.5mm x 6.5mm HotRod™ QFN 封装的高密度 36V 输入、1V 至 20V 输出、6A 电源模块 | RDF | 22 | -40 to 125

电源电路
文件: 总39页 (文件大小:2294K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPSM63608  
ZHCSRQ3 FEBRUARY 2023  
TPSM63608 高密度、3V 36V 输入、1V 20V 输出6A(峰值8A用  
增强HotRod™ QFN 封装的同步降压直流/直流电源模块  
1 特性  
3 说明  
提供功能安全  
TPSM63608 源自同步降压模块系列是一款高度集成  
36V6A 直流/直流解决方案集成了多个功率  
MOSFET、一个屏蔽式电感器和多个无源器件并采  
用增强型 HotRodQFN 装。该模块的 VIN 和  
VOUT 引脚位于封装的边角处可优化输入和输出电  
容器的放置。模块下方具有四个较大的散热焊盘可在  
制造过程中实现简单布局和轻松处理。  
可提供用于功能安全系统设计的文档  
• 多功36VIN6AOUT 同步降压模块  
– 集MOSFET、电感器和控制器  
– 可调节输出电压范围1V 20 V  
6.5mm × 7.5mm × 4mm 超模压塑料封装  
– 具40°C 125°C 的结温范围  
– 可200 kHz 2.2 MHz 范围内调节频率  
负输出电压应用功能  
TPSM63608 具有 1V 20 V 的输出电压旨在快  
速、轻松实现小尺寸 PCB EMI 设计。总体解决方  
案仅需四个外部元件并且省去了设计流程中的磁性和  
补偿元件选择过程。  
• 在整个负载范围内具有超高效率  
95%+ 峰值效率  
– 具有用于提升效率的外部偏置选项  
尽管针对空间受限型应用采用了简易的小尺寸设计,  
TPSM63608 模块还提供了许多特性来实现稳健的性  
具有迟滞功能的精密使能端可实现输入电压 UVLO  
调节、电阻可编程开关节点压摆率和展频选项以改善  
EMI。与集成式 VCC、自举和输入电容器一起使用,  
可提高可靠性和密度。该模块可配置为在满负载电流范  
(FPWM) 内保持恒定开关频率也可配置为可变频  
(PFM) 以提高轻负载效率。包含 PGOOD 指示器,  
可实现时序控制、故障报告和输出电压监测功能。  
– 外露焊盘可实现低热阻抗。EVM θJA  
18.2°C/W。  
– 关断时的静态电流0.6 µA典型值)  
4A 负载下的典型压降0.5V  
=
• 超低的传导和辐EMI 信号  
– 具有双输入路径和集成电容器的低噪声封装可降  
低开关振铃  
– 电阻器可调开关节点压摆率  
– 符CISPR 11 32 B 类发射要求  
• 适用于可扩展电源  
封装信息  
封装(1)  
TPSM6361036V8A引脚兼容  
• 固有保护特性可实现稳健设计  
封装尺寸标称值)  
器件型号  
TPSM63608  
RDFB3QFN,  
22)  
6.50mm × 7.50mm  
– 精密使能输入和漏极开PGOOD 指示器用  
于时序、控制VIN UVLO)  
– 过流和热关断保护  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• 使TPSM63608 并借WEBENCH® Power  
空白  
Designer 创建定制设计方案  
2 应用  
测试和测量以及航天和国防  
工厂自动化和控制  
降压反相降压/升压电源  
VIN = 3 V...36 V  
100  
95  
90  
85  
80  
VIN1  
CBOOT  
VIN2  
CIN  
RBOOT  
PGND  
TPSM63608  
VOUT = 5 V  
VLDOIN  
EN/SYNC  
IOUT = 6 A  
VCC  
VOUT1  
VOUT2  
RPG  
SPSP  
RFBT  
COUT  
PG  
RT  
FB  
VIN = 12 V  
VIN = 24 V  
VIN = 36 V  
75  
70  
RFBB  
RRT  
AGND  
SYNC/  
MODE  
0
1
2
3
4
5
6
* VOUT enters dropout  
if VIN < 5.8 V  
Output Current (A)  
典型效率VOUT = 5V, FSW = 1MHz)  
典型原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSH66  
 
 
 
TPSM63608  
ZHCSRQ3 FEBRUARY 2023  
www.ti.com.cn  
Table of Contents  
8.3 Feature Description...................................................13  
8.4 Device Functional Modes..........................................21  
9 Applications and Implementation................................22  
9.1 Application Information............................................. 22  
9.2 Typical Applications.................................................. 22  
9.3 Power Supply Recommendations.............................30  
9.4 Layout....................................................................... 30  
10 Device and Documentation Support..........................33  
10.1 Device Support....................................................... 33  
10.2 Documentation Support.......................................... 34  
10.3 接收文档更新通知................................................... 34  
10.4 支持资源..................................................................34  
10.5 Trademarks.............................................................34  
10.6 静电放电警告.......................................................... 34  
10.7 术语表..................................................................... 34  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings............................................................... 5  
7.3 Recommended Operating Conditions.........................5  
7.4 Thermal Information....................................................6  
7.5 Electrical Characteristics.............................................6  
7.6 System Characteristics............................................... 9  
7.7 Typical Characteristics..............................................10  
8 Detailed Description......................................................12  
8.1 Overview...................................................................12  
8.2 Functional Block Diagram.........................................13  
Information.................................................................... 34  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
February 2023  
*
Initial Release  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPSM63608  
 
TPSM63608  
ZHCSRQ3 FEBRUARY 2023  
www.ti.com.cn  
5 Device Comparison Table  
PEAK OUTPUT  
CURRENT  
(TRANSIENT  
CONDITIONS)  
ORDERABLE PART  
RATED OUTPUT  
CURRENT  
DEVICE  
JUNCTION TEMPERATURE RANGE  
NUMBER  
TPSM63610  
TPSM63610E  
TPSM63608  
TPSM63610RDFR  
TPSM63610EXTRDFR  
TPSM63608RDFR  
8 A  
8 A  
6 A  
10 A  
10 A  
8 A  
40°C to 125°C  
55°C to 125°C  
40°C to 125°C  
6 Pin Configuration and Functions  
VIN2  
EN  
1
18  
VIN1  
PGND  
PGND  
AGND  
AGND  
19  
2
3
4
5
6
7
8
17  
16  
15  
14  
13  
12  
11  
RBOOT  
CBOOT  
SW  
NC  
MODE  
SPSP  
PG  
20  
21  
VLDOIN  
VCC  
AGND  
FB  
RT  
AGND  
22  
VOUT1  
9
10  
VOUT2  
6-1. 22-Pin B3QFN RDF Package (Top View)  
6-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NO.  
NAME  
Input supply voltage. Connect the input supply to these pins. Connect input capacitors between these  
pins and PGND in close proximity to the device.  
1, 18  
VIN1, VIN2  
P
External bootstrap resistor connection. RBOOT is brought out to use in conjunction with CBOOT to  
effectively lower the value of the internal series bootstrap resistance to adjust the switch-node slew rate,  
if necessary. A resistance from 0 to 500 Ωcan be connected between RBOOT and CBOOT. A  
resistance of 0 Ωhas the fastest slew rate and highest efficiency. A value of 100 Ωcreates a nice  
balance between efficiency and EMI. Leaving open sets the slew rate to 20 ns and TI does not  
recommend due to increased self heating.  
2
RBOOT  
I
Bootstrap pin for the internal high-side gate driver. A 100-nF bootstrap capacitor is internally connected  
from this pin to SW within the module to provide the bootstrap voltage. CBOOT is brought out to use in  
conjunction with RBOOT to effectively lower the value of the internal series bootstrap resistance to  
adjust the switch-node slew rate, if necessary.  
3
4
5
6
CBOOT  
SW  
O
O
P
P
Switch node. Do not place any external component on this pin or connect to any signal. The amount of  
copper placed on this pin must be kept to a minimum to prevent issues with noise and EMI.  
Input bias voltage. Input to the internal LDO that supplies the internal control circuits. Connect to an  
output voltage point to improve efficiency. Connect an optional high-quality 0.1-μF to 1-μF capacitor  
from this pin to ground for improved noise immunity. If the output voltage is above 12 V, connect this pin  
to ground.  
VLDOIN  
VCC  
Internal LDO output. Used as a supply to the internal control circuits. Do not connect to any external  
loads. A 1-μF capacitor internally connects from VCC to AGND.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPSM63608  
 
 
 
TPSM63608  
ZHCSRQ3 FEBRUARY 2023  
www.ti.com.cn  
6-1. Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NO.  
NAME  
Analog ground. Zero-voltage reference for internal references and logic. All electrical parameters are  
measured with respect to this pin. These pins must be connected to PGND. See Layout Example for a  
recommended layout.  
7, 11, 21,  
22  
AGND  
G
Feedback input. Connect the midpoint of the feedback resistor divider to this pin. Connect the upper  
resistor (RFBT) of the feedback divider to VOUT at the desired point of regulation. Connect the lower  
resistor (RFBB) of the feedback divider to AGND. Do not leave open or connect to ground.  
8
FB  
I
P
I
VOUT1,  
VOUT2  
Output voltage. These pins are connected to the internal buck inductor. Connect these pins to the output  
load and connect external output capacitors between these pins and PGND.  
9, 10  
12  
Frequency setting pin used to set the switching frequency between 200 kHz and 2.2 MHz by placing an  
external resistor from RT to AGND. Connect to VCC for 400 kHz. Connect to ground for 2.2 MHz. Do not  
leave open.  
RT  
PG  
Open-drain power-good monitor output that asserts low if the FB voltage is not within the specified  
window thresholds. A 10-kΩto 100-kΩpullup resistor to a suitable voltage is required . If not used, PG  
can be left open or connected to GND.  
13  
14  
O
I
Connect to VCC or through a resistor to ground to enable spread spectrum. Connect to GND to disable  
spread spectrum. If using spread spectrum, a VCC connection turns off the spread spectrum tone  
correction while a resistor to ground (10-30 kΩ) adjusts the tone correction to lower the output voltage  
ripple. Do not float this pin.  
SPSP  
This pin controls the mode of operation of the device. Modes include Auto mode (automatic PFM/PWM  
operation), forced pulse width modulation (FPWM), and synchronized to an external clock. The clock  
triggers on the rising edge of an applied external clock. Pull low to enable PFM operation, pull high to  
enable FPWM, or connect to a clock to synchronize to an external frequency in FPWM mode. Do not  
float this pin. When synchronized to an external clock, use the RT pin to set the internal frequency close  
to the synchronized frequency to avoid disturbances if the external clock is turned on and off  
SYNC/  
MODE  
15  
I
16  
17  
NC  
EN  
No connection. Tie to GND or leave open.  
Precision enable input to regulator. High = on, low = off. Can be connected to VIN. Precision enable  
allows the pin to be used as an adjustable UVLO. Do not float  
I
Power ground. This is the return current path for the power stage of the device. Connect these pads to  
the input supply return, the load return, and the capacitors associated with the VIN and VOUT pins. See  
Layout Example for a recommended layout.  
19, 20  
PGND  
G
(1) P = Power, G = Ground, I = Input, O = Output  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPSM63608  
 
TPSM63608  
ZHCSRQ3 FEBRUARY 2023  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over the recommended operating junction temperature range(1)  
PARAMETER  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0
MAX  
42  
UNIT  
V
Voltages  
Voltages  
Voltages  
Voltages  
Voltages  
Voltages  
Voltages  
Voltages  
Voltages  
Current  
Voltages  
Voltages  
Voltages  
Tstg  
Transient VIN to AGND, PGND(2)  
Continuous VIN to AGND, PGND(2)  
SW to AGND, PGND  
36  
V
VIN + 0.3  
5.5  
V
RBOOT, CBOOT to SW  
V
Transient EN or SYNC/MODE to AGND, PGND(2)  
Continuous EN or SYNC/MODE to AGND, PGND(2)  
BIAS to AGND, PGND  
42  
V
36  
V
16  
V
FB to AGND, PGND: Adjustable Versions  
RESET to AGND, PGND  
5.5  
V
20  
V
RESET sink current(4)  
0
10  
mA  
V
RT to AGND, PGND  
-0.3  
5.5  
VCC to AGND, PGND  
5.5  
V
0.3  
1  
PGND to AGND(3)  
2
V
Storage temperature  
150  
°C  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) A maximum of 42 V can be sustained at this pin for duration of 100 ms at a duty cycle of 0.01%. 36 V can be sustained for the  
life of this device.  
(3) This specification applies to voltage durations of 100 ns or less. The maximum D.C. voltage must not exceed +/- 0.3 V.  
(4) Do not exceed pin voltage rating.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/  
JEDEC JS-001(1)  
±2000  
V
V(ESD)  
Electrostatic discharge  
Charged-device model (CDM), per ANSI/ESDA/  
JEDEC JS-002(2)  
±750  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
Over the recommended operating junction temperature range of 40°C to 125°C (unless otherwise noted) (1)  
MIN  
MAX  
UNIT  
V
Input voltage  
Output voltage Output Adjustment Range for adjustable output versions (2)  
Input Voltage Range(1)  
3
36  
20  
1
V
Frequency  
Frequency adjustment range  
200  
2200  
kHz  
Sync  
Frequency  
Synchronization frequency range  
200  
2200  
kHz  
Output current IOUT  
Temperature Operating junction temperature, TJ  
0
6
A
125  
°C  
40  
(1) 3.7 V is required at VIN for start-up, an extended input voltage range down to 3.0 V is possible after start-up; See Minimum input  
voltage for start-up conditions.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPSM63608  
 
 
 
 
 
 
 
 
 
 
 
 
 
TPSM63608  
ZHCSRQ3 FEBRUARY 2023  
www.ti.com.cn  
(2) Under no conditions can the output voltage be allowed to fall below zero volts.  
7.4 Thermal Information  
TPSM636XX  
THERMAL METRIC (1)  
RDF  
22 PINS  
18  
UNIT  
RθJA  
Junction-to-ambient thermal resistance (TPSM63610EVM) (3)  
Junction-to-ambient thermal resistance (JESD 51-7) (2)  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJA  
25  
RθJC(top)  
RθJB  
12.8  
7.4  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.7  
ΨJT  
7.2  
ΨJB  
RθJC(bot)  
3.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) The value of RΘJA given in this table is only valid for comparison with other packages and can not be used for design purposes. These  
values were calculated in accordance with JESD 51-7, and simulated on a 4-layer JEDEC board. They do not represent the  
performance obtained in an actual application. For example, the EVM RΘJA = 21.6 °C/W. For design information please see the  
thermal design and layout section.  
(3) Refer to the EVM User's Guide for board layout and additional information. For thermal design information please see the thermal  
design and layout section.  
7.5 Electrical Characteristics  
Limits apply over the recommended operating junction temperature range of -40°C to +125°C, unless otherwise noted.  
Minimum and Maximum limits are specified through test, design or statistical correlation. Typical values represent the most  
likely parametric norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise stated the following  
conditions apply: VIN = 12. VIN1 shorted to VIN2 = VIN. VOUT is output set point.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY VOLTAGE (VIN PIN)  
Needed to start up  
3.7  
3
V
V
V
VIN  
Minimum operating input voltage  
Minimum voltage hysteresis  
Once Operating  
VIN_OP_H  
IQ  
ISD  
IB  
1
Non-switching input current; measured  
at VIN pin (3)  
VFB = +5%, VBIAS = 5 V  
VEN = 0 V, VIN = 12 V  
0.5  
10  
7.5  
26  
µA  
µA  
µA  
Shutdown quiescent current; measured  
at VIN pin  
0.57  
18.5  
VFB = +5%, VBIAS = 5 V, Auto Mode  
Enabled  
Current into BIAS pin (not switching)  
ENABLE (EN PIN)  
VEN  
Enable input-threshold voltage - rising  
VEN rising  
1.0  
0.1  
0.4  
1.263  
0.35  
1.365  
0.5  
V
V
VEN_HYST  
VEN_WAKE  
IEN  
Enable threshold hysteresis  
Enable Wake-up threshold  
Enable pin input current  
V
VIN = VEN = 12 V  
1.5  
50  
nA  
INTERNAL LDO (VCC PIN)  
VBIAS = 0V  
3.4  
3.2  
VCC  
Internal VCC voltage  
V
VBIAS = 3.3 V, 20 mA  
VIN voltage at which Internal VCC under  
voltage lock-out is released  
VCC_UVLO  
IVCC = 0A  
3.75  
V
V
Internal VCC under voltage lock-out  
hysteresis  
VCC_UVLO_HYST  
Hysteresis below VCC_UVLO  
1.2  
VOLTAGE REFERENCE (FB PIN)  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPSM63608  
 
 
 
 
 
 
 
 
TPSM63608  
ZHCSRQ3 FEBRUARY 2023  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
Limits apply over the recommended operating junction temperature range of -40°C to +125°C, unless otherwise noted.  
Minimum and Maximum limits are specified through test, design or statistical correlation. Typical values represent the most  
likely parametric norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise stated the following  
conditions apply: VIN = 12. VIN1 shorted to VIN2 = VIN. VOUT is output set point.  
PARAMETER  
TEST CONDITIONS  
VIN = 3.0 V to 36 V, FPWM Mode  
Adjustable versions only, VFB = 1 V  
MIN  
TYP  
MAX UNIT  
Initial reference voltage accuracy for  
adjustable (1 V FB) versions  
VFB  
IFB  
0.985  
1
1.015  
50  
V
Input current from FB to AGND  
nA  
CURRENT LIMITS  
ISC_6  
Short circuit high-side current Limit  
8.4  
7
11.5  
8.2  
14.2  
9.1  
A
A
A
A
ILS-LIMIT_6  
IPEAK-MIN_6  
IL-NEG_6  
Low-side current limit  
6 A Variant, Duty cycle approaches 0%  
Auto Mode, static measurement  
Minimum Peak Inductor Current  
Negative current limit  
1.3  
4.9  
3.4  
2.3  
Zero-cross current limit. Positive current  
direction is out of SW pin.  
IL-ZC  
70  
mA  
V
VHICCUP  
Hiccup threshold on FB pin  
0.36  
0.4  
0.44  
POWER GOOD (/RESET PIN)  
V RESET-OV RESET upper threshold - Rising  
V RESET-UV  
% of FB voltage  
% of FB voltage  
109.5  
93  
112  
95  
114.5  
97.5  
%
%
RESET lower threshold - Falling  
RESET UV threshold as percentage of  
steady state output voltage with output  
voltage and UV threshold, falling, read  
at the same TJ, and VIN.  
V RESET_GUARD  
Falling  
97  
%
V RESET-HYS-  
RESET fallling threshold hysteresis  
RESET rising threshold hysteresis  
% of FB voltage  
% of FB voltage  
1.3  
1.3  
%
%
V
FALLING  
V RESET-HYS-  
RISING  
Minimum input voltage for proper  
RESET function  
Measured when VRESET < 0.4 V with 10  
kOhm pullup to external 5 V  
V RESET_VALID  
1.2  
0.4  
0.4  
0.4  
46.0 µA pull up to RESET pin, VIN = 1.0  
V, VEN = 0 V  
RESET Low-level function output  
voltage  
1 mA pull up to RESET pin, VIN = 12 V,  
VEN = 0 V  
VOL  
V
2 mA pull up to RESET pin, VIN = 12 V,  
VEN = 3.3 V  
RRESET  
RESET ON resistance,  
RESET ON resistance,  
RESET edge deglitch delay  
VEN = 5 V, 1mA pull up current  
VEN = 0 V, 1mA pull up current  
44  
18  
26  
125  
40  
Ω
Ω
µs  
RRESET  
tRESET_FILTER  
10  
45  
Time FB must be valid before RESET is  
released.  
tRESET_ACT  
RESET active time  
1.2  
2.1  
3.75  
ms  
OSCILLATOR (RT and SYNC PINS)  
fOSC Internal oscillator frequency  
fOSC  
RT = GND  
RT = VCC  
1.90  
320  
2.2  
2.42  
450  
MHz  
kHz  
Internal oscillator frequency  
400  
Oscillator frequency measured using  
maximum value of RT resistor to select  
2.2 MHz  
fFIXED_2.2MHz  
1.95  
352  
2.2  
2.42  
MHz  
kHz  
RT = 6.81 kΩ  
Oscillator frequency measured using  
minimum value of RT resistor to select  
0.4 MHz  
fFIXED_0.4MHz  
400  
700  
448  
770  
RT = 40.2 kΩ  
RT = 22.6 kΩ  
fADJ  
Center Trim oscillator frequency  
SYNC/MODE input voltage low  
SYNC/MODE input voltage high  
630  
0.4  
kHz  
V
VSYNCDL  
VSYNCDH  
1.7  
V
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPSM63608  
TPSM63608  
ZHCSRQ3 FEBRUARY 2023  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
Limits apply over the recommended operating junction temperature range of -40°C to +125°C, unless otherwise noted.  
Minimum and Maximum limits are specified through test, design or statistical correlation. Typical values represent the most  
likely parametric norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise stated the following  
conditions apply: VIN = 12. VIN1 shorted to VIN2 = VIN. VOUT is output set point.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VSYNCD_HYST  
RSYNC  
SYNC/MODE input voltage hysteresis  
0.185  
1
V
Internal pulldown resistor to ensure  
SYNC/MODE doesn't float  
100  
kΩ  
High and Loww duration needed for  
synchronizing clock to be recognized on  
SYNC/MODE pin  
tSYNC_EDGE  
100  
7
ns  
Time at one level needed to indicate  
FPWM or Auto Mode  
tMSYNC  
tLOCK  
20  
µs  
Time needed for clock to lock to a valid  
synchronization signal  
4.3  
ms  
RT = 39.2 kΩ  
SPREAD SPECTRUM  
Frequency increase of internal oscillator  
from spread spectrum  
1
4
7.5  
-1  
%
%
ΔFc+  
ΔFc-  
Frequency decrease of internal  
oscillator from spread spectrum  
-8  
-4  
HIGH SIDE DRIVE (CBOOT PIN)  
Voltage on CBOOT pin compared to  
SW which will turnoff high-side switch  
VCBOOT_UVLO  
1.9  
V
MOSFETS  
RDS-ON-HS  
RDS-ON-LS  
High-side MOSFET on-resistance  
Low-side MOSFET on-resistance  
Load = 1 A, CBOOT-SW = 3.2 V  
Load = 1 A, CBOOT-SW = 3.2 V  
21  
13  
39  
25  
mΩ  
mΩ  
PWM LIMITS (SW PIN)  
VIN =18 V, VSYNC/MODE = 5 V, IOUT = 2A,  
RBOOT = 0 Ω  
tON-MIN  
Minimum HS switch on-time  
62  
81  
ns  
tOFF-MIN  
tON-MAX  
Minimum HS switch off-time  
Maximum switch on-time  
VIN = 5 V  
70  
103  
11  
ns  
µs  
HS timeout in dropout  
While in frequency fold-back  
fsw =1.85 MHz  
6.9  
98  
8.9  
DMAX  
Maximum switch duty cycle  
%
87  
START UP  
VIN = 12 V, CVCC = 1 µF, time from EN  
high to first SW pulse if output starts at  
0 V  
tEN  
Turn-on delay  
0.82  
1.2  
2.7  
ms  
Time from first SW pulse to VREF at  
90%, of set point.  
tSS  
tW  
1.6  
2.2  
40  
ms  
ms  
Short circuit wait time ("hiccup" time)  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPSM63608  
TPSM63608  
ZHCSRQ3 FEBRUARY 2023  
www.ti.com.cn  
7.6 System Characteristics  
The following specifications apply only to the typical applications circuit, with nominal component values. Specifications in the  
typical (TYP) column apply to TJ = 25°C only. These specifications are not ensured by production testing.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY  
Input supply current when in VIN = VEN/SYNC = 24 V, VOUT = VVLDOIN = 3.3 V, VMODE = 0 V, FSW = 1 MHz,  
IIN  
8
µA  
regulation  
IOUT = 0 A  
OUTPUT VOLTAGE  
Load regulation  
VOUT = 3.3 V, VIN = 24 V, IOUT = 0.1 A to 4 A  
4
1
mV  
mV  
mV  
ΔVOUT1  
ΔVOUT2  
ΔVOUT3  
Line regulation  
Load transient  
VOUT = 3.3 V, VIN = 4 V to 36 V, IOUT = 4 A  
150  
VOUT = 5 V, VIN = 24 V, IOUT = 0 A to 4 A at 1 A/μs, COUT(derated) = 100 μF  
EFFICIENCY  
Efficiency  
VIN = 12 V, VOUT = VVLDOIN = 3.3 V, IOUT = 4 A, FSW = 1 MHz  
VIN = 24 V, VOUT = VVLDOIN = 3.3 V, IOUT = 4 A, FSW = 1 MHz  
VIN = 12 V, VOUT = VVLDOIN = 5 V, IOUT = 4 A, FSW = 1 MHz  
VIN = 24 V, VOUT = VVLDOIN = 5 V, IOUT = 4 A, FSW = 1 MHz  
92.1  
91  
%
%
%
%
η
η
η
η
Efficiency  
Efficiency  
Efficiency  
94.3  
93  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPSM63608  
 
TPSM63608  
ZHCSRQ3 FEBRUARY 2023  
www.ti.com.cn  
7.7 Typical Characteristics  
VIN = 12 V, unless otherwise specified.  
4
8
6
4
2
0
TJ = -40C  
TJ = 25C  
TJ = 125C  
3
2
1
0
-50  
-25  
0
25  
50  
75  
100  
125  
0
6
12  
18  
24  
30  
36  
Junction Temperature (°C)  
Input Voltage (V)  
VLDOIN = 3.3 V  
VMODE = 0 V  
7-2. Non-Switching Input Supply Current  
7-1. Shutdown Supply Current  
7-3. Feedback Voltage  
7-4. High-Side (Peak) and Low-Side (Valley) Current Limits  
TPSM63608  
35  
1.4  
1.2  
1
30  
25  
20  
15  
10  
5
0.8  
0.6  
0.4  
VEN Rising  
VEN Falling  
VEN_WAKE Rising  
VEN_WAKE Falling  
0.2  
High-side MOSFET  
Low-side MOSFET  
0
-50  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-25  
0
25  
50  
75  
100  
125  
Junction Temperature (°C)  
Junction Temperature (°C)  
7-6. Enable Thresholds  
7-5. High-Side and Low-Side MOSFET RDS(on)  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPSM63608  
 
 
TPSM63608  
ZHCSRQ3 FEBRUARY 2023  
www.ti.com.cn  
7.7 Typical Characteristics (continued)  
VIN = 12 V, unless otherwise specified.  
115  
110  
105  
100  
95  
70  
60  
50  
40  
30  
20  
10  
0
90  
OV Tripping  
OV Recovery  
UV Recovery  
UV Tripping  
85  
80  
-50  
-25  
0
25  
50  
75  
100  
125  
200 400 600 800 1000 1200 1400 1600 1800 2000 2200  
Frequency (kHz)  
Junction Temperature (°C)  
7-7. Power-Good (PG) Thresholds  
7-8. Switching Frequency Set by RT Resistor  
7-9. EVM Thermal Performance  
7-10. EVM Thermal Performance  
(VIN = 12 V, VOUT = 5 V, FSW = 1 MHz)  
(VIN = 24 V, VOUT = 5 V, FSW = 1 MHz)  
10  
10  
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
Airflow  
250 LFM  
Nat conv  
Airflow  
250 LFM  
Nat conv  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
7-11. EVM Thermal Performance  
7-12. EVM Thermal Performance  
(VIN = 12 V, VOUT = 3.3 V, FSW = 700 kHz)  
(VIN = 24 V, VOUT = 3.3 V, FSW = 700 kHz)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPSM63608  
 
TPSM63608  
ZHCSRQ3 FEBRUARY 2023  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPSM63608 is an easy-to-use, synchronous buck DC/DC power module designed for a wide variety of  
applications where reliability, small solution size, and low EMI signature are of paramount importance. With  
integrated power MOSFETs, a buck inductor, and PWM controller, the TPSM63608 operates over an input  
voltage range of 3 V to 36 V with transients as high as 42 V. The module delivers up to 6-A (8-A peak) DC load  
current with high conversion efficiency and ultra-low input quiescent current in a very small solution footprint.  
Control loop compensation is not required, reducing design time and external component count.  
With a programmable switching frequency from 200 kHz to 2.2 MHz using its RT pin or an external clock signal,  
the TPSM63608 incorporates specific features to improve EMI performance in noise-sensitive applications:  
An optimized package and pinout design enables a shielded switch-node layout that mitigates radiated EMI  
Parallel input and output paths with symmetrical capacitor layouts minimize parasitic inductance, switch-  
voltage ringing, and radiated field coupling  
Dual-random spread spectrum (DRSS) modulation reduces peak emissions  
Resistor-programmable switch-node slew rate  
Clock synchronization and FPWM mode enable constant switching frequency across the load current range  
Integrated power MOSFETs with enhanced gate drive control enable low-noise PWM switching  
Together, these features significantly reduce EMI filtering requirements, while helping to meet CISPR 11 and  
CISPR 32 Class B EMI limits for conducted and radiated emissions.  
The TPSM63608 module also includes inherent protection features for robust system requirements:  
An open-drain PGOOD indicator for power-rail sequencing and fault reporting  
Precision enable input with hysteresis, providing  
Programmable line undervoltage lockout (UVLO)  
Remote ON and OFF capability  
Internally fixed output-voltage soft start with monotonic start-up into prebiased loads  
Hiccup-mode overcurrent protection with cycle-by-cycle peak and valley current limits  
Thermal shutdown with automatic recovery.  
Leveraging a pin arrangement designed for simple layout that requires only a few external components, the  
TPSM63608 is specified to maximum junction temperatures of 125°C. See typical performance curves to  
estimate suitability in a given ambient environment.  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPSM63608  
 
 
TPSM63608  
ZHCSRQ3 FEBRUARY 2023  
www.ti.com.cn  
8.2 Functional Block Diagram  
SPSP  
SYNC/  
MODE  
RSP  
VLDOIN  
Optional  
external bias  
(from VOUT)  
RT  
LDO bias  
subregulator  
VIN  
Oscillator  
VCC  
RRT  
UVLO  
SYNC  
detect  
VIN = 3 V to 36 V  
OTP  
VIN1, VIN2  
RENT  
Shutdown  
logic  
Precision  
enable for  
VIN UVLO  
EN  
PG  
Enable  
logic  
RBOOT  
CBOOT  
RENB  
OCP  
PGOOD  
indicator  
PGOOD  
logic  
CIN  
SW  
Power  
stage  
and  
control  
logic  
2.2 µH  
VOUT = 1 V to 20 V  
RFBT  
VOUT1, VOUT2  
FB  
To VOUT  
sense point  
UVLO  
OTP  
OCP  
EN  
Soft start  
+
COUT  
RFBB  
Comp  
VREF  
PGND  
AGND  
8.3 Feature Description  
8.3.1 Input Voltage Range (VIN1, VIN2)  
With a steady-state input voltage range from 3 V to 36 V, the TPSM63608 module is intended for step-down  
conversions from typical 12-V, 24-V, and 28-V input supply rails. The schematic circuit in 8-1 shows all the  
necessary components to implement a TPSM63608-based buck regulator using a single input supply.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPSM63608  
 
 
 
TPSM63608  
ZHCSRQ3 FEBRUARY 2023  
www.ti.com.cn  
VIN = 3V to 36 V  
VIN1  
VIN2  
CIN1  
10  
CIN2  
10  
F
F
PGND  
EN  
PGND  
RENT  
Precision enable  
for VIN UVLO  
PGOOD  
indicator  
TPSM63608  
PG  
RENB  
Optional  
external bias  
RPG  
VLDOIN  
VOUT = 1-20 V  
100 k  
VOUT1  
VOUT2  
VCC  
SYNC/  
MODE  
COUT  
CFF  
RFBT  
CBOOT  
RBOOT  
FB  
Optional  
Synchronization  
(200kHz-2.2MHz)  
SPSP  
RT  
RMODE  
RSS  
RRT  
RFBB  
AGND  
Adjustable  
Switching  
Frequency  
8-1. TPSM63608 Schematic Diagram with Input Voltage Operating Range of 3 V to 36 V  
The minimum input voltage required for start-up is 3.7 V. Take extra care to make sure that the voltage at the  
VIN pins of the module (VIN1 and VIN2) does not exceed the absolute maximum voltage rating of 42 V during  
line or load transient events. Voltage ringing at the VIN pins that exceeds the 7.1 can damage the IC.  
8.3.2 Adjustable Output Voltage (FB)  
The TPSM63608 has an adjustable output voltage range from 1 V up to a maximum of 20 V or slightly less than  
VIN, whichever is lower. Setting the output voltage requires two feedback resistors, designated as RFBT and RFBB  
in 8-1. The reference voltage at the FB pin is set at 1 V with a feedback system accuracy over the full junction  
temperature range of ±1%. The junction temperature range for the device is 40°C to 125°C.  
Calculate the value for RFBB using 方程1 below based on a recommended value for RFBT of 100 kΩ.  
R
V
kΩ  
FBT  
R
kΩ =  
(1)  
FBB  
OUT  
1
1  
8-1 lists the standard resistor values for several output voltages and the recommended switching frequency  
range to maintain reasonable peak-to-peak inductor ripple current. This table also includes the minimum  
required output capacitance for each output voltage setting to maintain stability. The capacitances as listed  
represent effective values for ceramic capacitors derated for DC bias voltage and temperature. Furthermore,  
place a feedforward capacitor, CFF, in parallel with RFBT to increase the phase margin when the output  
capacitance is close to the minimum recommended value.  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPSM63608  
 
 
TPSM63608  
ZHCSRQ3 FEBRUARY 2023  
www.ti.com.cn  
8-1. Standard RFBT Values, Recommended FSW Range and Minimum COUT  
SUGGESTED  
FSW RANGE  
(kHz)  
SUGGESTED  
FSW RANGE  
(MHz)  
RFBB  
(kΩ) (1)  
RFBB  
(kΩ) (1)  
VOUT  
(V)  
COUT(min) (µF)  
(EFFECTIVE)  
CFF  
(pF)  
VOUT  
(V)  
COUT(min) (µF)  
(EFFECTIVE)  
CFF  
(pF)  
BOM(2)  
BOM(2)  
4 × 100  
μF (6.3  
V)  
4 × 47  
μF (16  
V)  
1
Open  
125  
43.4  
25  
200 to 750  
300 to 900  
400 to 1100  
500 to 1400  
350  
300  
100  
75  
9
12.5  
9.09  
7.14  
5.26  
0.75 to 1.5  
1 to 1.7  
66  
100  
47  
4 × 100  
μF (6.3  
V)  
3 × 22  
μF (25  
V)  
1.8  
3.3  
5
12  
15  
20  
30  
20  
15  
4 × 47  
μF (10  
V)  
3 × 22  
μF (25  
V)  
1 to 1.9  
3 × 47  
μF (10  
V)  
3 × 22  
μF (25  
V)  
22  
1.2 to 2.2  
(1) RFBT = 100 kΩ.  
(2) Refer to 8-3 for the output capacitor list.  
Note that higher feedback resistances consume less DC current. However, an upper RFBT resistor value higher  
than 1 MΩ renders the feedback path more susceptible to noise. Higher feedback resistances generally require  
more careful layout of the feedback path. Make sure to locate the feedback resistors close to the FB and AGND  
pins, keeping the feedback trace as short as possible (and away from noisy areas of the PCB). See 9.4.2  
guidelines for more detail.  
8.3.3 Input Capacitors  
Input capacitors are necessary to limit the input ripple voltage to the module due to switching-frequency AC  
currents. TI recommends using ceramic capacitors to provide low impedance and high RMS current rating over a  
wide temperature range. 方程式 2 gives the input capacitor RMS current. The highest input capacitor RMS  
current occurs at D = 0.5, at which point the RMS current rating of the capacitors must be greater than half the  
output current.  
2
i  
2
L
I
=
D ×  
I
× 1 − D +  
(2)  
CIN, rms  
OUT  
12  
where  
D = VOUT / VIN is the module duty cycle.  
Ideally, the DC and AC components of input current to the buck stage are provided by the input voltage source  
and the input capacitors, respectively. Neglecting inductor ripple current, the input capacitors source current of  
amplitude (IOUT IIN) during the D interval and sink IIN during the 1 D interval. Thus, the input capacitors  
conduct a square-wave current of peak-to-peak amplitude equal to the output current. The resultant capacitive  
component of AC ripple voltage is a triangular waveform. Together with the ESR-related ripple component, 方程  
3 gives the peak-to-peak ripple voltage amplitude:  
I
× D × 1 − D  
× C  
OUT  
V  
=
+ I  
× R  
ESR  
(3)  
IN  
OUT  
F
SW  
IN  
方程4 gives the input capacitance required for a particular load current:  
I
× D × 1 − D  
OUT  
C
(4)  
IN  
F
×
V I  
× R  
ESR  
SW  
IN OUT  
where  
• ΔVIN is the input voltage ripple specification.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPSM63608  
 
 
 
 
 
 
TPSM63608  
ZHCSRQ3 FEBRUARY 2023  
www.ti.com.cn  
The TPSM63608 requires a minimum of two 10-µF ceramic input capacitors, preferably with X7R or X7S  
dielectric and in 1206 or 1210 footprint. Additional capacitance can be required for applications to meet  
conducted EMI specifications, such as CISPR 11 or CISPR 32.  
8-2 includes a preferred list of capacitors by vendor. To minimize the parasitic inductance in the switching  
loops, position the ceramic input capacitors in a symmetrical layout close to the VIN1 and VIN2 pins and connect  
the capacitor return terminals to the PGND pins using a copper ground plane under the module.  
8-2. Recommended Ceramic Input Capacitors  
VENDOR(1)  
TDK  
DIELECTRIC  
X7R  
PART NUMBER  
CASE SIZE  
CAPACITANCE (µF)(2)  
RATED VOLTAGE (V)  
C3216X7R1H106K160AC  
GCM32EC71H106KA03K  
12105C106MAT2A  
1206  
10  
10  
10  
10  
50  
50  
50  
50  
Murata  
AVX  
X7S  
1210  
X7R  
1210  
Murata  
X7R  
GRM32ER71H106KA12L  
1210  
(1) Consult capacitor suppliers regarding availability, material composition, RoHS and lead-free status, and manufacturing process  
requirements for any capacitors identified in this table. See the Third-Party Products Disclaimer.  
(2) Nameplate capacitance values (the effective values are lower based on the applied DC voltage and temperature).  
As discussed in Power Supply Recommendations, an electrolytic bulk capacitance (68 µF to 100 µF) provides  
low-frequency filtering and parallel damping to mitigate the effects of input parasitic inductance resonating with  
the low-ESR, high-Q ceramic input capacitors.  
8.3.4 Output Capacitors  
8-1 lists the TPSM63608 minimum amount of required output capacitance. The effects of DC bias and  
temperature variation must be considered when using ceramic capacitance. For ceramic capacitors in particular,  
the package size, voltage rating, and dielectric material contribute to differences between the standard rated  
value and the actual effective value of the capacitance.  
When including additional capacitance above COUT(min), the capacitance can be ceramic type, low-ESR polymer  
type, or a combination of the two. See 8-3 for a preferred list of output capacitors by vendor.  
8-3. Recommended Ceramic Output Capacitors  
VENDOR(1)  
Murata  
DIELECTRIC  
X7R  
PART NUMBER  
CASE SIZE CAPACITANCE (µF)(2)  
VOLTAGE (V)  
GRM31CZ71C226ME15L  
C3225X7R1C226M250AC  
GRM32ER71C226KEA8K  
C3216X6S1E226M160AC  
12103C226KAT4A  
1206  
1210  
1210  
1206  
1210  
1210  
1210  
1210  
1210  
1206  
1206  
1210  
22  
22  
16  
16  
16  
25  
25  
25  
10  
10  
16  
4
TDK  
X7R  
Murata  
TDK  
X7R  
22  
X6S  
22  
AVX  
X7R  
22  
Murata  
AVX  
X7R  
GRM32ER71E226ME15L  
1210ZC476MAT2A  
22  
X7R  
47  
Murata  
Murata  
TDK  
X7R  
GRM32ER71A476ME15L  
GRM32EC81C476ME15L  
C3216X6S0G107M160AC  
GRM31CD80J107MEA8L  
GRM32EC70J107ME15L  
47  
X6S  
47  
X6S  
100  
100  
100  
Murata  
Murata  
X6T  
6.3  
6.3  
X7S  
(1) Consult capacitor suppliers regarding availability, material composition, RoHS and lead-free status, and manufacturing process  
requirements for any capacitors identified in the table. See the Third-Party Products Disclaimer.  
(2) Nameplate capacitance values (the effective values are lower based on the applied DC voltage and temperature).  
8.3.5 Switching Frequency (RT)  
Connect a resistor, designated as RRT in 8-1, between RT and AGND to set the switching frequency within  
the range of 200 kHz to 2.2 MHz. Refer to 方程5 to calculate RRT for a desired frequency.  
16.4  
R
kΩ =  
0.633  
(5)  
RT  
F
MHz  
SW  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPSM63608  
 
 
 
 
 
 
 
TPSM63608  
ZHCSRQ3 FEBRUARY 2023  
www.ti.com.cn  
Refer to 8-1 or use the simplified expression in 方程式 5 to find a switching frequency that sets an inductor  
ripple current of 15% to 35% of the 6-A module current rating at nominal input voltage: Refer to 8.3.7 if clock  
synchronization is required.  
8.3.6 Precision Enable and Input Voltage UVLO (EN)  
The EN pin provides precision ON and OFF control for the TPSM63608. After the EN pin voltage exceeds the  
rising threshold and VIN is above its minimum turn-on threshold, the device starts operation. The simplest way to  
enable the TPSM63608 is to connect EN directly to VIN. This action allows the TPSM63608 to start up when VIN  
is within its valid operating range. However, many applications benefit from the use of an enable divider network  
as shown in 8-1, which establishes a precision input undervoltage lockout (UVLO). This can be used for  
sequencing, to prevent re-triggering the device when used with long input cables, or to reduce the occurrence of  
deep discharge of a battery power source. An external logic signal can also be used to drive the enable input to  
toggle the output on and off and for system sequencing or protection.  
Calculate RENB using 方程6:  
V
V
EN_RISE  
V V  
R
kΩ = R  
kΩ ×  
(6)  
ENB  
ENT  
V
V
IN on  
EN_RISE  
where  
A typical value for RENT is 100 kΩ.  
VEN_RISE is enable rising threshold voltage of 1.263 V (typical).  
VIN(on) is the desired start-up input voltage.  
8.3.7 Frequency Synchronization (SYNC/MODE)  
Synchronize the internal oscillator of the TPSM63608 with a positive clock edge to SYNC/MODE, as shown in 图  
8-1. The synchronization frequency range is 200 kHz to 2.2 MHz.  
TI recommends to tie a resistor from SYNC/MODE to either VCC or ground to keep the pin from floating if the  
sync signal is lost or off at start-up. A value in the 100-kΩ range. After a valid synchronization signal is applied  
for 2048 cycles, the clock frequency changes to that of the applied signal.  
Referring to 8-2, the voltage edge at the SYNC/MODE pin must exceed the SYNC amplitude threshold,  
VSYNCDH, of 1.8 V to trip the internal synchronization pulse detector. In addition, the minimum SYNC/MODE  
rising and falling pulse durations must be longer than the SYNC signal hold time, tSYNC_EDGE, of 100 ns.  
VEN/SYNC  
tSYNC_EDGE  
VEN_SYNC  
t
0
tSYNC_EDGE  
8-2. Typical SYNC Waveform  
8.3.8 Spread Spectrum  
Spread spectrum is configurable using the SPSP pin. Spread spectrum eliminates peak emissions at specific  
frequencies by spreading these peaks across a wider range of frequencies than a part with fixed-frequency  
operation. The TPSM63608 implements a modulation pattern designed to reduce low frequency-conducted  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPSM63608  
 
 
 
TPSM63608  
ZHCSRQ3 FEBRUARY 2023  
www.ti.com.cn  
emissions from the first few harmonics of the switching frequency. The pattern can also help reduce the higher  
harmonics that are more difficult to filter, which can fall in the FM band. These harmonics often couple to the  
environment through electric fields around the switch node and inductor. The TPSM63608 uses a ±4% (typical)  
spread of frequencies which can spread energy smoothly across the FM and TV bands. The device implements  
Dual Random Spread Spectrum (DRSS). DRSS is a combination of a triangular frequency spreading pattern and  
pseudorandom frequency hopping. The combination allows the spread spectrum to be very effective at  
spreading the energy at the following:  
Fundamental switching harmonic with slow triangular pattern  
High frequency harmonics with additional psuedorandom jumps at the switching frequency  
The advantage of DRSS is its equivalent harmonic attenuation in the upper frequencies with a smaller  
fundamental frequency deviation. This reduces the amount of input current and output voltage ripple that is  
introduced at the modulating frequency. Additionally, the TPSM63608 also allows further reduction of the output  
voltage ripple caused by the spread spectrum modulating pattern. With the SPSP pin grounded, the spread  
spectrum is disabled. With the SPSP pin tied to VCC, the spread spectrum is on. With the SPSP pin tied through  
a resistor to ground, the spread spectrum is on. Also, a modulating tone correction is applied to the switcher to  
reduce the output voltage ripple caused by the frequency modulation. The resistor is usually around 20 kΩ, and  
can be more precisely calculated using 方程7. Where IRATED = 6 A for TPSM63608, L = 2.2µH.  
V
IN  
14.17 ×  
V
OUT  
R
kΩ =  
(7)  
SPSP  
V
V  
IN  
RATED  
OUT  
× L × F  
+ 1.22  
I
SW  
8-3. Output Ripple Without Ripple Cancellation Showing VSW (Top), FSW (Middle), VOUT (Bottom)  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPSM63608  
 
TPSM63608  
ZHCSRQ3 FEBRUARY 2023  
www.ti.com.cn  
8-4. Output Ripple with Ripple Cancellation Showing VSW (Top), FSW (Middle), VOUT (Bottom)  
The spread spectrum is only available while the clock of the TPSM63608 are free running at their natural  
frequency. Any of the following conditions overrides spread spectrum, turning it off:  
The clock is slowed due to operation at low input voltage. This is operation in dropout.  
The clock is slowed under light load in auto mode. This is normally not seen above 750-mA load. Note that if  
the device is operating in FPWM mode, spread spectrum is active, even if there is no load.  
The clock is slowed due to high input-to-output voltage ratio. This mode of operation is expected if on-time  
reaches minimum on time.  
8.3.9 Power-Good Monitor (PG)  
The TPSM63608 provides a power-good status signal to indicate when the output voltage is within a regulation  
window of 94% to 112%. The PG voltage goes low when the feedback (FB) voltage is outside of the specified  
PGOOD thresholds (see 7-7). This action can occur during current limit and thermal shutdown, as well as  
when disabled and during start-up.  
PG is an open-drain output, requiring an external pullup resistor to a DC supply, such as VCC or VOUT. To limit  
current supplied by VCC, the recommended range of pullup resistance is 20 kto 100 k. A 26-µs deglitch filter  
prevents false flag operation for short excursions of the output voltage, such as during line and load transients.  
When EN is pulled low, PG is forced low and remains remains valid as long as the input voltage is above 1 V  
(typical). Use the PG signal for start-up sequencing of downstream regulators, as shown in 8-5, or for fault  
protection and output monitoring.  
VIN(on) = 13.9 V  
VIN(off) = 10 V  
VOUT2 = 3.3 V  
VOUT1 = 5 V  
RUV1  
1 M  
RFB3  
PG 13  
PG 13  
RPG  
RFB1  
23.2 k  
1 V  
RFB4  
17  
100 k  
17  
EN  
EN  
40.2 k  
RUV2  
FB  
8
FB  
8
1 V  
100 k  
RFB2  
10 k  
10 k  
Regulator #1  
Regulator #2  
Start-up based on  
input voltage UVLO  
Sequential start-up  
based on PG  
8-5. TPSM63608 Sequencing Implementation Using PG and EN  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPSM63608  
 
TPSM63608  
ZHCSRQ3 FEBRUARY 2023  
www.ti.com.cn  
8.3.10 Adjustable Switch-Node Slew Rate (RBOOT, CBOOT)  
Adjust the switch-node slew rate of the TPSM63608 to slow the switch-node voltage rise time and improve EMI  
performance at high frequencies. However, slowing the rise time decreases efficiency. Care must be taken to  
balance the improved EMI versus the decreased efficiency.  
Place a resistor from RBOOT and CBOOT to allow adjustment of the internal resistance to balance EMI and  
efficiency performance. If improved EMI is not required, connect RBOOT to CBOOT to short the internal resistor,  
thus resulting in highest efficiency. If lower EMI is required, connect a resistor from 100 Ω – 500 Ω to. Floating  
the RBOOT pin results in 20-ns rise time and TI does not recommend due to increased power loss for higher load  
currents.  
8.3.11 Bias Supply Regulator (VCC, VLDOIN)  
VCC is the output of the internal LDO subregulator used to supply the control circuits of the TPSM63608. The  
nominal VCC voltage is 3.3 V. The VLDOIN pin is the input to the internal LDO. Connect this input to VOUT to  
provide the lowest possible input supply current. If the VLDOIN voltage is less than 3.1 V, VIN1 and VIN2 directly  
power the internal LDO.  
To prevent unsafe operation, VCC has UVLO protection that prevents switching if the internal voltage is too low.  
See VCC_UVLO and VCC_UVLO_HYS in the 7.5.  
VCC must not be used to power external circuitry. Do not load VCC or short it to ground. VLDOIN is an optional  
input to the internal LDO. Connect an optional high quality 0.1-µF to 1-µF capacitor from VLDOIN to AGND for  
improved noise immunity.  
The LDO provides the VCC voltage from one of two inputs: VIN or VLDOIN. When VLDOIN is tied to ground or  
below 3.1 V, the LDO derives power from VIN. The LDO input becomes VLDOIN when VLDOIN is tied to a  
voltage above 3.1 V. The VLDOIN voltage must not exceed both VIN and 12 V.  
方程8 specifies the LDO power loss reduction as:  
PLDO-LOSS = ILDO × (VIN-LDO VVCC  
)
(8)  
The VLDOIN input provides an option to supply the LDO with a lower voltage than VIN, thus minimizing the LDO  
input voltage relative to VCC and reducing power loss. For example, if the LDO current is 10 mA at 1 MHz with  
VIN = 24 V and VOUT = 5 V, the LDO power loss with VLDOIN tied to ground is 10 mA × (24 V 3.3 V) = 207  
mW, while the loss with VLDOIN tied to VOUT is equal to 10 mA × (5 V 3.3 V) = 17 mW a reduction of 190  
mW.  
8-6 and 8-7 show typical efficiency plots with and without VLDOIN connected to VOUT.  
100  
95  
90  
85  
80  
75  
VVLDOIN = VOUT  
VVLDOIN = GND  
70  
0
1
2
3
4
5
6
Output Current (A)  
VIN = 24 V  
VOUT = 5 V  
FSW = 1 MHz  
VIN = 36 V  
VOUT = 5 V  
FSW = 1 MHz  
8-6. Efficiency Increase with External Bias  
8-7. Efficiency Increase with External Bias  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPSM63608  
 
 
TPSM63608  
ZHCSRQ3 FEBRUARY 2023  
www.ti.com.cn  
8.3.12 Overcurrent Protection (OCP)  
The TPSM63608 is protected from overcurrent conditions using cycle-by-cycle current limiting of the peak  
inductor current. The current is compared every switching cycle to the current limit threshold. During an  
overcurrent condition, the output voltage decreases.  
The TPSM63608 employs hiccup overcurrent protection if there is an extreme overload. In hiccup mode, the  
TPSM63608 module is shut down and kept off for 40 ms (typical) before a restart is attempted. If an overcurrent  
or short-circuit fault condition still exists, hiccup repeats until the fault condition is removed. Hiccup mode  
reduces power dissipation under severe overcurrent conditions, thus preventing overheating and potential  
damage to the device. After the fault is removed, the module automatically recovers and returns to normal  
operation.  
8.3.13 Thermal Shutdown  
Thermal shutdown is an integrated self-protection used to limit junction temperature and prevent damage related  
to overheating. Thermal shutdown turns off the device when the junction temperature exceeds 168°C (typical) to  
prevent further power dissipation and temperature rise. Junction temperature decreases after shutdown, and the  
TPSM63608 attempts to restart when the junction temperature falls to 159°C (typical).  
8.4 Device Functional Modes  
8.4.1 Shutdown Mode  
The EN pin provides ON and OFF control for the TPSM63608. When VEN is below approximately 0.4 V, the  
device is in shutdown mode. Both the internal LDO and the switching regulator are off. The quiescent current in  
shutdown mode drops to 0.6 µA (typical). The TPSM63608 also employs internal undervoltage protection. If the  
input voltage is below its UV threshold, the regulator remains off.  
8.4.2 Standby Mode  
The internal LDO for the VCC bias supply has a lower enable threshold than the regulator itself. When VEN is  
above 1.1 V (maximum) and below the precision enable threshold of 1.263 V (typical), the internal LDO is on and  
regulating. The precision enable circuitry is turned on after the internal VCC is above its UVLO threshold. The  
switching action and voltage regulation are not enabled until VEN rises above the precision enable threshold.  
8.4.3 Active Mode  
The TPSM63608 is in active mode when VVCC and VEN are above their relevant thresholds and no fault  
conditions are present. The simplest way to enable operation is to connect EN to VIN, which allows self start-up  
when the applied input voltage exceeds the minimum start-up voltage.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPSM63608  
 
TPSM63608  
ZHCSRQ3 FEBRUARY 2023  
www.ti.com.cn  
9 Applications and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The TPSM63608 synchronous buck module requires only a few external components to convert from a wide  
range of supply voltages to an output voltage at an output current up to 6 A. To expedite and streamline the  
process of designing a TPSM63608-based regulator, a comprehensive TPSM63608 quickstart calculator tool is  
available by download to assist the system designer with component selection for a given application.  
9.2 Typical Applications  
For the circuit schematic, bill of materials, PCB layout files, and test results of a TPSM63608-powered  
implementation, see the TPSM63610EVM 10-A reference design .  
9.2.1 Design 1 High-Efficiency 6-A (8-A peak) Synchronous Buck Regulator for Industrial Applications  
The following figure shows the schematic diagram of a 5-V, 6-A buck regulator with a switching frequency of 1  
MHz. In this example, the target half-load and full-load efficiencies are 94% and 92%, respectively, based on a  
nominal input voltage of 24 V that ranges from 9 V to 36 V. A resistor RRT of 15.8 kΩ sets the free-running  
switching frequency at 1 MHz. An optional SYNC input signal allows adjustment of the switching frequency from  
500 kHz to 1.4 MHz for this specific application.  
VIN = 9 V to 36 V  
VIN1  
VIN2  
CIN1  
10  
CIN2  
10  
VIN(on) = 6 V  
VIN(off) = 4.3 V  
F
F
PGND  
EN  
PGND  
RENT  
187 k  
Precision enable  
for VIN UVLO  
PGOOD  
indicator  
TPSM63608  
PG  
RENB  
Optional  
external bias  
VOUT = 5 V  
IOUT = 6 A  
RPG  
49.9 k  
VLDOIN  
100 k  
VOUT1  
VOUT2  
VCC  
COUT  
SYNC/  
MODE  
CFF  
22 pF  
RFBT  
CBOOT  
RBOOT  
FB  
3 47  
F
100 k  
Optional  
Synchronization  
SPSP  
RT  
RMODE  
RSS  
RRT  
RFBB  
AGND  
24.9 k  
15.8 k  
Fsw =1MHz  
9-1. Circuit Schematic  
9.2.1.1 Design Requirements  
9-1 shows the intended input, output, and performance parameters for this application example. Note that if  
the input voltage decreases below approximately 5.5 V, the regulator operates in dropout with the output voltage  
below its 5-V setpoint.  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPSM63608  
 
 
 
TPSM63608  
ZHCSRQ3 FEBRUARY 2023  
www.ti.com.cn  
9-1. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
VALUE  
9 V to 36 V  
6 V, 4.3 V  
5 V  
Input voltage UVLO turn on, off  
Output voltage  
Maximum output current  
Switching frequency  
6 A  
1 MHz  
±1%  
Output voltage regulation  
Module shutdown current  
< 1 µA  
9-2 gives the selected buck module power-stage components with availability from multiple vendors. This  
design uses an all-ceramic output capacitor implementation.  
9-2. List of Materials for Application Circuit 1  
REFERENCE  
DESIGNATOR  
QTY  
SPECIFICATION  
MANUFACTURER(1)  
PART NUMBER  
Taiyo Yuden  
TDK  
UMJ325KB7106KMHT  
CNA6P1X7R1H106K  
GCM32EC71H106KA03  
CGA6P3X7S1H106M  
GRM32ER70J476ME20K  
12106C476MAT2A  
10 µF, 50 V, X7R, 1210, ceramic  
CIN1, CIN2  
2
Murata  
10 µF, 50 V, X7S, 1210, ceramic  
47 µF, 6.3 V, X7R, 1210, ceramic  
47 µF, 10 V, X7R, 1210, ceramic  
TDK  
Murata  
AVX  
COUT1  
,
3
1
Murata  
GRM32ER71A476ME15L  
1210ZC476MAT2A  
COUT2,COUT3  
AVX  
100 µF, 6.3 V, X7S, 1210, ceramic  
Murata  
GRM32EC70J107ME15L  
TPSM63608RDLR  
U1  
TPSM63608 36-V, 6-A synchronous buck module  
Texas Instruments  
(1) See the Third-Party Products Disclaimer.  
More generally, the TPSM63608 module is designed to operate with a wide range of external components and  
system parameters. However, the integrated loop compensation is optimized for a certain range of output  
capacitance.  
9.2.1.2 Detailed Design Procedure  
9.2.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPSM63608 module with WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance.  
Run thermal simulations to understand board thermal performance.  
Export customized schematic and layout into popular CAD formats.  
Print PDF reports for the design, and share the design with colleagues.  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPSM63608  
 
 
 
TPSM63608  
ZHCSRQ3 FEBRUARY 2023  
www.ti.com.cn  
9.2.1.2.2 Output Voltage Setpoint  
The output voltage of a TPSM63608 module is externally adjustable using a resistor divider. A recommended  
value for RFBT of 100 kΩ for improved noise immunity compared to 1 MΩ and reduced current consumption  
compared to lower resistance values. Calculate RFBB using the following equation:  
R
V
× V  
FBT  
OUT  
REF  
REF  
R
=
(9)  
FBB  
V  
Choose the closest standard value of 24.9 kΩfor RFBB  
.
9.2.1.2.3 Switching Frequency Selection  
Connect a 15.8-kΩ resistor from RT to AGND to set a switching frequency of 1 MHz, which is designed for an  
output of 5 V as it establishes an inductor peak-to-peak ripple current in the range of 20% to 40% of the 6-A  
rated output current at a nominal input voltage of 24 V.  
9.2.1.2.4 Input Capacitor Selection  
The TPSM63608 requires a minimum input capacitance of 2 × 10-µF ceramic, preferably with X7R dielectric.  
The voltage rating of input capacitors must be greater than the maximum input voltage. For this design, select  
two 10-µF, X7R, 50-V, 1210 case size, ceramic capacitors connected from VIN1 and VIN2 to PGND as close as  
possible to the module. See 9-17 for recommneded layout placement.  
9.2.1.2.5 Output Capacitor Selection  
From 8-1, the TPSM63608 requires a minimum of 25 µF of effective output capacitance for proper operation  
at an output voltage of 5 V at 2.2 MHz. Use high-quality ceramic type capacitors with sufficient voltage and  
temperature rating. If needed, connect additional output capacitance to reduce ripple voltage or for applications  
with specific load transient requirements.  
For this design example, use three 47-µF, 6.3-V or 10-V, X7R, 1210, ceramic capacitors connected close to the  
module from the VOUT1 and VOUT2 pins to PGND. The total effective capacitance at 5 V is approximately  
78 µF and 57 µF at 25°C and 40°C, respectively.  
9.2.1.2.6 Other Connections  
Short RBOOT to CBOOT and connect VLDOIN to the 5-V output for best efficiency. To increase phase margin  
when using an output capacitance close to the minimum in 8-1, a feedforward capacitor, designated as CFF  
can be placed across the upper feedback resistor. Place the zero created by CFF and RFBT higher than one fifth  
the switching so that it boosts phase but does not significantly increase the crossover frequency. Because this  
CFF capacitor can conduct noise from the output of the circuit directly to the FB node of the IC, a 4.99-kΩ  
resistor, RFF, must be placed in series with CFF. If the ESR zero of the output capacitor is below 200 kHz, do not  
use CFF.  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPSM63608  
TPSM63608  
ZHCSRQ3 FEBRUARY 2023  
www.ti.com.cn  
9.2.1.3 Application Curves  
Unless otherwise indicated, VIN = 24 V, VOUT = 5 V, IOUT = , and FSW = 1 MHz.  
100  
95  
90  
85  
80  
75  
70  
100  
95  
90  
85  
80  
75  
70  
VIN = 12 V  
VIN = 24 V  
VIN = 36 V  
VIN = 12 V  
VIN = 24 V  
VIN = 36 V  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Output Current (A)  
Output Current (A)  
VOUT = 5 V  
FPWM mode  
FSW = 1 MHz  
VOUT = 5 V  
Auto mode  
FSW = 1 MHz  
9-2. Efficiency for VOUT = 5 V  
9-3. Efficiency for VOUT = 5 V  
5.05  
5.025  
5
5.05  
5.025  
5
4.975  
4.95  
4.975  
4.95  
VIN = 12 V  
VIN = 24 V  
VIN = 36 V  
VIN = 12 V  
VIN = 24 V  
VIN = 36 V  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Output Current (A)  
Output Current (A)  
VOUT = 5 V  
FPWM mode  
FSW = 1 MHz  
VOUT = 5 V  
Auto mode  
FSW = 1 MHz  
9-4. Load Regulation for VOUT = 5 V  
9-5. Load Regulation for VOUT = 5 V  
CH 4 ( IOUT )  
CH 3 ( VOUT )  
CH 1 ( VIN )  
CH 2 ( VOUT )  
CH 3 ( PG )  
VOUT = 5 V  
TR = TF = 4 µs  
FPWM mode  
VIN = 24 V  
FSW = 1 MHz  
Slew rate = 1 A/µs  
VIN = 24 V  
IOUT = 6 A  
FSW = 1 MHz  
9-7. Load Transient, 0 A to 4 A, 1 A/µs  
9-6. Start-up  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPSM63608  
TPSM63608  
ZHCSRQ3 FEBRUARY 2023  
www.ti.com.cn  
75  
60  
45  
30  
15  
0
CH 1 ( VIN )  
CH 2 ( VOUT )  
CH 3 ( PG )  
CISPR 11/32 Class B QP detector  
CISPR 11/32 Class B AVG detector  
Evaluation Board  
CH 4 ( IOUT )  
-15  
0.1  
0.2 0.3 0.5 0.7  
1
2
3
4 5 6 78 10  
20 30  
Frequency (MHz)  
Default EVM  
VOUT = 5 V  
FSW = 1 MHz  
VOUT = 5 V  
FSW = 1 MHz  
9-9. CISPR 11/32 Class B Conducted Emissions:  
VIN = 24 V, SPSP ON TPSM63610EVM  
9-8. Start-up into Short Circuit  
50  
45  
40  
35  
30  
25  
20  
15  
10  
CISPR11 Class B Limit  
Evaluation Board (Horizontal)  
Evaluation Board (Vertical)  
0
5
0
100 200 300 400 500 600 700 800 900 1000  
Frequency (MHz)  
Additional 2 x  
VOUT = 5 V  
FSW = 1 MHz  
Default EVM  
VOUT = 5 V  
FSW = 1 MHz  
10pF CIN with EMI  
filter removed  
9-10. CISPR 11/32 Class B Conducted  
Emissions: VIN = 24 V, SPSP OFF TPSM63610EVM  
9-11. CISPR 11 Class B Radiated Emissions: VIN  
= 24 V, SPSP ON TPSM63610EVM  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
CISPR11 Class B Limit  
Evaluation Board (Horizontal)  
Evaluation Board (Vertical)  
0
0
100 200 300 400 500 600 700 800 900 1000  
Frequency (MHz)  
Additional 2 x 10pF CIN with EMI filter  
removed  
VOUT = 5 V  
FSW = 1 MHz  
9-12. CISPR 11 Class B Radiated Emissions: VIN = 24 V, SPSP OFF TPSM63610EVM  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPSM63608  
 
TPSM63608  
ZHCSRQ3 FEBRUARY 2023  
www.ti.com.cn  
9.2.2 Design 2 Inverting Buck-Boost Regulator with Negative Output Voltage  
9-13 shows the schematic diagram of an inverting buck-boost (IBB) regulator with an output of 12 V and a  
switching frequency of 1 MHz with a nominal input voltage of 12 V that ranges from 9 V to 24 V.  
VIN+  
U1  
CIN3  
10  
VIN1  
VIN2  
VIN = 9 V to 24 V  
VIN–  
VIN(on) = 8.9 V  
F
CIN1  
10  
CIN2  
10  
F
F
PGND  
PGND  
RENT  
604 k  
–VOUT  
–VOUT  
TPSM63608  
Optional  
external bias  
Precision  
enable for  
VIN UVLO  
EN  
VLDOIN  
VOUT+  
VOUT1  
VOUT2  
VCC  
RENB  
100 k  
SYNC/  
MODE  
VOUT = –12 V  
IOUT(max) = –3.8 A  
COUT  
CBOOT  
RBOOT  
FB  
RFBT  
SPSP  
3 22  
F
110 k  
–VOUT  
PG  
RT  
VOUT–  
–VOUT  
RRT  
15.8 k  
RFBB  
10 k  
AGND  
–VOUT  
9-13. Circuit Schematic  
9.2.2.1 Design Requirements  
9-3 shows the intended input, output, and performance parameters for this application example. With an IBB  
topology, the module sees a total current of IIN + |IOUT|, which is highest at minimum input voltage.  
9-3. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
Input voltage UVLO turn on  
Output voltage  
VALUE  
9 V to 24 V  
8.9 V  
12 V  
3.8 A  
1 MHz  
Full-load current  
Switching frequency  
Output voltage regulation  
±1%  
9-4 gives the selected buck module power-stage components with availability from multiple vendors. This  
design uses an all-ceramic output capacitor implementation.  
9-4. List of Materials for Application Circuit 2  
REF DES  
QTY  
SPECIFICATION  
10 µF, 50 V, X7R, 1210, ceramic  
22 µF, 16 V, X7R, 1206, ceramic  
22 µF, 25 V, X7R, 1210, ceramic  
MANUFACTURER(1)  
PART NUMBER  
C1210C106K5RACTU  
CNA6P1X7R1H106K  
GRM31CZ71C226ME15L  
GRM32ER71E226ME15L  
12103C226KAT4A  
Kemet  
CIN1, CIN2, CIN3  
3
TDK  
Murata  
Murata  
COUT1, COUT2  
,
3
1
COUT3  
AVX  
47 µF, 16 V, X6S, 1210, ceramic  
Murata  
GRM32EC81C476ME15L  
TPSM63608RDLR  
U1  
TPSM63608 36-V, 6-A synchronous buck module  
Texas Instruments  
(1) See the Third-Party Products Disclaimer.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPSM63608  
 
 
 
 
 
TPSM63608  
ZHCSRQ3 FEBRUARY 2023  
www.ti.com.cn  
9.2.2.2 Detailed Design Procedure  
9.2.2.2.1 Output Voltage Setpoint  
For an output voltage of 12 V, choose upper and lower feedback resistance of 110 kΩ and 10 kΩ,  
respectively, using Adjustable Output Voltage Equation.  
9.2.2.2.2 IBB Maximum Output Current  
The achievable output current with an IBB topology using the TPSM63608 is IOUT(max) = ILDC(max) × (1 D),  
where ILDC(max) = 6 A is the rated current of the module and D = |VOUT| / (VIN + |VOUT|) is the IBB duty cycle. 图  
9-14 provides the maximum output current capability as a function of input voltage for output voltage setpoints of  
3.3 V, 5 V and 12 V.  
9.2.2.2.3 Switching Frequency Selection  
Connect a 15.8-kΩ resistor from RT to AGND to set a switching frequency of 1 MHz, which is designed for an  
output of 12 V.  
9.2.2.2.4 Input Capacitor Selection  
Use two 10-µF, 50-V, X7R-dielectric ceramic capacitors in 1210 case size connected symmetrically from the  
VIN1 and VIN2 pins to PGND as close as possible to the module. More specifically, these capacitors appear  
from the drain of the internal high-side MOSFET to the source of the low-side MOSFET, effectively connecting  
from the positive input voltage to the negative output voltage terminals.  
The sum of the input and output voltages, VIN + |VOUT|, is the effective applied voltage across the capacitors.  
The total effective capacitance at 25°C and input voltages of 12 V and 24 V (corresponding to applied voltages  
of 24 V and 36 V) is approximately 12 µF and 8 µF, respectively. Check the capacitance versus voltage derating  
curve in the capacitor data sheet.  
Use an additional 10-µF, 50-V capacitor directly across the input. This capacitor is designated as CIN3 and  
connects across the VIN+ and VINterminals as shown in 9-13.  
9.2.2.2.5 Output Capacitor Selection  
For this IBB design example, use three 22-µF, 25-V, X7R-dielectric ceramic capacitors in 1210 case size  
connected symmetrically close to the module from the VOUT pins (Pin 9 and Pin 10) to PGND. The total  
effective capacitance is approximately 25 µF with DC bias of 12 V.  
9.2.2.2.6 Other Considerations  
Short RBOOT to CBOOT and connect VLDOIN to the power stage GND terminal, which corresponds to VOUT  
pins (Pin 9 and Pin 10) of the module, for best efficiency.  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPSM63608  
TPSM63608  
ZHCSRQ3 FEBRUARY 2023  
www.ti.com.cn  
9.2.2.3 Application Curves  
Unless otherwise indicated, VIN = 12 V, VOUT = 12 V, and FSW = 1 MHz.  
6
5
4
3
2
1
0
95  
90  
85  
80  
75  
70  
65  
VOUT = -3.3 V  
VOUT = -5 V  
VOUT = -12 V  
VIN = 12 V  
VIN = 24 V  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
0
3
6
9
12 15 18 21 24 27 30 33  
Input Voltage (V)  
Output Current (A)  
9-15. Efficiency for VOUT = 12 V, FPWM Mode  
9-14. IBB Maximum Output Current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPSM63608  
 
TPSM63608  
ZHCSRQ3 FEBRUARY 2023  
www.ti.com.cn  
9.3 Power Supply Recommendations  
The TPSM63608 buck module is designed to operate over a wide input voltage range of 3 V to 36 V. The  
characteristics of the input supply must be compatible with the Absolute Maximum Ratings and Recommended  
Operating Conditions in this data sheet. In addition, the input supply must be capable of delivering the required  
input current to the loaded regulator circuit. Estimate the average input current with 方程10.  
V
× I  
OUT OUT  
I
=
(10)  
IN  
V
× η  
IN  
where  
ηis the efficiency.  
If the module is connected to an input supply through long wires or PCB traces with a large impedance, take  
special care to achieve stable performance. The parasitic inductance and resistance of the input cables can  
have an adverse affect on module operation. More specifically, the parasitic inductance in combination with the  
low-ESR ceramic input capacitors form an underdamped resonant circuit, possibly resulting in instability or  
voltage transients each time the input supply is cycled ON and OFF. The parasitic resistance causes the input  
voltage to dip during a load transient. If the module is operating close to the minimum input voltage, this dip can  
cause false UVLO triggering and a system reset.  
The best way to solve such issues is to reduce the distance from the input supply to the module and use an  
electrolytic input capacitor in parallel with the ceramics. The moderate ESR of the electrolytic capacitor helps  
damp the input resonant circuit and reduce any overshoot or undershoot at the input. A capacitance in the range  
of 47 μF to 100 μF is usually sufficient to provide input parallel damping and helps hold the input voltage  
steady during large load transients. A typical ESR of 0.1 Ω to 0.4 Ω provides enough damping for most input  
circuit configurations.  
9.4 Layout  
Proper PCB design and layout is important in high-current, fast-switching module circuits (with high internal  
voltage and current slew rates) to achieve reliable device operation and design robustness. Furthermore, the  
EMI performance of the module depends to a large extent on PCB layout.  
9.4.1 Layout Guidelines  
The following list summarizes the essential guidelines for PCB layout and component placement to optimze  
DC/DC module performance, including thermals and EMI signature. 9-16 and 9-17 show a recommended  
PCB layout for the TPSM63608 with optimized placement and routing of the power-stage and small-signal  
components.  
Place input capacitors as close as possible to the VIN pins. Note the dual and symmetrical arrangement of  
the input capacitors based on the VIN1 and VIN2 pins located on each side of the module package. The high-  
frequency currents are split in two and effectively flow in opposing directions such that the related magnetic  
fields contributions cancel each other, leading to improved EMI performance.  
Use low-ESR 1206 or 1210 ceramic capacitors with X7R or X7S dielectric. The module has integrated  
dual 0402 input capacitors for high-frequency bypass.  
Ground return paths for the input capacitors must consist of localized top-side planes that connect to the  
PGND pads under the module.  
Even though the VIN pins are connected internally, use a wide polygon plane on a lower PCB layer to  
connect these pins together and to the input supply.  
Place output capacitors as close as possible to the VOUT pins. A similar dual and symmetrical arrangement  
of the output capacitors enables magnetic field cancellation and EMI mitigation.  
Ground return paths for the output capacitors must consist of localized top-side planes that connect to the  
PGND pads under the module.  
Even though the VOUT pins are connected internally, use a wide polygon plane on a lower PCB layer to  
connect these pins together and to the load, thus reducing conduction loss and thermal stress.  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPSM63608  
 
 
 
 
TPSM63608  
ZHCSRQ3 FEBRUARY 2023  
www.ti.com.cn  
Keep the FB trace as short as possible by placing the feedback resistors close to the FB pin. Reduce noise  
sensitivity of the output voltage feedback path by placing the resistor divider close to the FB pin, rather than  
close to the load. FB is the input to the voltage-loop error anplifier and represents a high-impedance node  
sensitive to noise. Route a trace from the upper feedback resistor to the required point of output voltage  
regulation.  
Use a solid ground plane on the PCB layer directly below the top layer with the module. This plane acts as a  
noise shield by minimizing the magnetic fields associated with the currents in the switching loops. Connect  
AGND pins 6 and 11 directly to PGND pin 19 under the module.  
Provide enough PCB area for proper heatsinking. Use sufficient copper area to acheive a low thermal  
impedance commensurate with the maximum load current and ambient temperature conditions. Provide  
adequate heatsinking for the TPSM63608 to keep the junction temperature below 150°C. For operation at full  
rated load, the top-side ground plane is an important heat-dissipating area. Use an array of heat-sinking vias  
to connect the exposed pads (PGND) of the package to the PCB ground plane. If the PCB has multiple  
copper layers, connect these thermal vias to inner-layer ground planes. Make the top and bottom PCB layers  
preferably with two-ounce copper thickness (and no less than one ounce).  
9.4.1.1 Thermal Design and Layout  
For a DC/DC module to be useful over a particular temperature range, the package must allow for the efficient  
removal of the heat produced while keeping the junction temperature within rated limits. The TPSM63608  
module is available in a small 6.5-mm × 7.55-mm 22-pin QFN (RDL) package to cover a range of application  
requirements. The Thermal Information table summarizes the thermal metrics of this package with related detail  
provided by the Semiconductor and IC Package Thermal Metrics application report.  
The 22-pin QFN package offers a means of removing heat through the exposed thermal pads at the base of the  
package. This allows a significant improvement in heatsinking, and it becomes imperative that the PCB is  
designed with thermal lands, thermal vias, and one or more ground planes to complete the heat removal  
subsystem. The exposed pads of the TPSM63608 are soldered to the ground-connected copper lands on the  
PCB directly underneath the device package, reducing the thermal resistance to a very low value.  
Preferably, use a four-layer board with 2-oz copper thickness for all layers to provide low impedance, proper  
shielding and lower thermal resistance. Numerous vias with a 0.3-mm diameter connected from the thermal  
lands to the internal and solder-side ground planes are vital to promote heat transfer. In a multi-layer PCB stack-  
up, a solid ground plane is typically placed on the PCB layer below the power-stage components. Not only does  
this provide a plane for the power-stage currents to flow, but it also represents a thermally conductive path away  
from the heat-generating device.  
9.4.2 Layout Example  
Cin1  
Rrt  
Cout1  
U1  
Rfbb  
Cboot  
Rfbt  
Cin2  
Cout2  
Rboot  
Cvcc  
9-16. Typical Layout  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPSM63608  
 
 
 
TPSM63608  
ZHCSRQ3 FEBRUARY 2023  
www.ti.com.cn  
Legend  
Top layer copper  
Layer-2 GND plane  
Top solder  
SPSP  
RT  
AGND  
MODE  
VIN  
EN  
VOUT  
VOUT  
Input  
Capacitor  
Output  
Capacitor  
Position the input  
capacitors very close  
to the VIN pins  
Place an array of  
PGND vias close to the  
IC for heat spreading  
PGND  
Output  
Capacitor  
Input  
Capacitor  
FB  
AGND  
VIN  
SW  
Place the feedback  
components close to the FB pin  
Place thermal vias at the  
VOUT pins for heat spreading  
9-17. Typical Top Layer Design  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPSM63608  
 
TPSM63608  
ZHCSRQ3 FEBRUARY 2023  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Device Support  
10.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
10.1.2 Development Support  
With an input operating voltage from 3 V to 36 V and rated output current up to 10 A, the TPSM63608 family of  
synchronous buck power modules provides flexibility, scalability and optimized solution size for a range of  
applications. These modules enable DC/DC solutions with high density, low EMI and increased flexibility.  
Available EMI mitigation features include dual-random spread spectrum (DRSS), RBOOT-configured switch-  
node slew rate control, and integrated input bypass capacitors.  
10-1. Synchronous Buck DC/DC Power Module Family  
DC/DC MODULE  
RATED IOUT PACKAGE  
DIMENSIONS  
FEATURES  
EMI MITIGATION  
TPSM63610  
8 A  
RT adjustable FSW,  
6.5 mm × 7.5 mm × 4 external  
DRSS, RBOOT, integrated  
input, VCC and BOOT  
capacitors  
B3QFN (22)  
6 A  
mm  
synchronization,MODE  
adjustable (PFM/FPWM)  
TPSM63608  
For development support see the following:  
For TI's reference design library, visit the TI Reference Design library.  
For TI's WEBENCH Design Environment, visit the WEBENCH® Design Center.  
To design a low-EMI power supply, review TI's comprehensive EMI Training Series.  
To design an inverting buck-boost (IBB) regulator, visit DC/DC inverting buck-boost modules.  
TI Reference Designs:  
Multiple Output Power Solution For Kintex 7 Application  
Arria V Power Reference Design  
Altera Cyclone V SoC Power Supply Reference Design  
Space-optimized DC/DC Inverting Power Module Reference Design With Minimal BOM Count  
3- To 11.5-VIN, 5-VOUT, 1.5-A Inverting Power Module Reference Design For Small, Low-noise Systems  
Technical Articles:  
Powering Medical Imaging Applications With DC/DC Buck Converters  
How To Create A Programmable Output Inverting Buck-boost Regulator  
To view a related device of this product, see the LM61495 36-V, 10-A synchronous buck converter.  
10.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPSM63608 module with WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance.  
Run thermal simulations to understand board thermal performance.  
Export customized schematic and layout into popular CAD formats.  
Print PDF reports for the design, and share the design with colleagues.  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPSM63608  
 
 
 
TPSM63608  
ZHCSRQ3 FEBRUARY 2023  
www.ti.com.cn  
10.2 Documentation Support  
10.2.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Quick Reference Guide to TI Buck Switching DC/DC Application Notes Compilation of  
Application Notes  
Texas Instruments, Innovative DC/DC Power Modules selection guide  
Texas Instruments, Enabling Small, Cool and Quiet Power Modules with Enhanced HotRod™ QFN Package  
Technology white paper  
Texas Instruments, Benefits and Trade-offs of Various Power-Module Package Options white paper  
Texas Instruments, Simplify Low EMI Design with Power Modules white paper  
Texas Instruments, Power Modules for Lab Instrumentation white paper  
Texas Instruments, An Engineer's Guide To EMI In DC/DC Regulators e-book  
Texas Instruments, Soldering Considerations for Power Modules application report  
Texas Instruments, Practical Thermal Design With DC/DC Power Modules application report  
Texas Instruments, Using New Thermal Metrics application report  
Texas Instruments, AN-2020 Thermal Design By Insight, Not Hindsight application report  
Texas Instruments, Using the TPSM53602/3/4 for Negative Output Inverting Buck-Boost Applications  
application report  
10.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.5 Trademarks  
HotRodand TI E2Eare trademarks of Texas Instruments.  
WEBENCH® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this datasheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPSM63608  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPSM63608RDFR  
ACTIVE  
B3QFN  
RDF  
22  
1000 RoHS & Green  
NIPDAU  
Level-3-250C-168 HR  
-40 to 125  
63608  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
B3QFN - 4.05 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RDF0022A  
6.6  
6.4  
B
A
7.6  
7.4  
PIN 1 INDEX AREA  
4.05  
3.95  
C
SEATING PLANE  
0.08  
C
(0.4)  
(0.6)  
4X  
3.4  
3.2  
1.3  
1.1  
4X  
(0.13) TYP  
0.95  
0.85  
4X  
22X (0.15)  
0.1  
C
A
B
0.05  
C
9
10  
22  
21  
1.1  
0.9  
4X  
0.1  
C
A
B
2X 6.5  
2X 0.75  
20  
19  
2X 2.25  
0.3  
0.2  
14X  
1
0.1  
C
A
B
18  
0.05  
C
20X 0.65  
1.1  
PIN 1 ID  
22X (0.125)  
14X  
0.9  
4226290/A 09/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
B3QFN - 4.05 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RDF0022A  
(5.7)  
(0.05) MIN  
ALL AROUND  
TYP  
4X (3.3)  
(R 0.05) TYP  
1
18  
14X (0.25)  
19  
20  
21  
22  
4X (1)  
0.000 PKG  
2X (6.5)  
2X (0.75)  
14X (1.2)  
2X (2.25)  
4X (0.9)  
9
10  
20X (0.65)  
4X (1.075)  
(Ø0.2) TYP  
4X (1.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 12X  
SOLDER MASK  
OPENING  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
EXPOSED METAL  
SOLDER MASK  
DEFINED  
NON- SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4226290/A 09/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
B3QFN - 4.05 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RDF0022A  
(5.7)  
12X (0.95)  
(R 0.05) TYP  
1
18  
14X (0.25)  
19  
12X (0.95)  
20  
21  
0.000 PKG ℄  
2X (6.5)  
3X (0.75)  
14X (1.2)  
22  
3X (2.25)  
4X (0.9)  
9
10  
20X (0.65)  
4X (1.075)  
4X (1.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SOLDER COVERAGE:  
PIN 19 TO 22 : 82%  
SCALE: 12X  
4226290/A 09/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPSM63610

采用 7.5mm x 6.5mm 增强型 HotRod™ QFN 封装的高密度 36V 输入、1V 至 20V 输出、8A 电源模块
TI

TPSM63610E

高密度、36V 输入、1V 至 20V 输出、8A 电源模块
TI

TPSM63610EXTRDFR

高密度、36V 输入、1V 至 20V 输出、8A 电源模块 | RDF | 22 | -55 to 125
TI

TPSM63610RDFR

采用 7.5mm x 6.5mm 增强型 HotRod™ QFN 封装的高密度 36V 输入、1V 至 20V 输出、8A 电源模块 | RDF | 22 | -40 to 125
TI

TPSM82480

带 MODE 和 VSEL 选项的 6A、5.5V 输入降压电源模块
TI

TPSM82480MOPR

带 MODE 和 VSEL 选项的 6A、5.5V 输入降压电源模块 | MOP | 24 | -40 to 125
TI

TPSM82480MOPT

带 MODE 和 VSEL 选项的 6A、5.5V 输入降压电源模块 | MOP | 24 | -40 to 125
TI

TPSM82810

采用 3mm x 4mm uSIL 封装、具有可调节频率和跟踪功能的 2.75V 至 6V、4A 降压模块
TI

TPSM82810SIL

TPSM8281x 2.75-V to 6-V Adjustable-Frequency Step-Down Converter with Integrated Inductor
TI

TPSM82810SILR

采用 3mm x 4mm uSIL 封装、具有可调节频率和跟踪功能的 2.75V 至 6V、4A 降压模块 | SIL | 14 | -40 to 125
TI

TPSM82810SSIL

TPSM8281x 2.75-V to 6-V Adjustable-Frequency Step-Down Converter with Integrated Inductor
TI

TPSM82810SSILR

采用 3mm x 4mm uSIL 封装、具有可调节频率和跟踪功能的 2.75V 至 6V、4A 降压模块 | SIL | 14 | -40 to 125
TI