TPSM82816 [TI]

采用 3mm x 4mm QFN 封装、具有可调节频率和跟踪功能的 2.75V 至 6V、6A 降压模块;
TPSM82816
型号: TPSM82816
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 3mm x 4mm QFN 封装、具有可调节频率和跟踪功能的 2.75V 至 6V、6A 降压模块

文件: 总33页 (文件大小:1774K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPSM82816  
ZHCSQM0 DECEMBER 2022  
TPSM82816 具有集成电感器和频率同步功能2.7V 6V 6A 降压  
MicroSiP电源模块  
1 特性  
3 说明  
• 可调和可同步开关频率1.8MHz 4MHz  
• 展频时钟可选)  
• 可选强PWM PFM/PWM 运行  
• 输出电压精度±1%PWM 运行)  
• 输入电压范围2.7V 6V  
• 输出电压范围0.6V 5.5V  
• 可调软启动或跟踪  
TPSM82816 是具有集成电感器、引脚对引脚兼容的  
3A4A 6A 高效、易于使用的同步直流/直流降压电  
源模块系列中的一款产品。这些器件基于固定频率峰值  
电流模式控制拓扑用于具有高功率密度和易用性要求  
的电信、测试和测量以及医疗应用领域。低阻开关可在  
高温环境下支持高达 6A 的持续输出电流。用户可通过  
外部方式在 1.8MHz 4MHz 范围内调节开关频率,  
亦可在该频率范围内将其同步至外部时钟。在省电模式  
TPSM82816 会在轻负载时自动进入 PFM从而  
可在整个负载范围内保持高效率。TPSM82816 可在  
PWM 模式下提供 1% 的输出电压精度这有助于实现  
具有高输出电压精度的电源设计。SS/TR 引脚可设置  
启动时间或跟踪向外部源提供的输出电压。此特性可实  
现不同电源轨的外部定序并限制启动期间的浪涌电流。  
• 具有窗口比较器的电源正常输出  
• 精密使能输入可实现  
– 用户定义的欠压锁定  
– 准确排序  
100% 占空比  
• 输出放电  
26µA 静态电流典型值)  
TPSM82813 (3A) TPSM82810 (4A) 引脚对引  
脚兼容  
优异的热性能  
• –40°C 125°C 工作温度范围  
封装信息  
封装(1)  
封装尺寸标称值)  
器件型号  
TPSM82816  
SIEuSiP143.0mm × 4.0mm × 1.6mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
光学模块、数据中心互连  
信号测量、源生成、仪表  
患者监护和诊断  
无线基础设施  
加固型通信传感器、成像和雷达  
TPSM82816  
VOUT  
100  
95  
90  
85  
80  
75  
70  
65  
60  
VOUT  
2.7 V - 6 V  
VIN  
VOUT  
CIN  
22 µF  
R1  
CFF  
EN  
COUT  
2 × 47 µF  
FB  
MODE/SYNC  
R3  
R2  
External sync (optional)  
COMP/FSET  
SS/TR  
RCF  
CSS  
PG  
GND  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
VOUT = 3.3V  
55  
50  
45  
40  
原理图  
FPWM  
PSM  
100u  
1m  
10m  
100m  
1
6
Output Current (A)  
效率与输出电流间的关系VIN = 5V;  
fSW = 1.8MHzTA = 25°C  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSEY7  
 
 
 
TPSM82816  
ZHCSQM0 DECEMBER 2022  
www.ti.com.cn  
Table of Contents  
8.4 Device Functional Modes..........................................12  
9 Application and Implementation..................................14  
9.1 Application Information............................................. 14  
9.2 Typical Application.................................................... 14  
9.3 System Examples..................................................... 21  
9.4 Power Supply Recommendations.............................22  
9.5 Layout....................................................................... 23  
10 Device and Documentation Support..........................25  
10.1 Device Support....................................................... 25  
10.2 Documentation Support.......................................... 25  
10.3 接收文档更新通知................................................... 25  
10.4 支持资源..................................................................25  
10.5 Trademarks.............................................................25  
10.6 Electrostatic Discharge Caution..............................25  
10.7 术语表..................................................................... 25  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................2  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings........................................ 4  
7.2 ESD Ratings............................................................... 4  
7.3 Recommended Operating Conditions.........................4  
7.4 Thermal Information....................................................4  
7.5 Electrical Characteristics.............................................5  
7.6 Typical Characteristics................................................7  
8 Detailed Description........................................................8  
8.1 Overview.....................................................................8  
8.2 Functional Block Diagram...........................................8  
8.3 Feature Description.....................................................8  
Information.................................................................... 25  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
December 2022  
*
Initial Release  
5 Device Comparison Table  
DEVICE NUMBER  
OUTPUT CURRENT  
6 A  
SPREAD SPECTRUM CLOCKING  
TPSM82816SIER  
Set by COMP / FSET pin  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPSM82816  
 
 
TPSM82816  
ZHCSQM0 DECEMBER 2022  
www.ti.com.cn  
6 Pin Configuration and Functions  
TOP VIEW  
BOTTOM VIEW  
9
10  
9
8
7
6
6
7
8
10  
FB  
FB  
GND  
GND  
GND  
GND  
14  
11  
14  
11  
13  
12  
13  
12  
GND  
VIN  
GND  
GND  
VIN  
GND  
VIN  
VIN  
EN  
VIN  
VOUT  
VOUT  
VIN  
EN  
2
PG  
3
PG  
1
5
5
3
2
1
4
4
6-1. uSiP 14-pin SIE Package  
6-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
2
This pin is the enable pin of the device. Connect to logic low to disable the device. Pull high  
to enable the device. Do not leave this pin unconnected.  
EN  
FB  
I
I
7
Voltage feedback input. Connect the output voltage resistor divider to this pin.  
Ground pin  
GND  
6, 10, 13, 14  
The device runs in PSM (auto PFM/PWM transition) mode when this pin is pulled low. When  
the pin is pulled high, the device runs in forced PWM mode. Do not leave this pin  
unconnected. The MODE/SYNC pin can also be used to synchronize the device to an  
external frequency. See Synchronizing to an External Clock.  
MODE/SYNC  
4
I
I
Device compensation and frequency set input. A resistor from this pin to GND defines the  
compensation of the control loop as well as the switching frequency if not externally  
synchronized. The switching frequency is set to 2.25 MHz if the pin is tied to GND or VIN.  
Spread spectrum is also enabled and disabled by this pin. See COMP/FSET. Do not leave  
this pin unconnected.  
COMP/FSET  
9
Open-drain power-good output with window comparator. This pin is pulled to GND while  
VOUT is outside the power-good threshold. This pin can be left open or tied to GND if not  
used. A pullup resistor can be connected to any voltage not larger than VIN.  
PG  
3
8
O
I
Soft-start, tracking pin. A capacitor connected from this pin to GND defines the output  
voltage rise time. The pin can also be used as an input for tracking and sequencing - see  
Voltage Tracking.  
SS/TR  
VOUT  
VIN  
5
Output voltage pin. This pin is internally connected to the integrated inductor.  
Power supply input. Connect the input capacitor as close as possible between the VIN and  
GND pins.  
1, 11, 12  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPSM82816  
 
TPSM82816  
ZHCSQM0 DECEMBER 2022  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
MAX  
6.5  
UNIT  
V
Pin voltage(2)  
Pin voltage(2)  
Pin voltage(2)  
ISINK_PG  
VIN, EN, MODE/SYNC  
FB  
4
V
COMP/FSET, PG, SS/TR, VOUT  
Sink Current at PG pin  
Operating junction temperature  
Storage temperature  
VIN + 0.3  
10  
V
mA  
°C  
°C  
TJ  
125  
40  
40  
Tstg  
125  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values are with respect to the network ground terminal  
7.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002, all pins(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
MIN  
2.7  
0.6  
0
NOM  
MAX  
6
UNIT  
VIN  
Input voltage range  
Output voltage range  
Output current  
V
V
A
VOUT  
IOUT  
5.5  
6
32 ×  
V / VOUT  
COUT  
Effective output capacitance(1)  
Effective input capacitance(1)  
470  
μF  
CIN  
5
4.5  
10  
μF  
kΩ  
mA  
°C  
RCF  
100  
2
ISINK_PG  
TJ  
Sink current at PG pin  
Junction temperature  
0
125  
40  
(1) The values given for all the capacitors in the table are effective capacitance, which includes the DC bias effect. Due to the DC bias  
effect of ceramic capacitors, the effective capacitance is lower than the nominal value when a voltage is applied. Please check the  
manufacturer´s DC bias curves for the effective capacitance vs DC voltage applied. Please see the feature description for COMP/  
FSET about the output capacitance vs compensation setting and output voltage.  
7.4 Thermal Information  
TPSM82816  
THERMAL METRIC(1)  
14 PINS  
UNIT  
JEDEC 51-5  
EVM  
32.2  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
45.3  
29  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
n/a (2)  
n/a (2)  
7.2  
27.4  
5.7  
ΨJT  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPSM82816  
 
 
 
 
 
 
 
 
 
 
 
TPSM82816  
ZHCSQM0 DECEMBER 2022  
www.ti.com.cn  
7.4 Thermal Information (continued)  
TPSM82816  
14 PINS  
THERMAL METRIC(1)  
UNIT  
JEDEC 51-5  
EVM  
12.7  
Junction-to-board characterization parameter  
16.2  
°C/W  
ΨJB  
(1) For more information about thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.  
(2) Not applicable to an EVM.  
7.5 Electrical Characteristics  
Over operating junction remperature range (TJ = 40°C to +125°C) and VIN = 2.7 V to 6 V. Typical values at VIN = 5 V and TJ  
= 25°C. (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
EN = High, no load, device not switching,  
MODE/SYNC = GND, VOUT = 0.6 V  
IQ  
Quiescent current  
18  
36  
μA  
ISD  
Shutdown current  
EN = GND  
VIN rising  
VIN falling  
TJ rising  
0.15  
2.6  
2.5  
180  
15  
90  
2.7  
2.6  
μA  
V
2.45  
2.1  
VUVLO  
Undervoltage lock out threshold  
V
Thermal shutdown threshold  
Thermal shutdown hysteresis  
°C  
°C  
TJSD  
TJ falling  
CONTROL and INTERFACE  
VIH,EN  
VIL,EN  
IIH,EN  
VIH  
Input threshold voltage  
EN rising  
1.05  
0.96  
1.1  
1.0  
1.15  
1.05  
125  
V
V
Input threshold voltage  
EN falling  
Input leakage current into EN  
Input-threshold voltage at MODE/SYNC  
Input-threshold voltage at MODE/SYNC  
Input leakage current into MODE/SYNC  
PWM Switching frequency range  
PWM Switching frequency  
EN = VIN or GND  
nA  
V
1.1  
VIL  
0.3  
250  
4
V
IIH  
nA  
MHz  
MHz  
fSW  
MODE/SYNC = high  
1.8  
2.25  
2.25  
fSW  
COMP/FSET = GND or VIN  
2.08  
2.4  
using a resistor from COMP/FSET to  
GND  
fSW  
PWM Switching frequency tolerance  
12 %  
4
12 %  
Frequency range on MODE/SYNC pin for  
synchronization  
fSYNC  
1.8  
MHz  
µs  
tSync_lock Time to lock to external frequency  
50  
Duty cycle of synchronization signal at  
MODE/SYNC  
20 %  
135  
80 %  
520  
Time from EN high to device starts  
switching; VIN applied already  
tDelay  
Enable delay time  
270  
150  
µs  
µs  
IOUT = 0 mA, time from device starts  
switching to power good; device not in  
current limit  
Output voltage ramp time, SS/TR pin  
open  
tRamp  
ISS/TR  
90  
220  
SS/TR source current  
8
10  
12  
µA  
RDIS,SS/T  
Internal discharge resistance on SS/TR  
EN = low  
0.7  
1.1  
1.5  
kΩ  
R
Tracking gain  
Tracking offset  
VFB / VSS/TR  
1
VFB when VSS/TR = 0 V  
±1  
mV  
UVP power good threshold voltage; dc  
level  
VTH_PG  
VTH_PG  
VOUT rising (%VFB  
)
92 %  
87 %  
95 %  
90 %  
98 %  
93 %  
UVP power good threshold voltage; dc  
level  
VOUT falling (%VFB  
)
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPSM82816  
 
 
 
TPSM82816  
ZHCSQM0 DECEMBER 2022  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
Over operating junction remperature range (TJ = 40°C to +125°C) and VIN = 2.7 V to 6 V. Typical values at VIN = 5 V and TJ  
= 25°C. (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VOUT rising (%VFB  
VOUT falling (%VFB  
MIN  
TYP  
MAX  
UNIT  
OVP power good threshold voltage; dc  
level  
)
107 %  
110 %  
113 %  
VTH_PG  
OVP power good threshold voltage; dc  
level  
)
104 %  
107 %  
0.01  
111 %  
VOL,PG  
IIH,PG  
Low-level output voltage at PG  
Input leakage current into PG  
ISINK_PG = 2 mA  
VPG = 5 V  
0.3  
V
100  
nA  
for a high level to low level transition on  
the power good output  
tPG,DLY  
PG deglitch time  
40  
µs  
OUTPUT  
VFB  
Feedback voltage  
0.6  
V
VFB  
Feedback voltage accuracy  
1 %  
2 %  
PWM mode, VIN VOUT + 1 V  
1 %  
1 %  
PFM mode, VIN VOUT + 1 V, VOUT  
1.5 V, Co,eff 47 µF  
VFB  
Feedback voltage accuracy  
Feedback voltage accuracy  
PFM mode, VIN VOUT + 1 V, VOUT < 1.5  
V, Co,eff 68 µF  
VFB  
2.5 %  
1 %  
5 %  
Feedback voltage accuracy with voltage  
tracking  
VIN VOUT + 1 V, VSS/TR = 0.3 V, PWM  
mode  
VFB  
5 %  
70  
IIH,FB  
Input leakage current into FB  
Load regulation  
VFB = 0.6 V  
PWM mode  
1
0.05  
30  
nA  
%/A  
RDIS  
Output discharge resistance  
Minimum on-time of high-side FET  
Dropout Resistance  
50  
67  
Ω
ton,min  
RDP  
45  
ns  
VIN 3.3 V  
100% mode  
27  
mΩ  
A
ILIMH  
High-side FET switch current limit  
Low-side FET negative current limit  
DC value, VIN = 3 V to 6 V  
DC value, MODE/SYNC = high  
7.3  
9.2  
3  
10.4  
ILIMNEG  
A
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPSM82816  
TPSM82816  
ZHCSQM0 DECEMBER 2022  
www.ti.com.cn  
7.6 Typical Characteristics  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
2
1.5  
1
T
T
T
T
J = -40°C  
J = 25°C  
J = 85°C  
J = 125°C  
TJ = -40°C  
TJ  
TJ  
=
=
25°C  
85°C  
TJ = 125°C  
0.5  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
6
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Input Voltage (V)  
Input Voltage (V)  
7-2. Shutdown Current  
7-1. Quiescent Current  
2.3  
2.29  
2.28  
2.27  
2.26  
2.25  
2.24  
2.23  
2.22  
2.21  
2.2  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
T
TJ  
TJ  
J = -40 °C  
=
=
25 °C  
85 °C  
°C  
TJ = 125  
V
V
V
IN = 2.7 V  
IN = 3.3 V  
IN = 5.0 V  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Junction Temperature (°C)  
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
7-3. Oscillator Frequency (COMP/FSET = VIN)  
7-4. Dropout Resistance  
50  
45  
40  
35  
30  
25  
20  
15  
10  
T
J = -40°C  
TJ = 25°C  
TJ = 85°C  
TJ = 125°C  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Input Voltage (V)  
7-5. Discharge Resistance  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPSM82816  
 
TPSM82816  
ZHCSQM0 DECEMBER 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPSM82816 synchronous switch mode DC/DC converter power modules are based on a fixed-frequency  
peak current-mode control topology. The control loop is internally compensated. To optimize the bandwidth of the  
control loop to the wide range of output capacitance that can be used with the TPSM82816, one of two internal  
compensation settings can be selected. See COMP/FSET. The compensation setting is selected either by a  
resistor from COMP/FSET to GND or by the logic state of this pin. The regulation network achieves fast and  
stable operation with small external components and low-ESR ceramic output capacitors.  
The device supports forced fixed frequency operation (FPWM) with the MODE/SYNC pin tied to a logic high  
level. The frequency is defined as either 2.25 MHz (internally fixed when COMP/FSET is tied to GND or VIN) or  
in a range of 1.8 MHz to 4 MHz (defined by a resistor from COMP/FSET to GND). Alternatively, the device can  
be synchronized to an external clock signal in a range from 1.8 MHz to 4 MHz, applied to the MODE/SYNC pin  
with no need for additional passive components. An internal PLL allows the device to change from internal clock  
to external clock during operation. The synchronization to the external clock is done on the falling edge of the  
clock applied at MODE/SYNC to the rising edge on the internal SW node. When the MODE/SYNC pin is set to a  
logic low level, the device operates in power save mode (PSM). At low output current, the device operates in  
PFM mode and automatically transitions to fixed-frequency PWM mode at higher output current. In PFM  
operation, the switching frequency decreases linearly based on the load to sustain high efficiency down to very  
low output current (see Power Save Mode Operation (PSM) for more details).  
8.2 Functional Block Diagram  
SW  
VOUT  
VIN  
220 nH  
Bias  
Regulator  
Gate Drive and Control  
Ipeak  
Izero  
RDis  
EN  
MODE/SYNC  
gm  
Output  
Discharge  
Oscillator  
PG  
Device  
Control  
GND  
FB  
+
-
VREF  
SS/TR  
Thermal  
shutdown  
COMP/FSET  
8.3 Feature Description  
8.3.1 Precise Enable (EN)  
The TPSM82816 starts operation when the rising EN threshold is exceeded. For proper operation, the EN pin  
must be terminated and must not be left floating. Pulling the EN pin low forces the device into shutdown. In this  
mode, the internal high-side and low-side MOSFETs are turned off and the entire internal control circuitry is  
switched off. The voltage applied at the EN pin of the TPSM82816 is compared to a fixed threshold of 1.1 V for a  
rising voltage.  
The enable input threshold for a falling edge is typically 100 mV lower than the rising edge threshold. The  
Precise Enable input provides a user-programmable undervoltage lockout by adding a resistor divider to the  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPSM82816  
 
 
 
 
TPSM82816  
ZHCSQM0 DECEMBER 2022  
www.ti.com.cn  
input of the EN pin. The Precise Enable input also allows you to drive the pin by a slowly changing voltage and  
enables the use of an external RC network to achieve a precise power-up delay. See the Achieving a Clean  
Start-up by Using a DC/DC Converter with a Precise Enable-pin Threshold Technical Brief for more details.  
8.3.2 Output Discharge  
The purpose of the discharge function is to ensure a defined down-ramp of the output voltage when the device is  
being disabled, but also to keep the output voltage close to 0 V when the device is off. The output discharge  
feature is only active after the TPSM82816 has been enabled at least once since the supply voltage was  
applied. The discharge function is enabled as soon as the device is disabled, in thermal shutdown, or in  
undervoltage lockout. The minimum supply voltage required for the discharge function to remain active is  
typically 2 V. Output discharge is not activated during a current limit event.  
8.3.3 COMP/FSET  
This pin allows the user to set three different parameters independently:  
Internal compensation settings for the control loop (two settings available)  
The switching frequency in PWM mode from 1.8 MHz to 4 MHz  
Enable / disable spread spectrum clocking (SSC)  
A resistor from COMP/FSET to GND changes the compensation as well as the switching frequency. The change  
in compensation allows the user to adopt the device to different values of output capacitance. The resistor must  
be placed close to the pin to keep the parasitic capacitance on the pin to a minimum. The compensation setting  
is sampled at the start-up of the converter, so a change in the resistor during operation only has an effect on the  
switching frequency, but not on the compensation.  
To save external components, the pin can also be directly tied to VIN or GND to set a pre-defined switching  
frequency or compensation. Do not leave the pin floating.  
The switching frequency has to be selected based on the maximum input voltage in the application and the  
output voltage to meet the specifications for the minimum on time.  
Example: VIN = 5.5 V, VOUT = 1 V  
V
OUT  
1 V  
f
=
=
= 2.71 MHz  
(1)  
Sw, max  
V
× t  
5.5 V × 67 ns  
IN  
ON, min  
The compensation range has to be chosen based on the effective minimum capacitance used. The capacitance  
can be increased from the minimum value as given in 8-1, up to the maximum of 470 µF in both  
compensation ranges. If the capacitance of an output changes during operation, for example when load switches  
are used to connect or disconnect parts of the circuitry, the compensation has to be chosen for the minimum  
capacitance on the output. If the output capacitance exceeds 72 µF × V / VOUT[V], use the second  
compensation setting to get the best load transient response. If the output capacitance only exceeds 32 µF × V /  
VOUT[V], use the first compensation setting. Compensating for large output capacitance but having too little  
effective capacitance on the output can lead to instability.  
The switching frequency for the different compensation setting is determined by the following equations.  
For compensation (comp) setting 1 with spread spectrum clocking (SSC) disabled:  
18 MHz × kΩ  
R
kΩ =  
(2)  
(3)  
CF  
f
MHz  
S
For compensation (comp) setting 1 with spread spectrum clocking (SSC) enabled:  
60 MHz × kΩ  
R
kΩ =  
CF  
f
MHz  
S
For compensation (comp) setting 2 with spread spectrum clocking (SSC) disabled:  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPSM82816  
 
 
 
TPSM82816  
ZHCSQM0 DECEMBER 2022  
www.ti.com.cn  
180 MHz × kΩ  
R
kΩ =  
(4)  
CF  
f
MHz  
S
8-1. Switching Frequency and Compensation  
MINIMUM OUTPUT  
CAPACITANCE  
COMPENSATION  
RCF  
SWITCHING FREQUENCY  
For smallest output capacitance  
(comp setting 1)  
1.8 MHz (10 kΩ) ... 4 MHz (4.5 kΩ)  
according to 方程2  
32 µF × V / VOUT[V]  
10 kΩ... 4.5 kΩ  
SSC disabled  
For smallest output capacitance  
(comp setting 1)  
1.8 MHz (33 kΩ) ... 4 MHz (15 kΩ)  
according to 方程3  
32 µF × V / VOUT[V]  
72 µF × V / VOUT[V]  
32 µF × V / VOUT[V]  
72 µF × V / VOUT[V]  
33 kΩ... 15 kΩ  
100 kΩ... 45 kΩ  
Tied to GND  
SSC enabled  
For best transient response  
(larger output capacitance)  
(comp setting 2)  
1.8 MHz (100 kΩ) ... 4 MHz (45 kΩ)  
according to 方程4  
SSC disabled  
For smallest output capacitance  
(comp setting 1)  
Internally fixed 2.25 MHz  
Internally fixed 2.25 MHz  
SSC disabled  
For best transient response  
(larger output capacitance)  
(comp setting 2)  
Tied to VIN  
SSC enabled  
The minimum output capacitance required for stability depends on the output voltage as stated in 8-1. Refer  
to Output Capacitor for further details on the output capacitance required depending on the output voltage.  
A too-high resistor value for RCF is decoded as "tied to VIN" and a value below the lowest range is decoded as  
"tied to GND". The minimum output capacitance in 8-1 is for capacitors close to the output of the device. If the  
capacitance is distributed, a lower compensation setting can be required.  
8.3.4 MODE/SYNC  
When MODE/SYNC is set low, the device operates in PWM or PFM mode, depending on the output current. The  
MODE/SYNC pin forces PWM mode when set high. The pin also allows you to apply an external clock in a  
frequency range from 1.8 MHz to 4 MHz for external synchronization. When an external clock is applied, the  
device only operates in PWM mode. As with the switching frequency selection, the specification for the minimum  
on-time has to be observed when applying the external clock signal. When using external synchronization, TI  
recommends to set the switching frequency (as set by RCF) to a similar value as the externally applied clock.  
This ensures that, if the external clock fails, the switching frequency stays in the same range and the settling  
time to the internal clock is reduced. When there is no resistor from COMP/FSET to GND, but the pin is pulled  
high or low, external synchronization is not possible. An internal PLL allows you to change from an internal clock  
to external clock during operation. The synchronization to the external clock is done on the falling edge of the  
applied clock to the rising edge of the internal SW pin (see Synchronizing to an External Clock). The MODE/  
SYNC pin can be changed during operation.  
8.3.5 Spread Spectrum Clocking (SSC)  
The device offers spread spectrum clocking as an option, set by the COMP/FSET pin. When SSC is enabled,  
the switching frequency is randomly changed in PWM mode when the internal clock is used. The frequency  
variation is typically between the nominal switching frequency and up to 288 kHz above the nominal switching  
frequency. When the device is externally synchronized, the TPSM82816 follows the external clock and the  
internal spread spectrum block is turned off. SSC is also disabled during soft start.  
8.3.6 Undervoltage Lockout (UVLO)  
If the input voltage drops, the undervoltage lockout prevents mis-operation of the device by switching off both the  
MOSFETs. The device is fully operational for voltages above the rising UVLO threshold and turns off if the input  
voltage goes below the falling threshold.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPSM82816  
 
 
TPSM82816  
ZHCSQM0 DECEMBER 2022  
www.ti.com.cn  
8.3.7 Power-Good Output (PG)  
The device has a power-good output with window comparator. The PG pin goes high impedance after the FB pin  
voltage is above 95% and less than 107% of the nominal voltage, and is driven low after the voltage falls below  
90% or rises higher than 110% of the nominal voltage (typical). 8-2 shows the typical PG pin logic. The PG  
pin is an open-drain output and is specified to sink up to 2 mA. The power good output requires a pullup resistor  
connected to any voltage rail less than VIN. The PG signal can be used for sequencing of multiple rails by  
connecting to the EN pin of other converters. If not used, the PG pin can be left floating or connected to GND.  
8-2. Power-Good Pin Logic  
PG LOGIC STATUS  
DEVICE STATE  
HIGH IMPEDANCE  
LOW  
0.95 × VFB_NOM VFB 1.07 ×  
VFB_NOM  
VFB < 0.9 × VFB_NOM or VFB > 1.1 ×  
VFB_NOM  
Enabled (EN = High)  
Shutdown (EN = Low)  
2 V VIN < VUVLO  
TJ > TJSD  
UVLO  
Thermal Shutdown  
Power Supply Removal  
VIN < 2 V  
undefined  
The PG pin has a 40-μs deglitch time on the falling edge. See 8-1.  
VTH,PG  
OVP  
VTH,PG  
VO  
VTH,PG  
UVP  
VTH,PG  
tPG,DLY  
tPG,DLY  
tPG,DLY  
PG  
tPG,DLY  
8-1. Power-Good Transient and Delay Behavior  
8.3.8 Thermal Shutdown  
The junction temperature (TJ) of the device is monitored by an internal temperature sensor. If TJ exceeds 180°C  
(typical), the device goes into thermal shutdown. Both the high-side and low-side power FETs are turned off and  
PG goes low. When TJ decreases below the hysteresis amount of typically 15°C, the converter resumes normal  
operation, beginning with soft start. During PFM the thermal shutdown is not active.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPSM82816  
 
 
TPSM82816  
ZHCSQM0 DECEMBER 2022  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Pulse Width Modulation (PWM) Operation  
The TPSM82816 has two operating modes: Forced PWM mode (FPWM) and Power Save Mode (PSM).  
With the MODE/SYNC pin set to high, the TPSM82816 operates with pulse width modulation (PWM) in  
continuous conduction mode (CCM). The switching frequency is either defined by a resistor from the COMP/  
FSET pin to GND or by an external clock signal applied to the MODE/SYNC pin.  
With the MODE/SYNC pin set to low, the TPSM82816 operates with pulse frequency modulation (PFM) during  
light load and will automatically transition into PWM as the load current increases.  
8.4.2 Power Save Mode Operation (PSM)  
When the MODE/SYNC pin is low, power save mode is allowed. The device operates in PWM mode as long as  
the peak inductor current is above the PFM threshold of about 1.8 A. When the peak inductor current drops  
below the PFM threshold, the device starts to skip switching pulses. The frequency set with the resistor on  
COMP/FSET must be in a range of 1.8 MHz to 3.5 MHz.  
In power save mode, the switching frequency decreases linearly with the load current to maintain high efficiency.  
The linear behavior of the switching frequency in power save mode is shown in 8-2.  
5
1
0.1  
0.01  
0.001  
VIN = 2.7V  
VIN = 3.3V  
VIN = 5.0V  
FPWM  
PSM  
0.0001  
100u  
1m  
10m  
100m  
1
6
Output Current (A)  
8-2. Switching Frequency versus Output Current (VOUT = 1.8 V, RCF = 10 kΩ)  
8.4.3 100% Duty-Cycle Operation  
The device offers a low input-to-output voltage differential by entering 100% duty cycle mode. When the  
minimum off-time of typically 15 ns is reached, the TPSM82816 skips switching cycles while it approaches 100%  
mode. In 100% mode, the high-side MOSFET switch is constantly turned on. The minimum input voltage to  
maintain a minimum output voltage is given by:  
VIN(min) = VOUT(min) + IOUT × RDP  
(5)  
where:  
RDP is the resistance from VIN to VOUT, which includes the high-side MOSFET on-resistance and DC  
resistance of the inductor  
VOUT(min) is the minimum output voltage the load can accept  
This operation mode is particularly useful in battery-powered applications to achieve longest operation time by  
taking full advantage of the whole battery voltage range.  
8.4.4 Current Limit and Short-Circuit Protection  
The TPSM82816 is protected against overload and short circuit events. If the inductor current exceeds the  
current limit ILIMH, the high-side MOSFET is turned off and the low-side MOSFET is turned on to ramp down the  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPSM82816  
 
 
 
TPSM82816  
ZHCSQM0 DECEMBER 2022  
www.ti.com.cn  
inductor current. The high-side MOSFET turns on again only if the current in the low-side MOSFET has  
decreased below the low-side current limit. Due to internal propagation delays, the actual current can exceed the  
static current limit. The dynamic current limit is given as:  
V
L
L
I
= I  
+
× t  
PD  
(6)  
peak typ  
LIMH  
where  
ILIMH is the static current limit, as specified in the electrical characteristics  
L is the effective inductance (typically 220 nH)  
VL is the voltage across the inductor (VIN - VOUT  
)
tPD is the internal propagation delay of typically 50 ns  
The dynamic peak current is calculated as follows:  
V
− V  
OUT  
220 nH  
IN  
I
= I  
+
× 50 ns  
(7)  
peak typ  
LIMH  
The low-side MOSFET also contains a negative current limit to prevent excessive current from flowing back  
through the inductor to the input. If the low-side sinking current limit is exceeded, the low-side MOSFET is turned  
off. In this scenario, both MOSFETs are off until the start of the next cycle. The negative current limit is only  
active in Forced PWM mode.  
8.4.5 Soft Start / Tracking (SS/TR)  
The soft-start circuitry controls the output voltage slope during start-up. This action avoids excessive inrush  
current and ensures a controlled output voltage rise time. This action also prevents unwanted voltage drops from  
high impedance power sources or batteries. When EN is set high, the device starts switching after a delay of  
about 270 μs. Then VOUT rises with a slope controlled by an external capacitor connected to the SS/TR pin.  
A capacitor connected from SS/TR to GND is charged with 10 µA by an internal current source during soft start  
until it reaches the reference voltage of 0.6 V. After reaching 0.6 V, the SS/TR pin voltage is clamped internally  
while the SS/TR pin voltage keeps rising to a maximum of about 3.3 V. The capacitance required to set a certain  
ramp-time (tramp) is:  
10μA × t  
ramp  
ms  
C
nF =  
(8)  
SS  
0.6 V  
Leaving the SS/TR pin un-connected provides the fastest start-up ramp of 150 µs typically. If the device is set to  
shutdown (EN = GND), undervoltage lockout, or thermal shutdown, an internal resistor of about 1.1 kΩpulls the  
SS/TR pin to GND to ensure a proper low level. Returning from those states causes a new start-up sequence.  
A voltage applied at the SS/TR pin can also be used to track a master voltage. The output voltage follows this  
voltage in both directions up and down in forced PWM mode. In PSM mode, the output voltage decreases based  
on the load current. An external voltage applied on SS/TR is internally clamped to the feedback voltage (0.6 V).  
TI recommends to set the final value of the external voltage on SS/TR to be slightly above 0.6 V to make sure  
the device operates with its internal reference voltage when the power-up sequencing is finished. See Voltage  
Tracking.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPSM82816  
TPSM82816  
ZHCSQM0 DECEMBER 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The TPSM82816 is a synchronous step-down converter power module. The power inductor is integrated inside  
the TPSM82816. The inductor is shielded and has an inductance of 220 nH. The TPSM82810, TPSM82813 and  
TPSM82816 are pin-to-pin compatible.  
9.2 Typical Application  
TPSM82816  
VOUT  
VOUT  
2.7 V - 6 V  
VOUT  
VIN  
EN  
CIN  
22 µF  
R1  
CFF  
COUT  
2 × 47 µF  
FB  
MODE/SYNC  
R3  
R2  
External sync (optional)  
COMP/FSET  
SS/TR  
RCF  
CSS  
PG  
GND  
9-1. Typical Application Schematic  
9.2.1 Design Requirements  
The design guidelines provide a component selection to operate the device within the recommended operating  
conditions.  
9-1. List of Components  
REFERENCE  
DESCRIPTION  
MANUFACTURER (1)  
IC  
TPSM82816  
Texas Instruments  
CIN  
22 µF / X7R / 6.3 V; GRM21BZ70J226ME44L  
Murata  
Taiyo Yuden  
Taiyo Yuden  
Any  
COUT for VOUT < 1 V  
3 × 47 µF / X6S / 6.3 V; JMK212BC6476MG-T  
2 × 47 µF / X6S / 6.3 V; JMK212BC6476MG-T  
COUT for VOUT 1 V  
CSS  
RCF  
CFF  
R1  
4.7 nF  
10 kΩ  
Any  
10 pF  
Any  
Depending on VOUT  
Depending on VOUT  
100 kΩ  
Any  
R2  
Any  
R3  
Any  
(1) See the Third-party Products Disclaimer.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPSM82816  
 
 
 
 
 
TPSM82816  
ZHCSQM0 DECEMBER 2022  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
9.2.2.1 Setting the Output Voltage  
The output voltage of the TPSM82816 is adjustable. Choose resistors R1 and R2 to set the output voltage within  
a range of 0.6 V to 5.5 V according to 方程式 9. To keep the feedback (FB) net robust from noise, set R2 equal  
to or lower than 100 kΩ to have at least 6 µA of current in the voltage divider. Lower values of FB resistors  
achieve better noise immunity, and lower light load efficiency, as explained in the Design Considerations for a  
Resistive Feedback Divider in a DC/DC Converter Technical Brief.  
V
V
OUT  
OUT  
R = R ×  
1 = R ×  
1  
0.6 V  
(9)  
1
2
2
V
FB  
9-2. Examples for setting the Output Voltage  
Max CFF  
at min Cout  
NOMINAL OUTPUT VOLTAGE  
VOUT  
R1  
R2  
OUTPUT VOLTAGE  
0.8 V  
1.0 V  
1.1 V  
1.2 V  
15 pF  
0.7988 V  
1.0 V  
16.9 kΩ  
20 kΩ  
51 kΩ  
30 kΩ  
47 kΩ  
68 kΩ  
13 pF  
6.8 pF  
1.101 V  
1.2 V  
39.2 kΩ  
68 kΩ  
3.9 pF  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
3.3 pF  
3.3 pF  
5.6 pF  
3 pF  
1.5 V  
1.803 V  
2.5 V  
76.8 kΩ  
80.6 kΩ  
47.5 kΩ  
88.7 kΩ  
51 kΩ  
40.2 kΩ  
15 kΩ  
3.315 V  
19.6 kΩ  
9.2.2.2 Feedforward Capacitor  
A feedforward capacitor (CFF) is required in parallel with R1 to improve the transient response. The maximum  
value for the feedforward capacitor CFF at the minimum output capacitance is determined by 方程10:  
266.1 nF × Ω  
C
nF =  
(10)  
ff, max  
R
1
For examples of feedforward capacitor values for common output voltages when using the minimum required  
output capacitance, refer to 9-2.  
To improve the load transient performance, more output capacitance can be added. Increasing the CFF above  
values given by 方程式 10 can also improve the response with larger COUT. The converter's loop response must  
be evaluated either through a simple load step or by a phase margin measurement. For details, please refer to:  
AN-1733 Load Transient Testing Simplified Application Report.  
9.2.2.3 Input Capacitor  
For most applications, TI recommends a 22-µF nominal ceramic capacitor. The input capacitor buffers the input  
voltage for transient events and also decouples the converter from the supply. A X7R or X7T multilayer ceramic  
capacitor (MLCC) is recommended for best filtering and must be placed between VIN and GND as close as  
possible to those pins. For applications with ambient temperatures below 85°C, a capacitor with X5R dielectric  
can be used. Ceramic capacitors have a DC-Bias effect, which has a strong influence on the final effective  
capacitance. Choose the right capacitor carefully in combination with considering its package size and voltage  
rating. The minimum required input capacitance is 5 µF.  
9.2.2.4 Output Capacitor  
The architecture of the TPSM82816 allows the use of ceramic output capacitors which have low equivalent  
series resistance (ESR). These capacitors provide low output voltage ripple and are recommended. To keep its  
low resistance up to high frequencies and to get a narrow capacitance variation with temperature, TI  
recommends to use an X7R or X7T dielectric. At temperatures below 85°C, an X5R dielectric can be used.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPSM82816  
 
 
 
 
TPSM82816  
ZHCSQM0 DECEMBER 2022  
www.ti.com.cn  
Using a higher capacitance value has advantages like smaller voltage ripple and a tighter DC output accuracy in  
power save mode. By changing the device compensation with a resistor from COMP/FSET to GND, the device  
can be compensated in two steps based on the minimum capacitance used on the output. The maximum  
capacitance is 470 µF in any of the compensation settings. The minimum capacitance required on the output  
depends on the compensation setting and output voltage as shown in 8-1. For output voltages below 1 V, the  
minimum required capacitance increases linearly from 32 µF at 1 V to 53 µF at 0.6 V with the compensation  
setting for smallest output capacitance. The other compensation setting scales the same. Ceramic capacitors  
have a DC-Bias effect, which has a strong influence on the final effective capacitance. Choose the right  
capacitor carefully in combination with considering its package size and voltage rating.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPSM82816  
TPSM82816  
ZHCSQM0 DECEMBER 2022  
www.ti.com.cn  
9.2.2.5 Application Curves  
TA = 25°C, VIN = 5 V, VOUT = 1.8 V, 1.8 MHz, PWM mode, BOM = 9-1 unless otherwise noted.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
VOUT = 3.3V  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
VOUT = 3.3V  
100u  
1m  
10m  
100m  
1
6
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Output Current (A)  
Output Current (A)  
PSM and FPWM  
FPWM  
9-2. Efficiency VIN = 5.0 V and TA = 25°C  
9-3. Efficiency VIN = 5.0 V and TA = 85°C  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
VOUT = 0.6V  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
55  
50  
45  
40  
VOUT = 0.6V  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
55  
50  
45  
40  
100u  
1m  
10m  
100m  
1
6
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Output Current (A)  
Output Current (A)  
D002  
FPWM  
PSM and FPWM  
9-5. Efficiency VIN = 3.3 V and TA = 85°C  
9-4. Efficiency VIN = 3.3 V and TA = 25°C  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
55  
VOUT = 0.6V  
VOUT = 0.9V  
VOUT = 0.6V  
VOUT = 0.9V  
50  
50  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 1.2V  
VOUT = 1.8V  
45  
40  
100u  
45  
40  
1m  
10m  
100m  
1
6
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Output Current (A)  
Output Current (A)  
D002  
FPWM  
PSM and FPWM  
9-7. Efficiency VIN = 2.7 V and TA = 85°C  
9-6. Efficiency VIN = 2.7 V and TA = 25°C  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPSM82816  
TPSM82816  
ZHCSQM0 DECEMBER 2022  
www.ti.com.cn  
2
1
2
1
0
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
VOUT = 3.3V  
V
OUT = 0.9V  
OUT = 1.2V  
OUT = 1.8V  
OUT = 2.5V  
OUT = 3.3V  
V
V
V
V
0
-1  
-1  
100u  
1m  
10m  
100m  
1
6
6
6
100u  
1m  
10m  
100m  
1
6
Output Current (A)  
Output Current (A)  
TA = 25°C  
TA = 25°C  
9-8. Load Regulation VIN = 5.0 V (PSM)  
9-9. Load Regulation VIN = 5.0 V (FPWM)  
2
2
VOUT = 0.6V  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
VOUT = 0.6V  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
1
0
1
0
-1  
100u  
-1  
100u  
1m  
10m  
100m  
1
1m  
10m  
100m  
1
6
Output Current (A)  
Output Current (A)  
TA = 25°C  
TA = 25°C  
9-10. Load Regulation VIN = 3.3 V (PSM)  
9-11. Load Regulation VIN = 3.3 V (FPWM)  
2
2
VOUT = 0.6V  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 0.6V  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 1.8V  
1
0
1
0
-1  
100u  
-1  
100u  
1m  
10m  
100m  
1
1m  
10m  
100m  
1
6
Output Current (A)  
Output Current (A)  
TA = 25°C  
TA = 25°C  
9-12. Load Regulation VIN = 2.7 V (PSM)  
9-13. Load Regulation VIN = 2.7 V (FPWM)  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPSM82816  
TPSM82816  
ZHCSQM0 DECEMBER 2022  
www.ti.com.cn  
7
6.5  
6
7
6.5  
6
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
VOUT = 3.3V  
VOUT = 0.6V  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
5.5  
5
5.5  
5
4.5  
4
4.5  
4
3.5  
3
3.5  
3
2.5  
2.5  
2
2
70  
75  
                                                                      
80  
                                                                        
85  
90  
95  
                                                                                                                 
100  
                                                                                                                   
                                                                                                                     
105 110 115  
TJ,max = 125 °C  
70  
75  
80  
85  
90  
95  
100 105 110 115  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
R
θJA = 32.2 °C/W  
fSW = 1.8 MHz  
R
θJA = 32.2 °C/W  
fSW = 1.8 MHz  
TJ,max = 125 °C  
9-14. Safe Operating Area VIN = 5.0 V  
9-15. Safe Operating Area VIN = 3.3 V  
VOUT = 1.8 V  
VIN = 5.0 V  
PSM  
TA = 25°C  
VOUT = 1.8 V  
VIN = 5.0 V  
FPWM  
TA = 25°C  
IOUT = 0.6 A to 5.4 A to 0.6 A  
IOUT = 0.6 A to 5.4 A to 0.6 A  
9-16. Load Transient Response  
9-17. Load Transient Response  
VOUT = 1.8 V  
IOUT = 0 A  
PSM  
TA = 25 °C  
VOUT = 1.8 V  
IOUT = 4 A  
PWM  
TA = 25°C  
VIN = 5.0 V  
BW = 20 MHz  
VIN = 5.0 V  
BW = 20 MHz  
9-18. Output and Input Voltage Ripple  
9-19. Output and Input Voltage Ripple  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPSM82816  
 
TPSM82816  
ZHCSQM0 DECEMBER 2022  
www.ti.com.cn  
VOUT = 1.8 V  
IOUT = 0 A  
PSM  
TA = 25°C  
VOUT = 1.8 V  
IOUT = 4 A  
FPWM  
TA = 25°C  
VIN = 5 V  
CSS = 4.7 nF  
VIN = 5 V  
CSS = 4.7 nF  
9-20. Start-Up Timing  
9-21. Start-Up Timing  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPSM82816  
TPSM82816  
ZHCSQM0 DECEMBER 2022  
www.ti.com.cn  
9.3 System Examples  
9.3.1 Voltage Tracking  
The SS/TR pin is externally driven by another voltage source to achieve output voltage tracking. The application  
circuit is shown in 9-22. From 0 V to 0.6 V, the internal reference voltage to the internal error amplifier follows  
the SS/TR pin voltage. When the SS/TR pin voltage is above 0.6 V, the voltage tracking is disabled and the FB  
pin voltage is regulated at 0.6 V. The device achieves ratiometric, as shown in 9-23 or coincidental  
(simultaneous) output tracking, as shown in 9-23.  
The R2 value must be set properly to achieve accurate voltage tracking by taking the 10-μA charging current  
into account. 1 kΩ or smaller is a sufficient value for R2. For decreasing SS/TR pin voltage, the device does not  
sink current from the output when the device is in PSM. The resulting decrease of the output voltage can be  
slower than the SS/TR pin voltage if the load is light.  
In case both devices need to run in forced PWM mode after start-up, TI recommends to tie the MODE/SYNC pin  
of the secondary device to the output voltage or the power good signal of the primary device. The TPSM82816  
has a duty cycle limitation defined by the minimum on time. For tracking down to low output voltages, the  
secondary device cannot follow after the minimum duty cycle is reached. Enabling FPWM mode while tracking is  
in progress allows the user to ramp down the output voltage close to 0 V.  
When driving the SS/TR pin with an external voltage, do not exceed the voltage rating of the SS/TR pin.  
Vout1  
Vout2  
TPSM8281x  
SS/TR FB  
R1  
R3  
R2  
R4  
9-22. Schematic for Output Voltage Tracking  
VOUT1  
VOUT1  
VOUT2  
VOUT2  
R1  
R2  
R1  
R2  
R3  
R4  
R3  
R4  
<
=
Time [s]  
Time [s]  
9-23. Ratiometric Voltage Tracking  
9-24. Coincidental Voltage Tracking  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPSM82816  
 
 
 
 
TPSM82816  
ZHCSQM0 DECEMBER 2022  
www.ti.com.cn  
9.3.2 Synchronizing to an External Clock  
The TPSM82816 can be synchronized by applying a clock on the MODE/SYNC pin. There is no need for any  
additional circuitry as long as the input signal meets the requirements given in the electrical specifications. See  
9-25. The clock can be applied, changed, and removed during operation. The value of the RCF resistor is  
recommended to be chosen such that the internally defined frequency and the externally-applied frequency are  
close to each other to have a fast settling time to the external clock. Synchronizing to a clock is not possible if  
the COMP/FSET pin is connected to Vin or GND. 9-26 and 9-27 show the external clock being applied and  
removed. When an external clock is applied, the device operates in PWM mode.  
TPSM82816  
VOUT  
VOUT  
2.7 V - 6 V  
VIN  
EN  
VOUT  
CIN  
22 µF  
R1  
CFF  
COUT  
FB  
2 × 47 µF  
MODE/SYNC  
R3  
R2  
External sync (optional)  
COMP/FSET  
SS/TR  
RCF  
CSS  
PG  
GND  
9-25. Frequency Synchronization  
VIN = 5 V  
IOUT = 0.01 A  
VIN = 5 V  
IOUT = 1 A  
RCF = 10 kΩ  
RCF = 10 kΩ  
VOUT = 1.8 V  
fEXT = 2.0 MHz  
VOUT = 1.8 V  
fEXT = 2.0 MHz  
9-26. Applying and Removing the  
9-27. Applying and Removing the  
Synchronization Signal (PSM)  
Synchronization Signal (FPWM)  
9.4 Power Supply Recommendations  
The TPSM82816 device family has no special requirements for the input power supply. The output current of the  
input power supply must be rated according to the supply voltage, output voltage, and output current of the  
TPSM82816.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPSM82816  
 
 
 
 
TPSM82816  
ZHCSQM0 DECEMBER 2022  
www.ti.com.cn  
9.5 Layout  
9.5.1 Layout Guidelines  
A proper layout is critical for the operation of any switched mode power supply, especially at high switching  
frequencies. Therefore, the PCB layout of the TPSM82816 demands careful attention to ensure best  
performance. A poor layout can lead to issues like bad line and load regulation, instability, increased EMI  
radiation, and noise sensitivity. Refer to the Five Steps to a Great PCB Layout for a Step-Down Converter  
Technical Brief for a detailed discussion of general best practices. Specific recommendations for the device are  
listed below.  
The input capacitor must be placed as close as possible to the VIN and GND pins of the device. This  
placement is the most critical component placement. Route the input capacitor directly to the VIN and GND  
pins avoiding vias.  
Place the output capacitor ground close to the VOUT and GND pins and route it directly avoiding vias.  
Place the FB resistors, R1 and R2, and the feedforward capacitor CFF close to the FB pin and place CSS  
close to the SS/TR pin to minimize noise pickup.  
Place the RCF resistor close to the COMP/FSET pin to minimize the parasitic capacitance.  
The recommended layout is implemented on the EVM and shown in its TPSM8281xEVM-089 Evaluation  
Module User's Guide and in Layout Example.  
The recommended land pattern for the TPSM82816 is shown at the end of this data sheet. For best  
manufacturing results, create the pads as solder mask defined (SMD), when some pins (such as VIN, VOUT,  
and GND) are connected to large copper planes. Using SMD pads keeps each pad the same size and avoids  
solder pulling the device during reflow.  
9.5.2 Layout Example  
GND  
Cff  
GND  
Css  
R1  
Rcf  
GND  
VIN  
GND  
VIN  
Cout  
VIN
U1  
VOUT  
9-28. Example Layout  
9.5.2.1 Thermal Consideration  
The TPSM82816 module temperature must be kept less than the maximum rating of 125°C. The following are  
three basic approaches for enhancing thermal performance:  
Improve the power dissipation capability of the PCB design.  
Improve the thermal coupling of the component to the PCB.  
Introduce airflow into the system.  
To estimate the approximate module temperature of the TPSM82816, apply the typical efficiency stated in this  
data sheet to the desired application condition to compute the power dissipation of the module. Then, calculate  
the module temperature rise by multiplying the power dissipation by its thermal resistance. For more details on  
how to use the thermal parameters in real applications, see the application notes: Thermal Characteristics of  
Linear and Logic Packages Using JEDEC PCB Designs and Semiconductor and IC Package Thermal Metrics.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPSM82816  
 
 
TPSM82816  
ZHCSQM0 DECEMBER 2022  
www.ti.com.cn  
The thermal values in Thermal Information used the recommended land pattern, shown at the end of this data  
sheet, including the 30 vias as they are shown. The TPSM82816 was simulated on a PCB defined by JEDEC  
51-7. The 15 vias on the GND pins were connected to copper on other PCB layers, while the remaining 15 vias  
were not connected to other layers.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPSM82816  
TPSM82816  
ZHCSQM0 DECEMBER 2022  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Device Support  
10.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
10.2 Documentation Support  
10.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, TPSM8281xEVM-089 Evaluation Module User's Guide  
Texas Instruments, Achieving a Clean Start-up by Using a DC/DC Converter with a Precise Enable-pin  
Threshold Technical Brief  
Texas Instruments, Design Considerations for a Resistive Feedback Divider in a DC/DC Converter Technical  
Brief  
Texas Instruments, AN-1733 Load Transient Testing Simplified Application Report  
Texas Instruments, Five Steps to a Great PCB Layout for a Step-Down Converter Technical Brief  
Texas Instruments, Thermal Characteristics of Linear and Logic Packages Using JEDEC PCB Designs  
10.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.5 Trademarks  
MicroSiPand TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
10.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPSM82816  
 
 
 
 
 
 
 
 
 
 
TPSM82816  
ZHCSQM0 DECEMBER 2022  
www.ti.com.cn  
PACKAGE OUTLINE  
SIE0014A-C01  
uSIPTM - 1.6 mm max height  
S
C
A
L
E
3
.
0
0
0
MICRO SYSTEM IN PACKAGE  
3.1  
2.9  
A
B
PIN 1 INDEX  
AREA  
(3.2)  
4.1  
3.9  
PICK AREA  
NOTE 3  
(2.5)  
1.6 MAX  
C
0.08 C  
2X 1.75  
1.19  
1.11  
4X  
4X 0.3 0.03  
10X (0.05)  
6
5
4X (0.075)  
0.54  
0.46  
2X 3.1  
6X  
12  
11  
13  
14  
SYMM  
4X 0.8 0.03  
2X 1.3  
2X 1.15  
4X 0.65  
0.28  
0.22  
6X  
10  
1
0.1  
C A B  
PIN 1 ID  
(OPTIONAL)  
0.05  
C
SYMM  
2.4  
0.79  
0.71  
4X  
2X 0.9  
0.1  
C A B  
C
0.05  
4228828/B 10/2022  
MicroSiP is a trademark of Texas Instruments  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Pick and place nozzle 1.3 mm or smaller recommended.  
4. The package thermal pads must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPSM82816  
TPSM82816  
ZHCSQM0 DECEMBER 2022  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
SIE0014A-C01  
uSIPTM - 1.6 mm max height  
MICRO SYSTEM IN PACKAGE  
2X (2)  
METAL UNDER  
SOLDER MASK  
TYP  
(0.05) TYP  
SOLDER MASK  
OPENING  
TYP  
6X (1.925)  
6X (1.425)  
10  
1
6X (0.75)  
4X (0.45)  
2X (3.35)  
6X (0.25)  
2X (0.625)  
11  
12  
14  
13  
4X (0.575)  
0.000 PKG  
4X (0.65)  
2X (0.625)  
4X (0.8)  
(R0.05) TYP  
6X (1.425)  
4X (1)  
5
6
6X (1.925)  
SEE DETAILS  
4X (1.4)  
(
0.2) TYP  
VIA  
(0.3)  
4X (0.3)  
(2.65)  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
PADS 1, 5, 6, 10 AND 11 - 14  
SOLDER MASK DETAILS  
NOT TO SCALE  
4228828/B 10/2022  
NOTES: (continued)  
5. This package is designed to be soldered to thermal pads on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
6. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPSM82816  
TPSM82816  
ZHCSQM0 DECEMBER 2022  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
TM  
SIE0014A-C01  
uSIP - 1.6 mm max height  
MICRO SYSTEM IN PACKAGE  
2X (2)  
4X (0.45)  
(R0.1) TYP  
SYMM  
1
10  
6X (0.75)  
6X (0.25)  
11  
12  
4X (0.575)  
2X (3.35)  
14  
13  
SYMM  
6X (0.65)  
4X (0.8)  
4X (1)  
6
5
4X (1.4)  
4X (0.3)  
(2.65)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:25X  
4228828/B 10/2022  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPSM82816  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPSM82816SIER  
ACTIVE  
uSiP  
SIE  
14  
3000 RoHS & Green  
ENEPIG  
Level-2-260C-1 YEAR  
-40 to 125  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
SIE0014A  
uSIPTM - 1.6 mm max height  
S
C
A
L
E
3
.
0
0
0
MICRO SYSTEM IN PACKAGE  
3.1  
2.9  
A
B
PIN 1 INDEX  
AREA  
(3.2)  
4.1  
3.9  
PICK AREA  
NOTE 3  
(2.5)  
1.6 MAX  
C
0.08 C  
2X 1.75  
1.19  
1.11  
4X  
4X 0.3 0.03  
10X (0.05)  
6
5
4X (0.075)  
0.54  
0.46  
2X 3.1  
6X  
12  
11  
13  
14  
SYMM  
4X 0.8 0.03  
2X 1.3  
2X 1.15  
4X 0.65  
0.28  
0.22  
6X  
10  
1
0.1  
C A B  
PIN 1 ID  
(OPTIONAL)  
0.05  
C
SYMM  
2.4  
0.79  
0.71  
4X  
2X 0.9  
0.1  
C A B  
C
0.05  
4228762/A 06/2022  
MicroSiP is a trademark of Texas Instruments  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Pick and place nozzle 1.3 mm or smaller recommended.  
4. The package thermal pads must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
TM  
SIE0014A  
uSIP - 1.6 mm max height  
MICRO SYSTEM IN PACKAGE  
2X (2)  
(0.3)  
METAL UNDER  
SOLDER MASK  
TYP  
COPPER KEEP-OUT AREA  
(0.05) TYP  
SOLDER MASK  
OPENING  
TYP  
4X (1.925)  
4X (1.425)  
10  
1
6X (0.75)  
4X (0.45)  
(3.25)  
11  
2X (3.35)  
6X (0.25)  
14  
13  
4X (0.575)  
0.000 PKG  
12  
4X (0.65)  
4X (0.8)  
(R0.05) TYP  
4X (1.425)  
4X (1)  
5
6
4X (1.925)  
SEE DETAILS  
4X (1.4)  
(0.3)  
4X (0.3)  
(2.65)  
(
0.2) TYP  
VIA  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
PADS 1, 5, 6, 10 AND 11 - 14  
SOLDER MASK DETAILS  
NOT TO SCALE  
4228762/A 06/2022  
NOTES: (continued)  
5. This package is designed to be soldered to thermal pads on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
6. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
TM  
SIE0014A  
uSIP - 1.6 mm max height  
MICRO SYSTEM IN PACKAGE  
2X (2)  
4X (0.45)  
(R0.1) TYP  
SYMM  
1
10  
6X (0.75)  
6X (0.25)  
11  
12  
4X (0.575)  
2X (3.35)  
14  
13  
SYMM  
6X (0.65)  
4X (0.8)  
4X (1)  
6
5
4X (1.4)  
4X (0.3)  
(2.65)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:25X  
4228762/A 06/2022  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPSM82816SIER

采用 3mm x 4mm QFN 封装、具有可调节频率和跟踪功能的 2.75V 至 6V、6A 降压模块 | SIE | 14 | -40 to 125
TI

TPSM82821

具有集成电感器、采用 2 x 2.5 x 1.1mm μSIP 封装的 5.5V 输入、1A 降压模块
TI

TPSM828211SILR

TPSM8282x, TPSM8282xA 1-A, 2-A, and 3-A High Efficiency Step-Down Converter MicroSiP™ Power Module with Integrated Inductor
TI

TPSM828212SILR

TPSM8282x, TPSM8282xA 1-A, 2-A, and 3-A High Efficiency Step-Down Converter MicroSiP™ Power Module with Integrated Inductor
TI

TPSM828213SILR

TPSM8282x, TPSM8282xA 1-A, 2-A, and 3-A High Efficiency Step-Down Converter MicroSiP™ Power Module with Integrated Inductor
TI

TPSM828214SILR

TPSM8282x, TPSM8282xA 1-A, 2-A, and 3-A High Efficiency Step-Down Converter MicroSiP™ Power Module with Integrated Inductor
TI

TPSM82821A

TPSM8282x, TPSM8282xA 1-A, 2-A, and 3-A High Efficiency Step-Down Converter MicroSiP™ Power Module with Integrated Inductor
TI

TPSM82821ASILR

TPSM8282x, TPSM8282xA 1-A, 2-A, and 3-A High Efficiency Step-Down Converter MicroSiP™ Power Module with Integrated Inductor
TI

TPSM82821SILR

具有集成电感器、采用 2 x 2.5 x 1.1mm μSIP 封装的 5.5V 输入、1A 降压模块 | SIL | 10 | -40 to 125
TI

TPSM82821XSILR

TPSM8282x, TPSM8282xA 1-A, 2-A, and 3-A High Efficiency Step-Down Converter MicroSiP™ Power Module with Integrated Inductor
TI

TPSM82822

具有集成电感器、采用 2 x 2.5 x 1.1mm μSIP 封装的 5.5V 输入、2A 降压模块
TI

TPSM828221SILR

TPSM8282x, TPSM8282xA 1-A, 2-A, and 3-A High Efficiency Step-Down Converter MicroSiP™ Power Module with Integrated Inductor
TI