TPSM863252 [TI]

3-V to 17-V input voltage, 3-A Eco-mode synchronous buck module;
TPSM863252
型号: TPSM863252
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3-V to 17-V input voltage, 3-A Eco-mode synchronous buck module

文件: 总26页 (文件大小:1488K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPSM863252, TPSM863257  
ZHCSR83A MARCH 2023 REVISED JUNE 2023  
TPSM86325x QFN 封装3V 17V 输入、3A 同步降压模块  
1 特性  
3 说明  
• 特性和配置适用于各种应用  
3V 17V 输入电压范围  
TPSM86325x 是一款输入电压范围为 3V 17V 的简  
单易用型高效高功率密度同步降压模块支持高达 3A  
的连续电流。  
TPSM863252 的输出电压范围0.6V 10V  
TPSM863257 的输出电压范围0.6V 5.5V  
0.6V 基准电压  
25°C 基准精度±1%  
-40°C 125°C 温度范围内基准精度为  
±1.5%  
– 集成55mΩ24mΩMOSFET  
100 µA 低静态电流  
1.2MHz 开关频率  
TPSM86325x 采用 D-CAP3 控制模式提供快速瞬态响  
应并支持低 ESR 输出电容器无需外部补偿。该器件  
可支持以高95% 的占空比运行。  
TPSM863252 Eco-mode 下运行可在轻负载时保  
持高效率。TPSM863257 FCCM 模式下运行可在  
所有负载条件下保持相同的频率和较低的输出纹波。该  
器件集成了全面的断续模式 OVPOCPUVLO、  
OTP UVP 保护。  
– 以最95 % 的高占空比运行  
– 精EN 阈值电压  
该器件采用 QFN 封装。额定结温范围为 -40°C 至  
125°C。  
1.6 ms 固定软启动时间典型值)  
• 解决方案尺寸小巧且易于使用  
– 轻负载TPSM863252 Eco-mode,  
TPSM863257 FCCM 模式  
– 快速瞬D-CAP3控制模式  
– 通过集成自举电容器和电感器轻松布局  
– 支持带预偏置输出电压的启动  
– 开漏电源正常状态指示器  
封装信息  
封装(1)  
封装尺寸标称值)  
器件型号  
(2)  
TPSM863252  
TPSM863257  
RDXQFN-FCMOD,  
7)  
4.00 mm x 3.30 mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
(2) 封装尺寸x 为标称值并包括引脚如适用。  
– 非锁OVOT UVLO 保护  
UV 保护的断续模式  
– 逐周OC NOC 保护  
-40°C 125°C 的工作结温范围  
3.3mm x 4mm x 2mm QFN 封装  
器件信息  
模式  
器件型号  
输出电压  
TPSM863252  
ECO  
0.6 V 10 V  
0.6V 5.5V  
TPSM863257  
FCCM  
2 应用  
商用网络和服务PSU  
其他交流/直流适配器/PSU  
工厂自动化和控制  
测试和测量  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
1
3
VOUT  
VIN  
VOUT  
VIN  
5
7
6
4
EN  
PG  
FB  
EN  
Cin  
RFBT  
Cout  
PGND  
RFBB  
TPSM863252_1.05Vout  
TPSM863252_5Vout  
TPSM863257_1.05Vout  
TPSM863257_5Vout  
简化原理图  
0
0.001  
0.01  
0.1  
Iout (A)  
1
3
TPSM86325x VIN = 12V 时的效率  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSF51  
 
 
 
 
 
TPSM863252, TPSM863257  
ZHCSR83A MARCH 2023 REVISED JUNE 2023  
www.ti.com.cn  
Table of Contents  
7.3 Feature Description...................................................11  
7.4 Device Functional Modes..........................................13  
8 Application and Implementation..................................14  
8.1 Application Information............................................. 14  
8.2 Typical Application.................................................... 14  
8.3 Power Supply Recommendations.............................18  
8.4 Layout....................................................................... 19  
9 Device and Documentation Support............................20  
9.1 接收文档更新通知..................................................... 20  
9.2 支持资源....................................................................20  
9.3 Trademarks...............................................................20  
9.4 静电放电警告............................................................ 20  
9.5 术语表....................................................................... 20  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics................................................7  
7 Detailed Description......................................................10  
7.1 Overview...................................................................10  
7.2 Functional Block Diagram.........................................10  
Information.................................................................... 20  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (March 2023) to Revision A (June 2023)  
Page  
• 将文档状态从“预告信息”更改为“量产数据”................................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF51  
2
Submit Document Feedback  
Product Folder Links: TPSM863252 TPSM863257  
 
TPSM863252, TPSM863257  
ZHCSR83A MARCH 2023 REVISED JUNE 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
FB EN PG  
7
6
5
4
VIN  
SW  
PGND  
1
2
3
VOUT  
5-1. TPSM863252x RDX Package, 7-Pin QFN-FCMOD (Top View)  
5-1. Pin Functions  
Pin  
Type(1)  
Description  
Name  
VIN  
NO.  
1
P
NC  
P
Input voltage supply pin. Connect the input decoupling capacitors between VIN and GND.  
Switch pin of the power stage. Do not connect, leave floating.  
Output connection. Connect recommended output capacitance from VOUT to PGND.  
Power ground connection  
SW  
2
VOUT  
PGND  
PG  
3
4
G
5
A
Power-good open drain output. PG pin can be floating.  
Enable pin of buck converter. Drive EN high to turn on the converter; drive EN low to turn off  
the converter. Internal pulldown to GND by a resister.  
EN  
FB  
6
7
A
A
Converter feedback input. Connect to the center tap of the resistor divider between output  
voltage and ground.  
(1) A = Analog, P = Power, G = Ground  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPSM863252 TPSM863257  
English Data Sheet: SLUSF51  
 
 
TPSM863252, TPSM863257  
ZHCSR83A MARCH 2023 REVISED JUNE 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
MAX  
18  
6
UNIT  
Input voltage  
Input voltage  
Input voltage  
Output voltage  
Output voltage  
VIN  
V
V
V
V
V
FB, EN, PG  
GND  
0.3  
11  
VOUT(TPSM863252)  
VOUT(TPSM863257)  
6
Mil-STD-883D, Method 2002.3, 1 ms, 1/2 sine,  
mounted  
Mechanical shock  
1500  
20  
G
G
Mechanical vibration  
Mil-STD-883D, Method 2007.2, 20 to 2000 Hz  
Operating Junction Temperature  
Range, TJ  
150  
150  
°C  
°C  
40  
55  
Storage temperature, Tstg  
Storage temperature, Tstg  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions.  
If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
± 2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per ANSI/ESDA/JEDEC  
JS-002(2)  
± 500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3
NOM  
MAX  
17  
UNIT  
V
Input voltage  
Input voltage  
Input voltage  
Output voltage  
Output voltage  
Output current  
TJ  
VIN  
FB, EN, PG  
5.5  
0.1  
10  
V
0.1  
0.1  
0.1  
0.1  
0
GND  
V
VOUT(TPSM863252)  
VOUT(TPSM863257)  
IO  
V
5.5  
3
V
A
Operating junction temperature  
Storage temperature  
125  
150  
°C  
°C  
40  
40  
Tstg  
6.4 Thermal Information  
TPSM86325x  
THERMAL METRIC(1)  
RDX  
7 PINS  
61.3  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
RθJA_effective  
RθJC(top)  
Junction-to-ambient thermal resistance on EVM board  
Junction-to-case (top) thermal resistance  
40(2)  
60.8  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF51  
4
Submit Document Feedback  
Product Folder Links: TPSM863252 TPSM863257  
 
 
 
 
 
 
 
 
TPSM863252, TPSM863257  
ZHCSR83A MARCH 2023 REVISED JUNE 2023  
www.ti.com.cn  
6.4 Thermal Information (continued)  
TPSM86325x  
THERMAL METRIC(1)  
RDX  
7 PINS  
20.0  
7.5  
UNIT  
RθJB  
ΨJT  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
YJB  
19.2  
N/A  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) This RθJA_effective is tested on TPSM863252EVM board (4 layer board, copper thickness of top and bottom layer are 2 oz, and  
copper thickness of internal GND is 1 oz) at VIN = 12 V, VOUT = 5 V, IOUT = 3 A , TA = 25oC.  
6.5 Electrical Characteristics  
Over operating TJ = 400C - 1250C, VVIN = 12 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT SUPPLY VOLTAGE  
VIN  
IVIN  
Input voltage range  
VIN Supply Current  
VIN Shutdown Current  
VIN  
3
17  
V
No load, VEN = 5 V, non-switching, PSM  
version  
100  
µA  
No load, VEN = 5 V, non-switching, FCCM  
version  
370  
2
µA  
µA  
IINSDN  
UVLO  
UVLO  
UVLO  
UVLO  
No load, VEN = 0 V  
VIN Undervoltage Lockout  
VIN Undervoltage Lockout  
VIN Undervoltage Lockout  
Wake up VIN voltage  
Shut down VIN voltage  
Hysteresis VIN voltage  
2.8  
2.6  
2.9  
2.7  
3.0  
2.8  
V
V
200  
mV  
FEEDBACK VOLTAGE  
VFB  
FB voltage  
FB voltage  
TJ = 25°C  
594  
591  
600  
600  
606  
609  
mV  
mV  
VFB  
TJ = 40°C to 125°C  
MOSFET  
55  
68  
24  
30  
TJ = 25°C, VVIN 5 V  
TJ = 25°C, VVIN = 3 V (1)  
TJ = 25°C,VVIN 5 V  
TJ = 25°C, VVIN = 3 V  
mΩ  
mΩ  
mΩ  
mΩ  
RDS  
High-side MOSFET Rds(on)  
Low-side MOSFET Rds(on)  
(ON)HI  
RDS  
(ON)LO  
DUTY CYCLE and FREQUENCY CONTROL  
FSW  
Switching Frequency  
Minimum Off-time  
TJ = 25°C, VVOUT = 3.3 V  
VFB = 0.5 V  
1.2  
110  
60  
MHz  
ns  
TOFF(MIN)  
(1)  
TON(MIN) Minimum On-time  
ns  
CURRENT LIMIT  
IOCL_LS  
INOCL  
Over Current threshold  
Valley current set point  
Valley current set point  
3.1  
1.5  
4.1  
2.0  
5.1  
2.5  
A
A
Negative Over Current threshold  
LOGIC THRESHOLD  
VEN(ON) EN Threshold High-level  
VEN(OFF) EN Threshold Low-level  
1.15  
0.90  
1.20  
1.00  
200  
1.25  
1.10  
V
V
VENHYS  
EN Hystersis  
mV  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPSM863252 TPSM863257  
English Data Sheet: SLUSF51  
 
 
 
TPSM863252, TPSM863257  
ZHCSR83A MARCH 2023 REVISED JUNE 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
Over operating TJ = 400C - 1250C, VVIN = 12 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
EN Pull down resister  
2
MΩ  
REN1  
OUTPUT DISCHARGE and SOFT START  
tSS Internal Soft-start Time  
OUTPUT UNDERVOLTAGE AND OVERVOLTAGE PROTECTION  
1.6  
ms  
VOVP  
OVP Trip Threshold  
OVP Prop deglitch  
UVP Trip Threshold  
UVP Prop deglitch  
110  
55  
115  
24  
120  
65  
%
us  
%
tOVPDLY  
VUVP  
60  
tUVPDLY  
220  
us  
Output Hiccup enable delay relative to  
SS time  
tUVPEN  
UVP detect  
14  
ms  
PGOOD  
TPGDLY PG Start-up Delay  
TPGDLY PG Start-up Delay  
VPGTH PG Threshold  
VPGTH PG Threshold  
VPGTH PG Threshold  
VPGTH PG Threshold  
PG from low to high  
PG from high to low  
VFB falling (fault)  
VFB rising (good)  
VFB rising (fault)  
VFB falling (good)  
IOL = 4 mA  
1
28  
ms  
us  
%
80  
85  
85  
90  
95  
90  
%
110  
105  
115  
110  
120  
115  
0.4  
1
%
%
VPG_L  
IPGLK  
PG Sink Current Capability  
PG Leak Current  
V
VPGOOD = 5.5 V  
uA  
THERMAL PROTECTION  
(1)  
TOTP  
OTP Trip Threshold  
OTP Hysteresis  
155  
20  
°C  
°C  
TOTPHSY  
(1)  
(1) Specified by design  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF51  
6
Submit Document Feedback  
Product Folder Links: TPSM863252 TPSM863257  
 
TPSM863252, TPSM863257  
ZHCSR83A MARCH 2023 REVISED JUNE 2023  
www.ti.com.cn  
6.6 Typical Characteristics  
TJ = 40°C to 125°C, VIN = 12 V (unless otherwise noted)  
120  
480  
440  
400  
360  
320  
280  
240  
110  
100  
90  
80  
70  
60  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Junction Temperature (oC)  
Junction Temperature (oC)  
6-1. TPSM863252 Quiescent Current  
6-2. TPSM863257 Quiescent Current  
1.22  
1.11  
1.08  
1.05  
1.02  
0.99  
0.96  
0.93  
1.21  
1.2  
1.19  
1.18  
1.17  
1.16  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Junction Temperature (oC)  
Junction Temperature (oC)  
6-3. Enable On Threshold Voltage  
6-4. Enable Off Threshold Voltage  
34  
80  
32  
30  
28  
26  
24  
22  
20  
18  
75  
70  
65  
60  
55  
50  
45  
40  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Junction Temperature (C)  
Junction Temperature (C)  
6-5. Low-Side RDS(ON)  
6-6. High-Side RDS(ON)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPSM863252 TPSM863257  
English Data Sheet: SLUSF51  
 
TPSM863252, TPSM863257  
ZHCSR83A MARCH 2023 REVISED JUNE 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
TJ = 40°C to 125°C, VIN = 12 V (unless otherwise noted)  
0.603  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
0.602  
0.601  
0.6  
0.599  
Vout = 1.05 V  
Vout = 3.3 V  
Vout = 5 V  
0.598  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
0.001  
0.01  
0.1  
Iout (A)  
1
3
3
3
Junction Temperature (oC)  
6-7. VREF Voltage  
6-8. TPSM863252 Efficiency at 0.6 VOUT  
100%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
Vout = 1.05 V  
Vout = 3.3 V  
Vout = 5 V  
Vin = 3.3 V  
Vin = 5 V  
Vin = 12 V  
0.001  
0.01  
0.1  
Iout (A)  
1
3
0.001  
0.01  
0.1  
Iout (A)  
1
6-9. TPSM863257 Efficiency at 0.6 VOUT  
6-10. TPSM863252 Efficiency at 1.05 VOUT  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
Vin = 5 V  
Vin = 12 V  
0.001  
0.01  
0.1  
Iout (A)  
1
6-11. TPSM863257 Efficiency at 1.05 VOUT  
6-12. TPSM863252 Efficiency at 3.3 VOUT  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF51  
8
Submit Document Feedback  
Product Folder Links: TPSM863252 TPSM863257  
TPSM863252, TPSM863257  
ZHCSR83A MARCH 2023 REVISED JUNE 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
TJ = 40°C to 125°C, VIN = 12 V (unless otherwise noted)  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
Vin = 5 V  
Vin = 12 V  
10%  
0
Vin = 6 V  
Vin = 12 V  
0.001  
0.01  
0.1  
Iout (A)  
1
3
0.001  
0.01  
0.1  
Iout (A)  
1
3
6-13. TPSM863257 Efficiency at 3.3 VOUT  
6-14. TPSM863252 Efficiency at 5 VOUT  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
2500  
2000  
1500  
1000  
500  
Vout = 0.6 V  
Vout = 1.05 V  
Vout = 3.3 V  
Vout = 5 V  
Vout = 10 V  
Vin = 6 V  
Vin = 12 V  
0
0.001  
0.01  
0.1  
Iout (A)  
1
3
0.001  
0.01  
0.1  
Iout (A)  
1
3
6-15. TPSM863257 Efficiency at 5 VOUT  
6-16. TPSM863252 Frequency vs Loading at 12-V Input  
Voltage  
2400  
2100  
1800  
1500  
1200  
900  
600  
Vout = 0.6 V  
Vout = 1.05 V  
Vout = 3.3 V  
Vout = 5 V  
300  
0
0
0.5  
1
1.5  
2
2.5  
3
Iout (A)  
6-17. TPSM863257 Frequency vs Loading at 12-V Input Voltage  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPSM863252 TPSM863257  
English Data Sheet: SLUSF51  
TPSM863252, TPSM863257  
ZHCSR83A MARCH 2023 REVISED JUNE 2023  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPSM86325x is a 3-A, integrated, FET, synchronous buck module that operates from 3-V to 17-V input  
voltage and TPSM863252 output voltage range is 0.6 V to 10 V. TPSM863257 output voltage range is 0.6 V to  
5.5 V. The device employs a D-CAP3 control mode that provides fast transient response with no external  
compensation components and an accurate feedback voltage. The proprietary D-CAP3 control mode enables  
low external component count, ease of design, and optimization of the power design for cost, size, and  
efficiency. The topology provides a seamless transition between CCM operating mode at higher load condition  
and DCM operation mode at lighter load condition.  
The Eco-mode version allows the TPSM863252 to maintain high efficiency at light load. The FCCM version  
allows the TPSM863257 to maintain a fixed switching frequency and lower voltage output ripple. The  
TPSM86325x is able to adapt to both low equivalent series resistance (ESR) output capacitors such as  
POSCAP or SP-CAP, and ultra-low ESR ceramic capacitors.  
7.2 Functional Block Diagram  
UV threshold  
+
UV  
+
OV  
VIN  
OV threshold  
FB  
+
LDO  
VREF  
VREGOK  
2.9 V /  
2.7 V  
+
Internal  
VCC  
+
PWM  
+
+
Control Logic  
Internal  
BST  
SS  
VIN  
Internal  
Compensa on  
ꢀꢁOn/Off time  
ꢀꢁMinimum On/Off  
ꢀꢁLight load  
Internal SS  
SW  
ꢀꢁOCP/OVP/UVP/NOC/  
XCON  
TSD  
VOUT  
ꢀꢁSoft-Start  
Clock  
PGND  
EN  
+
EN Threshold  
+
OCL  
AGND  
THOK  
+
+
+
155°C /20°C  
ZC  
PG  
NOCL  
AGND  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF51  
10  
Submit Document Feedback  
Product Folder Links: TPSM863252 TPSM863257  
 
 
 
TPSM863252, TPSM863257  
ZHCSR83A MARCH 2023 REVISED JUNE 2023  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 PWM Operation and D-CAP3Control Mode  
The main control loop of the buck is an adaptive on-time pulse width modulation (PWM) controller that supports  
a proprietary D-CAP3 control mode. The D-CAP3 control mode combines adaptive on-time control with an  
internal compensation circuit for pseudo-fixed frequency and low external component count configuration with  
both low-ESR and ceramic output capacitors. The device is stable even with virtually no ripple at the output. The  
TPSM86325x also includes an error amplifier that makes the output voltage very accurate.  
At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after an internal  
one-shot timer expires. This one-shot duration is set proportional to the output voltage, VOUT, and is inversely  
proportional to the converter input voltage, VIN, to maintain a pseudo-fixed frequency over the input voltage  
range, hence, it is called adaptive on-time control. The one-shot timer is reset and the high-side MOSFET is  
turned on again when the feedback voltage falls below the reference voltage. An internal ripple generation circuit  
is added to reference voltage to emulate the output ripple, enabling the use of very low-ESR output capacitors  
such as multi-layered ceramic caps (MLCC). No external current sense network or loop compensation is  
required for D-CAP3 control mode.  
7.3.2 Eco-mode Control  
The TPSM86325x is designed with advanced Eco-mode to maintain high light load efficiency. As the output  
current decreases from heavy load condition, the inductor current is also reduced and eventually comes to a  
point that its rippled valley touches zero level, which is the boundary between continuous conduction and  
discontinuous conduction mode. The rectifying MOSFET is turned off when the zero inductor current is detected.  
As the load current further decreases, the converter runs into discontinuous conduction mode. The on time is  
kept almost the same as it was in continuous conduction mode so that it takes longer time to discharge the  
output capacitor with smaller load current to the level of the reference voltage. This event makes the switching  
frequency lower, proportional to the load current, and keeps the light load efficiency high. Use the below  
equation to calculate the transition point to the light load operation IOUT(LL) current. The typical inductance is 1  
uH.  
(V - VOUT ) ì VOUT  
1
IN  
IOUT(LL)  
=
ì
2 ì L ì fSW  
V
IN  
(1)  
7.3.3 Soft Start and Prebiased Soft Start  
The TPSM86325x has an internal fixed 1.6-ms soft-start time. The EN default status is low. When the EN pin  
becomes high, the internal soft-start function begins ramping up the reference voltage to the PWM comparator.  
If the output capacitor is prebiased at start-up, the devices initiate switching and start ramping up only after the  
internal reference voltage becomes higher than the feedback voltage, VFB. This scheme makes sure that the  
converter ramps up smoothly into the regulation point.  
7.3.4 Overvoltage Protection  
The TPSM86325x has the overvoltage protection feature. When the output voltage becomes higher than the  
OVP threshold, the OVP is triggered with a 24-μs deglitch time. Both the high-side MOSFET and the low-side  
MOSFET drivers are turned off. When the overvoltage condition is removed, the device returns to switching.  
7.3.5 Frequency  
TPSM86325x default frequency is about 1.2 MHz. When output voltage is higher than 3.6 V and the ration of  
output voltage to input voltage < 0.62 (the hysteresis is 0.04), frequency changes to 2 MHz to decrease output  
voltage ripple. A summary is as below table.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPSM863252 TPSM863257  
English Data Sheet: SLUSF51  
 
TPSM863252, TPSM863257  
ZHCSR83A MARCH 2023 REVISED JUNE 2023  
www.ti.com.cn  
7-1. TPSM86325x Frequency at CCM  
Conditions  
Conditions  
Frequency  
1.2 MHz  
1.2 MHz  
2 MHz  
Output voltage < 3.6 V  
Duty 0.62  
Output voltage 3.6 V  
Duty < 0.62  
7.3.6 Large Duty Operation  
The TPSM86325x can support large duty operations up to 95% by smoothly dropping down the switching  
frequency. When VIN / VOUT < 1.6 and VFB is lower than internal VREF, the switching frequency is allowed to  
smoothly drop to make tON extended to implement the large duty operation and keep output voltage. The  
minimum switching frequency is limited to approximately 600 kHz.  
7.3.7 Current Protection and Undervoltage Protection  
The output overcurrent limit (OCL) is implemented using a cycle-by-cycle valley detect control circuit. The switch  
current is monitored during the off state by measuring the low-side FET drain-to-source voltage. This voltage is  
proportional to the switch current. To improve accuracy, the voltage sensing is temperature compensated.  
During the on time of the high-side FET switch, the switch current increases at a linear rate determined by the  
following:  
VIN  
VOUT  
On time  
Output inductor value  
During the on time of the low-side FET switch, this current decreases linearly. The average value of the switch  
current is the load current, IOUT. If the monitored valley current is above the OCL level, the converter maintains a  
low-side FET on and delays the creation of a new set pulse, even the voltage feedback loop requires one, until  
the current level becomes OCL level or lower. In subsequent switching cycles, the on time is set to a fixed value  
and the current is monitored in the same manner.  
There are some important considerations for this type of overcurrent protection. The load current is higher than  
the overcurrent threshold by one half of the peak-to-peak inductor ripple current. Also, when the current is being  
limited, the output voltage tends to fall as the demanded load current can be higher than the current available  
from the converter, which can cause the output voltage to fall. When the FB voltage falls below the UVP  
threshold voltage, the UVP comparator detects it and the device shuts down after the UVP delay time (typically  
220 µs) and restarts after the hiccup wait time (typically 14 ms).  
When the overcurrent condition is removed, the output voltage returns to the regulated value.  
The TPSM863257 is a FCCM mode part. In this mode, the device has negative inductor current at light loading.  
The device has NOC (negative overcurrent) protection to avoid too large negative current. NOC protection  
detects the valley of inductor current. When the valley value of inductor current exceeds the NOC threshold, the  
IC turns off the low side then turns on the high side. When the NOC condition is removed, the device returns to  
normal switching.  
7.3.8 Undervoltage Lockout (UVLO) Protection  
UVLO protection monitors the internal regulator voltage. When the voltage is lower than UVLO threshold voltage,  
the device is shut off. This protection is a non-latch protection.  
7.3.9 Thermal Shutdown  
The device monitors the temperature of itself. If the temperature exceeds the threshold value, the device is shut  
off. This protection is a non-latch protection.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF51  
12  
Submit Document Feedback  
Product Folder Links: TPSM863252 TPSM863257  
TPSM863252, TPSM863257  
ZHCSR83A MARCH 2023 REVISED JUNE 2023  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Eco-mode Operation  
The TPSM863252 operates in Eco-mode, which maintains high efficiency at light loading. As the output current  
decreases from heavy load conditions, the inductor current is also reduced and eventually comes to a point  
where the rippled valley touches zero level, which is the boundary between continuous conduction and  
discontinuous conduction mode. The rectifying MOSFET is turned off when the zero inductor current is detected.  
As the load current further decreases, the converter runs into discontinuous conduction mode. The on time is  
kept almost the same as it was in continuous conduction mode so that it takes longer time to discharge the  
output capacitor with smaller load current to the level of the reference voltage. This event makes the switching  
frequency lower, proportional to the load current, and keeps the light load efficiency high.  
7.4.2 FCCM Mode Operation  
The TPSM863257 operates in forced CCM (FCCM) mode, which keeps the converter operating in continuous  
current mode during light load conditions and allows the inductor current to become negative. During FCCM  
mode, the switching frequency is maintained at an almost constant level over the entire load range, which is  
suitable for applications requiring tight control of the switching frequency and output voltage ripple at the cost of  
lower efficiency under light load.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPSM863252 TPSM863257  
English Data Sheet: SLUSF51  
 
TPSM863252, TPSM863257  
ZHCSR83A MARCH 2023 REVISED JUNE 2023  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The device is a typical buck DC/DC converter that is typically used to convert a higher DC voltage to a lower DC  
voltage with a maximum available output current of 3 A. The following design procedure can be used to select  
component values for TPSM86325x. Alternately, the WEBENCH® Power Designer software can be used to  
generate a complete design. The WEBENCH Power Designer software uses an iterative design procedure and  
accesses a comprehensive database of components when generating a design. This section presents a  
simplified discussion of the design process.  
8.2 Typical Application  
The application schematic in 8-1 was developed to meet the requirements in 8-1. This circuit is available  
as the evaluation module (EVM). The sections provide the design procedure.  
8-1 shows the 12-V input, 1.05-V output converter schematic.  
1
Not install  
8-1. Schematic  
8.2.1 Design Requirements  
8-1 shows the design parameters for this application.  
8-1. Design Parameters  
Parameter  
Output voltage  
Output current  
Conditions  
MIN  
TYP  
1.05  
3
MAX  
Unit  
V
VOUT  
IOUT  
A
0.3-A 2.7-A load step, 1-A/μs  
slew rate  
Transient response  
±3% × VOUT  
V
ΔVOUT  
VIN  
Input voltage  
4.5  
12  
20  
25  
17  
V
VOUT(ripple)  
TA  
Output voltage ripple  
Ambient temperature  
CCM condition  
mV  
°C  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF51  
14  
Submit Document Feedback  
Product Folder Links: TPSM863252 TPSM863257  
 
 
 
 
 
TPSM863252, TPSM863257  
ZHCSR83A MARCH 2023 REVISED JUNE 2023  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 Output Voltage Resistors Selection  
The output voltage is set with a resistor divider from the output node to the FB pin. TI recommends using 1%  
tolerance or better divider resistors. Start by using 方程2 to calculate VOUT  
.
To improve efficiency at very light loads, consider using larger value resistors. If the values are too high, the  
regulator is more susceptible to noise and voltage errors from the FB input current are noticeable. Use a 10-kΩ  
resistor for R6 to start the design.  
R
5
V
= 0 . 6 × 1 +  
(2)  
OUT  
R
6
8.2.2.2 Output Filter Selection  
TPSM86325x integrates a 1-uH inductor. TI suggests to use below output cap to make loop stable. CFF range is  
suggested to use 10 pF to 100 pF.  
8-2. Recommended Component Values  
Minimum COUT  
Typical COUT  
Maximum COUT  
Output Voltage  
(V)  
CFF (pF)  
R5 (kΩ)  
R6 (kΩ)  
(μF)  
(μF)  
(μF)  
0.8  
1.05  
2.5  
3.3  
5
3.3  
7.5  
10.0  
10.0  
30.0  
30.0  
30.0  
30.0  
22  
10  
10  
22  
22  
22  
44  
22  
22  
44  
44  
44  
100  
88  
22  
22  
22  
10  
95.0  
135.0  
220.0  
470.0  
88  
100  
100  
100  
10  
The capacitor value and ESR determines the amount of output voltage ripple. The TPSM86325x are intended for  
use with ceramic or other low-ESR capacitors. Use 方程3 to determine the required RMS current rating for the  
output capacitor.  
VOUT ì V - VOUT  
(
)
IN  
ICO(RMS)  
=
12 ì V ì LO ì fSW  
IN  
(3)  
For this design, one MuRata GRM21BR61A226ME44L 22-µF output capacitor are used. The typical ESR is 2  
mΩeach.  
8.2.2.3 Input Capacitor Selection  
The TPSM86325x requires an input decoupling capacitor and a bulk capacitor is needed depending on the  
application. TI recommends a ceramic capacitor over 10 µF for the decoupling capacitor. TI recommends an  
additional 0.1-µF capacitor from the VIN pin to ground to provide high frequency filtering. The capacitor voltage  
rating must be greater than the maximum input voltage.  
8.2.2.4 Enable Circuit  
The EN pin controls the turn-on and turn-off of the device. When EN pin voltage is above the turn-on threshold,  
the device starts switching and when the EN pin voltage falls below the turn-off threshold IC stops switching. The  
default status is low. There is a 2-MΩinternal pulldown resister in the EN pin.  
EN can be controlled by a typical divider resister circuit from Vin or by a voltage of lower than 5.5 V.  
Because there is a 2-MΩ internal pulldown resister in the EN pin, TPSM86325x also supports to only connect a  
top resister from VIN pin to EN pin. EN voltage is got by the divide net of top resister and 2 MΩ. EN voltage  
cannot be allowed to be over 6 V.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPSM863252 TPSM863257  
English Data Sheet: SLUSF51  
 
 
TPSM863252, TPSM863257  
ZHCSR83A MARCH 2023 REVISED JUNE 2023  
www.ti.com.cn  
8.2.3 Application Curves  
The following data is tested with VIN = 12 V, VOUT = 1.05 V, TA = 25°C, unless otherwise specified.  
1%  
0.8%  
0.6%  
0.4%  
0.2%  
0
1%  
0.8%  
0.6%  
0.4%  
0.2%  
0
Vin = 3.3 V  
Vin = 5 V  
Vin = 12 V  
Vin = 17 V  
Vin = 3.3 V  
Vin = 5 V  
Vin = 12 V  
Vin = 17 V  
-0.2%  
-0.4%  
-0.6%  
-0.8%  
-1%  
-0.2%  
-0.4%  
-0.6%  
-0.8%  
-1%  
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
Iout (A)  
Iout (A)  
8-2. TPSM863252 Load Regulation vs Loading  
8-3. TPSM863257 Load Regulation vs Loading  
1%  
0.8%  
0.6%  
0.4%  
0.2%  
0
1%  
0.8%  
0.6%  
0.4%  
0.2%  
0
-0.2%  
-0.4%  
-0.6%  
-0.8%  
-1%  
-0.2%  
-0.4%  
-0.6%  
-0.8%  
-1%  
3
5
7
9
11  
Vin (V)  
13  
15  
17  
3
5
7
9
11  
Vin (V)  
13  
15  
17  
8-4. TPSM863252 Line Regulation vs VIN at 3-A  
8-5. TPSM863257 Line Regulation vs VIN at 3-A  
Loading  
Loading  
Vout = 20mV/div (AC coupled)  
Vout = 20mV/div (AC coupled)  
SW = 5V/div  
SW = 5V/div  
20us/div  
1us/div  
8-6. TPSM863252 Output Voltage Ripple With  
8-7. TPSM863257 Output Voltage Ripple With  
0.01-A Loading  
0.01-A Loading  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPSM863252 TPSM863257  
English Data Sheet: SLUSF51  
TPSM863252, TPSM863257  
ZHCSR83A MARCH 2023 REVISED JUNE 2023  
www.ti.com.cn  
Vout = 50mV/div (AC coupled)  
Vout = 20mV/div (AC coupled)  
SW = 5V/div  
Iout = 2A/div  
200us/div  
1us/div  
8-9. TPSM863252 Transient Response With 0.3 A  
8-8. TPSM86325x Output Voltage Ripple With 3-  
to 2.7 A  
A Loading  
Vout = 50mV/div (AC coupled)  
Vout = 50mV/div (AC coupled)  
Iout = 2A/div  
Iout = 2A/div  
200us/div  
200us/div  
8-10. TPSM863252 Transient Response With 0.1 8-11. TPSM863257 Transient Response With 0.3  
A to 3 A  
A to 2.7 A  
Vin = 5V/div  
Vout = 50mV/div (AC coupled)  
EN = 2V/div  
Iout = 2A/div  
Vout = 500mV/div  
200us/div  
2ms/div  
8-12. TPSM863257 Transient Response With 0.1  
8-13. Start-Up Through EN, IOUT = 3 A  
A to 3 A  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPSM863252 TPSM863257  
English Data Sheet: SLUSF51  
TPSM863252, TPSM863257  
ZHCSR83A MARCH 2023 REVISED JUNE 2023  
www.ti.com.cn  
Vin = 10V/div  
EN = 2V/div  
Vin = 5V/div  
EN = 5V/div  
Vout = 500mV/div  
Vout = 500mV/div  
2ms/div  
2ms/div  
8-14. Shutdown Through EN, IOUT = 3 A  
8-15. Start-Up with VIN Rising, IOUT = 3 A  
Vout = 500mV/div  
Vin = 5V/div  
EN = 5V/div  
SW = 10V/div  
Vout = 500mV/div  
IL = 5A/div  
10ms/div  
100us/div  
8-16. Shutdown with VIN Falling, IOUT = 3-A  
8-17. TPSM863252 Normal Operation to Output  
Hard Short  
Vout = 500mV/div  
Vout = 1V/div  
SW = 10V/div  
SW = 10V/div  
IL = 5A/div  
IL = 5A/div  
100us/div  
10ms/div  
8-18. TPSM863257 Normal Operation to Output  
8-19. Output Hard Short Hiccup  
Hard Short  
8.3 Power Supply Recommendations  
The TPSM86325x are designed to operate from input supply voltages in the range of 3 V to 17 V. Buck  
converters require the input voltage to be higher than the output voltage for proper operation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF51  
18  
Submit Document Feedback  
Product Folder Links: TPSM863252 TPSM863257  
 
TPSM863252, TPSM863257  
ZHCSR83A MARCH 2023 REVISED JUNE 2023  
www.ti.com.cn  
8.4 Layout  
8.4.1 Layout Guidelines  
Make sure the VIN and GND traces are as wide as possible to reduce trace impedance. The wide areas are  
also an advantage from the view point of heat dissipation.  
Place the input capacitor and output capacitor as close to the device as possible to minimize trace  
impedance.  
Provide sufficient vias for the input capacitor and output capacitor.  
Connect a separate VOUT path to the upper feedback resistor.  
Place a voltage feedback loop away from the high-voltage switching trace, and preferably has ground shield.  
Make sure the trace of the FB node is as small as possible to avoid noise coupling.  
Make sure the GND trace between the output capacitor and the GND pin are as wide as possible to minimize  
its trace impedance.  
8.4.2 Layout Example  
RFBB  
RFBT  
EN Control  
PG  
FB  
PG  
EN  
GND  
VIN  
VIN  
SW  
PGND  
CIN  
COUT  
VOUT  
GND  
VOUT  
VIA (Connected to GND plane at bottom layer)  
The line in the bottom layer  
8-20. Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPSM863252 TPSM863257  
English Data Sheet: SLUSF51  
 
TPSM863252, TPSM863257  
ZHCSR83A MARCH 2023 REVISED JUNE 2023  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.3 Trademarks  
D-CAP3and TI E2Eare trademarks of Texas Instruments.  
WEBENCH® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.4 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
9.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF51  
20  
Submit Document Feedback  
Product Folder Links: TPSM863252 TPSM863257  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTPSM863252RDXR  
PTPSM863257RDXR  
TPSM863252RDXR  
ACTIVE QFN-FCMOD  
ACTIVE QFN-FCMOD  
ACTIVE QFN-FCMOD  
RDX  
RDX  
RDX  
7
7
7
3000  
3000  
3000  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
Samples  
Samples  
Samples  
Call TI  
SN  
RoHS (In  
Work) & Green  
(In Work)  
Level-3-260C-168 HR  
863252  
TPSM863257RDXR  
ACTIVE QFN-FCMOD  
RDX  
7
3000  
RoHS (In  
Work) & Green  
(In Work)  
SN  
Level-3-260C-168 HR  
-40 to 125  
863257  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Jun-2023  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
RDX0007A  
QFN-FCMOD - 2.1 mm max height  
S
C
A
L
E
2
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
A
B
3.3  
PIN 1 INDEX AREA  
4
2.1  
1.9  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.3  
1.1  
2X  
(0.2) TYP  
(0.13)  
15X (0.18)  
12X (0.25)  
2X (1.415)  
2X (0.915)  
2X 0.675  
2X (0.415)  
3
2.25  
2X  
2
2.15  
0.1  
C A B  
C
0.05  
1.125  
1.025  
0.000 PKG  
2X (0.085)  
2X  
0.1  
C A B  
C
0.05  
2X (0.24)  
2X (45 X 0.377)  
2X (1)  
0.47  
3X  
0.37  
4
2X 1.3125  
2X (1.5)  
1
7
5
16X (0.2)  
0.5  
0.3  
PIN 1 ID  
(45 X 0.15)  
3X  
0.625  
2X  
0.27  
0.17  
3X  
0.525  
1.445  
1.245  
0.1  
0.05  
C A B  
C
2X  
2X 0.5  
4229109/A 10/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RDX0007A  
QFN-FCMOD - 2.1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
3X (0.6)  
3X (0.22)  
5
7
(1.9)  
2X (1.85)  
1
4
2X (1.572)  
12X (0.25)  
2X (1.5)  
2X (1.195)  
2X (1)  
(0.62)  
KEEP OUT  
AREA  
(1.295)  
2X (0.775)  
(0.4) KEEP OUT AREA  
METAL UNDER  
SOLDER MASK  
TYP  
2X (0.425)  
2X (0.085)  
0.000 PKG  
4X (0.165)  
2X (0.415)  
4X (0.665)  
2X (0.915)  
4X (1.165)  
2X (1.415)  
SOLDER MASK  
OPENING  
TYP  
2
3
(R0.05) TYP  
2X (1.775)  
(
0.2) TYP  
VIA  
LAND PATTERN EXAMPLE  
SCALE: 25X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
PADS: 1-4  
SOLDER MASK DETAILS  
PADS: 5-8  
4229109/A 10/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RDX0007A  
QFN-FCMOD - 2.1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
3X (0.22)  
3X (0.6)  
7
5
(1.9)  
2X (1.84)  
1
4
2X (1.575)  
4X (0.25)  
2X (1.5)  
EXPOSED METAL  
2X (1.185)  
2X (1)  
2X (0.785)  
EXPOSED METAL  
2X (0.375)  
2X (0.085)  
0.000 PKG  
2X (0.065)  
2X (0.415)  
4X (0.3)  
8X (0.25)  
2X (0.915)  
2X (1.265)  
2X (1.415)  
3
2
(R0.05) TYP  
2X (1.705)  
METAL UNDER  
SOLDER MASK  
TYP  
SOLDER MASK  
OPENING  
TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 25X  
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
PADS: 1, 2, 3 & 4: 75%  
4229109/A 10/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPSM863257

3-V to 17-V input voltage, 3-A forced-CCM synchronous buck module

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPSM8A28

TPSM8A28, TPSM8A29 2.7-V to 16-V Input, 12-A, 15-A Buck Power Modules with Differential Remote Sense

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPSM8A28RDGR

TPSM8A28, TPSM8A29 2.7-V to 16-V Input, 12-A, 15-A Buck Power Modules with Differential Remote Sense

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPSM8A29

TPSM8A28, TPSM8A29 2.7-V to 16-V Input, 12-A, 15-A Buck Power Modules with Differential Remote Sense

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPSM8A29RDGR

TPSM8A28, TPSM8A29 2.7-V to 16-V Input, 12-A, 15-A Buck Power Modules with Differential Remote Sense

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPSM8D6B24

4V 至 16V 输入、双路 25A/单路 50A PMBus® 电源模块

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPSM8D6B24MOWR

4V 至 16V 输入、双路 25A/单路 50A PMBus® 电源模块

| MOW | 59 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPSM8D6C24

4V 至 16V 输入、双路 35A PMBus® 电源模块

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPSM8D6C24MOWR

4V 至 16V 输入、双路 35A PMBus® 电源模块 | MOW | 59 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPSMA

Surface Mount Transient Voltage Suppressors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ANOVA

TPSMA

Surface Mount Transient Voltage Suppressors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
LGE

TPSMA

Surface Mount Transient Voltage Suppressors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
UNSEMI