TRF1208 [TI]

10MHz 至 11GHz、3dB 带宽、单端转差分放大器;
TRF1208
型号: TRF1208
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

10MHz 至 11GHz、3dB 带宽、单端转差分放大器

放大器
文件: 总31页 (文件大小:2211K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TRF1208  
ZHCSLL7B OCTOBER 2021 REVISED APRIL 2022  
TRF1208 10 MHz 11 GHz 3dB BWADC 驱动器放大器  
• 外形小巧省去无源射频平衡-非平衡变压器从而  
减小系统尺寸  
1 特性  
• 采用数PD 控制器的低功耗断电模式可优化系  
统设计  
相控阵雷达  
军用无线电  
• 高速数字转换器  
4G/5G 线BTS  
• 射频有源平衡-非平衡变压器  
测试和测量  
• 可用ADC 驱动器具备出色的单端至差分转换  
性能  
• 也可在差分至单端模式下运行DAC 缓冲器  
11GHz3dB 带宽  
8GHz1dB 增益平坦度  
• 单端至差分的固定功率增益16dB  
OIP3 性能:  
2GHz 37dBm  
6 GHz 32dBm  
P1dB 性能:  
2GHz 15dBm  
6GHz 12.5dBm  
• 噪声系数:  
2GHz 7dB  
8GHz 7dB  
• 增益和相位不平衡±0.3dB/±3 度  
• 关断特性  
3 说明  
TRF1208 是一款超高性能射频放大器专门针对射频  
(RF)  
应 用 进 行 了 优 化 。 在 驱 动 高 性 能  
ADC12DJ5200RF 等模数转换器 (ADC) 交流耦合  
应用需要进行单端至差分转换此款器件是这类应用的  
理想之选。片上匹配元件可对印刷电路板 (PCB) 实现  
方案进行简化并在可用带宽内提供最高性能。此器件  
采用德州仪器 (TI) 先进的互补 BiCMOS 工艺制造并  
采用节省空间WQFN-FCRLF 封装。  
3.3V 单电源运行  
它由单轨电源供电消耗138 mA 的有效电流。断电  
功能还有助于实现节能。  
• 有效电流138mA  
2 应用  
器件信息(1)  
• 直接驱动射频采样GSPS ADC  
• 最高可支X 适用于航天和国防应用  
• 具备高线性支持新一5G 系统  
封装尺寸标称值)  
器件型号  
TRF1208  
封装  
WQFN-FCRLF (12) 2.00mm × 2.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• 具备低噪声系数可实现更佳的信号完整性  
PD  
VDD  
TRF1208  
+
ADC12DJ5200  
Rs = 50 Ω  
50 Ω  
驱动高ADC TRF1208  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS972  
 
 
 
 
 
TRF1208  
www.ti.com.cn  
ZHCSLL7B OCTOBER 2021 REVISED APRIL 2022  
Table of Contents  
8 Application and Implementation..................................16  
8.1 Application Information............................................. 16  
8.2 Typical Application.................................................... 18  
9 Power Supply Recommendations................................21  
10 Layout...........................................................................21  
10.1 Layout Guidelines................................................... 21  
10.2 Layout Example...................................................... 22  
11 Device and Documentation Support..........................23  
11.1 Device Support........................................................23  
11.2 Documentation Support ......................................... 23  
11.3 接收文档更新通知................................................... 23  
11.4 支持资源..................................................................23  
11.5 Trademarks............................................................. 23  
11.6 Electrostatic Discharge Caution..............................23  
11.7 术语表..................................................................... 23  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics................................................7  
7 Detailed Description......................................................14  
7.1 Overview...................................................................14  
7.2 Functional Block Diagram.........................................14  
7.3 Feature Description...................................................14  
7.4 Device Functional Modes..........................................15  
Information.................................................................... 23  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (March 2022) to Revision B (April 2022)  
Page  
Changed Pin 12 from: OUTP to: OUTM and Pin 11 from: OUTM to OUTP .......................................................3  
Updated the Interfacing with AFE7950 RX and Interfacing with AFE7950 TX figures..................................... 16  
Updated the TRF1208 in Receive Chain with AFE7950 figure.........................................................................18  
Updated the TRF1208 in Transmit Chain with AFE7950 figure........................................................................20  
Changes from Revision * (October 2021) to Revision A (March 2022)  
Page  
• 将文档的状态从预告信更改为“量产数据..................................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TRF1208  
 
TRF1208  
www.ti.com.cn  
ZHCSLL7B OCTOBER 2021 REVISED APRIL 2022  
5 Pin Configuration and Functions  
13 GND  
(Thermal  
Pad)  
12 OUTM  
11 OUTP  
INM 5  
INP 6  
5-1. RPV Package,  
12-Pin WQFN-FCRLF  
(Top View)  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
GND  
NO.  
1, 4, 7, 10  
GND  
Ground  
INP / INM  
OUTP / OUTM  
PD  
6, 5  
I
O
I
Differential signal input  
Differential signal output  
11, 12  
2
8
Power down signal. Supports 1.8 V and 3.3 V Logic. 0 = Chip Enabled. 1 = Power Down.  
Test pin. Short to ground.  
TP1  
P
TP2  
3
Test pin. Short to ground.  
VDD  
9
3.3 V supply (there is an alternate part, TRF1208A5, that works off 5 V supply).  
Thermal pad. Connect to ground on board.  
Thermal pad  
13  
(1) I = input, O = output, P = power, GND = ground  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TRF1208  
 
 
 
TRF1208  
www.ti.com.cn  
ZHCSLL7B OCTOBER 2021 REVISED APRIL 2022  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
3.7  
UNIT  
V
Supply voltage, VDD  
0.3  
INP, INM  
20  
dBm  
V
Input level  
PD  
3.7  
0.3  
40  
40  
Junction temperature, TJ  
Temperature  
150  
150  
ºC  
Storage temperature, Tstg  
ºC  
Continuous power dissipation  
See thermal information  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±1000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per ANSI/ESDA/  
JEDEC JS-002, all pins(2)  
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.2  
NOM  
3.3  
MAX  
3.45  
105  
UNIT  
V
VDD  
TA  
Supply voltage  
Ambient air temperature  
Junction temperature  
25  
°C  
40  
40  
TJ  
125  
°C  
6.4 Thermal Information  
DEVICE  
THERMAL METRIC(1)  
PKG DES (PKG FAM)  
UNIT  
PINS  
66.9  
64.3  
17.4  
1.7  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ΨJT  
17.2  
9.0  
ΨJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TRF1208  
 
 
 
 
 
 
 
 
 
TRF1208  
www.ti.com.cn  
ZHCSLL7B OCTOBER 2021 REVISED APRIL 2022  
6.5 Electrical Characteristics  
Test conditions are at TA = 25 oC , VDD = 3.3 V, Single-ended input with RS = 50 Ω, output with ZL = 100 Ωdifferential,  
unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
SSBW  
LSBW  
Small-signal 3-dB bandwidth  
Large-signal 3-dB bandwidth  
Vo = 0.1 VPP  
11  
11  
GHz  
GHz  
GHz  
dB  
Vo = 1 VPP  
1-dB BW Bandwidth for 1-dB flatness  
8
S21  
S11  
S12  
Power Gain  
f = 2 GHz  
16  
Input return loss  
Reverse isolation  
f = 10 MHz to 8 GHz  
f = 2 GHz  
dB  
10  
-35  
± 0.3  
± 3  
dB  
ImbGAIN Gain Imbalance  
ImbPHASE Phase Imbalance  
f = 10 MHz to 8 GHz  
f = 10 MHz to 8 GHz  
dB  
degrees  
CMRR using the formula (S21-S31) /  
CMRR  
(S21+S31). Port-1: INP, Port-2: OUTP,  
Port-3: OUTM  
f = 2 GHz  
-45  
dB  
f = 0.5 GHz, Po = +3 dBm  
f = 2 GHz, Po = +3 dBm  
f = 6 GHz, Po = +3 dBm  
f = 8 GHz, Po = +3 dBm  
f = 0.5 GHz, Po = +3 dBm  
f = 2 GHz, Po = +3 dBm  
f = 6 GHz, Po = +3 dBm  
f = 8 GHz, Po = +3 dBm  
-70  
-65  
-52  
-45  
-68  
-63  
-56  
-63  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
HD2  
Second-order harmonic distortion  
Third-order harmonic distortion  
HD3  
f = 0.5 GHz, Po = -4 dBm per tone (10  
MHz spacing)  
-73  
-69  
-56  
-45  
-75  
-84  
-72  
-51  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
f = 2 GHz, Po = -4 dBm per tone (10 MHz  
spacing)  
IMD2  
Second-order intermodulation distortion  
f = 6 GHz, Po = -4 dBm per tone (10 MHz  
spacing)  
f = 8 GHz, Po = -4 dBm per tone (10 MHz  
spacing)  
f = 0.5 GHz, Po = -4 dBm per tone (10  
MHz spacing)  
f = 2 GHz, Po = -4 dBm per tone (10 MHz  
spacing)  
IMD3  
Third-order intermodulation distortion  
f = 6 GHz, Po = -4 dBm per tone (10 MHz  
spacing)  
f = 8 GHz, Po = -4 dBm per tone (10 MHz  
spacing)  
f = 0.5 GHz  
f = 2 GHz  
f = 6 GHz  
f = 8 GHz  
11  
15  
dBm  
dBm  
dBm  
dBm  
OP1dB  
Output 1-dB compression point  
12.5  
7.5  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TRF1208  
 
TRF1208  
www.ti.com.cn  
ZHCSLL7B OCTOBER 2021 REVISED APRIL 2022  
6.5 Electrical Characteristics (continued)  
Test conditions are at TA = 25 oC , VDD = 3.3 V, Single-ended input with RS = 50 Ω, output with ZL = 100 Ωdifferential,  
unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
f = 0.5 GHz, Po = -4 dBm per tone (10  
MHz spacing)  
68  
dBm  
f = 2 GHz, Po = -4 dBm per tone (10 MHz  
spacing)  
63  
55  
42  
34  
37  
34  
30  
21  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
OIP2  
Output second-order intercept point  
f = 6 GHz, Po = -4 dBm per tone (10 MHz  
spacing)  
f = 8 GHz, Po = -4 dBm per tone (10 MHz  
spacing)  
f = 0.5 GHz, Po = -4 dBm per tone (10  
MHz spacing)  
f = 2 GHz, Po = -4 dBm per tone (10 MHz  
spacing)  
f = 4 GHz, Po = -4 dBm per tone (10 MHz  
spacing)  
OIP3  
Output third-order intercept point  
f = 6 GHz, Po = -4 dBm per tone (10 MHz  
spacing)  
f = 8 GHz, Po = -4 dBm per tone (10 MHz  
spacing)  
f = 0.5 GHz  
f = 2 GHz  
f = 6 GHz  
f = 8 GHz  
6.5  
6.8  
7.2  
7
dB  
dB  
dB  
dB  
NF  
Noise Figure  
IMPEDANCE  
ZO-DIFF Differential output impedance  
ZIN Single ended input impedance  
TRANSIENT  
f = DC (internal to the device)  
3
Ω
Ω
50  
With INM terminated with 50 Ω  
VOMAX  
VOSAT  
TREC  
Output max operating range (differential)  
2
3.9  
0.2  
VPP  
VPP  
ns  
Output saturated voltage level  
(differential)  
f = 2 GHz  
Over-drive recovery time  
Using a -0.5 Vp input pulse of width 2 ns  
POWER SUPPLY  
IQA  
Active current  
Power-down quiescent current  
Current on VDD pin, PD = 0  
Current on VDD pin, PD = 1  
138  
7
mA  
mA  
IQPD  
ENABLE  
VPDHIGH PD pin logic HIGH  
VPDLOW PD pin logic LOW  
1.45  
V
0.8  
100  
250  
V
PD = HIGH (1.8 V logic)  
PD = HIGH (3.3 V logic)  
50  
200  
2
µA  
µA  
pF  
ns  
ns  
IPDBIAS  
PD bias current (current on PD pin)  
CPD  
TON  
TOFF  
PD pin capacitance  
Turn_on time  
50% VPD to 90% RF  
50% VPD to 10% RF  
200  
50  
Turn_off time  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TRF1208  
TRF1208  
www.ti.com.cn  
ZHCSLL7B OCTOBER 2021 REVISED APRIL 2022  
6.6 Typical Characteristics  
Temperature = 25 °C, VDD = 3.3 V, input is 50 Ωsingle-ended, output is 100 Ωdifferential unless otherwise specified.  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
6
6
-40 èC  
25 èC  
85 èC  
105 èC  
4
4
3.15 V  
3.3 V  
3.45 V  
2
2
0
0
0
2000  
4000  
6000  
Frequency (MHz)  
8000  
10000  
12000  
0
2000  
4000  
6000  
8000  
10000  
12000  
SBOS  
Frequency (MHz)  
.
.
6-1. Power Gain Across Temperature  
6-2. Power Gain Across VDD  
0
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-40 èC  
25 èC  
85 èC  
105 èC  
3.15 V  
3.3 V  
3.45 V  
0
2000  
4000  
6000  
Frequency (MHz)  
8000  
10000  
12000  
0
2000  
4000  
6000  
8000  
10000  
12000  
SBOS  
Frequency (MHz)  
.
.
6-3. Return Loss Across Temperature  
6-4. Return Loss Across VDD  
0
-5  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-40 èC  
25 èC  
85 èC  
3.15 V  
3.3 V  
3.45 V  
105 èC  
0
2000  
4000  
6000  
Frequency (MHz)  
8000  
10000 12000  
0
2000  
4000  
6000  
8000  
10000  
12000  
SBOS  
Frequency (MHz)  
.
.
6-5. Reverse Isolation Across Temperature  
6-6. Reverse Isolation Across VDD  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TRF1208  
 
TRF1208  
www.ti.com.cn  
ZHCSLL7B OCTOBER 2021 REVISED APRIL 2022  
6.6 Typical Characteristics (continued)  
Temperature = 25 °C, VDD = 3.3 V, input is 50 Ωsingle-ended, output is 100 Ωdifferential unless otherwise specified.  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
3.15 V  
3.3 V  
3. 45 V  
-40 èC  
25 èC  
85 èC  
105 èC  
0
2000  
4000 6000  
Frequency (MHz)  
8000  
10000  
0
2000  
4000  
6000  
8000  
10000  
SBOS  
Frequency (MHz)  
Pout /tone = -4 dBm, 10 MHz tone spacing  
Pout /tone = -4 dBm, 10 MHz tone spacing  
6-7. OIP3 Across Temperature  
6-8. OIP3 Across VDD  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
3.15 V  
3.3 V  
3.45 V  
-40 èC  
25 èC  
85 èC  
105 èC  
0
2000  
4000 6000  
Frequency (MHz)  
8000  
10000  
0
2000  
4000  
6000  
8000  
10000  
SBOS  
Frequency (MHz)  
At (2f1-f2) frequency, f1 < f2; Pout /tone = -4 dBm, 10 MHz tone  
spacing  
At (2f1-f2) frequency, f1 < f2; Pout /tone = -4 dBm, 10 MHz tone  
spacing  
6-9. IMD3 Lower Across Temperature  
6-10. IMD3 Lower Across VDD  
-20  
-20  
3.15 V  
3.3 V  
3.45 V  
-40  
-40 èC  
25 èC  
85 èC  
105 èC  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-30  
-50  
-60  
-70  
-80  
-90  
-100  
0
2000  
4000 6000  
Frequency (MHz)  
8000  
10000  
0
2000  
4000  
6000  
8000  
10000  
SBOS  
Frequency (MHz)  
At (2f2-f1) frequency, f1 < f2; Pout /tone = -4 dBm, 10 MHz tone  
spacing  
At (2f2-f1) frequency, f1 < f2; Pout /tone = -4 dBm, 10 MHz tone  
spacing  
6-11. IMD3 Higher Across Temperature  
6-12. IMD3 Higher Across VDD  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TRF1208  
TRF1208  
www.ti.com.cn  
ZHCSLL7B OCTOBER 2021 REVISED APRIL 2022  
6.6 Typical Characteristics (continued)  
Temperature = 25 °C, VDD = 3.3 V, input is 50 Ωsingle-ended, output is 100 Ωdifferential unless otherwise specified.  
80  
70  
60  
50  
40  
30  
20  
80  
70  
60  
50  
40  
30  
20  
-40 èC  
25 èC  
85 èC  
105 èC  
3.15 V  
3.3 V  
3.45 V  
0
2000  
4000 6000  
Frequency (MHz)  
8000  
10000  
0
2000  
4000  
6000  
8000  
10000  
SBOS  
Frequency (MHz)  
At (f2-f1) frequency, f2 > f1; Pout /tone = -4 dBm, 10 MHz tone  
spacing  
At (f2-f1) frequency, f2 > f1; Pout /tone = -4 dBm, 10 MHz tone  
spacing  
6-13. OIP2 Lower Across Temperature  
6-14. OIP2 Lower Across VDD  
80  
80  
70  
60  
50  
70  
60  
50  
40  
40  
-40 èC  
25 èC  
85 èC  
105 èC  
30  
20  
3.15 V  
30  
3.3 V  
3.45 V  
20  
0
2000  
4000 6000  
Frequency (MHz)  
8000  
10000  
0
2000  
4000  
6000  
8000  
10000  
SBOS  
Frequency (MHz)  
At (f2+f1) frequency, f2 > f1; Pout /tone = -4 dBm, 10 MHz tone  
spacing  
At (f2+f1) frequency, f2 > f1; Pout /tone = -4 dBm, 10 MHz tone  
spacing  
6-15. OIP2 Higher Across Temperature  
6-16. OIP2 Higher Across VDD  
-20  
-20  
3.15 V  
3.3 V  
3.45 V  
-40  
-40 èC  
25 èC  
85 èC  
105 èC  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-30  
-50  
-60  
-70  
-80  
-90  
-100  
0
2000  
4000 6000  
Frequency (MHz)  
8000  
10000  
0
2000  
4000  
6000  
8000  
10000  
SBOS  
Frequency (MHz)  
At (f2-f1) frequency, f2 > f1; Pout /tone = -4 dBm, 10 MHz tone  
spacing  
At (f2-f1) frequency, f2 > f1; Pout /tone = -4 dBm, 10 MHz tone  
spacing  
6-17. IMD2 Lower Across Temperature  
6-18. IMD2 Lower Across VDD  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TRF1208  
TRF1208  
www.ti.com.cn  
ZHCSLL7B OCTOBER 2021 REVISED APRIL 2022  
6.6 Typical Characteristics (continued)  
Temperature = 25 °C, VDD = 3.3 V, input is 50 Ωsingle-ended, output is 100 Ωdifferential unless otherwise specified.  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
3.15 V  
3.3 V  
3.45 V  
-40 èC  
25 èC  
85 èC  
105 èC  
0
2000  
4000 6000  
Frequency (MHz)  
8000  
10000  
0
2000  
4000  
6000  
8000  
10000  
SBOS  
Frequency (MHz)  
At (f2+f1) frequency, f2 > f1; Pout /tone = -4 dBm, 10 MHz tone  
spacing  
At (f2+f1) frequency, f2 > f1; Pout /tone = -4 dBm, 10 MHz tone  
spacing  
6-19. IMD2 Higher Across Temperature  
6-20. IMD2 Higher Across VDD  
-20  
-20  
3.15 V  
3.3 V  
3.45 V  
-40  
-40 èC  
25 °C  
85 °C  
105 °C  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-30  
-50  
-60  
-70  
-80  
-90  
-100  
0
2000  
4000 6000  
Frequency (MHz)  
8000  
10000  
0
2000  
4000  
6000  
8000  
10000  
SBOS  
Frequency (MHz)  
Pout = +3 dBm  
Pout = +3 dBm  
6-21. HD2 Across Temperature  
6-22. HD2 Across VDD  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
3.15 V  
3.3 V  
3.45 V  
-40 èC  
25 èC  
85 èC  
105 èC  
0
2000  
4000 6000  
Frequency (MHz)  
8000  
10000  
0
2000  
4000  
6000  
8000  
10000  
SBOS  
Frequency (MHz)  
Pout = +3 dBm  
Pout = +3 dBm  
6-23. HD3 Across Temperature  
6-24. HD3 Across VDD  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TRF1208  
TRF1208  
www.ti.com.cn  
ZHCSLL7B OCTOBER 2021 REVISED APRIL 2022  
6.6 Typical Characteristics (continued)  
Temperature = 25 °C, VDD = 3.3 V, input is 50 Ωsingle-ended, output is 100 Ωdifferential unless otherwise specified.  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
1800 MHz  
4000 MHz  
6000 MHz  
8000 MHz  
1800 MHz  
4000 MHz  
6000 MHz  
8000 MHz  
-4  
-2  
0
2
4
6
8
-4  
-2  
0
2
4
6
8
Output Power (dBm)  
Output Power (dBm)  
.
.
6-25. HD2 vs Output Power  
6-26. HD3 vs Output Power  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
3.15 V  
3.3 V  
3.45 V  
-40 èC  
25 èC  
85 èC  
105 èC  
6
6
4
4
0
0
2000  
4000 6000  
Frequency (MHz)  
8000  
10000  
2000  
4000  
6000  
8000  
10000  
SBOS  
Frequency (MHz)  
.
.
6-27. Output P1dB Across Temperature  
6-28. Output P1dB Across VDD  
14  
12  
10  
8
14  
12  
10  
8
3.15 V  
3.3 V  
3.45 V  
-40 èC  
25 èC  
85 èC  
105 èC  
6
6
4
4
2
2
0
0
0
0
2000  
4000 6000  
Frequency (MHz)  
8000  
10000  
2000  
4000  
6000  
8000  
10000  
SBOS  
Frequency (MHz)  
.
.
6-29. NF Across Temperature  
6-30. NF Across VDD  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TRF1208  
TRF1208  
www.ti.com.cn  
ZHCSLL7B OCTOBER 2021 REVISED APRIL 2022  
6.6 Typical Characteristics (continued)  
Temperature = 25 °C, VDD = 3.3 V, input is 50 Ωsingle-ended, output is 100 Ωdifferential unless otherwise specified.  
1
0.8  
0.6  
0.4  
0.2  
0
5
4
3
2
1
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-1  
-2  
-3  
-4  
-5  
-40 èC  
25 èC  
85 èC  
105 èC  
-40 èC  
25 èC  
85 èC  
105 èC  
0
2000  
4000 6000  
Frequency (MHz)  
8000  
10000  
0
2000  
4000 6000  
Frequency (MHz)  
8000  
10000  
SBOS  
SBOS  
.
.
6-31. Gain Imbalance  
6-32. Phase Imbalance  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
3.15 V  
3.3 V  
3.45 V  
-40 èC  
25 èC  
85 èC  
105 èC  
0
2000  
4000 6000  
Frequency (MHz)  
8000  
10000  
0
2000  
4000  
6000  
8000  
10000  
SBOS  
Frequency (MHz)  
.
.
6-33. CMRR Across Temperature  
6-34. CMRR Across VDD  
2
1.5  
1
4
3.5  
3
0.5  
0
2.5  
2
-0.5  
-1  
1.5  
1
-1.5  
-2  
V_measured  
V_ideal  
0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
2000  
4000  
6000  
8000  
10000  
Time (ns)  
Frequency (MHz)  
Input = -2 dBm, f = 500 MHz  
Input = +6 dBm  
6-35. Overdrive Recovery  
6-36. Saturation Voltage  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TRF1208  
TRF1208  
www.ti.com.cn  
ZHCSLL7B OCTOBER 2021 REVISED APRIL 2022  
6.6 Typical Characteristics (continued)  
Temperature = 25 °C, VDD = 3.3 V, input is 50 Ωsingle-ended, output is 100 Ωdifferential unless otherwise specified.  
.
.
6-38. Differential S22  
6-37. Single-Ended S11  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TRF1208  
TRF1208  
www.ti.com.cn  
ZHCSLL7B OCTOBER 2021 REVISED APRIL 2022  
7 Detailed Description  
7.1 Overview  
The TRF1208 is a very high-performance amplifier optimized for radio frequency (RF) and intermediate  
frequency (IF) with signal bandwidths up to 11 GHz. The device is ideal for ac-coupled applications that may  
require a single-ended to differential conversion when driving an analog-to-digital converter (ADC). The chip has  
a 2-stage architecture and provides about 16 dB of gain when configured for single-ended inputs driven from a  
50-Ωsource. This chip can also work as as a Diff-to-SE amplifier to act as a DAC buffer.  
This chip does not require any pull up or pull down components on PCB and thereby it simplifies the layout and  
ensures the highest performance over the whole bandwidth.  
The input and output are ac coupled. The chip is powered with 3.3 V supply (TRF1208A5 is an alternate part  
that works off 5 V supply). A power-down feature is also available for this chip.  
7.2 Functional Block Diagram  
The following figure shows the functional block diagram of TRF1208. It essentialy has 2-stages with voltage  
feedback configuration.  
TRF1208  
+
+
7.3 Feature Description  
The TRF1208 includes the following features:  
Fully differential amplifier  
Single supply operation  
Power-down option  
7.3.1 Fully-Differential Amplifier  
The TRF1208 is a voltage feedback fully-differential amplifier (FDA) with fixed gain by architecture. TRF1208 is  
most suited to be operated as a single-ended to differential amplifier by terminating the INM pin by a 50 Ω  
resistor and driving the INP pin directly with no external components.  
This amplifier has non-linearity cancellation circuits due to which it has excellent linearity performance over a  
wide range of frequencies.  
The output of the amplifier has a low DC impedance. It can be matched to a load if required by adding  
appropriate series resistors or attenuator pad.  
7.3.2 Single Supply Operation  
TRF1208 operates on a single 3.3 V supply. The input and output bias voltages are set internally. Therefore, the  
signal path has to be ac-coupled on the board at all the 4 RF input and output pins. Single supply operation  
simplifies the board design.  
There is also another variant of this chip (TRF1208A5) that operates with 5 V supply instead of 3.3 V.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TRF1208  
 
 
 
 
TRF1208  
www.ti.com.cn  
ZHCSLL7B OCTOBER 2021 REVISED APRIL 2022  
7.3.3 Power Down Option  
There is power-down functionality for this device. The PD pin can be used to power-down the amplifier. This pin  
supports both 1.8 V and 3.3 V digital logics and is referenced to the GND. A logic 1 turns the device off placing  
the device into a low quiescent current state.  
Note that, when disabled, the signal path is still present through the internal circuits. Input signals applied to a  
disabled device still appear at the outputs at some lower level through this path as they would for any disabled  
feedback amplifier.  
7.4 Device Functional Modes  
TRF1208 has 2 functional modes, namely, Active mode and Power-down mode. The functional modes are  
controlled by the PD pin as described in the previous section.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TRF1208  
 
TRF1208  
www.ti.com.cn  
ZHCSLL7B OCTOBER 2021 REVISED APRIL 2022  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
8.1.1 Driving a High-Speed ADC  
A common application of TRF1208 is to drive a high-speed ADC such as ADC12DJ5200RF or AFE7950 which  
have differential input. Conventionally passive baluns are used to drive Gsps ADCs due to non-availability of  
high-BW, linear amplifiers. TRF1208 is an active balun that has excellent bandwidth flatness, gain, and phase  
imbalance comparable to or exceeding costly passive baluns.  
8-1 shows a typical interface circuit for ADC12DJ5200RF. Depending on the ADC and system requirement,  
this circuit can be simplified or can be more complex.  
Anti-aliasing filter  
Resistive matching pad  
50 Ω  
TRF1208  
ADC12DJ5200RF  
8-1. Interfacing with ADC12DJ5200RF  
It shows two sections of the circuit between the driver amp and the ADC namely the matching pad (or  
attenuator pad) and the anti-aliasing filter. Small form-factor RF quality passive components are recommended  
for these circuits. The output swing of TRF1208 is well suited to drive these ADCs full-scale at the same time not  
over-driving it avoiding the need for any voltage limiting device at the ADC.  
The following figures show typical interface circuits for AFE7950 RX and TX chains in which TRF1208 is the S2D  
and D2S amplifier respectively.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TRF1208  
 
 
 
 
TRF1208  
www.ti.com.cn  
ZHCSLL7B OCTOBER 2021 REVISED APRIL 2022  
3.3 V  
RX path  
100 pF  
100 pF  
10  
10  
10  
10  
12  
11  
9
100 pF  
100 pF  
OUTM  
OUTP  
To AFE7950 RX  
VDD  
6
5
INP  
INM  
1
4
7
GND  
TRF1208  
GND  
GND  
GND  
TPAD  
2
PD  
8
3
10  
13  
TP1  
TP2  
(See NOTE A)  
A. AFE matching network component type (whether L or C) and values depend on the channel (A, B, C, D, FB1, FB2) and frequency  
band  
8-2. Interfacing with AFE7950 RX  
1.8 V  
TX path  
3.3 V  
100 pF  
20  
100 pF  
20  
12  
11  
9
OUTM  
OUTP  
VDD  
6
5
INP  
INM  
From AFE7950 TX  
1
4
7
TRF1208GND  
GND  
2
100 pF  
PD  
GND  
GND  
TPAD  
20  
8
3
100 pF  
10  
13  
TP1  
TP2  
(See NOTE A)  
A. AFE matching network component type (whether L or C) and values depend on the channel (A, B, C, D) and frequency band  
8-3. Interfacing with AFE7950 TX  
8.1.2 Calculating Output Voltage Swing  
This section gives an idea of the output voltage swings for different input power levels as a quick reference. The  
output is terminated with 100 Ωdifferential load in this case and power gain of 16 dB is assumed.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TRF1208  
TRF1208  
www.ti.com.cn  
ZHCSLL7B OCTOBER 2021 REVISED APRIL 2022  
Pi, Vi  
50  
Po, Vo  
TRF1208  
8-4. Power and Voltage Levels  
Voltage gain = 20*log (Vo/Vi)  
Power gain = 10*log (Po/Pi) = 10*log ((Vo 2/100)/(Vi 2/50)) = 20*log (Vo/Vi) - 3 dB  
(1)  
8-1. Output Voltage Swings for Different Input Power Levels  
Input  
Output  
Pi (dBm)  
-20  
Vi (Vpp)  
Po (dBm)  
Vo (Vpp)  
0.063  
0.112  
0.2  
-4  
1
0.564  
1.004  
1.785  
2.002  
-15  
-10  
6
-9  
0.224  
7
8.1.3 Thermal Considerations  
The TRF1208 is packaged in a 2 mm × 2 mm WQFN-FCRLF package that has excellent thermal properties. The  
chip has a thermal pad underneath that should be connected to a ground plane. The ground plane should be  
shorted to the other ground pins of the chip at four corners if possible to allow heat propagation to the top layer  
of PCB. There should be a thermal via that connects the thermal pad plane on the top layer of the PCB to the  
inner layer ground planes to allow heat propagation to the inner layers.  
The total power dissipation needs to be limited to keep the device junction temperature below 150°C for  
instantaneous power and below 125°C for continuous power.  
8.2 Typical Application  
An example of TRF1208 acting as ADC and DAC amplifiers for AFE7950 is explained in this section.  
8.2.1 TRF1208 in Receive Chain  
This section describes an RF receiver chain in which TRF1208 is working as a S2D (SE-to-diff) amp and driving  
a receive channel of AFE7950.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TRF1208  
 
 
TRF1208  
www.ti.com.cn  
ZHCSLL7B OCTOBER 2021 REVISED APRIL 2022  
INM  
OUTP  
RXIN+  
11  
12  
TRF1208  
AFE7950  
RXIN-  
INP  
OUTM  
8-5. TRF1208 in Receive Chain with AFE7950  
The previous figure is a generic schematics of a design in which TRF1208 drives an AFE7950 receive channel.  
The exact values of the components depend on the frequency band for which the AFE7950 front-end is  
matched.  
8.2.1.1 Design Requirements  
The AFE7950 channel is required to be matched to 8.2 GHz.  
8.2.1.2 Detailed Design Procedure  
The TRF1208 is configured as a S2D amplifier. The section close to TRF1208 output is an attenuator pad which  
is meant for robust matching. The section close to AFE7950 is the matching network for the AFE which is  
channel dependent. The matching components are chosen based on the AFE return-loss data and some trial  
and error since the board parameters can influence the exact values  
8-2 shows the bill of materials (BOM) values of the design for a channel that is matched to center frequency  
of 8.2 GHz.  
8-2. Component Values of RX Chain with Center Frequency = 8.2 GHz  
Section  
Designator  
C117  
C115  
C111  
C122  
R74  
Type  
Value  
100 nF  
100 nF  
100 nF  
100 nF  
10 Ω  
Part Number  
Install / DNI  
Install  
Install  
Install  
Install  
Install  
Install  
Install  
Install  
Install  
Install  
Install  
DNI  
DC block cap  
DC block cap  
DC block cap  
DC block cap  
Attenuator  
Attenuator  
Attenuator  
Attenuator  
Attenuator  
Attenuator  
INM term  
cap  
530L104KT  
cap  
530L104KT  
cap  
530L104KT  
cap  
530L104KT  
resistor  
resistor  
resistor  
resistor  
resistor  
resistor  
resistor  
ERJ-1GEF10R0C  
ERJ-1GEF10R0C  
ERJ-1GEF10R0C  
ERJ-1GEF10R0C  
ERJ-1GNF1400C  
ERJ-1GNF1400C  
ERJ-1GEF49R9C  
R70  
10 Ω  
R69  
10 Ω  
R67  
10 Ω  
R71  
140 Ω  
140 Ω  
50 Ω  
R68  
R82  
Matching  
C91  
Matching  
L20  
DNI  
Matching  
C103  
C83  
DNI  
Matching  
DNI  
Matching  
L22  
inductor  
inductor  
inductor  
0.1 nH  
0.1 nH  
0.1 nH  
LQP03TG0N1B02#  
LQP03TG0N1B02#  
LQP03TG0N1B02#  
Install  
Install  
Install  
Matching  
L18  
Matching  
C96  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TRF1208  
 
TRF1208  
www.ti.com.cn  
ZHCSLL7B OCTOBER 2021 REVISED APRIL 2022  
8-2. Component Values of RX Chain with Center Frequency = 8.2 GHz (continued)  
Section  
Matching  
Matching  
Matching  
Matching  
Designator  
Type  
Value  
0.1 nH  
0.8 pF  
0.8 pF  
0.3 nH  
Part Number  
Install / DNI  
C87  
inductor  
cap  
LQP03TG0N1B02#  
02015J0R8PBSTR  
02015J0R8PBSTR  
LQP03TG0N3B02#  
Install  
Install  
Install  
Install  
C97  
C88  
cap  
C92  
inductor  
8.2.2 TRF1208 in Transmit Chain  
This section describes an RF transmit chain in which TRF1208 works as a diff-to-SE converter to convert the  
DAC output of AFE7950 into a single-ended signal that will drive a PA or a mixer.  
TXOUT+  
11  
INM  
OUTP  
TRF1208  
AFE7950  
12  
INP  
OUTM  
TXOUT-  
8-6. TRF1208 in Transmit Chain with AFE7950  
The previous figure is a generic schematics of a design in which TRF1208 is used with AFE7950 in the transmit  
chain. The exact values of the components depend on the frequency band for which the AFE7950 front-end is  
matched.  
8.2.2.1 Design Requirements  
The AFE7950 channel is required to be matched to 8.2 GHz.  
8.2.2.2 Detailed Design Procedure  
The TRF1208 is configured as a D2S amplifier. OUTM pin of TRF1208 is terminated on 50 and OUTP is taken  
out as the SE output. The section close to TRF1208 input is an attenuator pad which is meant for robust  
matching. The section close to AFE7950 is the matching network for the AFE which is channel dependent. The  
matching components are chosen based on the AFE return-loss data and some trial and error since the board  
parameters can influence the exact values.  
8-3 shows the BOM values of the design for a channel that is matched to center frequency of 8.2 GHz.  
8-3. Component Values of TX Chain with Center Frequency = 8.2 GHz  
Section  
Designator  
Type  
Value  
2 nH  
2 nH  
Part Number  
Install / DNI  
Install  
Install  
DNI  
Supply inductor  
Supply inductor  
Matching  
L25  
inductor  
inductor  
LQP03TG2N0B02#  
LQP03TG2N0B02#  
L26  
C125  
C142  
C156  
L34  
Matching  
DNI  
Matching  
DNI  
Matching  
capacitor  
capacitor  
0.7 pF  
0.7 pF  
02015J0R7PBSTR  
02015J0R7PBSTR  
Install  
Install  
Matching  
L33  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TRF1208  
 
 
TRF1208  
www.ti.com.cn  
ZHCSLL7B OCTOBER 2021 REVISED APRIL 2022  
8-3. Component Values of TX Chain with Center Frequency = 8.2 GHz (continued)  
Section  
Designator  
C134  
C140  
C139  
C149  
C150  
C151  
C153  
R88  
Type  
Value  
0.5 nH  
0.1 nH  
0.1 nH  
100 nF  
100 nF  
100 nF  
100 nF  
20 Ω  
Part Number  
Install / DNI  
Install  
Install  
Install  
Install  
Install  
Install  
Install  
Install  
Install  
Install  
Install  
Install  
Install  
Install  
Install  
Install  
Install  
Install  
Matching  
Matching  
Matching  
DC block cap  
DC block cap  
DC block cap  
DC block cap  
Attenuator  
Attenuator  
Attenuator  
Attenuator  
Attenuator  
Attenuator  
Term  
inductor  
inductor  
inductor  
capacitor  
capacitor  
capacitor  
capacitor  
resistor  
resistor  
resistor  
resistor  
resistor  
resistor  
resistor  
resistor  
resistor  
resistor  
resistor  
LQP03TG0N5B02#  
LQP03TG0N1B02#  
LQP03TG0N1B02#  
530L104KT  
530L104KT  
530L104KT  
530L104KT  
ERJ-1GNF20R0C  
ERJ-1GNF20R0C  
ERJ-1GNF20R0C  
ERJ-1GNF20R0C  
ERJ-1GNF57R6C  
ERJ-1GNF57R6C  
ERJ-1GN0R00C  
ERJ-1GN0R00C  
ERJ-1GEF10R0C  
ERJ-1GEF10R0C  
ERJ-1GEF49R9C  
R89  
20 Ω  
R92  
20 Ω  
R93  
20 Ω  
R90  
57.6 Ω  
57.6 Ω  
0 Ω  
R91  
R105  
R107  
R96  
Term  
0 Ω  
Term  
10 Ω  
Term  
R97  
10 Ω  
Term  
R108  
50 Ω  
9 Power Supply Recommendations  
TRF1208 requires a single 3.3 V supply. Supply decoupling is critical to high-frequency performance. Typically 2  
or 3 capacitors are used for supply decoupling. The lowest-value capacitor should be a small form-factor  
component that is placed closest to the VDD pin of the device. There should be bulk decoupling capacitor that is  
of bigger value and size which can be placed next to the small capacitor. Additional layout recommendations are  
given in the Layout section.  
10 Layout  
10.1 Layout Guidelines  
TRF1208 is a wide-band feedback amplifer with about 16 dB of gain. When designing with a wide-band RF  
amplifier with relatively high gain, certain board layout precautions must be taken to ensure stability and optimum  
performance. TI recommends that the board be multi-layered to maintain signal and power integrity and thermal  
performance. 10-1 shows an example of a good layout. In this figure, only the top layer is shown.  
The RF input and output lines are recommended to be routed as grounded coplanar waveguide (GCPW) lines.  
The second layer should be continuous ground layer without any ground-cuts near the amplifier area. The output  
differential lines have to be matched in length to minimize phase imbalance. Use small footprint passive  
components wherever possible. Care should be given also for the input side layout. The INP routing should be  
50-ohm line and the termination on INM pin should have low parasitics by placing the ac-coupling cap and the  
50 Ωresistor very close to the device. Use a RF quality 50 Ωresistor for termination. Ensure that ground planes  
on the top and internal layers are well stitched with vias.  
Place thermal via under the device that connects the top thermal pad with ground planes in the inner layers of  
PCB. Also connect the thermal pad to the top layer ground plane through the ground pins as shown in the figure  
for improved heat dissipation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TRF1208  
 
 
 
TRF1208  
www.ti.com.cn  
ZHCSLL7B OCTOBER 2021 REVISED APRIL 2022  
10.2 Layout Example  
50-ohm termina on  
resistor (0201) on INM pin  
very close to the cap  
Matched di eren al  
output rou ng with  
symmetric ground vias  
dc-blocking caps (0402) placed  
very close to the device  
TRF1208 device  
Thermal via under the device,  
connected to top layer ground for  
improved heat dissipa on  
Supply decoupling caps (0201 &  
0402) placed very close to the device  
10-1. Layout Example Placement and Top Layer Layout  
The TRF1208 device can be evaluated using the TRF1208 EVM board, which can be ordered from TRF1208  
product folder. Additional information about the evaluation board construction and test setup is given in the  
TRF1208 EVM User's Guide.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TRF1208  
 
 
TRF1208  
www.ti.com.cn  
ZHCSLL7B OCTOBER 2021 REVISED APRIL 2022  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, TRF1208 EVM User's Guide  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TRF1208  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Jan-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TRF1208RPVR  
TRF1208RPVT  
ACTIVE  
ACTIVE  
WQFN-HR  
WQFN-HR  
RPV  
RPV  
12  
12  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 105  
-40 to 105  
1208  
1208  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Jan-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TRF1208RPVR  
TRF1208RPVT  
WQFN-  
HR  
RPV  
RPV  
12  
12  
3000  
250  
178.0  
8.4  
2.25  
2.25  
1.0  
4.0  
8.0  
Q1  
WQFN-  
HR  
178.0  
8.4  
2.25  
2.25  
1.0  
4.0  
8.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TRF1208RPVR  
TRF1208RPVT  
WQFN-HR  
WQFN-HR  
RPV  
RPV  
12  
12  
3000  
250  
205.0  
205.0  
200.0  
200.0  
33.0  
33.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RPV0012A  
WQFN-FCRLF - 0.7 mm max height  
S
C
A
L
E
6
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
2.1  
1.9  
0.7  
0.6  
C
SEATING PLANE  
0.08 C  
0.01  
0.00  
EXPOSED  
THERMAL PAD  
2X 0.5  
(0.055) TYP  
SYMM  
6
5
4
7
12X (0.18)  
SYMM  
13  
2X 1.5  
0.75 0.1  
8X 0.5  
10  
1
11  
12  
PIN 1 ID  
0.3  
12X  
0.2  
0.5  
0.3  
12X  
0.1  
C A B  
0.05  
4225258/B 04/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RPV0012A  
WQFN-FCRLF - 0.7 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
12X (0.6)  
12  
11  
SEE SOLDER MASK  
DETAIL  
10  
12X (0.25)  
1
13  
SYMM  
(1.8)  
8X (0.5)  
(
0.75)  
4
7
(R0.05) TYP  
6
5
(
0.2) TYP  
VIA  
(1.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 30X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
SOLDER MASK DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225258/B 04/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RPV0012A  
WQFN-FCRLF - 0.7 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
1X ( 0.71)  
11  
12  
12X (0.6)  
1
12X (0.25)  
10  
13  
SYMM  
(1.8)  
8X (0.5)  
4
7
(R0.05) TYP  
5
6
SYMM  
(1.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 30X  
EXPOSED PAD 13  
90% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4225258/B 04/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TRF1208RPVR

10MHz 至 11GHz、3dB 带宽、单端转差分放大器 | RPV | 12 | -40 to 105
TI

TRF1208RPVT

10MHz 至 11GHz、3dB 带宽、单端转差分放大器 | RPV | 12 | -40 to 105
TI

TRF1211

3.5-GHz Intergrated IF Up-Converter
TI

TRF1212

3.5-GHz Intergrated IF Up-Converter
TI

TRF1212IRGZRG3

Dual PLL/VCO with IF Down-Converter 48-VQFN -40 to 85
TI

TRF1216

3.5-GHz, High Dynamic Range, Low-Noise Down-Converter
TI

TRF1216IRGPR

3.5-GHz, HIGH DYNAMIC RANGE, LOW-NOISE DOWN-CONVERTER
TI

TRF1216IRGPRG3

3.5-GHz, HIGH DYNAMIC RANGE, LOW-NOISE DOWN-CONVERTER
TI

TRF1216IRGPT

3.5-GHz, HIGH DYNAMIC RANGE, LOW-NOISE DOWN-CONVERTER
TI

TRF1216IRGPTG3

3.5-GHz, HIGH DYNAMIC RANGE, LOW-NOISE DOWN-CONVERTER
TI

TRF1216_07

3.5-GHz, HIGH DYNAMIC RANGE, LOW-NOISE DOWN-CONVERTER
TI

TRF1221

Dual VCO/PLL Synthesizer With IF Up-Converter
TI