TRF370417-DIE [TI]

QUADRATURE MODULATOR;
TRF370417-DIE
型号: TRF370417-DIE
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

QUADRATURE MODULATOR

文件: 总29页 (文件大小:612K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TRF370417  
www.ti.com  
SLWS213 JANUARY 2010  
50-MHz TO 6-GHz QUADRATURE MODULATOR  
Check for Samples: TRF370417  
1
FEATURES  
APPLICATIONS  
Cellular Base Station Transceiver  
76-dBc Single-Carrier WCDMA ACPR at –8  
dBm Channel Power  
CDMA: IS95, UMTS, CDMA2000, TD-SCDMA  
TDMA: GSM, IS-136, EDGE/UWC-136  
Multicarrier GSM  
WiMAX: 802.16d/e  
3GPP: LTE  
Point-to-Point (P2P) Microwave  
Wideband Software-Defined Radio  
Public Safety: TETRA/APC025  
Communication-System Testers  
Cable Modem Termination System (CMTS)  
Low Noise Floor: –162.3 dBm/Hz at 2140 MHz  
OIP3 of 26.5 dBm at 2140 MHz  
P1dB of 12 dBm at 2140 MHz  
Carrier Feedthrough of –38 dBm at 2140 MHz  
Side-Band Suppression of –50 dBc at 2140  
MHz  
Single Supply: 4.5-V–5.5-V Operation  
Silicon Germanium Technology  
1.7-V CM at I, Q Baseband Inputs  
RGE PACKAGE  
(TOP VIEW)  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
NC  
GND  
LOP  
LON  
GND  
NC  
VCC  
GND  
RF_OUT  
NC  
GND  
NC  
P0024-04  
DESCRIPTION  
The TRF370417 is a low-noise direct quadrature modulator, capable of converting complex modulated signals  
from baseband or IF directly up to RF. The TRF370417 is a high-performance, superior-linearity device that  
operates at RF frequencies of 50 MHz through 6 GHz. The modulator is implemented as a double-balanced  
mixer. The RF output block consists of a differential to single-ended converter and an RF amplifier capable of  
driving a single-ended 50-load without any need of external components. The TRF370417 requires a 1.7-V  
common-mode voltage for optimum linearity performance.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2010, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
TRF370417  
SLWS213 JANUARY 2010  
www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
Functional Block Diagram  
NC  
GND  
LOP  
LON  
GND  
NC  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
VCC  
GND  
RF_OUT  
NC  
S
0/90  
GND  
NC  
B0175-01  
NOTE: NC = No connection  
DEVICE INFORMATION  
TERMINAL FUNCTIONS  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
BBIN  
NO.  
22  
21  
9
I
I
I
I
In-phase negative input  
BBIP  
In-phase positive input  
BBQN  
BBQP  
Quadrature-phase negative input  
Quadrature-phase positive input  
10  
2, 5, 8, 11,  
12, 14, 17,  
19, 20, 23  
GND  
Ground  
LON  
LOP  
4
3
I
I
Local oscillator negative input  
Local oscillator positive input  
1, 6, 7, 13,  
15  
NC  
No connect  
RF_OUT  
VCC  
16  
O
RF output  
18, 24  
Power supply  
2
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): TRF370417  
TRF370417  
www.ti.com  
SLWS213 JANUARY 2010  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
VALUE(2)  
–0.3 V to 6  
–40 to 150  
–40 to 85  
UNIT  
V
Supply voltage range  
TJ  
Operating virtual junction temperature range  
Operating ambient temperature range  
Storage temperature range  
°C  
TA  
°C  
Tstg  
–65 to 150  
°C  
ESD  
Rating  
HBM  
CDM  
75  
75  
V
V
ESD  
Rating  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
VCC  
Power-supply voltage  
4.5  
5
5.5  
V
THERMAL CHARACTERISTICS  
PARAMETER  
TEST CONDITIONS  
VALUE  
UNIT  
RqJA  
RqJC  
RqJB  
Thermal resistance, junction-to-ambient High-K board, still air  
29.4  
18.6  
14  
°C/W  
°C/W  
°C/W  
Thermal resistance, junction-to-case  
Thermal resistance, junction-to-board  
ELECTRICAL CHARACTERISTICS  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
DC Parameters  
ICC Total supply current (1.7 V CM)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TA = 25°C  
205  
245  
mA  
LO Input (50-, Single-Ended)  
LO frequency range  
0.05  
–5  
6
GHz  
dBm  
dB  
fLO  
LO input power  
0
12  
LO port return loss  
15  
Baseband Inputs  
VCM  
BW  
I and Q input dc common voltage  
1.7  
1
1-dB input frequency bandwidth  
Input impedance, resistance  
GHz  
5
k  
ZI(single  
ended)  
Input impedance, parallel  
capacitance  
3
pF  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): TRF370417  
 
TRF370417  
SLWS213 JANUARY 2010  
www.ti.com  
RF OUTPUT PARAMETERS  
over recommended operating conditions, power supply = 5 V, TA = 25°C, VCM = 1.7 V, VinBB = 98 mVrms single-ended in  
quadrature, fBB = 50 kHz (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fLO = 70 MHz at 8 dBm  
G
Voltage gain  
Output rms voltage over input I (or Q) rms voltage  
–8  
7.3  
dB  
P1dB Output compression point  
dBm  
dBm  
dBm  
dBm  
dBc  
IP3  
IP2  
Output IP3  
fBB = 4.5, 5.5 MHz; Pout = –8 dBm per tone  
fBB = 4.5, 5.5 MHz; Pout = –8 dBm per tone  
Unadjusted  
22  
Output IP2  
69  
Carrier feedthrough  
Sideband suppression  
–46  
–27.5  
Unadjusted; fBB = 4.5, 5.5 MHz  
fLO = 400 MHz at 8 dBm  
Voltage gain  
P1dB Output compression point  
G
Output rms voltage over input I (or Q) rms voltage  
–1.9  
11  
dB  
dBm  
dBm  
dBm  
dBm  
dBc  
IP3  
IP2  
Output IP3  
fBB = 4.5, 5.5 MHz; Pout = –8 dBm per tone  
fBB = 4.5, 5.5 MHz; Pout = –8 dBm per tone  
Unadjusted  
24.5  
68  
Output IP2  
Carrier feedthrough  
Sideband suppression  
–38  
–40  
Unadjusted; fBB = 4.5, 5.5 MHz  
fLO = 945.6 MHz at 8 dBm  
Voltage gain  
P1dB Output compression point  
G
Output rms voltage over input I (or Q) rms voltage  
–2.5  
11  
dB  
dBm  
dBm  
dBm  
dBm  
dBc  
IP3  
IP2  
Output IP3  
fBB = 4.5, 5.5 MHz; Pout = –8 dBm per tone  
fBB = 4.5, 5.5 MHz; Pout = –8 dBm per tone  
Unadjusted  
25  
Output IP2  
65  
Carrier feedthrough  
Sideband suppression  
Output return loss  
Output noise floor  
–40  
–42  
9
Unadjusted; fBB = 4.5, 5.5 MHz  
dB  
13 MHz offset from fLO; Pout = –5 dBm  
–161.2  
dBm/Hz  
fLO = 1800 MHz at 8 dBm  
Voltage gain  
P1dB Output compression point  
G
Output rms voltage over input I (or Q) rms voltage  
–2.5  
12  
dB  
dBm  
dBm  
dBm  
dBm  
dBc  
IP3  
IP2  
Output IP3  
fBB = 4.5, 5.5 MHz; Pout = –8 dBm per tone  
fBB = 4.5, 5.5 MHz; Pout = –8 dBm per tone  
Unadjusted  
26  
Output IP2  
60  
Carrier feedthrough  
Sideband suppression  
Output return loss  
Output noise floor  
–40  
–50  
8
Unadjusted; fBB = 4.5, 5.5 MHz  
dB  
13 MHz offset from fLO; Pout = –5 dBm  
–161.5  
dBm/Hz  
4
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): TRF370417  
TRF370417  
www.ti.com  
SLWS213 JANUARY 2010  
RF OUTPUT PARAMETERS (continued)  
over recommended operating conditions, power supply = 5 V, TA = 25°C, VCM = 1.7 V, VinBB = 98 mVrms single-ended in  
quadrature, fBB = 50 kHz (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fLO = 1960 MHz at 8 dBm  
G
Voltage gain  
Output rms voltage over input I (or Q) rms voltage  
–2.5  
12  
dB  
dBm  
dBm  
dBm  
dBm  
dBc  
P1dB Output compression point  
IP3  
IP2  
Output IP3  
fBB = 4.5, 5.5 MHz; Pout = –8 dBm per tone  
fBB = 4.5, 5.5 MHz; Pout = –8 dBm per tone  
Unadjusted  
26.5  
60  
Output IP2  
Carrier feedthrough  
Sideband suppression  
Output return loss  
Output noise floor  
Error vector magnitude (rms)  
–38  
–50  
8
Unadjusted; fBB = 4.5, 5.5 MHz  
dB  
13 MHz offset from fLO; Pout = –5 dBm  
1 EDGE signal, Pout = –5 dBm(1)  
1 WCDMA signal; Pout = –8 dBm(2)  
–162  
0.43%  
–76  
–74  
–68  
–67  
–80  
–78  
–72  
–69  
dBm/Hz  
EVM  
1 WCDMA signal; Pout = –8 dBm(3)  
Adjacent-channel power ratio  
Alternate-channel power ratio  
dBc  
dBc  
2 WCDMA signals; Pout = –11 dBm per carrier(3)  
4 WCDMA signals; Pout = –14 dBm per carrier(3)  
1 WCDMA signal; Pout = –8 dBm(2)  
1 WCDMA signal; Pout = –8 dBm(3)  
2 WCDMA signals; Pout = –11 dBm per carrier(3)  
4 WCDMA signals; Pout = –14 dBm per carrier(3)  
ACPR  
fLO = 2140 MHz at 8 dBm  
Voltage gain  
P1dB Output compression point  
G
Output rms voltage over input I (or Q) rms voltage  
–2.4  
12  
dB  
dBm  
dBm  
dBm  
dBm  
dBc  
IP3  
IP2  
Output IP3  
fBB = 4.5, 5.5 MHz; Pout = –8 dBm per tone  
fBB = 4.5, 5.5 MHz; Pout = –8 dBm per tone  
Unadjusted  
26.5  
66  
Output IP2  
Carrier feedthrough  
Sideband suppression  
Output return loss  
Output noise floor  
–38  
–50  
8.5  
Unadjusted; fBB = 4.5, 5.5 MHz  
dB  
13 MHz offset from fLO ; Pout = –5 dBm  
1 WCDMA signal; Pout = –8 dBm(2)  
1 WCDMA signal; Pout = –8 dBm(3)  
2 WCDMA signal; Pout = –11 dBm per carrier(3)  
4 WCDMA signals; Pout = –14 dBm per carrier(3)  
1 WCDMA signal; Pout = –8 dBm(2)  
1 WCDMA signal; Pout = –8 dBm(3)  
2 WCDMA signal; Pout = –11 dBm(3)  
4 WCDMA signals; Pout = –14 dBm per carrier(3)  
–162.3  
–76  
–72  
–67  
–66  
–80  
–78  
–74  
–68  
dBm/Hz  
Adjacent-channel power ratio  
Alternate-channel power ratio  
dBc  
dBc  
ACPR  
(1) The contribution from the source of about 0.28% is not de-embedded from the measurement.  
(2) Measured with DAC5687 as source generator; with 2.5 MHz LPF.  
(3) Measured with DAC5687 as source generator; no external BB filters are used.  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): TRF370417  
TRF370417  
SLWS213 JANUARY 2010  
www.ti.com  
RF OUTPUT PARAMETERS (continued)  
over recommended operating conditions, power supply = 5 V, TA = 25°C, VCM = 1.7 V, VinBB = 98 mVrms single-ended in  
quadrature, fBB = 50 kHz (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fLO = 2500 MHz at 8 dBm  
G
Voltage gain  
Output rms voltage over input I (or Q) rms voltage  
–1.6  
13  
dB  
dBm  
dBm  
dBm  
dBm  
dBc  
dB  
P1dB Output compression point  
IP3  
IP2  
Output IP3  
fBB = 4.5, 5.5 MHz; Pout = –8 dBm per tone  
fBB = 4.5, 5.5 MHz; Pout = –8 dBm per tone  
Unadjusted  
29  
Output IP2  
65  
Carrier feedthrough  
Sideband suppression  
–37  
–47  
–47  
–45  
Unadjusted; fBB = 4.5, 5.5 MHz  
WiMAX 5-MHz carrier, Pout = –8 dBm(4)  
WiMAX 5-MHz carrier, Pout = 0 dBm(4)  
EVM  
Error vector magnitude (rms)  
dB  
fLO = 3500 MHz at 8 dBm  
Voltage gain  
P1dB Output compression point  
G
Output rms voltage over input I (or Q) rms voltage  
0.6  
13.5  
25  
dB  
dBm  
dBm  
dBm  
dBm  
dBc  
dB  
IP3  
IP2  
Output IP3  
fBB = 4.5, 5.5 MHz  
Output IP2  
fBB = 4.5, 5.5 MHz  
65  
Carrier feedthrough  
Sideband suppression  
Unadjusted  
–35  
–36  
–47  
–43  
Unadjusted; fBB = 4.5, 5.5 MHz  
WiMAX 5-MHz carrier, Pout = –8 dBm(4)  
WiMAX 5-MHz carrier, Pout = 0 dBm(4)  
EVM  
Error vector magnitude (rms)  
dB  
fLO = 4000 MHz at 8 dBm  
Voltage gain  
P1dB Output compression point  
G
Output rms voltage over input I (or Q) rms voltage  
0.2  
12  
dB  
dBm  
dBm  
dBm  
dBm  
dBc  
IP3  
IP2  
Output IP3  
fBB = 4.5, 5.5 MHz  
fBB = 4.5, 5.5 MHz  
Unadjusted  
22.5  
60  
Output IP2  
Carrier feedthrough  
Sideband suppression  
–36  
–36  
Unadjusted; fBB = 4.5, 5.5 MHz  
fLO = 5800 MHz at 4 dBm  
Voltage gain  
P1dB Output compression point  
G
Output rms voltage over input I (or Q) rms voltage  
–5.5  
12.9  
25  
dB  
dBm  
dBm  
dBm  
dBm  
dBc  
dB  
IP3  
IP2  
Output IP3  
fBB = 4.5, 5.5 MHz  
Output IP2  
fBB = 4.5, 5.5 MHz  
55  
Carrier feedthrough  
Sideband suppression  
Error-vector magnitude  
Unadjusted  
–31  
–36  
–40  
Unadjusted; fBB = 4.5, 5.5 MHz  
WiMAX 5-MHz carrier, Pout = –12 dBm(4)  
EVM  
(4) Sideband suppression optimized with LO drive level; EVM contribution from instrument is not accounted for.  
6
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): TRF370417  
TRF370417  
www.ti.com  
SLWS213 JANUARY 2010  
TYPICAL CHARACTERISTICS  
VCM = 1.7 V, VinBB = 98 mVrms single-ended sine wave in quadrature, VCC = 5 V, LO power = 4 dBm (single-ended), fBB = 50  
kHz (unless otherwise noted).  
OUTPUT POWER  
vs  
OUTPUT POWER  
vs  
BASEBAND VOLTAGE  
FREQUENCY AND TEMPERATURE  
2
0
15  
10  
–40°C  
−2  
5
−4  
0
25°C  
−6  
−5  
85°C  
−8  
−10  
−15  
−20  
V
= 98 mVrms SE  
IN  
−10  
−12  
LO = 4 dBm  
= 5 V  
V
CC  
0
1000 2000 3000 4000 5000 6000  
f − Frequency − MHz  
0.01  
0.1  
1
V
BB  
− Baseband Voltage Single-Ended RMS − V  
G002  
G001  
Figure 1.  
Figure 2.  
OUTPUT POWER  
vs  
OUTPUT POWER  
vs  
FREQUENCY AND SUPPLY VOLTAGE  
FREQUENCY AND LO POWER  
2
0
2
0
5.5 V  
0 dBm  
–5 dBm  
−2  
−2  
5 V  
4 dBm  
−4  
−4  
4.5 V  
−6  
−6  
−8  
−8  
V
= 98 mVrms SE  
V
V
= 98 mVrms SE  
IN  
IN  
−10  
−12  
−10  
−12  
8 dBm  
LO = 4 dBm  
T = 25°C  
A
= 5 V  
CC  
T = 25°C  
A
0
1000 2000 3000 4000 5000 6000  
f − Frequency − MHz  
0
1000 2000 3000 4000 5000 6000  
f − Frequency − MHz  
G003  
G004  
Figure 3.  
Figure 4.  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): TRF370417  
TRF370417  
SLWS213 JANUARY 2010  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
VCM = 1.7 V, VinBB = 98 mVrms single-ended sine wave in quadrature, VCC = 5 V, LO power = 4 dBm (single-ended), fBB = 50  
kHz (unless otherwise noted).  
P1dB  
P1dB  
vs  
vs  
FREQUENCY AND TEMPERATURE  
FREQUENCY AND SUPPLY VOLTAGE  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
LO = 4 dBm  
LO = 4 dBm  
T = 25°C  
A
V
CC  
= 5 V  
5.5 V  
25°C  
85°C  
5 V  
4.5 V  
–40°C  
6
6
4
4
0
1000 2000 3000 4000 5000 6000  
f − Frequency − MHz  
0
1000 2000 3000 4000 5000 6000  
f − Frequency − MHz  
G005  
G006  
Figure 5.  
Figure 6.  
P1dB  
OIP3  
vs  
vs  
FREQUENCY AND LO POWER  
FREQUENCY AND TEMPERATURE  
20  
18  
16  
14  
12  
10  
8
40  
35  
30  
25  
20  
15  
10  
5
25°C  
–5 dBm  
0 dBm  
–40°C  
4 dBm  
85°C  
8 dBm  
6
f
P
= 4.5, 5.5 MHz  
BB  
4
= −8 dBm Per Tone  
OUT  
V
= 5 V  
LO = 4 dBm  
= 5 V  
2
CC  
T = 25°C  
A
V
CC  
0
0
0
1000 2000 3000 4000 5000 6000  
0
1000 2000 3000 4000 5000 6000  
f − Frequency − MHz  
f − Frequency − MHz  
G007  
G008  
Figure 7.  
Figure 8.  
8
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): TRF370417  
TRF370417  
www.ti.com  
SLWS213 JANUARY 2010  
TYPICAL CHARACTERISTICS (continued)  
VCM = 1.7 V, VinBB = 98 mVrms single-ended sine wave in quadrature, VCC = 5 V, LO power = 4 dBm (single-ended), fBB = 50  
kHz (unless otherwise noted).  
OIP3  
OIP3  
vs  
vs  
FREQUENCY AND SUPPLY VOLTAGE  
FREQUENCY AND LO POWER  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
0 dBm  
5 V  
4 dBm  
–5 dBm  
4.5 V  
5.5 V  
8 dBm  
f
P
= 4.5, 5.5 MHz  
= −8 dBm Per Tone  
f
P
V
= 4.5, 5.5 MHz  
= −8 dBm Per Tone  
OUT  
= 5 V  
T = 25°C  
BB  
BB  
OUT  
LO = 4 dBm  
T = 25°C  
CC  
A
A
0
1000 2000 3000 4000 5000 6000  
0
1000 2000 3000 4000 5000 6000  
f − Frequency − MHz  
f − Frequency − MHz  
G009  
G010  
Figure 9.  
Figure 10.  
OIP2  
OIP2  
vs  
vs  
FREQUENCY AND TEMPERATURE  
FREQUENCY AND SUPPLY VOLTAGE  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
5 V  
25°C  
4.5 V  
–40°C  
85°C  
5.5 V  
f
P
= 4.5, 5.5 MHz  
= −8 dBm Per Tone  
LO = 4 dBm  
= 5 V  
f
P
= 4.5, 5.5 MHz  
= −8 dBm Per Tone  
LO = 4 dBm  
T = 25°C  
BB  
BB  
OUT  
OUT  
V
CC  
A
0
1000 2000 3000 4000 5000 6000  
f − Frequency − MHz  
0
1000 2000 3000 4000 5000 6000  
f − Frequency − MHz  
G011  
G012  
Figure 11.  
Figure 12.  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): TRF370417  
TRF370417  
SLWS213 JANUARY 2010  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
VCM = 1.7 V, VinBB = 98 mVrms single-ended sine wave in quadrature, VCC = 5 V, LO power = 4 dBm (single-ended), fBB = 50  
kHz (unless otherwise noted).  
OIP2  
UNADJUSTED CARRIER FEEDTHROUGH  
vs  
vs  
FREQUENCY AND LO POWER  
FREQUENCY AND TEMPERATURE  
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
100  
90  
80  
70  
60  
50  
40  
30  
20  
LO = 4 dBm  
V
CC  
= 5 V  
4 dBm  
–40°C  
0 dBm  
–5 dBm  
= 4.5, 5.5 MHz  
= −8 dBm Per Tone  
= 5 V  
8 dBm  
f
P
V
BB  
25°C  
OUT  
CC  
85°C  
T = 25°C  
A
0
1000 2000 3000 4000 5000 6000  
f − Frequency − MHz  
0
1000 2000 3000 4000 5000 6000  
f − Frequency − MHz  
G014  
G013  
Figure 13.  
Figure 14.  
UNADJUSTED CARRIER FEEDTHROUGH  
vs  
UNADJUSTED CARRIER FEEDTHROUGH  
vs  
FREQUENCY AND SUPPLY VOLTAGE  
FREQUENCY AND LO POWER  
0
−10  
−20  
−30  
−40  
−50  
−60  
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
V
= 5 V  
LO = 4 dBm  
T = 25°C  
A
CC  
T = 25°C  
A
5 V  
8 dBm  
5.5 V  
–5 dBm  
4.5 V  
4 dBm  
0 dBm  
0
1000 2000 3000 4000 5000 6000  
f − Frequency − MHz  
0
1000 2000 3000 4000 5000 6000  
f − Frequency − MHz  
G016  
G015  
Figure 15.  
Figure 16.  
10  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): TRF370417  
TRF370417  
www.ti.com  
SLWS213 JANUARY 2010  
TYPICAL CHARACTERISTICS (continued)  
VCM = 1.7 V, VinBB = 98 mVrms single-ended sine wave in quadrature, VCC = 5 V, LO power = 4 dBm (single-ended), fBB = 50  
kHz (unless otherwise noted).  
UNADJUSTED SIDEBAND SUPPRESSION  
UNADJUSTED SIDEBAND SUPPRESSION  
vs  
vs  
FREQUENCY AND TEMPERATURE  
FREQUENCY AND SUPPLY VOLTAGE  
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
4.5 V  
–40°C  
25°C  
5 V  
85°C  
LO = 4 dBm  
LO = 4 dBm  
T = 25°C  
5.5 V  
V
CC  
= 5 V  
A
0
1000 2000 3000 4000 5000 6000  
f − Frequency − MHz  
0
1000 2000 3000 4000 5000 6000  
f − Frequency − MHz  
G017  
G018  
Figure 17.  
Figure 18.  
UNADJUSTED SIDEBAND SUPPRESSION  
NOISE AT 13-MHz OFFSET (dBm/Hz)  
vs  
vs  
FREQUENCY AND LO POWER  
FREQUENCY AND TEMPERATURE  
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−150  
−152  
−154  
−156  
−158  
−160  
−162  
−164  
−166  
−168  
−170  
P
= −5 dBm  
OUT  
LO = 8 dBm  
= 5 V  
V
CC  
8 dBm  
85°C  
–5 dBm  
25°C  
–40°C  
4 dBm  
V
= 5 V  
CC  
0 dBm  
T = 25°C  
A
0
1000 2000 3000 4000 5000 6000  
f − Frequency − MHz  
0.8  
1.4  
2.0  
2.6  
3.2  
3.8  
4.4  
5.0  
5.6  
f − Frequency − GHz  
G019  
G020  
Figure 19.  
Figure 20.  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): TRF370417  
TRF370417  
SLWS213 JANUARY 2010  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
VCM = 1.7 V, VinBB = 98 mVrms single-ended sine wave in quadrature, VCC = 5 V, LO power = 4 dBm (single-ended), fBB = 50  
kHz (unless otherwise noted).  
NOISE AT 13-MHz OFFSET (dBm/Hz)  
vs  
NOISE AT 13-MHz OFFSET (dBm/Hz)  
vs  
FREQUENCY AND SUPPLY VOLTAGE  
OUTPUT POWER  
−154  
−156  
−158  
−160  
−162  
−164  
−166  
−150  
−152  
−154  
−156  
−158  
−160  
−162  
−164  
−166  
−168  
−170  
P
= −5 dBm  
V
= 5 V  
OUT  
CC  
LO = 8 dBm  
T = 25°C  
A
LO = 8 dBm  
T = 25°C  
A
5600 MHz  
5.5 V  
948.5 MHz  
5 V  
4.5 V  
2140 MHz  
1960 MHz  
1800 MHz  
−109 −8 −7 −6 −5 −4 −3 −2 −1 0  
1
2
3
4
5
0.8  
1.4  
2.0  
2.6  
3.2  
3.8  
4.4  
5.0  
5.6  
P
OUT  
− Output Power − dBm  
f − Frequency − GHz  
G022  
G021  
Figure 21.  
Figure 22.  
ADJUSTED CARRIER FEEDTHROUGH  
vs  
ADJUSTED CARRIER FEEDTHROUGH  
vs  
FREQUENCY AND TEMPERATURE  
FREQUENCY AND TEMPERATURE  
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
Adj at 942.6 MHz @ 25°C  
LO = 4 dBm  
Adj at 70 MHz @ 25°C  
LO = 4 dBm  
V
CC  
= 5 V  
V
CC  
= 5 V  
85°C  
–40°C  
25°C  
–40°C  
25°C  
85°C  
60 62 64 66 68 70 72 74 76 78 80  
f − Frequency − MHz  
900 910 920 930 940 950 960 970 980 990 1000  
f − Frequency − MHz  
G023  
G024  
Figure 23.  
Figure 24.  
12  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): TRF370417  
TRF370417  
www.ti.com  
SLWS213 JANUARY 2010  
TYPICAL CHARACTERISTICS (continued)  
VCM = 1.7 V, VinBB = 98 mVrms single-ended sine wave in quadrature, VCC = 5 V, LO power = 4 dBm (single-ended), fBB = 50  
kHz (unless otherwise noted).  
ADJUSTED CARRIER FEEDTHROUGH  
vs  
ADJUSTED CARRIER FEEDTHROUGH  
vs  
FREQUENCY AND TEMPERATURE  
FREQUENCY AND TEMPERATURE  
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
Adj at 2500 MHz @ 25°C  
LO = 4 dBm  
Adj at 2140 MHz @ 25°C  
LO = 4 dBm  
V
CC  
= 5 V  
V
CC  
= 5 V  
–40°C  
–40°C  
85°C  
25°C  
25°C  
85°C  
2520  
2400  
2440  
2480  
2560  
2600  
2040  
2080  
2120  
2160  
2200  
2240  
f − Frequency − MHz  
f − Frequency − MHz  
G026  
G025  
Figure 25.  
Figure 26.  
ADJUSTED CARRIER FEEDTHROUGH  
vs  
ADJUSTED CARRIER FEEDTHROUGH  
vs  
FREQUENCY AND TEMPERATURE  
FREQUENCY AND TEMPERATURE  
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
Adj at 3500 MHz @ 25°C  
LO = 4 dBm  
Adj at 5800 MHz @ 25°C  
LO = 4 dBm  
V
CC  
= 5 V  
V
CC  
= 5 V  
–40°C  
–40°C  
25°C  
85°C  
25°C  
85°C  
3400  
3440  
3480  
3520  
3560  
3600  
5700  
5740  
5780  
5820  
5860  
5900  
f − Frequency − MHz  
f − Frequency − MHz  
G028  
G027  
Figure 27.  
Figure 28.  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): TRF370417  
TRF370417  
SLWS213 JANUARY 2010  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
VCM = 1.7 V, VinBB = 98 mVrms single-ended sine wave in quadrature, VCC = 5 V, LO power = 4 dBm (single-ended), fBB = 50  
kHz (unless otherwise noted).  
ADJUSTED SIDEBAND SUPPRESSION  
vs  
ADJUSTED SIDEBAND SUPPRESSION  
vs  
FREQUENCY AND TEMPERATURE  
FREQUENCY AND TEMPERATURE  
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
Adj at 70 MHz @ 25°C  
LO = 4 dBm  
Adj at 942.6 MHz @ 25°C  
LO = 4 dBm  
V
CC  
= 5 V  
V
CC  
= 5 V  
25°C  
–40°C  
85°C  
25°C  
85°C  
–40°C  
60 62 64 66 68 70 72 74 76 78 80  
f − Frequency − MHz  
900 910 920 930 940 950 960 970 980 990 1000  
f − Frequency − MHz  
G029  
G030  
Figure 29.  
Figure 30.  
ADJUSTED SIDEBAND SUPPRESSION  
vs  
ADJUSTED SIDEBAND SUPPRESSION  
vs  
FREQUENCY AND TEMPERATURE  
FREQUENCY AND TEMPERATURE  
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
Adj at 2140 MHz @ 25°C  
LO = 4 dBm  
Adj at 2500 MHz @ 25°C  
LO = 4 dBm  
V
CC  
= 5 V  
V
CC  
= 5 V  
–40°C  
–40°C  
85°C  
25°C  
85°C  
25°C  
2040  
2080  
2120  
2160  
2200  
2240  
2400  
2440  
2480  
2520  
2560  
2600  
f − Frequency − MHz  
f − Frequency − MHz  
G031  
G032  
Figure 31.  
Figure 32.  
14  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): TRF370417  
TRF370417  
www.ti.com  
SLWS213 JANUARY 2010  
TYPICAL CHARACTERISTICS (continued)  
VCM = 1.7 V, VinBB = 98 mVrms single-ended sine wave in quadrature, VCC = 5 V, LO power = 4 dBm (single-ended), fBB = 50  
kHz (unless otherwise noted).  
ADJUSTED SIDEBAND SUPPRESSION  
vs  
ADJUSTED SIDEBAND SUPPRESSION  
vs  
FREQUENCY AND TEMPERATURE  
FREQUENCY AND TEMPERATURE  
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
Adj at 3500 MHz @ 25°C  
LO = 4 dBm  
Adj at 5800 MHz @ 25°C  
LO = 4 dBm  
V
CC  
= 5 V  
V
CC  
= 5 V  
–40°C  
–40°C  
25°C  
85°C  
85°C  
3520  
25°C  
3560  
3400  
3440  
3480  
3600  
5700  
5740  
5780  
5820  
5860  
5900  
f − Frequency − MHz  
f − Frequency − MHz  
G033  
G034  
Figure 33.  
Figure 34.  
OIP3  
vs  
OIP3  
vs  
COMMON-MODE VOLTAGE at 948.5 MHz  
COMMON-MODE VOLTAGE at 1800 MHz  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
–40°C  
25°C  
25°C  
85°C  
85°C  
–40°C  
f
P
= 4.5, 5.5 MHz  
f
P
= 4.5, 5.5 MHz  
= −8 dBm Per Tone  
LO = 4 dBm  
V = 5 V  
CC  
BB  
BB  
= −8 dBm Per Tone  
OUT  
OUT  
LO = 4 dBm  
= 5 V  
V
CC  
1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80  
1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80  
V
CM  
− Common-Mode Voltage − V  
V
CM  
− Common-Mode Voltage − V  
G035  
G036  
Figure 35.  
Figure 36.  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): TRF370417  
TRF370417  
SLWS213 JANUARY 2010  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
VCM = 1.7 V, VinBB = 98 mVrms single-ended sine wave in quadrature, VCC = 5 V, LO power = 4 dBm (single-ended), fBB = 50  
kHz (unless otherwise noted).  
OIP3  
OIP3  
vs  
vs  
COMMON-MODE VOLTAGE at 2140 MHz  
COMMON-MODE VOLTAGE at 5800 MHz  
40  
37  
34  
31  
28  
25  
22  
19  
16  
13  
10  
40  
37  
34  
31  
28  
25  
22  
19  
16  
13  
10  
f
P
= 4.5, 5.5 MHz  
BB  
= −8 dBm Per Tone  
OUT  
LO = 4 dBm  
= 5 V  
25°C  
V
25°C  
CC  
–40°C  
85°C  
85°C  
f
P
= 4.5, 5.5 MHz  
BB  
= −8 dBm Per Tone  
OUT  
LO = 4 dBm  
= 5 V  
–40°C  
1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80  
V
CC  
1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80  
V
CM  
− Common-Mode Voltage − V  
V
CM  
− Common-Mode Voltage − V  
G037  
G038  
Figure 37.  
Figure 38.  
OIP3  
vs  
ADJACENT CHANNEL POWER RATIO  
vs  
TOTAL OUTPUT POWER  
OUTPUT POWER at 1960 MHz  
−60  
−63  
−66  
−69  
−72  
−75  
−78  
−81  
−84  
−87  
−90  
40  
35  
30  
25  
20  
15  
10  
One Carrier, WCDMA at 1960 MHz  
DAC5687 as Source w/ 2.5 MHz LPF  
f
= 4.5, 5.5 MHz  
BB  
LO = 4 dBm  
= 5 V  
V
CC  
1800 MHz  
T = 25°C  
A
Adj  
948.5 MHz  
Alt  
−20 −18 −16 −14 −12 −10  
−8  
−6  
−4  
−12 −10 −8  
−6  
−4  
−2  
0
2
4
P
OUT  
− Output Power − dBm  
P
OUT  
Total Output Power − dBm  
G040  
G039  
Figure 39.  
Figure 40.  
16  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): TRF370417  
TRF370417  
www.ti.com  
SLWS213 JANUARY 2010  
TYPICAL CHARACTERISTICS (continued)  
VCM = 1.7 V, VinBB = 98 mVrms single-ended sine wave in quadrature, VCC = 5 V, LO power = 4 dBm (single-ended), fBB = 50  
kHz (unless otherwise noted).  
ADJACENT CHANNEL POWER RATIO  
vs  
OUTPUT POWER at 2140 MHz  
OIP3 at 1960 MHz DISTRIBUTION  
−60  
−63  
−66  
−69  
−72  
−75  
−78  
−81  
−84  
−87  
−90  
60  
50  
40  
30  
20  
10  
0
One Carrier, WCDMA at 2140 MHz  
DAC5687 as Source w/ 2.5 MHz LPF  
Adj  
Alt  
24  
25  
26  
27  
28  
29  
−20 −18 −16 −14 −12 −10  
−8  
−6  
−4  
P
OUT  
− Output Power − dBm  
OIP3 − dBm  
G041  
G042  
Figure 41.  
Figure 42.  
UNADJUSTED CARRIER FEEDTHROUGH  
at 1960 MHz DISTRIBUTION  
OIP2 at 1960 MHz DISTRIBUTION  
25  
20  
15  
10  
5
18  
16  
14  
12  
10  
8
6
4
2
0
0
56  
58  
60  
62  
64  
66  
68  
70  
72  
−24 −28 −32 −36 −40 −44 −48 −52 −56 −60 −64  
CS − Unadjusted Carrier Feedthrough − dBm  
OIP2 − dBm  
G043  
G044  
Figure 43.  
Figure 44.  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): TRF370417  
TRF370417  
SLWS213 JANUARY 2010  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
VCM = 1.7 V, VinBB = 98 mVrms single-ended sine wave in quadrature, VCC = 5 V, LO power = 4 dBm (single-ended), fBB = 50  
kHz (unless otherwise noted).  
UNADJUSTED SIDEBAND SUPPRESSION  
at 1960 MHz DISTRIBUTION  
P1dB at 1800 MHz DISTRIBUTION  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0
11.4  
11.6  
11.8  
12  
12.2  
12.4  
−36 −40 −44 −48 −52 −56 −60 −64 −68 −72 −76  
SS − Unadjusted Sideband Suppression − dBc  
P1dB − dBm  
G046  
G045  
Figure 45.  
Figure 46.  
APPLICATION INFORMATION AND EVALUATION BOARD  
Basic Connections  
See Figure 47 for proper connection of the TRF3704 modulator.  
Connect a single power supply (4.5 V–5.5 V) to pins 18 and 24. These pins should be decoupled as shown  
on pins 4, 5, 6, and 7.  
Connect pins 2, 5, 8, 11, 12, 14, 17, 19, 20, and 23 to GND.  
Connect a single-ended LO source of desired frequency to LOP (amplitude between –5 dBm and 12 dBm).  
This should be ac-coupled through a 100-pF capacitor.  
Terminate the ac-coupled LON with 50 to GND.  
Connect a baseband signal to pins 21 = I, 22 = I, 10 = Q, and 9 = Q.  
The differential baseband inputs should be set to the proper common-mode voltage of 1.7V.  
RF_OUT, pin 16, can be fed to a spectrum analyzer set to the desired frequency, LO ± baseband signal. This  
pin should also be ac-coupled through a 100-pF capacitor.  
All NC pins can be left floating.  
ESD Sensitivity  
RF devices may be extremely sensitive to electrostatic discharge (ESD). To prevent damage from ESD, devices  
should be stored and handled in a way that prevents the build-up of electrostatic voltages that exceed the rated  
level. Rated ESD levels should also not be exceeded while the device is installed on a printed circuit board  
(PCB). Follow these guidelines for optimal ESD protection:  
Low ESD performance is not uncommon in RF ICs; see the Absolute Maximum Ratings table. Therefore,  
customers’ ESD precautions should be consistent with these ratings.  
The device should be robust once assembled onto the PCB unless external inputs (connectors, etc.) directly  
connect the device pins to off-board circuits.  
18  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): TRF370417  
TRF370417  
www.ti.com  
SLWS213 JANUARY 2010  
DNI  
DNI  
C11  
C10  
.1uF  
.1uF  
J3  
BBIN  
J4  
BBIP  
1
1
SMA_END  
SMA_END  
R2  
0
R3  
0
TP3  
GND  
TP4  
VCC2  
TP2  
VCC1  
TP1  
GND  
BLK  
RED  
RED  
BLK  
C5  
1000pF  
C4  
C6  
C7  
+
+
1000pF  
4.7uF  
4.7uF  
C15  
C14  
10pF  
10pF  
J1  
LOP  
C1  
100pF  
1
SMA_END  
J7  
RF_OUT  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
NC1  
VCC1  
GND7  
RF_OUT  
NC5  
GND6  
NC4  
GND1  
LOP  
LON  
GND2  
NC2  
R1  
0
C3  
100pF  
SMA_END  
1
U1  
TRF370x  
C8  
C9  
1uF  
DNI  
1uF  
DNI  
J2  
LON  
C2  
100pF  
1
SMA_END  
TRF370333  
DNI  
0
TRF370317  
0
0
0
R4  
R5  
0
TRF370315  
J5  
QN  
J6  
QP  
0
DNI  
TRF370417  
DNI  
1
1
SMA_END  
SMA_END  
DNI  
DNI  
C13  
C12  
.1uF  
.1uF  
S0214-03  
NOTE: DNI = Do not install.  
Figure 47. TRF3704 EVM Schematic  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): TRF370417  
TRF370417  
SLWS213 JANUARY 2010  
www.ti.com  
Figure 48 shows the top view of the TRF3704 EVM board.  
K001  
Figure 48. TRF3704 EVM Board Layout  
Table 1. Bill of Materials for TRF370x EVM  
Item  
Number  
Reference  
Designator  
Quantity  
Value  
PCB Footprint  
Mfr. Name  
Mfr. Part Number  
Note  
1
2
3
3
2
2
C1, C2, C3  
C4, C5  
100 pF  
0402  
PANASONIC  
PANASONIC  
KERMET  
ECJ-0EC1H101J  
ECJ-0VC1H102J  
T491A475K016AS  
1000 pF  
0402  
C6, C7  
4.7 mF  
TANT_A  
ECJ-  
0EC1H010C_DNI  
4
5
6
7
8
9
0
0
2
7
2
4
C8, C9  
1 mF  
0.1 mF  
10 pF  
LOP  
0
0402  
PANASONIC  
PANASONIC  
MURATA  
DNI  
DNI  
C10, C11,  
C12, C13  
ECJ-  
0EB1A104K_DNI  
0402  
GRM1555C1H100  
JZ01D  
C14, C15  
0402  
J1, J2, J3,  
J4, J5, J6, J7  
JOHNSON  
COMPONENTS  
SMA_SMEL_250x215  
142-0711-821  
ERJ-2GE0R00  
ERJ-2GE0R00  
OR  
R1  
0402  
0402  
PANASONIC  
PANASONIC  
EQUIVALENT  
R2, R3, R4,  
R5  
OR  
0
EQUIVALENT  
20  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): TRF370417  
 
TRF370417  
www.ti.com  
SLWS213 JANUARY 2010  
Table 1. Bill of Materials for TRF370x EVM (continued)  
Item  
Number  
Reference  
Designator  
Quantity  
Value  
PCB Footprint  
Mfr. Name  
Mfr. Part Number  
Note  
QFN_24_163x163_  
0p50mm  
For TRF370333  
EVM, TI supplied  
TRF370333  
TRF370317  
TRF370315  
TRF370417  
TI  
TI  
TI  
TI  
TRF370333  
TRF370317  
TRF370315  
TRF370417  
QFN_24_163x163_  
0p50mm  
For TRF370317  
EVM, TI supplied  
10  
1
U1  
QFN_24_163x163_  
0p50mm  
For TRF370315  
EVM, TI supplied  
QFN_24_163x163_  
0p50mm  
For TRF370417  
EVM, TI supplied  
11  
12  
2
2
TP1, TP3  
TP2, TP4  
BLK  
TP_THVT_100_RND  
TP_THVT_100_RND  
KEYSTONE  
KEYSTONE  
5001K  
5000K  
RED  
GSM Applications  
The TRF370417 is suited for GSM and multicarrier GSM applications because of its high linearity and low noise  
level over the entire recommended operating range. It also has excellent EVM performance, which makes it ideal  
for the stringent GSM/EDGE applications.  
WCDMA Applications  
The TRF370417 is also optimized for WCDMA applications where both adjacent-channel power ratio (ACPR)  
and noise density are critically important. Using Texas instruments’ DAC568X series of high-performance  
digital-to-analog converters as depicted in Figure 49, excellent ACPR levels were measured with one-, two-, and  
four-WCDMA carriers. See Electrical Characteristics, fLO = 1960 MHz and fLO = 2140 MHz for exact ACPR  
values.  
16  
TRF370x  
RF Out  
I/Q  
DAC5687  
Modulator  
16  
CLK1  
CLK2  
VCXO  
TRF3761  
PLL  
CDCM7005  
Clock Gen  
LO Generator  
Ref Osc  
B0176-02  
Figure 49. Typical Transmit Setup Block Diagram  
DAC-to-Modulator Interface Network  
For optimum linearity and dynamic range, the digital-to-analog converter (DAC) can interface directly with the  
modulator; however, the common-mode voltage of each device must be maintained. A passive interface circuit is  
used to transform the common-mode voltage of the DAC to the desired set-point of the modulator. The passive  
circuit invariably introduces some insertion loss between the two devices. In general, it is desirable to keep the  
insertion loss as low as possible to achieve the best dynamic range. Figure 50 shows the passive interconnect  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): TRF370417  
 
TRF370417  
SLWS213 JANUARY 2010  
www.ti.com  
circuit for two different topologies. One topology is used when the DAC (e.g., DAC568x) common mode is larger  
than the modulator. The voltage Vee is nominally set to ground, but can be set to a negative voltage to reduce the  
insertion loss of the network. The second topology is used when the DAC (e.g., DAC56x2) common mode is  
smaller than the modulator. Note that this passive interconnect circuit is duplicated for each of the differential I/Q  
branches.  
Vdd  
It  
R1  
TRF370x  
DAC568x  
Id  
R2  
1.7V  
3.3V  
R3  
Vee  
Topology 1: DAC Vcm > TRF370x Vcm  
Vdd  
It  
R1  
DAC56x2  
TRF370x  
R2  
0.7V  
1.7V  
R3  
Id  
Topology 2: DAC Vcm < TRF370x Vcm  
S0338-01  
Figure 50. Passive DAC-to-Modulator Interface Network  
Table 2. DAC-to-Modulator Interface Network Values  
Topology 1  
Topology 2  
With Vee = 0 V  
With Vee = –5 V  
DAC Vcm [V]  
TRF370x Vcm [V]  
Vdd [V]  
3.3  
1.7  
5
3.3  
1.7  
5
0.7  
1.7  
5
Vee [V]  
Gnd  
66  
–5  
N/A  
960  
290  
52  
R1 []  
56  
R2 []  
100  
108  
5.8  
80  
R3 []  
336  
1.9  
Insertion loss [dB]  
2.3  
22  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): TRF370417  
TRF370417  
www.ti.com  
SLWS213 JANUARY 2010  
DEFINITION OF SPECIFICATIONS  
Unadjusted Carrier Feedthrough  
This specification measures the amount by which the local oscillator component is suppressed in the output  
spectrum of the modulator. If the common mode voltage at each of the baseband inputs is exactly the same and  
there was no dc imbalance introduced by the modulator, the LO component would be naturally suppressed. DC  
offset imbalances in the device allow some of the LO component to feed through to the output. Because this  
phenomenon is independent of the RF output power and the injected LO input power, the parameter is  
expressed in absolute power, dBm.  
Adjusted (Optimized) Carrier Feedthrough  
This differs from the unadjusted suppression number in that the baseband input dc offsets are iteratively adjusted  
around their theoretical value of VCM to yield the maximum suppression of the LO component in the output  
spectrum. This is measured in dBm.  
Unadjusted Sideband Suppression  
This specification measures the amount by which the unwanted sideband of the input signal is suppressed in the  
output of the modulator, relative to the wanted sideband. If the amplitude and phase within the I and Q branch of  
the modulator were perfectly matched, the unwanted sideband (or image) would be naturally suppressed.  
Amplitude and phase imbalance in the I and Q branches results in the increase of the unwanted sideband. This  
parameter is measured in dBc relative to the desired sideband.  
Adjusted (Optimized) Sideband Suppression  
This differs from the unadjusted sideband suppression in that the gain and phase of the baseband inputs are  
iteratively adjusted around their theoretical values to maximize the amount of sideband suppression. This is  
measured in dBc.  
Suppressions Over Temperature  
This specification assumes that the user has gone though the optimization process for the suppression in  
question, and set the optimal settings for the I, Q inputs. This specification then measures the suppression when  
temperature conditions change after the initial calibration is done.  
Figure 51 shows a simulated output and illustrates the respective definitions of various terms used in this data  
sheet.  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): TRF370417  
TRF370417  
SLWS213 JANUARY 2010  
www.ti.com  
f
rd  
rd  
fBBnBBn= Baseband FrequencyBBn  
rd  
fnBBnrd= RF FrequencyBBn  
rd rd rd  
f3rdH/L 3= 3 Order Intermodulation Product Frequency (High Side/Low Side)BBn  
rd  
BBn  
2ndH/L 2=n2dBndBnOrder Intermodulation Product (High Side/Low Side)BBn  
rd  
rd  
f
rd  
LOBBnr=d Local Oscillator FrequencyBBn  
rd  
rd  
LSBnBB=nLower Sideband FrequencyBBn  
M0104-01  
Figure 51. Graphical Illustration of Common Terms  
24  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): TRF370417  
PACKAGE OPTION ADDENDUM  
www.ti.com  
31-May-2010  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
TRF370417IRGER  
TRF370417IRGET  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGE  
RGE  
24  
24  
3000  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
Purchase Samples  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
Purchase Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
Automotive  
www.ti.com/automotive  
www.ti.com/communications  
Communications and  
Telecom  
DSP  
dsp.ti.com  
Computers and  
Peripherals  
www.ti.com/computers  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Consumer Electronics  
Energy  
www.ti.com/consumer-apps  
www.ti.com/energy  
Logic  
Industrial  
www.ti.com/industrial  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Medical  
www.ti.com/medical  
microcontroller.ti.com  
www.ti-rfid.com  
Security  
www.ti.com/security  
Space, Avionics &  
Defense  
www.ti.com/space-avionics-defense  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2010, Texas Instruments Incorporated  

相关型号:

TRF370417IRGER

50-MHz TO 6-GHz QUADRATURE MODULATOR
TI

TRF370417IRGET

50-MHz TO 6-GHz QUADRATURE MODULATOR
TI

TRF370417TDA1

50MHz to 6.0 GHz Quadrature Modulator, 1.7V common-mode voltage 0- 25 Only
TI

TRF370417TDA2

50MHz to 6.0 GHz Quadrature Modulator, 1.7V common-mode voltage 0- 25 Only
TI

TRF3705

300-MHz to 4-GHz Quadrature Modulator
TI

TRF3705EVM

TRF3705EVM Evaluation Module
TI

TRF3705IRGER

300-MHz to 4-GHz Quadrature Modulator
TI

TRF3705IRGET

300-MHz to 4-GHz Quadrature Modulator
TI

TRF3710

IQ DEMODULATOR
TI

TRF3710IRGZR

IQ DEMODULATOR
TI

TRF3710IRGZRG4

IQ DEMODULATOR
TI

TRF3710IRGZT

IQ DEMODULATOR
TI