TRF3761-FIRHARG4 [TI]

INTEGER-N PLL WITH INTEGRATED VCO; 集成VCO的整数N分频PLL
TRF3761-FIRHARG4
型号: TRF3761-FIRHARG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

INTEGER-N PLL WITH INTEGRATED VCO
集成VCO的整数N分频PLL

信号电路 锁相环或频率合成电路
文件: 总56页 (文件大小:1456K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
INTEGER-N PLL WITH INTEGRATED VCO  
FEATURES  
(See Note A)  
R2  
Fully Integrated VCO  
C1  
C3  
R1  
C2  
Low Phase Noise: –137dBc/Hz (at 600kHz, fVCO  
of 1.9GHz )  
C4  
1000 pF  
Low Noise Floor: –158dBc/Hz at 10MHz Offset  
Integer-N PLL  
Input Reference Frequency range: 10MHz to  
104MHz  
40 39 38 37 36 35 34 33 32 31  
PD_OUTBUF  
CHIP_EN  
CLOCK  
1
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
GND  
R3  
2.37 kΩ  
2
AVDD_BIAS  
RBIAS1  
3
VCO Frequency Divided by 2-4 Output  
Output Buffer Enable Pin  
4
DATA  
GND  
5
STROBE  
DGND  
VCTRL_IN  
AVDD_VCO  
AVDD_BUF  
TRF3761  
(TOP VIEW)  
6
Programmable Charge Pump Current  
Hardware and Software Power Down  
3-Wire Serial Interface  
7
DGND  
8
DVDD1  
AVDD_CAPARRAY  
GND  
9
AVDD_PRES  
GND  
10  
AVDD  
11 12 13 14 15 16 17 18 19 20  
Single Supply: 4.5V to 5.25V Operation  
APPLICATIONS  
Wireless Infrastructure  
R4  
4.75 kΩ  
C7  
1000 pF  
R5  
120 Ω  
R6  
120 Ω  
WCDMA, CDMA, GSM  
Wideband Transceivers  
Wireless Local Loop  
RFID Transceivers  
Clock generation  
V
DD  
V
DD  
C5  
10 pF  
C6  
10 pF  
LOAD  
A. See the Application Information section for  
Loop Filter Design procedures.  
IF LO generation  
AVAILABLE DEVICE OPTIONS  
Div by 1  
Div by 2  
Div by 4  
PART NUMBER  
Fstart  
1493  
1595  
1660  
1740  
1805  
1850  
1920  
2028  
2140  
2225  
Fstop  
1608  
1711  
1790  
1866  
1936  
1984  
2059  
2175  
2295  
2386  
Fstart  
746.5  
797.5  
830  
Fstop  
804  
Fstart  
373.25  
398.75  
415  
Fstop  
402  
TRF3761-A  
TRF3761-B  
TRF3761-C  
TRF3761-D  
TRF3761-E  
TRF3761-F  
TRF3761-G  
TRF3761-H  
TRF3761-J  
TRF3761-K  
855.5  
895  
427.75  
447.5  
466.5  
484  
870  
933  
435  
902.5  
925  
968  
451.25  
462.5  
480  
992  
496  
960  
1029.5  
1087.5  
1147.5  
1193  
514.75  
543.75  
573.75  
596.5  
1014  
1070  
1112.5  
507  
535  
556.25  
DESCRIPTION  
TRF3761 is a family of high performance, highly integrated frequency synthesizers, optimized for high  
performance applications. The TRF3761 includes a low-noise, voltage-controlled oscillator (VCO) and an  
integer-N PLL.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2005–2007, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be  
more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
DESCRIPTION CONTINUED  
TRF3761 integrates divide-by 1, 2, or 4 options for a more flexible output frequency range. It is controlled  
through a 3-wire serial-programming-interface (SPI) interface. For power sensitive applications the TRF3761 can  
be powered down by the SPI interface or externally via chip_en pin 2.  
PACKAGE/ORDERING INFORMATION(1)  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE  
LEAD  
PACKAGE  
PACKAGE  
MARKINGS  
ORDERING  
NUMBER  
TRANSPORT MEDIA,  
QUANTITY  
PRODUCT  
DESIGNATOR(2)  
TRF3761-AIRHAR  
TRF3761-AIRHAT  
TRF3761-BIRHAR  
TRF3761-BIRHAT  
TRF3761-CIRHAR  
TRF3761-CIRHAT  
TRF3761-DIRHAR  
TRF3761-DIRHAT  
TRF3761-EIRHAR  
TRF3761-EIRHAT  
TRF3761-FIRHAR  
TRF3761-FIRHAT  
TRF3761-GIRHAR  
TRF3761-GIRHAT  
TRF3761-HIRHAR  
TRF3761-HIRHAT  
TRF3761-JIRHAR  
TRF3761-JIRHAT  
TRF3761-KIRHAR  
TRF3761-KIRHAT  
Tape and Reel, 2500  
Tape and Reel, 250  
Tape and Reel, 2500  
Tape and Reel, 250  
Tape and Reel, 2500  
Tape and Reel, 250  
Tape and Reel, 2500  
Tape and Reel, 250  
Tape and Reel, 2500  
Tape and Reel, 250  
Tape and Reel, 2500  
Tape and Reel, 250  
Tape and Reel, 2500  
Tape and Reel, 250  
Tape and Reel, 2500  
Tape and Reel, 250  
Tape and Reel, 2500  
Tape and Reel, 250  
Tape and Reel, 2500  
Tape and Reel, 250  
TRF3761-A  
TRF3761-B  
TRF3761-C  
TRF3761-D  
TRF3761-E  
TRF3761-F  
TRF3761-G  
TRF3761-H  
TRF3761-J  
TRF3761-K  
QFN-40  
QFN-40  
QFN-40  
QFN-40  
QFN-40  
QFN-40  
QFN-40  
QFN-40  
QFN-40  
QFN-40  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
-40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
TRF3761-A  
TRF3761-B  
TRF3761-C  
TRF3761-D  
TRF3761-E  
TRF3761-F  
TRF3761-G  
TRF3761-H  
TRF3761-J  
TRF3761-K  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
website at www.ti.com.  
(2) Thermal pad size: 177 × 177 mils.  
2
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
Functional Block Diagram  
39  
3
4
5
Lock  
Det  
Serial  
Interface  
38  
R Div  
REF_IN  
Charge  
Pump  
34  
26  
PFD  
CPOUT  
N−Divider  
B−  
counter  
A−  
counter  
Prescaler  
div p/p+1  
VCTRL_IN  
14  
13  
VCO_OUTM  
VCO_OUTP  
Div1/2/4  
Power  
Down  
2
CHIP_EN  
18  
1
3
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
RHA PACKAGE  
(TOP VIEW)  
40 39 38 37 36 35 34 33 32 31  
1
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
PD_OUTBUF  
CHIP_EN  
CLOCK  
GND  
2
AVDD_BIAS  
RBIAS1  
3
4
DATA  
GND  
5
STROBE  
DGND  
VCTRL_IN  
AVDD_VCO  
AVDD_BUF  
AVDD_CAPARRAY  
GND  
6
7
DGND  
8
DVDD1  
9
AVDD_PRES  
GND  
10  
AVDD  
11 12 13 14 15 16 17 18 19 20  
TERMINAL FUNCTIONS  
TERMINAL(1)  
I/O  
DESCRIPTION  
NAME  
NO.  
Once configured in register 1, this pin will control the output buffer. Logic level 0  
turns on the buffer and logic level 1 turns off the buffer.  
PD_OUTBUF  
1
I
This pin requires 4.5 to 5.25v applied for normal operation. Grounding this pin will  
disable the chip.  
CHIP_EN  
CLOCK  
DATA  
2
3
4
I
I
I/O  
I
Serial-programming-interface clock  
Serial-programming-interface data, used for programming the frequency and other  
features.  
STROBE  
DGND  
5
Serial-programming-interface strobe required to write the data to the chip  
Digital ground  
6, 7  
Digital power supply, requires 4.5 to 5.25 V, Suggested decoupling, 0.1uF and  
10pF capacitors in parallel.  
DVDD1  
8
Power supply for prescaler circuit, requires 4.5 to 5.25 V, Suggested decoupling,  
0.1uF and 10pF capacitors in parallel.  
AVDD_PRES  
VCO_OUTP  
VCO_OUTM  
AVDD_OUTBUF  
9
VCO output, can be used single ended matched to 50 ohms or in conjuction with  
VCO_OUTM (pin 14) with a balun.  
13  
14  
15  
17  
18  
19  
O
O
VCO output, can be used single ended matched to 50 ohms or in conjunction with  
VCO_OUTP (pin 13) with a balun.  
Power supply for output buffers, requires 4.5 to 5.25 V, Suggested decoupling,  
0.1uF and 10pF capacitors in parallel.  
Power supply for VCO buffers, requires 4.5 to 5.25 V, Suggested decoupling,  
0.1uF and 10pF capacitors in parallel.  
AVDD_VCOBUF  
EXT_VCO_IN  
RBIAS2  
External VCO input to prescaler, If using an external VCO instead of the internal  
VCO.  
I
External bias resistor for setting the internal reference current requires a 4.75K  
ohm resister to ground.  
I/O  
(1) Power Supply=Vcc=(DVDD1, AVDD1, AVDD_PRES, AVDD_VCOBUF, AVDD, AVDD_CAPARRAY, AVDD_BUF, AVDD_VCO,  
AVDD_BIAS, AVDD_CP, AVDD_REF, DVDD2)  
4
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
TERMINAL FUNCTIONS (continued)  
TERMINAL(1)  
I/O  
DESCRIPTION  
NAME  
AVDD  
NO.  
Analog power supply, requires 4.5 to 5.25 V, Suggested decoupling, 0.1uF and  
10pF capacitors in parallel.  
21  
Power supply for VCO core and buffer, requires 4.5 to 5.25 V, Suggested  
decoupling, 0.1uF and 10pF capacitors in parallel.  
AVDD_CAPARRAY  
AVDD_BUF  
23  
24  
Power supply for VCO core and buffer, requires 4.5 to 5.25 V, Suggested  
decoupling, 0.1uF and 10pF capacitors in parallel.  
Power supply for VCO core and buffer, requires 4.5 to 5.25 V, Suggested  
decoupling, 0.1uF and 10pF capacitors in parallel.  
AVDD_VCO  
VCTRL_IN  
RBIAS1  
25  
26  
28  
I
VCO control voltage, the output of the loop filter is applied to this pin.  
External bias resistor for setting charge pump reference current, requires 2.37K  
ohm resistor to ground.  
I/O  
Power supply for band gap current bias, requires 4.5 to 5.25 V, Suggested  
decoupling, 0.1uF and 10pF capacitors in parallel.  
AVDD_BIAS  
GND  
29  
10, 11, 12, 16, 20, 22,  
27, 30, 31, 33, 37  
Analog ground  
Power supply for FUSE cell, requires 4.5 to 5.25V. Suggested decoupling, 0.1uF,  
1nF and 1pF capacitors in parallel.  
AVDD  
32  
34  
35  
CPOUT  
AVDD_CP  
O
Charge pump output, connected to the input of loop filter.  
Analog power supply for charge pump, requires 4.5 to 5.25 V, Suggested  
decoupling, 0.1uF and 10pF capacitors in parallel  
Power supply for REF_IN circuitry, requires 4.5 to 5.25 V, Suggested decoupling,  
0.1uF and 10pF capacitors in parallel.  
AVDD_REF  
REF_IN  
36  
38  
39  
I
Reference signal input, reference oscillator input of 10MHz to 104MHz.  
Generally used for digital lock detect, can be used to verify locked condition by  
microcontroller, high = locked, low = unlocked.  
MUX_OUT  
O
Power supply for the digital regulator, requires 4.5 to 5.25 V, Suggested  
decoupling, 0.1uF and 10pF capacitors in parallel.  
DVDD2  
40  
THERMAL CHARACTERISTICS  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER(1)  
TEST CONDITIONS  
MIN  
TYP  
26  
MAX  
UNIT  
°C/W  
°C/W  
°C/W  
Soldered slug, no airflow  
θJA  
Thermal derating, junction-to-ambient  
Soldered slug, 200-LFM airflow  
Soldered slug, 400-LFM airflow  
20.1  
17.4  
(1) Determined using JEDEC standard JESD-51 with High K board  
ABSOLUTE MAXIMUM RATINGS  
Over operating free-air temperature range (unless otherwise noted)(1)  
VALUE  
UNIT  
Supply voltage range(2)  
Digital I/O voltage range  
–0.3 to 5.5  
–0.3 to VCC +0.3  
–40 to 150  
V
V
TJ  
Operating virtual junction temperature range  
Storage temperature range  
°C  
°C  
Tstg  
–65 to 150  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
5
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
RECOMMENDED OPERATING CONDITIONS  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
V
VCC  
Power supply voltage  
4.5  
5
5.25  
940  
85  
Power supply voltage ripple  
µVpp  
°C  
TA  
TJ  
Operating free air temperature range  
Operating virtual junction temperature range  
–40  
–40  
150  
°C  
ELECTRICAL CHARACTERISTICS  
Supply voltage = VCC = 4.5V to 5.25V, TA = –40 to 85 °C (unless otherwise noted)  
PARAMETER  
DC Parameters  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Divide by 1 output  
Divide by 2 output  
Divide by 4 output  
130  
140  
150  
mA  
mA  
mA  
ICC  
Total supply current  
TA = 25°C  
Reference Oscillator Parameters  
fref  
Reference frequency  
10  
104 MHz  
2.5 Vpp  
Reference input sensitivity (REF_IN)  
0.2  
Parallel capacitance  
Parallel resistance  
5
6.52  
pF  
Reference input impedance (REF_IN)  
3913  
PFD Charge Pump  
PFD frequency  
30 MHz  
mA  
Charge pump current (ICP_OUT  
)
SPI programmable  
5.6  
Digital Interface (PD_OUTBUF, CHIP_EN, CLOCK, DATA, STROBE)  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
2.5  
0
VCC  
V
V
V
V
0.8  
VOH High-level output voltage  
VOL Low-level output voltage  
Output Power  
0.8VCC  
0.2VCC  
Single ended  
0
3
dBm  
dBm  
Differential  
TIMING REQUIREMENTS  
Supply voltage = VCC = 4.5V to 5.25V, TA = –40 to 85 °C  
PARAMETER  
TEST CONDITIONS  
MIN  
50  
TYP  
MAX UNIT  
t(CLK)  
tsu1  
th  
Clock period  
ns  
ns  
ns  
ns  
ns  
Setup time, data  
Hold time, data  
10  
10  
tw  
Pulse width, STROBE  
Setup time, STROBE  
20  
tsu2  
10  
6
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
t
t
h
su1  
t
(CLK)  
1” Clock Pike  
CLOCK  
DATA  
DB0 (LSB)  
Address bit 1  
DB1  
Address bit 2  
DB2  
Address bit 3  
DB29  
Cmd bit 30  
DB30  
Cmd bit 31  
DB31 (MSB)  
Cmd bit 32  
t
t
su2  
w
STROBE  
A. The first 4 bits, DB(3-0), of data are Address bits. The 28 remaining bits, DB(31-4), are part of the command. The  
command is little endian or lower bits first.  
Figure 1. Serial Programming Timing Diagram  
7
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
TRF3761-B ELECTRICAL CHARACTERISTICS  
Supply voltage = VCC = 5V, TA = –40 to 85 °C (unless otherwise noted)  
PARAMETER  
NOISE CHARACTERISTICS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
1kHz offset  
–119.34  
–139  
VCO phase noise,  
Free running VCO direct output  
fVCO = 1651MHz,  
fO = 1651MHz  
-142.1  
–156.6  
-158.6  
-127.8  
–146.5  
–149  
dBc/Hz  
dBc/Hz  
VCO phase noise,  
Free running VCO divide-by-2 output  
fVCO = 1651MHz,  
fO = 825.5 MHz  
–156.2  
–158.4  
–127.3  
-151.4  
-153  
VCO phase noise,  
Free running VCO divide-by-4 output  
fVCO = 1651MHz,  
fO = 412.75 MHz  
dBc/Hz  
dBc/Hz  
–155.5  
–155.9  
–83.5  
600kHz offset  
1MHz offset  
10MHz offset  
–138  
VCO phase noise,  
fVCO = 1651MHz,  
fO = 1651MHz  
Closed loop phase noise direct output(1)(2)(3)  
–141.8  
–158.2  
RMS phase error  
100Hz to 10MHz  
fVCO = 1651MHz,  
0.85°  
Closed loop phase noise direct output(3)  
1kHz offset  
–90.2  
–146  
600kHz offset  
1MHz offset  
10MHz offset  
VCO phase noise,  
dBc/Hz  
dBc/Hz  
Closed loop phase noise divide-by-2 output(1)(2)(3) fO = 825.5 MHz  
–147.39  
–158.25  
RMS phase error  
100Hz to 10MHz  
0.53°  
Closed loop phase noise divide-by-2 output(3)  
1kHz offset  
-95.7  
–151  
–154  
–156  
600kHz offset  
1MHz offset  
10MHz offset  
VCO phase noise,  
fVCO = 1651MHz,  
Closed loop phase noise divide-by-4 output(1)(2)(3) fO = 412.75 MHz  
RMS phase error  
100Hz to 10MHz  
0.33°  
Closed loop phase noise divide-by-4 output(3)  
VCO gain, Kv  
Reference spur(2)  
VCO free running  
23  
MHz/V  
dBc  
–80  
(1) See Application Circuit Figure 78.  
(2) PFD = 200kHz, Loop Filter BW = 15kHz, Output frequency step = 200kHz.  
(3) Reference oscillator RMS phase error = 0.008250°, RMS jitter = 881.764 fs.  
8
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
TRF3761-C ELECTRICAL CHARACTERISTICS  
Supply voltage = VCC = 5V, TA = –40 to 85 °C (unless otherwise noted)  
PARAMETER  
NOISE CHARACTERISTICS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
1kHz offset  
–119.5  
–138.8  
-143.9  
–155.3  
–157.5  
–126  
VCO phase noise,  
Free running VCO direct output  
fVCO = 1723MHz,  
fO = 1700MHz  
dBc/Hz  
–145.2  
–149.5  
–157.2  
–158  
VCO phase noise,  
Free running VCO divide-by-2 output  
fVCO = 1723MHz,  
fO = 861.5 MHz  
dBc/Hz  
dBc/Hz  
–133  
-151  
VCO phase noise,  
Free running VCO divide-by-4 output  
fVCO = 1723MHz,  
fO = 430.75 MHz  
-153.8  
–156  
–156.5  
–85  
600kHz offset  
–138.3  
4
VCO phase noise,  
fVCO = 1723MHz,  
fO = 1723MHz,  
dBc/Hz  
Closed loop phase noise direct output(1)(2)(3)  
1MHz offset  
–142.6  
8
10MHz offset  
–157.3  
RMS phase error  
100Hz to 10MHz  
fVCO = 1723MHz,  
0.87°  
Closed loop phase noise direct output(3)  
1kHz offset  
–90.1  
–145  
600kHz offset  
1MHz offset  
10MHz offset  
VCO phase noise,  
dBc/Hz  
dBc/Hz  
Closed loop phase noise divide-by-2 output(1)(2)(3) fO = 861.5 MHz  
–148.6  
–158  
RMS phase error  
100Hz to 10MHz  
0.53°  
Closed loop phase noise divide-by-2 output(3)  
1kHz offset  
–96.2  
–151  
–153  
–156  
600kHz offset  
1MHz offset  
10MHz offset  
VCO phase noise,  
fVCO = 1723MHz,  
Closed loop phase noise divide-by-4 output(1)(2)(3) fO = 430.75 MHz  
RMS phase error  
100Hz to 10MHz  
0.33°  
Closed loop phase noise divide-by-4 output(3)  
VCO gain, Kv  
Reference spur(2)  
VCO free running  
23  
MHz/V  
dBc  
–80  
(1) See Application Circuit Figure 78.  
(2) PFD = 200kHz, Loop Filter BW = 15kHz, Output frequency step = 200kHz.  
(3) Reference oscillator RMS phase error = 0.008250°, RMS jitter = 881.764 fs.  
9
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
TRF3761-D ELECTRICAL CHARACTERISTICS  
Supply voltage = VCC = 5V, TA = –40 to 85 °C (unless otherwise noted)  
PARAMETER  
NOISE CHARACTERISTICS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
1kHz offset  
–118  
–138.5  
-144  
VCO phase noise,  
Free running VCO direct output  
fVCO = 1817MHz,  
fO = 1817MHz  
dBc/Hz  
dBc/Hz  
–156  
–158  
–124.8  
–145.2  
–148  
VCO phase noise,  
Free running VCO divide-by-2 output  
fVCO = 1817MHz,  
fO = 908.5MHz  
–157.8  
–158.2  
–132  
-151  
VCO phase noise,  
Free running VCO divide-by-4 output  
fVCO = 1817MHz,  
fO = 454.25MHz  
-154  
dBc/Hz  
dBc/Hz  
–157  
–157.5  
–85  
600kHz offset  
1MHz offset  
10MHz offset  
–139  
VCO phase noise,  
fVCO = 1817MHz,  
fO = 1817MHz  
Closed loop phase noise direct output(1)(2)(1)  
–144  
–159  
RMS phase error  
100Hz to 10MHz  
0.85°  
Closed loop phase noise direct output(3)  
1kHz offset  
–91  
–146  
–149  
–159  
VCO phase noise,  
600kHz offset  
1MHz offset  
10MHz offset  
fVCO = 1817MHz,  
fO = 908.5MHz  
Closed loop phase noise divide-by-2  
dBc/Hz  
dBc/Hz  
output(1)(2)(3)  
RMS phase error  
100Hz to 10MHz  
0.47°  
Closed loop phase noise divide-by-2 output(3)  
1kHz offset  
–97  
–151  
–154  
–157  
VCO phase noise,  
600kHz offset  
1MHz offset  
10MHz offset  
fVCO = 1817MHz,  
fO = 454.25MHz  
Closed loop phase noise divide-by-4  
output(1)(2)(3)  
RMS phase error  
100Hz to 10MHz  
VCO free running  
0.34°  
Closed loop phase noise divide-by-4 output(3)  
VCO gain, Kv  
23  
MHz/V  
dBc  
Reference spur(2)  
–80  
(1) See Application Circuit Figure 78.  
(2) PFD = 200kHz, Loop Filter BW = 15kHz, Output frequency step = 200kHz.  
(3) Reference oscillator RMS phase error = 0.008250°, RMS jitter = 881.764 fs.  
10  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
TRF3761-E ELECTRICAL CHARACTERISTICS  
Supply voltage = VCC = 5V, TA = –40 to 85 °C (unless otherwise noted)  
PARAMETER  
NOISE CHARACTERISTICS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
1kHz offset  
–118  
–138  
VCO phase noise,  
Free running VCO direct output  
fVCO = 1869MHz,  
fO = 1869MHz  
–142  
dBc/Hz  
–155  
–157.3  
–126  
–144  
VCO phase noise,  
Free running VCO divide-by-2 output  
fVCO = 1869MHz,  
fO = 934.5MHz  
–149  
dBc/Hz  
–158  
–158.2  
–132  
–150  
VCO phase noise,  
Free running VCO divide-by-4 output  
fVCO = 1869MHz,  
fO = 467.25MHz  
–154  
dBc/Hz  
dBc/Hz  
-157  
–157.3  
–84.5  
–140  
600kHz offset  
1MHz offset  
10MHz offset  
VCO phase noise,  
fVCO = 1869MHz,  
fO = 1869MHz  
Closed loop phase noise direct output(1)(2)(3)  
–143.6  
–157  
RMS phase error  
100Hz to 10MHz  
0.9°  
Closed loop phase noise direct output(3)  
1kHz offset  
–90.7  
–144  
600kHz offset  
1MHz offset  
10MHz offset  
VCO phase noise,  
fVCO = 1869MHz,  
fO = 934.5MHz  
dBc/Hz  
dBc/Hz  
Closed loop phase noise divide-by-2 output(1)(2)(3)  
–148.5  
–158  
RMS phase error  
100Hz to 10MHz  
0.53°  
Closed loop phase noise divide-by-2 output(3)  
1kHz offset  
–95  
–150  
–154  
–157  
600kHz offset  
1MHz offset  
10MHz offset  
VCO phase noise,  
fVCO = 1869MHz,  
fO = 467.25MHz  
Closed loop phase noise divide-by-4 output(1)(2)(3)  
RMS phase error  
100Hz to 10MHz  
VCO free running  
0.35°  
Closed loop phase noise divide-by-4 output(3)  
VCO gain, Kv  
23  
MHz/V  
dBc  
Reference spur(2)  
–80  
(1) See Application Circuit Figure 78.  
(2) PFD = 200kHz, Loop Filter BW = 15kHz, Output frequency step = 200kHz.  
(3) Reference oscillator RMS phase error = 0.008250°, RMS jitter = 881.764 fs.  
11  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
TRF3761-F ELECTRICAL CHARACTERISTICS  
Supply voltage = VCC = 5V, TA = –40 to 85 °C (unless otherwise noted)  
PARAMETER  
NOISE CHARACTERISTICS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
1kHz offset  
-116  
-137  
-141  
-155  
-157  
-113  
-136  
-147.5  
-155  
-157.5  
-128  
-148  
-150  
-155  
-156  
-82.5  
-136.7  
-142  
-157  
VCO phase noise,  
Free running VCO direct output  
fVCO = 1916MHz,  
fO = 1916MHz  
dBc/Hz  
dBc/Hz  
VCO phase noise,  
Free running VCO divide-by-2 output  
fVCO = 1916MHz,  
fO = 958MHz  
VCO phase noise,  
Free running VCO divide-by-4 output  
fVCO = 1916MHz,  
fO = 479MHz  
dBc/Hz  
dBc/Hz  
600kHz offset  
1MHz offset  
10MHz offset  
VCO phase noise,  
fVCO = 1916MHz,  
fO = 1916MHz  
Closed loop phase noise direct output(1)(2)(3)  
RMS phase error  
100Hz to 10MHz  
fVCO = 1916MHz,  
0.947°  
Closed loop phase noise direct output(3)  
1kHz offset  
-88.6  
-142.6  
-148.2  
-158  
600kHz offset  
1MHz offset  
10MHz offset  
VCO phase noise,  
dBc/Hz  
dBc/Hz  
Closed loop phase noise divide-by-2 output(1)(2)(3) fO = 958MHz  
RMS phase error  
100Hz to 10MHz  
0.477°  
Closed loop phase noise divide-by-2 output(3)  
1kHz offset  
-95  
-148  
-152  
-156  
600kHz offset  
1MHz offset  
10MHz offset  
VCO phase noise,  
fVCO = 1916MHz,  
Closed loop phase noise divide-by-4 output(1)(2)(3) fO = 479MHz  
RMS phase error  
100Hz to 10MHz  
0.231°  
Closed loop phase noise divide-by-4 output(3)  
VCO gain, Kv  
Reference spur(2)  
VCO free running  
23  
MHz/V  
dBc  
–80  
(1) See Application Circuit Figure 78.  
(2) PFD = 200kHz, Loop Filter BW = 15kHz, Output frequency step = 200kHz.  
(3) Reference oscillator RMS phase error = 0.008250°, RMS jitter = 881.764 fs.  
12  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
TRF3761-G ELECTRICAL CHARACTERISTICS  
Supply voltage = VCC = 5V, TA = –40 to 85 °C (unless otherwise noted)  
PARAMETER  
NOISE CHARACTERISTICS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
1kHz offset  
-115  
-136  
VCO phase noise,  
Free running VCO direct output  
fVCO = 1989MHz,  
fO = 1989MHz  
-141.2  
-155.6  
-159  
dBc/Hz  
-121.3  
-142.4  
-141.5  
-157.2  
-158  
VCO phase noise,  
Free running VCO divide-by-2 output  
fVCO = 1989MHz,  
fO = 994.5MHz  
dBc/Hz  
-128  
-148  
VCO phase noise,  
Free running VCO divide-by-4 output  
fVCO = 1989MHz,  
fO = 497.25MHz  
-151  
dBc/Hz  
dBc/Hz  
-156.8  
-157  
-83  
600kHz offset  
1MHz offset  
10MHz offset  
-136  
VCO phase noise,  
fVCO = 1989MHz,  
fO = 1989MHz  
Closed loop phase noise direct output(1)(2)(3)  
-141  
-159  
RMS phase error  
100Hz to 10MHz  
fVCO = 1989MHz,  
1°  
Closed loop phase noise direct output(3)  
1kHz offset  
-88.7  
-141.9  
-147.5  
-158  
600kHz offset  
1MHz offset  
10MHz offset  
VCO phase noise,  
dBc/Hz  
dBc/Hz  
Closed loop phase noise divide-by-2 output(1)(2)(3) fO = 994.5MHz  
RMS phase error  
100Hz to 10MHz  
0.509°  
Closed loop phase noise divide-by-2 output(3)  
1kHz offset  
-95  
-147.9  
-151.3  
-156  
600kHz offset  
1MHz offset  
10MHz offset  
VCO phase noise,  
fVCO = 1989MHz,  
Closed loop phase noise divide-by-4 output(1)(2)(3) fO = 497.25MHz  
RMS phase error  
100Hz to 10MHz  
0.252°  
Closed loop phase noise divide-by-4 output(3)  
VCO gain, Kv  
Reference spur(2)  
VCO free running  
23  
MHz/V  
dBc  
–80  
(1) See Application Circuit Figure 78.  
(2) PFD = 200kHz, Loop Filter BW = 15kHz, Output frequency step = 200kHz.  
(3) Reference oscillator RMS phase error = 0.008250°, RMS jitter = 881.764 fs.  
13  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
TRF3761-H ELECTRICAL CHARACTERISTICS  
Supply voltage = VCC = 5V, TA = –40 to 85 °C (unless otherwise noted)  
PARAMETER  
NOISE CHARACTERISTICS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
1kHz offset  
–116  
–136  
VCO phase noise,  
Free running VCO direct output  
fVCO = 2116MHz,  
fO = 2116MHz  
-142  
dBc/Hz  
dBc/Hz  
–154.2  
–156  
–123.3  
–143  
VCO phase noise,  
Free running VCO divide-by-2 output  
fVCO = 2116MHz,  
fO = 1058  
–147.6  
–157  
–158.3  
–129.4  
-149.8  
-152.7  
–157.7  
–158  
VCO phase noise,  
Free running VCO divide-by-4 output  
fVCO = 2116MHz,  
fO = 529MHz  
dBc/Hz  
dBc/Hz  
–84  
600kHz offset  
1MHz offset  
10MHz offset  
–136  
VCO phase noise,  
fVCO = 2116MHz,  
fO = 2116MHz  
Closed loop phase noise direct output(1)(2)(3)  
–141  
–157  
RMS phase error  
100Hz to 10MHz  
0.99°  
Closed loop phase noise direct output(3)  
1kHz offset  
-89  
–143  
–148  
–159  
600kHz offset  
1MHz offset  
10MHz offset  
VCO phase noise,  
fVCO = 2116MHz,  
fO = 1058MHz  
dBc/Hz  
dBc/Hz  
Closed loop phase noise divide-by-2 output(1)(2)(3)  
RMS phase error  
100Hz to 10MHz  
0.54°  
Closed loop phase noise divide-by-2 output(3)  
1kHz offset  
–95  
–149.5  
–153  
600kHz offset  
1MHz offset  
10MHz offset  
VCO phase noise,  
fVCO = 2116MHz,  
fO = 529MHz  
Closed loop phase noise divide-by-4 output(1)(2)(3)  
–158  
RMS phase error  
100Hz to 10MHz  
VCO free running  
0.35°  
Closed loop phase noise divide-by-4 output(3)  
VCO gain, Kv  
23  
MHz/V  
dBc  
Reference spur(2)  
–80  
(1) See Application Circuit Figure 78.  
(2) PFD = 200kHz, Loop Filter BW = 15kHz, Output frequency step = 200kHz.  
(3) Reference oscillator RMS phase error = 0.008250°, RMS jitter = 881.764 fs.  
14  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
TRF3761-J ELECTRICAL CHARACTERISTICS  
Supply voltage = VCC = 5V, TA = –40 to 85 °C (unless otherwise noted)  
PARAMETER  
NOISE CHARACTERISTICS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
1kHz offset  
–116.7  
–135.4  
-141  
VCO phase noise,  
Free running VCO direct output  
fVCO = 2289MHz,  
fO = 2289MHz  
dBc/Hz  
–153.8  
–156.4  
–123  
–142  
VCO phase noise,  
Free running VCO divide-by-2 output  
fVCO = 2289MHz,  
fO = 1144.5  
–147  
dBc/Hz  
–156.2  
–157.5  
–129  
-149  
VCO phase noise,  
Free running VCO divide-by-4 output  
fVCO = 2289MHz,  
fO = 572.25MHz  
-153  
dBc/Hz  
dBc/Hz  
–157.5  
–158  
–83  
600kHz offset  
1MHz offset  
10MHz offset  
–135  
VCO phase noise,  
fVCO = 2289MHz,  
fO = 2289MHz  
Closed loop phase noise direct output(1)(2)(3)  
–140  
–156  
RMS phase error  
100Hz to 10MHz  
fVCO = 2289MHz,  
1.1°  
Closed loop phase noise direct output(3)  
1kHz offset  
–89  
-141  
600kHz offset  
1MHz offset  
10MHz offset  
VCO phase noise,  
dBc/Hz  
dBc/Hz  
Closed loop phase noise divide-by-2 output(1)(2)(3) fO = 1144.5MHz  
–145.7  
–158  
RMS phase error  
100Hz to 10MHz  
0.59°  
Closed loop phase noise divide-by-2 output(3)  
1kHz offset  
–95  
–148  
600kHz offset  
1MHz offset  
10MHz offset  
VCO phase noise,  
fVCO = 2289MHz,  
Closed loop phase noise divide-by-4 output(1)(2)(3) fO = 572.25MHz  
–152  
–158.1  
RMS phase error  
100Hz to 10MHz  
0.37°  
Closed loop phase noise divide-by-4 output(3)  
VCO gain, Kv  
Reference spur(2)  
VCO free running  
23  
MHz/V  
dBc  
–80  
(1) See Application Circuit Figure 78.  
(2) PFD = 200kHz, Loop Filter BW = 15kHz, Output frequency step = 200kHz.  
(3) Reference oscillator RMS phase error = 0.008250°, RMS jitter = 881.764 fs.  
15  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
TRP3761-B TYPICAL CHARACTERISTICS  
(See Figure 78)  
Closed Loop VCO Phase Noise  
Open Loop VCO Phase Noise  
−70  
−80  
−60  
CL = 1651 MHz  
OL = 1651 MHz  
−70  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
1k  
1k  
1k  
10k  
100k  
1M  
10M  
10M  
10M  
1k  
1k  
1k  
10k  
100k  
1M  
10M  
10M  
10M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 2.  
Figure 3.  
Closed Loop VCO Phase Noise  
Open Loop VCO Phase Noise  
−70  
−80  
−60  
−70  
CL = 825.5 MHz  
OL = 825.5 MHz  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
10k  
100k  
1M  
10k  
100k  
1M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 4.  
Figure 5.  
Closed Loop VCO Phase Noise  
Open Loop VCO Phase Noise  
−70  
−80  
−70  
−80  
CL = 412.75 MHz  
OL = 412.75 MHz  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
10k  
100k  
1M  
10k  
100k  
1M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 6.  
Figure 7.  
16  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
TRP3761-B TYPICAL CHARACTERISTICS  
(See Figure 78) (continued)  
Direct Output: PFD Frequency Spurs  
Figure 8.  
Divide-By-2 Output: PFD Frequency Spurs  
Figure 9.  
Divide-By-4 Output: PFD Frequency Spurs  
Figure 10.  
17  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
TRP3761-C TYPICAL CHARACTERISTICS  
(See Figure 78)  
Closed Loop VCO Phase Noise  
Open Loop VCO Phase Noise  
−70  
−80  
−60  
CL = 1723 MHz  
OL = 1723  
MHz  
−70  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
1k  
1k  
1k  
10k  
100k  
1M  
10M  
10M  
10M  
1k  
1k  
1k  
10k  
100k  
1M  
10M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 11.  
Figure 12.  
Closed Loop VCO Phase Noise  
Open Loop VCO Phase Noise  
−70  
−80  
−60  
−70  
CL = 861.5 MHz  
OL = 861.5 MHz  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
10k  
100k  
1M  
10k  
100k  
1M  
10M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 13.  
Figure 14.  
Closed Loop VCO Phase Noise  
Open Loop VCO Phase Noise  
−70  
−80  
−60  
−70  
CL = 430.75 MHz  
OL = 430.75 MHz  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
10k  
100k  
1M  
10k  
100k  
1M  
10M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 15.  
Figure 16.  
18  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
TRP3761-C TYPICAL CHARACTERISTICS  
(See Figure 78) (continued)  
Direct Output: PFD Frequency Spurs  
Figure 17.  
Divide-By-2 Output: PFD Frequency Spurs  
Figure 18.  
Divide-By-4 Output: PFD Frequency Spurs  
Figure 19.  
19  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
TRF3761-D TYPICAL CHARACTERISTICS  
(See Figure 78)  
Closed Loop VCO Phase Noise  
Open Loop VCO Phase Noise  
−70  
−80  
−60  
CL = 1801 MHz  
OL = 1801 MHz  
−70  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
1k  
1k  
1k  
10k  
100k  
1M  
10M  
10M  
10M  
1k  
1k  
1k  
10k  
100k  
1M  
10M  
10M  
10M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 20.  
Figure 21.  
Closed Loop VCO Phase Noise  
Open Loop VCO Phase Noise  
−70  
−80  
−60  
−70  
CL = 900.5 MHz  
OL = 900.5 MHz  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
10k  
100k  
1M  
10k  
100k  
1M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 22.  
Figure 23.  
Closed Loop VCO Phase Noise  
Open Loop VCO Phase Noise  
−70  
−80  
−60  
−70  
CL = 450.25 MHz  
OL = 450.25 MHz  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
10k  
100k  
1M  
10k  
100k  
1M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 24.  
Figure 25.  
20  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
TRF3761-D TYPICAL CHARACTERISTICS (Continued)  
Direct Output: PFD Frequency Spurs  
Figure 26.  
Divide-By-2 Output: PFD Frequency Spur  
Figure 27.  
Divide-By-4 Output: PFD Frequency Spurs  
Figure 28.  
21  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
TRP3761-E TYPICAL CHARACTERISTICS  
(See Figure 78)  
Closed Loop VCO Phase Noise  
Open Loop VCO Phase Noise  
−70  
−80  
−60  
CL = 1869 MHz  
OL = 1869 MHz  
−70  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
1k  
1k  
1k  
10k  
100k  
1M  
10M  
10M  
10M  
1k  
1k  
1k  
10k  
100k  
1M  
10M  
10M  
10M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 29.  
Figure 30.  
Closed Loop VCO Phase Noise  
Open Loop VCO Phase Noise  
−70  
−80  
−60  
−70  
CL = 934.5 MHz  
OL = 934.5 MHz  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
10k  
100k  
1M  
10k  
100k  
1M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 31.  
Figure 32.  
Closed Loop VCO Phase Noise  
Open Loop VCO Phase Noise  
−70  
−80  
−60  
−70  
CL = 467.25 MHz  
OL = 467.25 MHz  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
10k  
100k  
1M  
10k  
100k  
1M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 33.  
Figure 34.  
22  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
TRP3761-E TYPICAL CHARACTERISTICS  
(See Figure 78) (continued)  
Direct Output: PFD Frequency Spurs  
Figure 35.  
Divide-By-2 Output: PFD Frequency Spurs  
Figure 36.  
Divide-By-4 Output: PFD Frequency Spurs  
Figure 37.  
23  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
TRP3761-F TYPICAL CHARACTERISTICS  
(See Figure 78)  
Closed Loop VCO Phase Noise  
Open Loop VCO Phase Noise  
−70  
−80  
−60  
CL = 1916 MHz  
OL = 1916 MHz  
−70  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
1k  
10k  
100k  
1M  
10M  
10M  
10M  
1k  
10k  
100k  
1M  
10M  
10M  
10M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 38.  
Figure 39.  
Closed Loop VCO Phase Noise  
Open Loop VCO Phase Noise  
−70  
−80  
−60  
−70  
CL = 958 MHz  
OL = 958 MHz  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 40.  
Figure 41.  
Closed Loop VCO Phase Noise  
Open Loop VCO Phase Noise  
−70  
−80  
−60  
−70  
CL = 479 MHz  
OL = 479 MHz  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 42.  
Figure 43.  
24  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
TRP3761-F TYPICAL CHARACTERISTICS  
(See Figure 78) (continued)  
Direct Output: PFD Frequency Spurs  
Figure 44.  
Divide-By-2 Output: PFD Frequency Spurs  
Figure 45.  
Divide-By-4 Output: PFD Frequency Spurs  
Figure 46.  
25  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
TRP3761-G TYPICAL CHARACTERISTICS  
(See Figure 78)  
Closed Loop VCO Phase Noise  
Open Loop VCO Phase Noise  
−70  
−80  
−60  
CL = 1989 MHz  
OL = 1989 MHz  
−70  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
1k  
1k  
1k  
10k  
100k  
1M  
10M  
10M  
10M  
1k  
1k  
1k  
10k  
100k  
1M  
10M  
10M  
10M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 47.  
Figure 48.  
Closed Loop VCO Phase Noise  
Open Loop VCO Phase Noise  
−70  
−80  
−60  
−70  
CL = 994.5 MHz  
OL = 994.5 MHz  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
10k  
100k  
1M  
10k  
100k  
1M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 49.  
Figure 50.  
Closed Loop VCO Phase Noise  
Open Loop VCO Phase Noise  
−70  
−80  
−60  
−70  
CL = 497.25 MHz  
OL = 497.25 MHz  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
10k  
100k  
1M  
10k  
100k  
1M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 51.  
Figure 52.  
26  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
TRP3761-G TYPICAL CHARACTERISTICS  
(See Figure 78) (continued)  
Direct Output: PFD Frequency Spurs  
Figure 53.  
Divide-By-2 Output: PFD Frequency Spurs  
Figure 54.  
Divide-By-4 Output: PFD Frequency Spurs  
Figure 55.  
27  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
TRP3761-H TYPICAL CHARACTERISTICS  
(See Figure 78)  
Closed Loop VCO Phase Noise  
Open Loop VCO Phase Noise  
−70  
−80  
−60  
CL = 2100 MHz  
OL = 2100 MHz  
−70  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
1k  
1k  
1k  
10k  
100k  
1M  
10M  
10M  
10M  
1k  
1k  
1k  
10k  
100k  
1M  
10M  
10M  
10M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 56.  
Figure 57.  
Closed Loop VCO Phase Noise  
Open Loop VCO Phase Noise  
−70  
−80  
−60  
−70  
CL = 1050 MHz  
OL = 1050 MHz  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
10k  
100k  
1M  
10k  
100k  
1M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 58.  
Figure 59.  
Closed Loop VCO Phase Noise  
Open Loop VCO Phase Noise  
−70  
−80  
−60  
−70  
CL = 525 MHz  
OL = 525  
MHz  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
10k  
100k  
1M  
10k  
100k  
1M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 60.  
Figure 61.  
28  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
TRP3761-H TYPICAL CHARACTERISTICS  
(See Figure 78) (continued)  
Direct Output: PFD Frequency Spurs  
Figure 62.  
Divide-By-2 Output: PFD Frequency Spurs  
Figure 63. Divide-By-2 Output: PFD Frequency Spurs  
Divide-By-4 Output: PFD Frequency Spurs  
Figure 64.  
29  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
TRP3761-J TYPICAL CHARACTERISTICS  
(See Figure 78)  
Closed Loop VCO Phase Noise  
Open Loop VCO Phase Noise  
−70  
−80  
−60  
CL = 2216 MHz  
OL = 2216 MHz  
−70  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
1k  
10k  
100k  
1M  
10M  
10M  
10M  
1k  
10k  
100k  
1M  
10M  
10M  
10M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 65.  
Figure 66.  
Closed Loop VCO Phase Noise  
Open Loop VCO Phase Noise  
−70  
−80  
−60  
−70  
CL = 1108 MHz  
OL = 1108 MHz  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 67.  
Figure 68.  
Closed Loop VCO Phase Noise  
Open Loop VCO Phase Noise  
−70  
−80  
−60  
−70  
CL = 554 MHz  
OL = 554 MHz  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 69.  
Figure 70.  
30  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
TRP3761-J TYPICAL CHARACTERISTICS  
(See Figure 78) (continued)  
Direct Output: PFD Frequency Spurs  
Figure 71.  
Divide-By-2 Output: PFD Frequency Spurs  
Figure 72.  
Divide-By-4 Output: PFD Frequency Spurs  
Figure 73.  
31  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
SERIAL INTERFACE PROGRAMMING REGISTERS DEFINITION  
The TRF3761 features a 3-wire serial programming interface that controls an internal, 32-bit shift register. There  
are a total of 3 signals that need to be applied: the CLOCK (pin 3), the serial DATA (pin 4) and the STROBE  
(pin 5). The DATA (DB0-DB31) is loaded LSB first and is read on the rising edge of the CLOCK. The STROBE  
is asynchronous to the CLOCK and at its rising edge the data in the shift register gets loaded onto the selected  
internal register. The first four bits (DB0-DB3) is the address to select the available internal registers.  
t
t
h
su1  
t
(CLK)  
1” Clock Pike  
CLOCK  
DATA  
DB0 (LSB)  
Address bit 1  
DB1  
Address bit 2  
DB2  
Address bit 3  
DB29  
Cmd bit 30  
DB30  
Cmd bit 31  
DB31 (MSB)  
Cmd bit 32  
t
t
su2  
w
STROBE  
A. The first 4 bits, DB(3-0), of data are Address bits. The 28 remaining bits, DB(31-4), are part of the command. The  
command is little endian or lower bits first.  
Figure 74. Serial Programming Timing Diagram  
Register Address  
REST  
DB4  
Charge Pump Current  
Select  
Output Mode  
DB8 DB9  
OUTBUF  
EN_SEL BUFOUT  
PD  
Reference Clock Divider (RDiv)  
DB12 DB13 DB14 DB15  
DB0  
DB1  
DB2  
DB3  
DB5  
DB6  
DB7  
DB10 DB11  
Reference Clock Divider (RDiv)  
DB19 DB20 DB21 DB22  
Anti Backlash  
DB26 DB27  
PFD_P TRIS_C CP_TE Full Cal  
OL  
P
ST  
Req  
DB16  
DB17  
DB18  
DB23  
DB24  
DB25  
DB28  
DB29  
DB30  
DB31  
Figure 75. Register 1  
32  
Submit Documentation Feedback  
 
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
Table 1. Register 1: Device Setup  
REGISTER 1 MAPPING  
Data Field DB31  
FULL_CAL_REQ  
This is a read only bit, that indicates if a 0 power-up cal is not required  
power-up cal is required  
1 power-up cal is required  
DB30  
DB29  
CP_TEST  
TRIS_CP  
TI internal use only  
1 test enabled  
High-impedance state charge pump  
output  
1 CP high-impedance state  
0 for normal operation  
DB28  
PFD_POL  
Selects Polarity of PFD, should match  
polarity of VCO gain. If using external  
VCO with Negative gain then set to 0  
and vise versa. The internal VCO has  
positive gain so set to positve(1)  
0 negative  
1 positive  
DB27  
ABPW1  
ABPW<1,0>: anti-backlash pulse width  
00 1.5ns delay  
01 0.9ns delay  
10 3.8ns delay  
11 2.7ns delay  
DB26  
DB25  
DB24  
DB23  
DB22  
DB21  
DB20  
DB19  
DB18  
DB17  
DB16  
DB15  
DB14  
DB13  
DB12  
DB11  
ABPW0  
RDIV_13  
RDIV_12  
RDIV_11  
RDIV_10  
RDIV_9  
RDIV_8  
RDIV_7  
RDIV_6  
RDIV_5  
RDIV_4  
RDIV_3  
RDIV_2  
RDIV_1  
RDIV_0  
PD_BUFOUT  
14-bit reference clock divider  
RDIV<13,0>:00...01: divide by 1  
RDIV<13,0>:00...10: divide by 2  
RDIV<13,0>:00...11: divide by 3  
If DB10 = 0 then it controls power down <DB10:11>:  
of output buffer  
00 default; output buffer on  
01 output buffer off  
1x output buffer on/off controlled by  
OUTBUF_EN pin  
DB10  
OUTBUF_EN_SEL  
Select Output Buffer enable control:  
0 internal  
1 through OUTBUF_EN pin  
DB9  
DB8  
OUT_MODE_1  
OUT_MODE_0  
OUTBUFMODE<1,0>: Selection of RF  
output buffer division ratio  
00 divide by 1  
01 divide by 2  
10 divide by4  
DB7  
DB6  
DB5  
DB4  
ICP2  
ICP<2,0>: select charge pump current  
(1 mA step). From 1.4mA to 11.2mA  
with Rbias set to 2.37Kohms.  
ICP1  
ICP0  
RESET  
Registers reset  
1 high  
0 low for normal operation  
Address  
Bits  
DB3  
DB2  
DB1  
DB0  
Address Bits <3,0>=0000 for register 1  
33  
Submit Documentation Feedback  
 
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
OUT_MODE<1,0>: TRF3761 has an optional divide by 2 or 4 output, which is selectable by programming bits  
<OUT_MODE_1, OUT_MODE_0> of register 1 (see Table 1).  
CP_TEST: By setting bit DB30 to 1 it is possible to test the PFD up or down pulses. Internal TI use only.  
TRIS_CP: If bit DB29 is set to 1, the charge pump output goes in tri-state. For normal operation, DB29 must be  
set to 0.  
ABPW: Bits <DB27, DB26> are used to program the width of the anti-backlash pulses of the PFD. The user  
selects one of the following values: 0.9ns, 1.5ns, 2.7ns and 3.8ns. Backlash can occur when Fpfd becomes  
phase aligned with Fout of the VCO. This will cause a high impedance state on the phase detector and allow the  
output frequency to drift until the phase difference is enough to cause the phase detector to start sending signals  
to the charge pump to correct the difference. This slight variation will show up as a sub harmonic of the pfd  
signal in the passband of the loop filter which would result in a significant spur in the output of the VCO. It is  
recommended that the anti-backlash pulse be set to the 1.5ns which gives the best spur reduction for the  
TRF3761.  
PFD_POL: Bit DB28 of register 1 sets the polarity of the PFD. A Low (0) selects a negative polarity, and a High  
(1) selects a positive polarity. By choosing the correct polarity, the TRF3761 will works with an external VCO  
having both positive and negative gain (Kv). For example if an external VCO has a Kv = -23MHz/V then the PFD  
polarity would need to be negative, so DB28 would be set to a Low (0). When using the internal VCO with a Kv  
of 23MHz/V, the PDF_POL should be set to 1.  
RDiv: A 14-bit word programs the RDiv for the reference signal, DB25 is the MSB and DB12 is the LSB. RDiv  
value is determined by dividing the reference frequency by the channel step size. For example if the reference  
frequency is 10MHz and the channel step size is 200KHz then RDiv would be 50. This sets up the Fpfd for the  
phase detector, in other words the reference frequency will be divided down by a factor of RDiv which in this  
example is 50.  
ICP: Bits <DB7, DB5> set the charge pump current.  
1.2 V  
22.168  
I
=
× (N + 1) ×  
CP  
R
8
bias1  
(1)  
which reduces to:  
3.3252 × N + 1  
(
)
I
=
CP  
R
bias1  
(2)  
where N = decimal value of [Reg1 DB<7:5>]. The range is set by N and Rbias2. It is recommended that Icp be  
set to 7mA or <DB7, DB5>=101.  
OUTBUF_EN_SEL: Output buffer on/off state is controlled through serial interface or an external pin. If bit DB10  
is a 0 (default state) the output buffers state is elected through bit DB11. If DB10 is a 1, the buffers on/off are  
directly controlled by the OUTBU_EN pin.  
RESET: Setting bit DB4 to 1, all registers are reset to default values.  
Refer to Register 1 under the Application Information section.  
Register Address  
Reference Frequency (Integer Part)  
Refernece Frequency (Fractional Part)  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DB8  
DB9  
DB10  
DB26  
DB11  
DB12  
DB13  
DB14  
DB15  
Reference  
Frequency  
Continued  
VCO Frequency in MHz  
START  
_CAL  
DB16  
DB17  
DB18  
DB19  
DB20  
DB21  
DB22  
DB23  
DB24  
DB25  
DB27  
DB28  
DB29  
DB30  
DB31  
Figure 76. Register 2  
34  
Submit Documentation Feedback  
 
 
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
Table 2. Register 2: VCO Calibration  
REGISTER 2 MAPPING  
Data Field DB31  
DB30  
DB29  
DB28  
DB27  
DB26  
DB25  
DB24  
DB23  
DB22  
DB21  
DB20  
DB19  
DB18  
DB17  
DB16  
DB15  
DB14  
DB13  
DB12  
DB11  
DB10  
DB9  
START_CAL  
FOUT12  
FOUT11  
FOUT10  
FOUT9  
FOUT8  
FOUT7  
FOUT6  
FOUT5  
FOUT4  
FOUT3  
FOUT2  
FOUT1  
FOUT0  
REF_FRAC6  
REF_FRAC5  
REF_FRAC4  
REF_FRAC3  
REF_FRAC2  
REF_FRAC1  
REF_FRAC0  
REF6  
1 start calibration  
VCO frequency in MHz start calibration  
Reference frequency in MHz (fractional 0000000 = 0.00MHz  
part)  
0000001 = 0.01MHz  
0000010 = 0.02MHz  
. . . . .  
1100011 = 0.99MHz  
Reference frequency in MHz (integer  
part)  
0001010 =10MHz  
0001011 =11MHz  
. . . . .  
REF5  
DB8  
REF4  
1101000 = 104MHz  
DB7  
REF3  
DB6  
REF2  
DB5  
REF1  
DB4  
REF0  
Address  
Bits  
DB3  
DB2  
DB1  
DB0  
0
Address Bits <3,0>=0001 for register 2  
0
0
1
Reference Frequency: The 14 bits <DB17, DB4> are used to specify the input reference frequency as multiples  
of 10kHz. Bits <DB10,DB4> specify the integer part of the reference frequency expressed in MHz. Bits  
<DB17,DB11> set the fraction part. Those values are then used during the calibration of the internal VCO. For  
example if using a 20MHz reference oscillator then bits<DB10,DB4> would be 0010100 and bits<DB17,DB11>  
would be 0000000. If the reference oscillator is 13.1MHz then bits<DB10,DB4> would be 0001101 and  
bits<DB17,DB11> would be 0001010.  
Start Calibration: A 1 in DB31 starts the internal VCO calibration. When the calibration is complete, DB31 bit is  
internally reset to 0.  
FOUT<12,0>: This 13-bit word <DB30,DB18> specifies the VCO output frequency in MHz. If output frequency is  
not a integer multiple of MHz, this value must be approximated to the closest integer in MHz.  
Refer to Register 2 under the Application Information section.  
35  
Submit Documentation Feedback  
 
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
Register Address  
Dual-Modulus  
Prescalar Mode  
A-Counter  
DB8 DB9  
B-Counter  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DB10  
DB11  
DB27  
DB12  
DB28  
DB13  
DB14  
DB15  
B-Counter  
DB20  
Test MUX  
Lock  
PLL  
RSRV  
DB30  
RSRV  
DB31  
DB16  
DB17  
DB18  
DB19  
DB21  
DB22  
DB23  
DB24  
DB25  
DB26  
DB29  
Figure 77. Register 3  
Table 3. Register 3: A and B Counters  
REGISTER 3 MAPPING  
Data Field DB31  
DB30  
DB29  
DB28  
DB27  
DB26  
DB25  
DB24  
DB23  
DB22  
DB21  
DB20  
DB19  
DB18  
DB17  
DB16  
DB15  
DB14  
DB13  
DB12  
DB11  
DB10  
DB9  
Rsrv  
Rsrv  
Reserved  
Reserved  
START_LK  
Lock PLL to frequency  
1 active  
TEST_MUX_3  
See Table 4 for descriptions and  
settings.  
0001 = LOCK_DETECT enabled  
TEST_MUX_2  
TEST_MUX_1  
TEST_MUX_0  
B_12  
B_11  
B_10  
B_9  
13-bit B counter  
B_8  
B_7  
B_6  
B_5  
B_4  
B_3  
B_2  
B_1  
B_0  
A_5  
6-bit A counter  
A_4  
A_3  
DB8  
A_2  
DB7  
A_1  
DB6  
A_0  
DB5  
PRESC_MOD1  
PRESC_MOD0  
Dual-modulus prescaler mode  
Address Bits  
<B5,B4>:00 for 8/9  
<B5,B4>:01 for 16/17  
<B5,B4>:10 for 32/33  
<B5,B4>:11 for 64/65  
DB4  
Address  
Bits  
DB3  
DB2  
DB1  
DB0  
0
0
1
0
<3,0>=0010 for register 3  
36  
Submit Documentation Feedback  
 
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
B<12,0>: This 13-bit word <DB24,DB12> controls the value of the B counter of the N divider. The valid range is  
from 3 to 8191.  
A<5,0>: These 6 bits <DB11,DB6> control the value of the A counter. The valid range is from 0 to 63.  
PRESC_MOD<1,0>: These bits <DB5,DB4> define the mode of the dual-modulus prescaler according to  
Table 3.  
START_LK: TRF3761 does not load the serial interface registers values into the dividers registers until bit DB29  
of register 3 is set to 1. After TRF3761 is locked to the new frequency, bit DB29 is internally reset to 0.  
Refer to Register 3 under the Application Information section.  
FUNCTIONAL DESCRIPTION  
VCO  
The TRF3761 integrates a high-performance, LC tank, voltage-controlled oscillator (VCO). For each of the  
devices of the TRF3761 family, the inductance and capacitance of the tank are optimized to yield the best  
phase-noise performance. The VCO output is fed externally and to the prescaler through a series of very low  
noise buffers, that greatly reduce the effect of load pulling onto the VCO.  
Divide by 2, by 4, and Output Buffer  
To extend the frequency coverage, the TRF3761 integrates a divide by 2 and by 4 with very low noise floor. The  
VCO signal is fed externally through a final open-collector differential-output buffer. This buffer is able to provide  
up to 3dBm (typical) of power into a 200differential resistive load. The open-collector structure gives the  
flexibility to choose different load configurations to meet different requirements.  
N-Divider  
Prescaler Stage  
This stage divides down the VCO frequency before the A and B counters. This is a dual-modulus prescaler  
and the user can select any of the following settings: 8/9, 16/17, 32/33, and 64/65. Prescaling is used due to  
the fact that the internal devices are limited in frequency operations of 200MHz. To determine the proper  
prescaler value, Fout which is the frequency out of the VCO is divided by the numerator of the prescaler if  
the answer is less than 200MHz then that is the prescalar to use, see Equation 3. If the value is higher than  
200MHz then repeat this procedure with the next prescalar numerator until a value of 200MHz or less is  
achieved. Refer to Synthesizing a Selected Frequency in the Section 9 Register 3.  
F
OUT  
£ 200MHz  
Prescalar  
denom  
(3)  
A and B Counter Stage  
The TRF3761 includes a 6-bit A counter and a 13-bit B counter that operate on the output of the prescaler.  
The A counter can take values from 0 to 63, while the B counter can take values from 3 to 8191. Also, the  
value for the B counter must be greater than or equal to the value for the A counter. The A and B counter  
with the prescaler stage create the VCO N-divider, see Equation 4 and Equation 5. Refer to Synthesizing a  
Selected Frequency in the Section 9 Register 3.  
FOUT  
N =  
=
A
(
+ Prescalar × B  
num COUNTER  
)
COUNTER  
FPFD  
(4)  
N
= x  
´ y  
, Þ  
decimal  
integer  
Prescalar  
num  
B
= x  
and A  
= Prescalar  
num  
× y  
decimal  
COUNTER  
integer  
COUNTER  
(5)  
37  
Submit Documentation Feedback  
 
 
 
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
FUNCTIONAL DESCRIPTION (continued)  
Reference Divider  
TRF3761 includes a 14-bit RDiv, also known as RDiv, that allows the input reference frequency to be divided  
down to produce the reference clock to the phase frequency detector (PFD) this clock is also known as FPFD  
which is also the channel step size. Division ratios from 1 to 16,383 are allowed. To determine RDiv use  
Equation 6.  
F
REF_IN  
R
=
DIV  
F
PFD  
(6)  
(7)  
The output frequency (Fout) is determined using Equation 7.  
F
REF_IN  
F
= F  
PFD  
× N =  
× A  
(
+ Prescalar × B  
denom COUNTER  
)
OUT  
COUNTER  
R
DIV  
Phase Frequency Detector (PFD) and Charge Pump Stage  
The outputs of the RDiv and the N counter are fed into the PFD stage, where the two signals are compared in  
frequency and phase. The TRF3761 features an anti-backlash pulse, whose width is controllable by the user  
through the serial programming interface. The PFD feeds the charge pump, whose output current pulses are fed  
into an external loop filter, which eventually produces the tuning voltage needed to control the integrated VCO to  
the desired frequency.  
Mux Out  
MUX_OUT pin (39) provides a communication port to the microcontroller circuit. See Table 4 in the Application  
Information section.  
Div 1/2/4  
Div 1/2/4 is the frequency divider for the TRF3761. This circuit can be programmed thru the serial programming  
interface (SPI) to divide the output frequency of the VCO by 1, 2 or 4. This feature allows for the same loop filter  
design to be used for any of the 3 divide by modes, 1, 2 and 4. For example, if the VCO is running at 1499MHz  
to 1608MHz band then with the same exact circuit, run the output in the divide by 2 mode 749.5MHz to 804MHz  
band or in the divide by 4 mode 374.75MHz to 402MHz.  
Serial interface  
The programming interface pins (3, 4, 5) to the chip are the serial programming interface (SPI). The interface  
requires a Clock, Data, and Strobe signal to operate. See timing diagram Figure 74.  
CHIP ENABLE  
This feature provides a way to shut down the chip when not needed in order to conserve power. CHIP_EN Pin  
(2) needs to be High for normal operation.  
Buffer Power Down  
PD_OUTBUFF pin (1), when enabled in software can provide a -40dB reduction in the output power while the  
VCO is locked and running. This feature is to help with isolation between RX and TX.  
External VCO IN  
EXT_VCO_IN pin (18) allows for the use of an external VCO to use the phase lock loop circuit in the TRF3761.  
This feature enables higher frequencies to be synthesized.  
38  
Submit Documentation Feedback  
 
 
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
APPLICATION INFORMATION  
Initial Calibration and Frequency Setup at Power Up  
The integrated high performance VCO requires an internal frequency calibration at power up. To perform such  
calibration the following procedure is recommended:  
Apply 5V power supply to IC.  
Apply an input reference frequency to pin (38) and ensure the signal is stable.  
Turn on the TRF3761 using the chip enable pin (CHIP_EN, pin 2), by applying 5V.  
Register 1  
Setup the device through Register 1 referencing Table 1.  
a. The first 4 bits of the 32-bit code sent to the chip are set DB <3:0> to 0000; which is the address of  
register 1.  
b. Bit 5, DB4, sets the soft reset for the chip. Soft reset allows for the registers to be reset without  
powering down the chip. If a soft reset is used then write to register 1 twice: once with DB4 set high  
and once with DB4 set low. Typically, this bit is only used when the chip has been powered up and  
registers 1, 2, and 3 have already been written to, so on power-up reset is not required, so DB4 is, by  
default, set low.  
c. DB <7: 5> sets the charge pump current based on the resistor value on pin 28 of the TRF3761 and  
the decimal value of Register 1, DB<7:5> used in Equation 1. This equation reduces to Equation 2,  
where N = decimal value of [Reg1 DB<7:5>].  
d. DB <9: 8> sets the mode of the chip. The mode is how the device will or will not divide down the  
VCO’s frequency. There are 3 choices for the mode setting, divide by 1, 2 or 4 per Table 1. For  
example if 525MHz is required from the TRF3761 which has a main frequency of 1575MHz then the  
divide-by-4 mode is chosen by setting DB <9: 8> to 10.  
e. DB <11:10> controls the output buffer. Both of these are set to 00 by default, so the buffer is  
controlled internally. See Table 1 for more information.  
f. DB <25:12> sets the RDiv value. Once the calculations under the Synthesizing a Selected Frequency  
section have been completed the value is known, based on the external reference oscillator. The  
value for R is entered into the DB <25:12>. For example, if the reference oscillator is at a frequency  
(FREF_IN) of 61.44MHz and a channel step size of 120kHz is required, which is also the frequency  
(FPFD) the phase frequency detector will use to compare against the VCO's output frequency (FOUT),  
then FREF_IN /FPFD = 512, which is entered as follows: MSB: LSB 0001000000000.  
g. By default, DB <27:26> are set to 00 for a 1.5ns delay on the anti-backlash pulse width. See Table 1  
for more information.  
h. DB 28 is set to 1 for positive by default. See Table 1 for more information.  
i. DB 29 is set to 0 for normal operation. See Table 1 for more information.  
j. DB 30 is set to 0 by default. See Table 1 for more information.  
k. DB 31 is set to 0 by default. See Table 1 for more information.  
Register 2  
Initiate calibration procedure by programming register 2 as follows: Reference Table 2  
a. The first 4 bits of the 32-bit code sent to the chip are set DB <3:0> to 0001; which is the address of  
register 2.  
b. Use bits DB<17, 4> of register 2 to specify the input reference frequency in MHz. The value is split  
into an integer and a fraction part. For example: to insert a fREF of 30.72MHz, set:  
DB<10, 4> (integer part) equal to 0011110 (30) and  
DB<17, 11> (fraction part) equal to 1001000 (72).  
39  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
APPLICATION INFORMATION (continued)  
c. Set DB<30:18> of register 2 to the desired frequency. For example: 2200MHz would be  
0100010011000 (2200).  
d. Set DB31of register 2 to 1 to start the calibration. The VCO calibration runs for 5ms. During the cal  
procedure it will not be possible to program register 2 and 3. At the end of the calibration, bit DB31 of  
register 2 resets to 0.  
e. Subsequent frequency programming requires DB31 to be set to 0.  
Register 3  
Completion of the frequency set up, on initial calibration, cannot proceed until 5ms has elapsed, due to full  
calibration, then it will require that the A and B values, the prescalar ratio, be known. See Synthesizing a  
Selected Frequency section below for calculation. Reference Table 3.  
a. The first 4 bits of the 32-bit code sent to the chip are set DB <3:0> to 0010; which is the address of  
register 3.  
b. DB<5:4> sets the prescalar ratio, 8/9, 16/17, 32/33, 64/65. For example: if 16/17 are required, set the  
register bits DB<5:4> to 01.  
c. DB<11:6> sets the A value for the N counter. For example: if A is 4, set DB<11:6> as follows: 000100  
(4).  
d. DB<24:12> sets the B value for the N counter. For example: if B is 1156, set DB<24:12> as follows:  
0010010000100 (4).  
e. DB<28:25> sets the TEST_MUX. This allows the user to check via the microcontroller the state of the  
TRF3761 by programming it to one of 6 states. The most common state to use is the Digital lock  
Detect which places the pin in a logic high state with indicates the VCO is locked.  
Table 4. MUX-Out Settings  
STATE  
DB<28:25>  
0000  
STATE  
DB<28:25>  
0100  
3-state o/p ( High impedance state on Pin 39)  
Digital lock Detect (High when locked on Pin 39)  
N-Divider o/p (Shows N-value on Pin 39)  
DVDD (internal TI use)  
RDiv o/p (Shows R-value on Pin 39)  
Analog lock detect (High when locked on Pin 39)  
Read back ( read back register settings)  
DGND (internal TI use)  
0001  
0101  
0010  
0110  
0011  
0111  
f. DB29 sets the START LOCK, which is set to 0, on the initial frequency setup and then set to 1 on  
additional frequency changes.  
Once all registers are written, the TRF3761 will lock to the desired frequency. In order to change the frequency  
once the initial calibration is complete, only registers 2 and 3 need to be reprogrammed. No calibration is  
required.  
Re-Calibration After Power Up  
Assuming the TRF3761 is powered up and operational, a VCO calibration is also possible without powering  
down the IC. To perform such calibration the following procedure is recommended:  
Set bit DB4 (RESET) of register 1 to 1. This performs a software reset and clears all registers of VCO  
calibration data. Once the reset command is issued then DB4 of register 1 will need to be set to 0.  
Repeat the Initial Calibration and Frequency setup at Power up section, skipping the power up section and  
performing the register programming sequence.  
40  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
Synthesizing a Selected Frequency  
The TRF3761 is an integer-N PLL synthesizer, and because of its flexibility (14-bit RDiv, 6-bit A counter, 13-bit B  
counter, and dual modulus prescaler), is ideal for synthesizing virtually any desired frequency. If synthesizing a  
900MHz local oscillator, with spacing capability (minimum frequency increment) of 200kHz, as in a typical GSM  
application, the choice of the external reference oscillator is beyond the scope of this section. However, if a  
10MHz reference is selected, the settings are calculated to yield the desired output frequency and channel  
spacing. There is more than one solution to a specific set of conditions, so below is one way of achieving the  
desired result. First, select the appropriate RDiv counter value. Since a channel spacing of 200kHz is desired,  
the FPFD is set to 200kHz. Calculate the RDiv value through:  
RDiv = FREFIN/FPFD = 10MHz/ 200kHz = 50.  
Assume a prescaler value of 8/9 is selected. This is a valid choice, since the prescaler output is well within the  
200MHz limit (900MHz / 8 = 112.5MHz). Select the appropriate A and B counter values.  
RFOUT = FPFD× N = (FREFIN / RDiv) × (A counter + Prescalar numerator × B counter).  
Therefore, the following equation must be solved:  
900MHz = 200kHz x (A + 8 × B).  
There are many solutions to this single equation with two unknowns; there are some basic constraints on the  
solution, since 3 B 8191, and also B A. So, if A = 4, solving the equation yields B = 562. One complete  
solution would be to choose:  
RDiv = 50, A counter = 4, Bcounter = 562 and Prescalar = 8/9  
resulting in the desired N counter value = 4500. This is how the A counter, B counter and prescalar make up the  
N counter.  
When this procedure is complete the values for the N counter , R, and the prescalar ratio should be known.  
Registers 2 and 3 need to be set up for operation of the chip. See Table 2 and Table 3 for this procedure.  
Register 2 bits <DB30:DB18> 12:0 set the output frequency of the device along with register 3. See the  
N-Divider section under the Functional Description.  
Application Schematic  
Figure 78 shows a typical application schematic for the TRF3761. In this example, the output signal is taken  
differential using the 2 resistive pull-up resistors of the final output buffer. A single-ended and tuned load  
configuration is also available.  
The loop filter components:  
C1 = 303pF, R1 = 8.87k, C2 = 1650pF, R2 = 3.4k, C3 = 330pF  
are typical ones used for the plots shown above. Those values can be optimized differently according to the  
requirements of the different applications.  
41  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
(See Note A)  
R2  
C1  
C3  
R1  
C2  
C4  
1000 pF  
40 39 38 37 36 35 34 33 32 31  
1
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
PD_OUTBUF  
CHIP_EN  
CLOCK  
GND  
R3  
2.37 kΩ  
2
AVDD_BIAS  
RBIAS1  
3
4
DATA  
GND  
5
STROBE  
DGND  
VCTRL_IN  
AVDD_VCO  
AVDD_BUF  
TRF3761  
(TOP VIEW)  
6
7
DGND  
8
DVDD1  
AVDD_CAPARRAY  
GND  
9
AVDD_PRES  
GND  
10  
AVDD  
11 12 13 14 15 16 17 18 19 20  
R4  
4.75 kΩ  
C7  
1000 pF  
R5  
120 Ω  
R6  
120 Ω  
V
DD  
V
DD  
C5  
10 pF  
C6  
10 pF  
LOAD  
A. Refer to the Application Information section Loop Filter Design.  
Figure 78. TRF3761 Application Schematic  
Loop Filter Design  
Numerous methodologies and design techniques exist for designing optimized loop filters for particular  
applications. The loop filter design can affect the stability of the loop, the lock time, the bandwidth, the extra  
attenuation on the reference spurs, etc. The role of the loop filter is to integrate and lowpass the pulses of the  
charge pump and eventually yield an output tuning voltage that drives the VCO. Several filter topologies can be  
implemented, including both passive and active. In this section, a third-order passive filter is used. For this  
example, assume these several design parameters. The internal VCO has a value of 23MHz/V, meaning that in  
the linear region, changing the tuning voltage of the VCO by 1V induces a change of the output frequency of  
42  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
about 23MHz. It is known that N = 4500 and Fpfd = 200kHz from our previous example. It is assumed that  
current setting in register 1 <DB7:DB5> is set to 100 and sets a maximum current of 5.6mA.TI recommends an  
Icp of 5.6mA, which give the best spur performance, but can be changed for different application. In addition, the  
bandwidth of the loop filter must be determined. This is a critical consideration as it affects the lock time of the  
system. Assuming an approximate bandwidth of around 20kHz is required and that for stability a phase margin  
of about 45 degrees is desired, the following values for the components of the loop filter can be derived. There is  
almost an infinite number of solutions to the problem of designing the loop filter and the designer is called to  
make tradeoff decisions for each application. Texas Instruments has provided a loopfilter program in the product  
folder for the TRF3761.  
Some terms are interchangeable and are described and equated here:  
Fcom = FPDF which identify the comparing frequency or phase detector frequency which is also equal to the  
system channel step size. FOUT must be a multiple of Fcom  
Fmin is the lower frequency of the design band.  
Fmax is the upper frequency of the design band.  
.
Fref is the reference frequency for the PLL. Fref must be a multiple of Fcom  
.
Kvco = Kv expressed in MHz per Volt (MHz/V) which is the gain of the VCO. The TRF3761 internal VCO has  
a Kv = 23MHz/V.  
Icp is the charge pump current. The TRF3761 is typically set to 5.6mA.  
Fc is the loop filter bandwidth which should be no more than 1/10 Fcom  
.
φ is phase margin in degrees. Values should be between 30 and 70. The higher the phase margin the better  
the stability of the PLL but the slower the lock time. 45 degrees is a good tradeoff.  
T3/T1 in percent is the percentage of the poles in the loop filter. Usually set to 45%. The higher the value  
(closer to 100%) the more the spurs are attenuated, but peaking occurs in the pass band of the loop filter.  
F
=
F F  
min max  
OUT  
(8)  
F
OUT  
N =  
F
com  
(9)  
v
= 2πF  
c
c
(10)  
æ
ö
1
cosf  
æ
- tanf  
ç
è
÷
ø
T1=  
T3  
ö
v
1 +  
c ç  
÷
T1  
è
ø
(11)  
(12)  
T3  
T1  
æ
ö
T3 =  
T
1
ç
÷
è
ø
1
T2 =  
2
c
v
T1+T3  
(
)
(13)  
1
2
é
ê
ê
ê
ù
ú
ú
ú
2
1 + v T2  
K
Kf  
x
(
)
T1  
T2  
c
VCO  
C1 =  
×
2
c
2
2
2
2
v N  
1 + v T1  
1 + v T3  
c
( )( )  
c
ê
ú
ë
û
(14)  
T2  
T1  
C1  
æ
ö
÷
C2 = C1  
- 1 , C3 =  
ø
ç
10  
è
(15)  
(16)  
T2  
T3  
R1 =  
, R2 =  
C2  
C3  
43  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
Loop filter components:  
C1 = 303pF  
R1 = 8.87kW  
R2 = 3.4kW  
C2 = 1650pF  
C3 = 330pF  
Frequency jump from  
1046MHz to 1085MHz:  
Locktime freq ~ 250mS  
Figure 79. Frequency Locktime  
Loop Filter Design Example  
Given these parameters which were used for the lock time plot Figure 79:  
Fmin = 2085 MHz  
Fmax = 2175 MHz  
Fcom = 400 KHz  
Icp = 4.2mA  
Kvco = 23 MHz  
Fc = 20 KHz  
Phase Margin = 45 degrees  
T3/T1 = 45%  
Calculate FOUT of design  
F
=
F
F = 2130MHz (rounded up)  
OUT  
min max  
(17)  
Next calculate N  
F
OUT  
N =  
= 5325  
F
com  
(18)  
(19)  
Then calculate ωc  
= 2πF = 125.66 x 10  
3
v
c
c
Now calculate T1-T3 to give the RC time constants.  
æ
ö
1
cosf  
æ
- tanf  
ç
è
÷
ø
-6  
T =  
1
= 2.3 x 10  
T
ö
3
v
1 +  
ç
÷
c
T
1
è
ø
(20)  
(21)  
Use T1 to find T3  
T
æ
ö
÷
ø
-6  
3
T
=
T = 1 x 10  
1
ç
3
T
1
è
44  
Submit Documentation Feedback  
 
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
Then use T1 and T3 to find T2  
1
-6  
T
=
= 19.2 x 10  
2
2
C
v
T + T  
1 3  
(
)
(22)  
Now C1, C2, C3, R1, and R2 are calculated using T1, T2, and T3.  
1
é
ê
ê
ê
ù
ú
ú
ú
2
2
1 + v T  
K
Kf  
(
)
T
c 2  
1
VCO  
C1 =  
×
×
= 338.75pF  
2
c
T
2
2
2 2  
2
v N  
1 + v T  
c
1 + v T  
( )( )  
c
ê
ú
1
3
ë
û
(23)  
æ
ö
T
2
C2 = C1  
- 1 = 2524.14pF  
ç
÷
T
1
è
ø
(24)  
(25)  
C1  
C3 =  
= 33.87pF  
10  
Now using C2 and T2, find R2. Use C3 and T3 to find R3  
T
2
R2 =  
= 7.61kΩ  
C
2
(26)  
(27)  
T
3
R3 =  
= 30.2kΩ  
C
3
R2 x C3 can be scaled using T3, so if C3 = 330pF, then R2 = 3.03 k=> 3.4 kin the loop filter. R1 x C2 can  
be scaled using T2. Scaling these values helps to improve the lock time. The actual values used in the lock time  
plot were optimized for lock time as well as using real valued components. The values in figure 62 were taken  
from the current EVM schematic.  
Layout/PCB Considerations  
This section of the design of the complete PLL is of paramount importance in achieving the desired  
performance. Wherever possible, a multi-layer PCB board should be used, with at least one dedicated ground  
plane. A dedicated power plane (split between the supplies if necessary) is also recommended. The impedance  
of all RF traces (the VCO output and feedback into the PLL) should be controlled to 50. All small value (10pF  
and 0.1uF) decoupling capacitors should be placed as close to the device pins as possible. It is also  
recommended that both top and bottom layers of the circuit board be flooded with ground, with plenty of ground  
vias dispersed as appropriate. Because the digital lines are not in use during normal operation of the device and  
are only used to program the device on start up and during frequency changes the analog grounds (GND) and  
digital grounds (DGND) are tied to the same ground plain. The most sensitive part of any PLL is the section  
between the charge pump output and the input to the VCO. This includes the loop filter components, and the  
corresponding traces. The charge pump is a precision element of the PLL and any extra leakage on its path can  
adversely affect performance. Extra care should be given to ensure that parasitics are minimized in the charge  
pump output, and that the trace runs are short and optimized. Similarly, it is also recommend that extra care is  
taken in ensuring that any flux residue is thoroughly cleaned and moisture baked out of the PCB. From an EMI  
perspective, and since the synthesizer is typically a small portion of a bigger, complex circuit board, shielding is  
recommended to minimize EMI effects.  
45  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
Via to bottom ground  
BOTTOM  
GND  
TOP  
GND  
De-coupling  
Capacitor’s  
on back side  
of board  
De-coupling  
Capacitor’s  
on top side  
of board  
BOTTOM  
GND  
A. See the Application Information section for Loop Filter Design procedures.  
Figure 80. TRF3761 Layout  
Application Example for a High Performance RF Transmit Signal Chain  
Much in the same way as described above, the TRF3761 is an ideal synthesizer to use in implementing a  
complete high performance RF transmitter chain such as the TSW3000 and TSW3003 Demonstration kits.  
Using a complete suite of high performance Texas Instruments components, a state-of-the-art transmitter can be  
implemented featuring excellent performance. Texas Instruments offers ideal solutions for the digital-to-analog  
conversion portion of transmitter as well as the analog and RF components needed to complete the transmitter.  
The baseband digital data is converted to I and Q signals through the dual DAC5687, which features a 16-bit  
interpolating dual digital-to-analog converter (DAC). The device incorporates a digital modulator, independent  
differential offset control, and I/Q amplitude control. The device is typically used in baseband mode or in low IF  
mode in conjunction with an analog quadrature modulator. The DAC5687, after filtering, feeds a TRF3703, which  
is a direct, upconversion IQ modulator. This device accepts a differential input voltage quadrature signal at  
baseband or low IF frequencies and outputs a modulated RF signal based on the LO drive frequency. The LO  
46  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181FOCTOBER 2005REVISED JANUARY 2007  
drive input of the IQ modulator is generated by the TRF3761. The TRF3761 is a family of high performance,  
highly integrated frequency synthesizers, optimized for wireless infrastructure applications. The TRF3761  
includes an integrated VCO and integer-N PLL. Different members of the TRF3761 family can be chosen for  
application specific VCO frequency ranges. In addition, the CDC7005 clocking solution can be used to clock the  
DAC and other portions of the transmitter. A block diagram of the proposed architecture is shown in Figure 81  
and Figure 82. For more details, contact Texas Instruments directly.  
Digital-to-RF Up Converter  
Gain and Power Amplifier  
TX  
DAC  
LPA  
ANT  
0°  
90°  
I/Q  
Modulator  
Diplexer  
I/Q  
Demod  
A/D  
RX  
LNA  
LO-to-Digital Conveter  
Low Noise Amplifier and  
RF-to-LO Down Converter  
Figure 81. Transmit Chain Block Diagram  
16  
TRF3703  
I/Q  
RF Out  
DAC5687  
Modulator  
16  
CLK1  
CLK2  
CDCM7005  
Clock Generator  
VCXO  
TRF3761  
PLL  
LO Generator  
Ref Osc  
Figure 82. Transmit Chain Block Diagram  
47  
Submit Documentation Feedback  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Mar-2007  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
QFN  
QFN  
QFN  
Drawing  
TRF3761-AIRHAR  
TRF3761-AIRHAT  
TRF3761-BIRHAR  
PREVIEW  
PREVIEW  
ACTIVE  
RHA  
40  
40  
40  
2500  
250  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
RHA  
RHA  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
TRF3761-BIRHARG4  
TRF3761-BIRHAT  
TRF3761-BIRHATG4  
TRF3761-CIRHAR  
TRF3761-CIRHARG4  
TRF3761-CIRHAT  
TRF3761-CIRHATG4  
TRF3761-DIRHAR  
TRF3761-DIRHARG4  
TRF3761-DIRHAT  
TRF3761-DIRHATG4  
TRF3761-EIRHAR  
TRF3761-EIRHARG4  
TRF3761-EIRHAT  
TRF3761-EIRHATG4  
TRF3761-FIRHAR  
TRF3761-FIRHARG4  
TRF3761-FIRHAT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
TRF3761-FIRHATG4  
TRF3761-GIRHAR  
TRF3761-GIRHARG4  
TRF3761-GIRHAT  
TRF3761-GIRHATG4  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Mar-2007  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
no Sb/Br)  
TRF3761-HIRHAR  
TRF3761-HIRHARG4  
TRF3761-HIRHAT  
TRF3761-HIRHATG4  
TRF3761-JIRHAR  
TRF3761-JIRHARG4  
TRF3761-JIRHAT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
40  
40  
40  
40  
40  
40  
40  
40  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
TRF3761-JIRHATG4  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
TRF3761-KIRHAR  
TRF3761-KIRHAT  
PREVIEW  
PREVIEW  
QFN  
QFN  
RHA  
RHA  
40  
40  
2500  
250  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-May-2007  
TAPE AND REEL INFORMATION  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-May-2007  
Device  
Package Pins  
Site  
TAI  
TAI  
TAI  
TAI  
TAI  
TAI  
TAI  
TAI  
TAI  
TAI  
TAI  
TAI  
TAI  
TAI  
TAI  
TAI  
Reel  
Diameter Width  
(mm)  
Reel  
A0 (mm)  
6.3  
B0 (mm)  
6.3  
K0 (mm)  
1.5  
P1  
W
Pin1  
(mm) (mm) Quadrant  
(mm)  
TRF3761-BIRHAR  
TRF3761-BIRHAT  
TRF3761-CIRHAR  
TRF3761-CIRHAT  
TRF3761-DIRHAR  
TRF3761-DIRHAT  
TRF3761-EIRHAR  
TRF3761-EIRHAT  
TRF3761-FIRHAR  
TRF3761-FIRHAT  
TRF3761-GIRHAR  
TRF3761-GIRHAT  
TRF3761-HIRHAR  
TRF3761-HIRHAT  
TRF3761-JIRHAR  
TRF3761-JIRHAT  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
330  
16  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
16 PKGORN  
T2TR-MS  
P
330  
330  
330  
330  
330  
330  
330  
330  
330  
330  
330  
330  
330  
330  
330  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
6.3  
6.3  
1.5  
16 PKGORN  
T2TR-MS  
P
6.3  
6.3  
1.5  
16 PKGORN  
T2TR-MS  
P
6.3  
6.3  
1.5  
16 PKGORN  
T2TR-MS  
P
6.3  
6.3  
1.5  
16 PKGORN  
T2TR-MS  
P
6.3  
6.3  
1.5  
16 PKGORN  
T2TR-MS  
P
6.3  
6.3  
1.5  
16 PKGORN  
T2TR-MS  
P
6.3  
6.3  
1.5  
16 PKGORN  
T2TR-MS  
P
6.3  
6.3  
1.5  
16 PKGORN  
T2TR-MS  
P
6.3  
6.3  
1.5  
16 PKGORN  
T2TR-MS  
P
6.3  
6.3  
1.5  
16 PKGORN  
T2TR-MS  
P
6.3  
6.3  
1.5  
16 PKGORN  
T2TR-MS  
P
6.3  
6.3  
1.5  
16 PKGORN  
T2TR-MS  
P
6.3  
6.3  
1.5  
16 PKGORN  
T2TR-MS  
P
6.3  
6.3  
1.5  
16 PKGORN  
T2TR-MS  
P
6.3  
6.3  
1.5  
16 PKGORN  
T2TR-MS  
P
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-May-2007  
TAPE AND REEL BOX INFORMATION  
Device  
Package  
Pins  
Site  
Length (mm) Width (mm) Height (mm)  
TRF3761-BIRHAR  
TRF3761-BIRHAT  
TRF3761-CIRHAR  
TRF3761-CIRHAT  
TRF3761-DIRHAR  
TRF3761-DIRHAT  
TRF3761-EIRHAR  
TRF3761-EIRHAT  
TRF3761-FIRHAR  
TRF3761-FIRHAT  
TRF3761-GIRHAR  
TRF3761-GIRHAT  
TRF3761-HIRHAR  
TRF3761-HIRHAT  
TRF3761-JIRHAR  
TRF3761-JIRHAT  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
RHA  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
TAI  
TAI  
TAI  
TAI  
TAI  
TAI  
TAI  
TAI  
TAI  
TAI  
TAI  
TAI  
TAI  
TAI  
TAI  
TAI  
342.9  
342.9  
342.9  
342.9  
342.9  
342.9  
342.9  
342.9  
342.9  
342.9  
342.9  
342.9  
342.9  
342.9  
342.9  
342.9  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
28.58  
28.58  
28.58  
28.58  
28.58  
28.58  
28.58  
28.58  
28.58  
28.58  
28.58  
28.58  
28.58  
28.58  
28.58  
28.58  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-May-2007  
Pack Materials-Page 4  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,  
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.  
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s  
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this  
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily  
performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should  
provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask  
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services  
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such  
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under  
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is  
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an  
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service  
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business  
practice. TI is not responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would  
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement  
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications  
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related  
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any  
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its  
representatives against any damages arising out of the use of TI products in such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is  
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in  
connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products  
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any  
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Data Converters  
DSP  
Applications  
Audio  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/audio  
Automotive  
Broadband  
Digital Control  
Military  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
interface.ti.com  
logic.ti.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/lpw  
Telephony  
Low Power  
Wireless  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2007, Texas Instruments Incorporated  

相关型号:

TRF3761-FIRHAT

INTEGER-N PLL WITH INTEGRATED VCO
TI

TRF3761-FIRHATG4

INTEGER-N PLL WITH INTEGRATED VCO
TI

TRF3761-G

INTEGER-N PLL WITH INTEGRATED VCO
TI

TRF3761-GIRHAR

INTEGER-N PLL WITH INTEGRATED VCO
TI

TRF3761-GIRHARG4

INTEGER-N PLL WITH INTEGRATED VCO
TI

TRF3761-GIRHAT

INTEGER-N PLL WITH INTEGRATED VCO
TI

TRF3761-GIRHATG4

INTEGER-N PLL WITH INTEGRATED VCO
TI

TRF3761-H

INTEGER-N PLL WITH INTEGRATED VCO
TI

TRF3761-HIRHAR

INTEGER-N PLL WITH INTEGRATED VCO
TI

TRF3761-HIRHARG4

INTEGER-N PLL WITH INTEGRATED VCO
TI

TRF3761-HIRHAT

INTEGER-N PLL WITH INTEGRATED VCO
TI

TRF3761-HIRHATG4

INTEGER-N PLL WITH INTEGRATED VCO
TI