TRF376117IRHAR [TI]

IC,FREQUENCY SYNTHESIZER,LLCC,40PIN,PLASTIC;
TRF376117IRHAR
型号: TRF376117IRHAR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

IC,FREQUENCY SYNTHESIZER,LLCC,40PIN,PLASTIC

文件: 总36页 (文件大小:1125K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TRF3761  
www.ti.com  
SLWS181AOCTOBER 2005REVISED AUGUST 2006  
INTEGER-N PLL WITH INTEGRATED VCO  
FEATURES  
RHA PACKAGE  
(TOP VIEW)  
Fully Integrated VCO  
Low Phase Noise: –138dBc/Hz (at 600kHz,  
fVCO of 1.9GHz )  
Low Noise Floor: –160dBc/Hz at 10MHz Offset  
Integer-N PLL  
40 39 38 37 36 35 34 33 32 31  
1
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
PD_OUTBUF  
CHIP_EN  
CLOCK  
DATA  
GND  
Input Reference Frequency range: 10MHz to  
104MHz  
2
AVDD_BIAS  
RBIAS1  
3
VCO Frequency Divided by 2-4 Output  
Output Buffer Enable Pin  
4
GND  
5
STROBE  
GND  
VCTRL_IN  
AVDD_VCO  
AVDD_BUF  
AVDD_CAPARRAY  
GND  
Programmable Charge Pump Current  
Hardware and Software Power Down  
3-Wire Serial Interface  
6
7
GND  
8
DVDD1  
AVDD_PRES  
GND  
9
Single Supply: 4.5V to 5.25V Operation  
Silicon Germanium Technology  
10  
AVDD  
11 12 13 14 15 16 17 18 19 20  
APPLICATIONS  
Wireless Infrastructure  
– WCDMA  
– CDMA  
– GSM  
AVAILABLE DEVICE OPTIONS  
PART NUMBER  
DIV1 MODE  
DIV2 MODE  
Fstart  
DIV4 MODE  
Fstart  
Fstart  
1500  
1600  
1726  
1850  
2080  
2175  
Fstop  
1658  
1700  
1908  
2045  
2180  
2404  
Fstop  
829.0  
850  
Fstop  
414.50  
425  
TRF3761-1579  
TRF3761-1700  
TRF3761-1817  
TRF3761-1947  
TRF3761-2116  
TRF3761-2289  
750.0  
800  
375.00  
400  
863.0  
925.0  
1040  
954.0  
1022.5  
1090  
431.50  
462.50  
520  
477.00  
511.25  
545  
1087.5  
1202.0  
543.75  
601.00  
DESCRIPTION  
TRF3761 is a family of high performance, highly integrated frequency synthesizers, optimized for wireless  
infrastructure applications. The TRF3761 includes a low-noise, voltage-controlled oscillator (VCO) and an  
integer-N PLL.  
TRF3761 integrates divide-by 1, 2, or 4 options for a more flexible output frequency range. It is controlled  
through a 3-wire serial-interface-programming (SPI) interface. It can be powered down when not used by the  
SPI or external pin.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCT PREVIEW information concerns products in the  
Copyright © 2005–2006, Texas Instruments Incorporated  
formative or design phase of development. Characteristic data and  
other specifications are design goals. Texas Instruments reserves  
the right to change or discontinue these products without notice.  
TRF3761  
www.ti.com  
SLWS181AOCTOBER 2005REVISED AUGUST 2006  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be  
more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
VCOs  
Lock  
Det  
Serial  
Interface  
GNDs  
REF_IN  
R Div  
Charge  
Pump  
PFD  
CPOUT  
VCTRL  
N−Divider  
B−  
counter  
A−  
counter  
Prescaler  
div p/p+1  
VCO_OUTM  
VCO_OUTP  
Div1/2/4  
Power  
Down  
CHIP_ENABLE  
2
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181AOCTOBER 2005REVISED AUGUST 2006  
DEVICE INFORMATION  
TERMINAL FUNCTIONS  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
1
PD_OUTBUF  
CHIP_EN  
CLOCK  
I
Output buffer power down  
Chip enable  
2
I
3
I
I/O  
I
Serial interface clock  
Serial interface data  
Serial interface strobe  
Digital ground  
DATA  
4
STROBE  
5
GND  
6, 7  
8
DVDD1  
Power supply for DIG regulator  
Power supply for prescaler  
VCO output  
AVDD_PRES  
VCO_OUTP  
VCO_OUTM  
AVDD_OUTBUF  
AVDD_VCOBUF  
EXT_VCO_IN  
RBIAS2  
9
13  
14  
15  
17  
18  
19  
21  
23  
24  
25  
26  
28  
29  
O
O
VCO output  
Power supply for output buffers  
Power supply for VCO buffers  
External VCO input to prescaler  
External bias resistor  
Analog power supply  
I
I/O  
AVDD  
AVDD_CAPARRAY  
AVDD_BUF  
AVDD_VCO  
VCTRL_IN  
Power supply for VCO core and buffer  
Power supply for VCO core and buffer  
Power supply for VCO core and buffer  
VCO control voltage  
I
RBIAS1  
I/O  
External bias resistor  
AVDD_BIAS  
Power supply for BG current bias  
10, 11, 12, 16, 20, 22,  
27, 30, 31, 33, 37  
GND  
Analog ground  
AVDD  
32  
34  
35  
36  
38  
39  
40  
Power supply for FUSE cell  
Charge pump output  
CPOUT  
O
AVDD_CP  
AVDD_REF  
REF_IN  
Analog power supply for charge pump  
Power supply for REF FREQ block  
Reference signal input  
I
LOCK_DETECT  
DVDD2  
O
Lock detect output  
Power supply for DIG regulator  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)  
VALUE  
–0.3 to 5.5  
–0.3 to VI +0.3  
–40 to 150  
–40 to 85  
UNIT  
V
Supply voltage range(2)  
Digital I/O voltage range  
V
TJ  
Operating virtual junction temperature range  
Operating free-air temperature range  
Storage temperature range  
°C  
°C  
°C  
TA  
Tstg  
–65 to 150  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
3
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181AOCTOBER 2005REVISED AUGUST 2006  
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
5.25  
UNIT  
VCC  
Power supply voltage  
4.5  
5
V
PACKAGE/ORDERING INFORMATION(1)  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE  
LEAD  
PACKAGE  
PACKAGE  
MARKINGS  
ORDERING  
NUMBER  
TRANPORT MEDIA,  
QUANITY  
PRODUCT  
DESIGNATOR(2)  
TRF376115IRHAR  
TRF376115IRHAT  
TRF376117IRHAR  
TRF376117IRHAT  
TRF376118IRHAR  
TRF376118IRHAT  
TRF376119IRHAR  
TRF376119IRHAT  
TRF376121IRHAR  
TRF376121IRHAT  
TRF376122IRHAR  
TRF376122IRHAT  
Tape and Reel, 2500  
Tape and Reel, 250  
Tape and Reel, 2500  
Tape and Reel, 250  
Tape and Reel, 2500  
Tape and Reel, 250  
Tape and Reel, 2500  
Tape and Reel, 250  
Tape and Reel, 2500  
Tape and Reel, 250  
Tape and Reel, 2500  
Tape and Reel, 250  
TRF3761-1579  
TRF3761-1700  
TRF3761-1817  
TRF3761-1947  
TRF3761-2116  
TRF3761-2289  
QFN-40  
RHA  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
-40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
TRF3761-1579  
TRF3761-1700  
TRF3761-1817  
TRF3761-1947  
TRF3761-2116  
TRF3761-2289  
QFN-40  
QFN-40  
QFN-40  
QFN-40  
QFN-40  
RHA  
RHA  
RHA  
RHA  
RHA  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
website at www.ti.com.  
(2) Thermal pad size: 177 × 177 mils.  
THERMAL CHARACTERISTICS  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER(1)  
TEST CONDITIONS  
Soldered slug, no airflow  
MIN  
TYP  
26  
MAX  
UNIT  
°C/W  
°C/W  
°C/W  
θJA  
Thermal derating, junction-to-ambient  
Soldered slug, 200-LFM airflow  
Soldered slug, 400-LFM airflow  
20.1  
17.4  
(1) Determined using JEDEC standard JESD-51 with High K board  
4
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181AOCTOBER 2005REVISED AUGUST 2006  
ELECTRICAL CHARACTERISTICS  
Supply voltage = 4.5V to 5.25V, over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
DC Parameters  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Divide by 1 output  
Divide by 2 output  
Divide by 4 output  
130  
140  
150  
mA  
mA  
mA  
ICC  
Total supply current  
TA = 25°C  
Reference Oscillator Parameters  
fref  
Reference frequency  
10  
104 MHz  
2.5 Vpp  
Reference input sensitivity  
0.2  
Parallel capacitance  
Parallel resistance  
5
6.52  
pF  
Reference input impedance  
3913  
PFD Charge Pump  
PFD frequency  
30 MHz  
mA  
Charge pump current  
Digital Interface  
SPI programmable  
5.6  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
2.5  
0
VCC  
V
V
V
0.8  
VOH High-level output voltage  
0.8VC  
C
VOL Low-level output voltage  
0.2VCC  
V
TIMING REQUIREMENTS  
Supply voltage = 4.5V to 5.25V, over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Clock period  
TEST CONDITIONS  
MIN  
50  
TYP  
MAX UNIT  
t(CLK)  
tsu1  
th  
ns  
ns  
ns  
ns  
ns  
Setup time, data  
10  
Hold time, data  
10  
tw  
Pulse width, STROBE  
Setup time, STROBE  
20  
tsu2  
10  
t
t
h
su1  
t
(CLK)  
1” Clock Pike  
CLOCK  
DB0 (LSB)  
Address bit 1  
DB1  
Address bit 2  
DB2  
Address bit 3  
DB29  
Cmd bit 30  
DB30  
Cmd bit 31  
DB31 (MSB)  
Cmd bit 32  
DATA  
t
t
su2  
w
STROBE  
A. The first 4 bits, DB(3-0), of data are Address bits. The 28 remaining bits, DB(31-4), are part of the command. The  
command is little endian or lower bits first.  
Figure 1. Serial Programming Timing Diagram  
5
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181AOCTOBER 2005REVISED AUGUST 2006  
TRF3761-1579 ELECTRICAL CHARACTERISTICS  
Supply voltage = 5V, over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
NOISE CHARACTERISTICS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
100kHz offset  
–116  
–138.5  
-141  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
1kHz offset  
VCO phase noise,  
Free running VCO direct output  
fVCO = 1579MHz,  
fO = 1579MHz  
dBc/Hz  
dBc/Hz  
–156  
–159.5  
–122  
–143  
VCO phase noise,  
Free running VCO divide-by-2 output  
fVCO = 1579MHz,  
fO = c  
–148  
–157.5  
–158.5  
–126  
-149  
VCO phase noise,  
Free running VCO divide-by-4 output  
fVCO = 1579MHz,  
fO = 394.75MHz  
-152.4  
–155.5  
–155.7  
–85.5  
–136  
dBc/Hz  
dBc/Hz  
600kHz offset  
1MHz offset  
10MHz offset  
VCO phase noise,  
fVCO = 1579MHz,  
fO = 1579MHz  
Closed loop phase noise direct output(1)(2)(3)  
–140.5  
–158.9  
RMS phase error  
100Hz to 10MHz  
fVCO = 1579MHz,  
0.84°  
Closed loop phase noise direct output(3)  
1kHz offset  
–91.5  
–143.5  
–147  
600kHz offset  
1MHz offset  
10MHz offset  
VCO phase noise,  
dBc/Hz  
dBc/Hz  
Closed loop phase noise divide-by-2 output(1)(2)(3) fO = 789.5MHz  
–158.3  
RMS phase error  
100Hz to 10MHz  
0.37°  
Closed loop phase noise divide-by-2 output(3)  
1kHz offset  
-97.5  
–149  
600kHz offset  
1MHz offset  
10MHz offset  
VCO phase noise,  
fVCO = 1579MHz,  
Closed loop phase noise divide-by-4 output(1)(2)(3) fO = 394.75MHz  
–152  
–155.7  
RMS phase error  
100Hz to 10MHz  
0.17°  
Closed loop phase noise divide-by-4 output(3)  
VCO gain  
Reference spur(2)  
VCO free running  
30  
MHz/V  
dBc  
–80  
(1) See Application Circuit  
(2) PFD = 200kHz, Loop Filter BW = 15kHz, Output frequency step = 200kHz.  
(3) Reference oscillator RMS phase error = 0.008250°, RMS jitter = 881.764 fs.  
6
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181AOCTOBER 2005REVISED AUGUST 2006  
TRF3761-1700 ELECTRICAL CHARACTERISTICS  
Supply voltage = 5V, over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
NOISE CHARACTERISTICS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
100kHz offset  
–120  
–138  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
1kHz offset  
VCO phase noise,  
Free running VCO direct output  
fVCO = 1700MHz,  
fO = 1700MHz  
-143  
dBc/Hz  
–156  
–158  
–127  
–144.5  
–149.5  
–157.5  
–158.4  
–134  
VCO phase noise,  
Free running VCO divide-by-2 output  
fVCO = 1700MHz,  
fO = 850  
dBc/Hz  
-150.5  
-153.8  
–156  
VCO phase noise,  
Free running VCO divide-by-4 output  
fVCO = 1700MHz,  
fO = 425MHz  
dBc/Hz  
dBc/Hz  
–156.3  
–84  
600kHz offset  
1MHz offset  
10MHz offset  
–138  
VCO phase noise,  
fVCO = 1700MHz,  
fO = 1700MHz  
Closed loop phase noise direct output(1)(2)(3)  
–141  
–157.5  
RMS phase error  
100Hz to 10MHz  
fVCO = 1700MHz,  
0.86°  
Closed loop phase noise direct output(3)  
1kHz offset  
–90  
–144.5  
–148  
600kHz offset  
1MHz offset  
10MHz offset  
VCO phase noise,  
dBc/Hz  
dBc/Hz  
Closed loop phase noise divide-by-2 output(1)(2)(3) fO = 850MHz  
–158  
RMS phase error  
100Hz to 10MHz  
0.39°  
Closed loop phase noise divide-by-2 output(3)  
1kHz offset  
–97.5  
–150  
–159  
–156  
600kHz offset  
1MHz offset  
10MHz offset  
VCO phase noise,  
fVCO = 1700MHz,  
Closed loop phase noise divide-by-4 output(1)(2)(3) fO = 425MHz  
RMS phase error  
100Hz to 10MHz  
0.17°  
Closed loop phase noise divide-by-4 output(3)  
VCO gain  
Reference spur(2)  
VCO free running  
30  
MHz/V  
dBc  
–80  
(1) See Application Circuit  
(2) PFD = 200kHz, Loop Filter BW = 15kHz, Output frequency step = 200kHz.  
(3) Reference oscillator RMS phase error = 0.008250°, RMS jitter = 881.764 fs.  
7
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181AOCTOBER 2005REVISED AUGUST 2006  
TRF3761-1817 ELECTRICAL CHARACTERISTICS  
Supply voltage = 5V, over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
NOISE CHARACTERISTICS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
100kHz offset  
–120  
–138.5  
-143.5  
–157  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
1kHz offset  
VCO phase noise,  
Free running VCO direct output  
fVCO = 1817MHz,  
fO = 1817MHz  
dBc/Hz  
dBc/Hz  
–159  
–126.5  
–145  
VCO phase noise,  
Free running VCO divide-by-2 output  
fVCO = 1817MHz,  
fO = 908.5MHz  
–150  
–156.5  
–159  
–131  
-149.5  
-154  
VCO phase noise,  
Free running VCO divide-by-4 output  
fVCO = 1817MHz,  
fO = 454.25MHz  
dBc/Hz  
dBc/Hz  
–159  
–159  
–84  
600kHz offset  
1MHz offset  
10MHz offset  
–138.5  
–143.5  
–159  
VCO phase noise,  
fVCO = 1817MHz,  
fO = 1817MHz  
Closed loop phase noise direct output(1)(2)(1)  
RMS phase error  
100Hz to 10MHz  
1°  
Closed loop phase noise direct output(1)  
1kHz offset  
–94  
–145  
–150  
–159  
VCO phase noise,  
600kHz offset  
1MHz offset  
10MHz offset  
fVCO = 1817MHz,  
fO = 908.5MHz  
Closed loop phase noise divide-by-2  
dBc/Hz  
dBc/Hz  
output(1)(3)(4)  
RMS phase error  
100Hz to 10MHz  
0.35°  
Closed loop phase noise divide-by-2 output(3)  
1kHz offset  
–100  
–149.5  
–154  
VCO phase noise,  
600kHz offset  
1MHz offset  
10MHz offset  
fVCO = 1817MHz,  
fO = 454.25MHz  
Closed loop phase noise divide-by-4  
output(1)(3)(5)  
–159  
RMS phase error  
100Hz to 10MHz  
VCO free running  
0.19°  
Closed loop phase noise divide-by-4 output(3)  
VCO gain  
30  
MHz/V  
dBc  
Reference spur(2)  
–80  
(1) See Application Circuit  
(2) PFD = 200kHz, Loop Filter BW = 15kHz, Output frequency step = 200kHz.  
(3) Reference oscillator RMS phase error = 0.008250°, RMS jitter = 881.764 fs.  
(4) PFD = 400kHz, Loop Filter BW = 15kHz, Output frequency step = 200kHz.  
(5) PFD = 400kHz, Loop Filter BW = 15kHz, Output frequency step = 100kHz.  
8
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181AOCTOBER 2005REVISED AUGUST 2006  
TRF3761-1947 ELECTRICAL CHARACTERISTICS  
Supply voltage = 5V, over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
NOISE CHARACTERISTICS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
100kHz offset  
–117  
–133  
-141  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
1kHz offset  
VCO phase noise,  
Free running VCO direct output  
fVCO = 1947MHz,  
fO = 1947MHz  
dBc/Hz  
–155  
–158.5  
–125  
–144  
–148  
–158  
–159  
–131  
-150  
VCO phase noise,  
Free running VCO divide-by-2 output  
fVCO = 1947MHz,  
fO = 973.5  
dBc/Hz  
VCO phase noise,  
Free running VCO divide-by-4 output  
fVCO = 1947MHz,  
fO = 486.75MHz  
-153  
dBc/Hz  
dBc/Hz  
–156.5  
–157  
–83.7  
–136  
–140  
–158  
600kHz offset  
1MHz offset  
10MHz offset  
VCO phase noise,  
fVCO = 1947MHz,  
fO = 1947MHz  
Closed loop phase noise direct output(1)(2)(3)  
RMS phase error  
100Hz to 10MHz  
1°  
Closed loop phase noise direct output(3)  
1kHz offset  
-89.5  
–143.5  
–147.4  
–159  
600kHz offset  
1MHz offset  
10MHz offset  
VCO phase noise,  
fVCO = 1947MHz,  
fO = 973.5MHz  
dBc/Hz  
dBc/Hz  
Closed loop phase noise divide-by-2 output(1)(2)(3)  
RMS phase error  
100Hz to 10MHz  
0.43°  
Closed loop phase noise divide-by-2 output(3)  
1kHz offset  
–95.5  
–149  
600kHz offset  
1MHz offset  
10MHz offset  
VCO phase noise,  
fVCO = 1947MHz,  
fO = 486.75MHz  
Closed loop phase noise divide-by-4 output(1)(2)(3)  
–152.5  
-157  
RMS phase error  
100Hz to 10MHz  
VCO free running  
0.2°  
Closed loop phase noise divide-by-4 output(3)  
VCO gain  
30  
MHz/V  
dBc  
Reference spur(2)  
–80  
(1) See Application Circuit  
(2) PFD = 200kHz, Loop Filter BW = 15kHz, Output frequency step = 200kHz.  
(3) Reference oscillator RMS phase error = 0.008250°, RMS jitter = 881.764 fs.  
9
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181AOCTOBER 2005REVISED AUGUST 2006  
TRF3761-2116 ELECTRICAL CHARACTERISTICS  
Supply voltage = 5V, over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
NOISE CHARACTERISTICS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
100kHz offset  
–117  
–136  
-140  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
1kHz offset  
VCO phase noise,  
Free running VCO direct output  
fVCO = 2116MHz,  
fO = 2116MHz  
dBc/Hz  
dBc/Hz  
–154  
–156  
–124  
–142.5  
–147  
–157.3  
–158  
–130  
-149  
VCO phase noise,  
Free running VCO divide-by-2 output  
fVCO = 2116MHz,  
fO = 1058  
VCO phase noise,  
Free running VCO divide-by-4 output  
fVCO = 2116MHz,  
fO = 529MHz  
-152  
dBc/Hz  
dBc/Hz  
–156.5  
–157  
–83.5  
–136  
–139  
–157  
600kHz offset  
1MHz offset  
10MHz offset  
VCO phase noise,  
fVCO = 2116MHz,  
fO = 2116MHz  
Closed loop phase noise direct output(1)(2)(3)  
RMS phase error  
100Hz to 10MHz  
1.13°  
Closed loop phase noise direct output(3)  
1kHz offset  
-89  
–142.5  
–146.5  
–158  
600kHz offset  
1MHz offset  
10MHz offset  
VCO phase noise,  
fVCO = 2116MHz,  
fO = 1058MHz  
dBc/Hz  
dBc/Hz  
Closed loop phase noise divide-by-2 output(1)(2)(3)  
RMS phase error  
100Hz to 10MHz  
0.5°  
Closed loop phase noise divide-by-2 output(3)  
1kHz offset  
–95  
–148.5  
–151.5  
–157  
600kHz offset  
1MHz offset  
10MHz offset  
VCO phase noise,  
fVCO = 2116MHz,  
fO = 529MHz  
Closed loop phase noise divide-by-4 output(1)(2)(3)  
RMS phase error  
100Hz to 10MHz  
VCO free running  
0.23°  
Closed loop phase noise divide-by-4 output(3)  
VCO gain  
30  
MHz/V  
dBc  
Reference spur(2)  
–80  
(1) See Application Circuit  
(2) PFD = 200kHz, Loop Filter BW = 15kHz, Output frequency step = 200kHz.  
(3) Reference oscillator RMS phase error = 0.008250°, RMS jitter = 881.764 fs.  
10  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181AOCTOBER 2005REVISED AUGUST 2006  
TRF3761-2289 ELECTRICAL CHARACTERISTICS  
Supply voltage = 5V, over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
NOISE CHARACTERISTICS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
100kHz offset  
600kHz offset  
–116  
–135  
VCO phase noise,  
Free running VCO direct output  
fVCO = 2289MHz,  
fO = 2289MHz  
1MHz offset  
6MHz offset  
10MHz offset  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
100kHz offset  
600kHz offset  
1MHz offset  
6MHz offset  
10MHz offset  
1kHz offset  
-138  
dBc/Hz  
–153  
–155  
–124  
–141  
VCO phase noise,  
Free running VCO divide-by-2 output  
fVCO = 2289MHz,  
fO = 1144.5  
–145  
dBc/Hz  
–156  
–157.5  
–129.5  
-147.5  
-150.5  
–156.5  
–157  
VCO phase noise,  
Free running VCO divide-by-4 output  
fVCO = 2289MHz,  
fO = 572.25MHz  
dBc/Hz  
dBc/Hz  
–82.5  
–134  
600kHz offset  
1MHz offset  
10MHz offset  
VCO phase noise,  
fVCO = 2289MHz,  
fO = 2289MHz  
Closed loop phase noise direct output(1)(2)(3)  
–137.5  
–155  
RMS phase error  
100Hz to 10MHz  
fVCO = 2289MHz,  
1.22°  
Closed loop phase noise direct output(3)  
1kHz offset  
–88  
-141  
600kHz offset  
1MHz offset  
10MHz offset  
VCO phase noise,  
dBc/Hz  
dBc/Hz  
Closed loop phase noise divide-by-2 output(1)(2)(3) fO = 1144.5MHz  
–144.5  
–157  
RMS phase error  
100Hz to 10MHz  
0.55°  
Closed loop phase noise divide-by-2 output(3)  
1kHz offset  
–94  
–147  
600kHz offset  
1MHz offset  
10MHz offset  
VCO phase noise,  
fVCO = 2289MHz,  
Closed loop phase noise divide-by-4 output(1)(2)(3) fO = 572.25MHz  
–150.5  
–157  
RMS phase error  
100Hz to 10MHz  
0.26°  
Closed loop phase noise divide-by-4 output(3)  
VCO gain  
Reference spur(2)  
VCO free running  
30  
MHz/V  
dBc  
–80  
(1) See Application Circuit  
(2) PFD = 200kHz, Loop Filter BW = 15kHz, Output frequency step = 200kHz.  
(3) Reference oscillator RMS phase error = 0.008250°, RMS jitter = 881.764 fs.  
11  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181AOCTOBER 2005REVISED AUGUST 2006  
TRF3761-1817 TYPICAL CHARACTERISTICS  
-70  
-80  
0
-10  
OL = 1817 MHz/1  
CL = 1817 MHz/1  
-20  
-30  
-90  
-40  
-50  
-100  
-110  
-60  
-70  
-80  
-120  
-130  
-140  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-150  
-160  
-170  
1 k  
10 k  
100 k  
1 M  
10 M  
10 M  
10 M  
100  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
10 M  
10 M  
f - Offset Frequency - Hz  
Frequency Offset - Hz  
Figure 2. Open Loop VCO Phase Noise  
Figure 3. Closed Loop VCO Phase Noise  
0
-10  
-70  
-80  
CL = 908.5 MHz/2  
OL = 908.5 MHz/2  
-20  
-30  
-90  
-40  
-50  
-100  
-60  
-110  
-120  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-130  
-140  
-150  
-160  
-170  
100  
1 k  
10 k  
100 k  
1 M  
100  
1 k  
10 k  
100 k  
1 M  
f - Offset Frequency - Hz  
f - Frequency Offset - Hz  
Figure 4. Open Loop VCO Phase Noise  
Figure 5. Closed Loop VCO Phase Noise  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-70  
-80  
OL = 454.25 MHz/4  
CL = 454.25 MHz/4  
-90  
-100  
-110  
-120  
-80  
-90  
-100  
-130  
-140  
-150  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-160  
-170  
100  
10 k  
f - Frequency Offset - Hz  
1 k  
100 k  
1 M  
1 k  
10 k  
100 k  
1 M  
100  
f - Offset Frequency - Hz  
Figure 6. Open Loop VCO Phase Noise  
Figure 7. Closed Loop VCO Phase Noise  
12  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181AOCTOBER 2005REVISED AUGUST 2006  
TRP3761-1579 TYPICAL CHARACTERISTICS  
-7  
-8  
0
-20  
CL = 1579 MHz/1  
OL = 1579 MHz/1  
-9  
-1  
-40  
-60  
-1.1  
-1.2  
-1.3  
-1.4  
-1.5  
-1.6  
-1.7  
-80  
-100  
-120  
-140  
-160  
-180  
100  
1
10 k  
100 k  
1 M  
10 M  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
f - Frequency - Hz  
f - Frequency - Hz  
Figure 8. Open Loop VCO Phase Noise  
Figure 9. Closed Loop VCO Phase Noise  
-7  
-8  
0
-20  
CL = 394.75 MHz/2  
OL = 394.75 MHz/4  
-9  
-1  
-40  
-60  
-1.1  
-1.2  
-1.3  
-1.4  
-1.5  
-1.6  
-80  
-100  
-120  
-140  
-160  
-180  
-1.7  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
f - Frequency - Hz  
f - Frequency - Hz  
Figure 10. Open Loop VCO Phase Noise  
Figure 11. Closed Loop VCO Phase Noise  
-7  
-8  
0
-20  
CL = 789.5 MHz/2  
OL = 789.5 MHz/2  
-9  
-40  
-60  
-80  
-1  
-1.1  
-1.2  
-1.3  
-1.4  
-1.5  
-100  
-120  
-140  
-1.6  
-160  
-180  
-1.7  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
100 k  
f - Frequency - Hz  
10 k  
1 M  
10 M  
100  
1 k  
f - Frequency - Hz  
Figure 12. Open Loop VCO Phase Noise  
Figure 13. Closed Loop VCO Phase Noise  
13  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181AOCTOBER 2005REVISED AUGUST 2006  
TRP3761-1579 TYPICAL CHARACTERISTICS (continued)  
Figure 14. Direct Output: PFD Frequency Spurs  
Figure 15. Divide-By-2 Output: PFD Frequency Spurs  
Figure 16. Divide-By-4 Output: PFD Frequency Spurs  
14  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181AOCTOBER 2005REVISED AUGUST 2006  
TRP3761-1700 TYPICAL CHARACTERISTICS  
-70  
-80  
0
-20  
CL = 1700 MHz/1  
OL = 1700 MHz/1  
-90  
-40  
-60  
-80  
-100  
-110  
-120  
-130  
-140  
-150  
-100  
-120  
-140  
-160  
-160  
-170  
-180  
100  
1 k  
100  
10 k  
100 k  
1 M  
10 M  
10 M  
10 M  
1 k  
10 k  
100 k  
1 M  
10 M  
f - Frequency Offset - Hz  
f - Frequency Offset - Hz  
Figure 17. Open Loop VCO Phase Noise  
Figure 18. Closed Loop VCO Phase Noise  
0
-70  
-20  
-80  
-90  
CL = 850 MHz/2  
OL = 850 MHz/2  
-40  
-60  
-80  
-100  
-110  
-120  
-130  
-140  
-150  
-100  
-120  
-140  
-160  
-160  
-170  
-180  
100  
1 k  
10 M  
10 k  
f - Frequency Offset - Hz  
1 M  
100 k  
100  
1 k  
10 k  
f - Frequency Offset - Hz  
1 M  
100 k  
Figure 19. Open Loop VCO Phase Noise  
Figure 20. Closed Loop VCO Phase Noise  
0
-70  
-20  
-80  
-90  
CL = 425 MHz/4  
OL = 425 MHz/4  
-40  
-60  
-80  
-100  
-110  
-120  
-130  
-140  
-150  
-100  
-120  
-140  
-160  
-160  
-170  
-180  
100  
1 k  
10 M  
10 k  
f - Frequency Offset - Hz  
1 M  
100 k  
100  
1 k  
10 k  
f - Frequency Offset - Hz  
1 M  
100 k  
Figure 21. Open Loop VCO Phase Noise  
Figure 22. Closed Loop VCO Phase Noise  
15  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181AOCTOBER 2005REVISED AUGUST 2006  
TRP3761-1700 TYPICAL CHARACTERISTICS (continued)  
Figure 23. Direct Output: PFD Frequency Spurs  
Figure 24. Divide-By-2 Output: PFD Frequency Spurs  
Figure 25. Divide-By-4 Output: PFD Frequency Spurs  
16  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181AOCTOBER 2005REVISED AUGUST 2006  
TRF3761-1817 TYPICAL CHARACTERISTICS (Continued)  
Figure 26. Direct Output: PFD Frequency Spurs  
Figure 27. Divide-By-2 Output: PFD Frequency Spurs  
Figure 28. Divide-By-4 Output: PFD Frequency Spurs  
17  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181AOCTOBER 2005REVISED AUGUST 2006  
TRP3761-1947 TYPICAL CHARACTERISTICS  
-70  
-80  
0
-20  
CL = 1947 MHZ/1  
OL = 1947 MHz/1  
-90  
-40  
-100  
-60  
-110  
-120  
-130  
-140  
-80  
-100  
-120  
-140  
-150  
-160  
-180  
-160  
-170  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
10 M  
10 M  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
10 M  
10 M  
f - Frequency Hz  
f - Frequency - Hz  
Figure 29. Open Loop VCO Phase Noise  
Figure 30. Closed Loop VCO Phase Noise  
-70  
-80  
0
-20  
CL = 973.5 MHz/2  
OL = 973.5 MHz/2  
-90  
-40  
-100  
-60  
-110  
-120  
-130  
-140  
-80  
-100  
-120  
-140  
-150  
-160  
-180  
-160  
-170  
100  
1 k  
10 k  
100 k  
1 M  
100  
1 k  
10 k  
100 k  
1 M  
f - Frequency Hz  
f - Frequency - Hz  
Figure 31. Open Loop VCO Phase Noise  
Figure 32. Closed Loop VCO Phase Noise  
-70  
-80  
0
-20  
CL = 486.75 MHz/4  
OL = 486.75 MHz/4  
-90  
-40  
-100  
-110  
-120  
-130  
-140  
-150  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
-160  
-170  
1 k  
100  
1 k  
10 k  
100 k  
1 M  
100  
10 k  
100 k  
1 M  
f - Frequency Offset - Hz  
f - Frequency - Hz  
Figure 33. Open Loop VCO Phase Noise  
Figure 34. Closed Loop VCO Phase Noise  
18  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181AOCTOBER 2005REVISED AUGUST 2006  
TRP3761-1947 TYPICAL CHARACTERISTICS (continued)  
Figure 35. Direct Output: PFD Frequency Spurs  
Figure 36. Divide-By-2 Output: PFD Frequency Spurs  
Figure 37. Divide-By-4 Output: PFD Frequency Spurs  
19  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181AOCTOBER 2005REVISED AUGUST 2006  
TRP3761-2116 TYPICAL CHARACTERISTICS  
-70  
-80  
0
-20  
-40  
-60  
CL = 2116 MHz/1  
OL = 2116 MHz/1  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-80  
-100  
-120  
-140  
-160  
-180  
-160  
-170  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
10 M  
10 M  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
f - Frequency Offset - Hz  
f - Frequency Offset - Hz  
Figure 38. Open Loop VCO Phase Noise  
Figure 39. Closed Loop VCO Phase Noise  
-70  
-80  
0
-20  
CL = 1058 MHz/2  
OL = 1058 MHz/2  
-90  
-40  
-60  
-100  
-110  
-120  
-130  
-140  
-150  
-80  
-100  
-120  
-140  
-160  
-180  
-160  
-170  
100  
1 k  
10 k  
100 k  
1 M  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
f - Frequency Offset - Hz  
f - Frequency offset - Hz  
Figure 40. Open Loop VCO Phase Noise  
Figure 41. Closed Loop VCO Phase Noise  
-70  
-80  
0
-20  
-40  
-60  
CL = 529MHz /4  
OL = 529 MHz/4  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-80  
-100  
-120  
-140  
-160  
-180  
-160  
-170  
100  
1 k  
10 k  
100 k  
1 M  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
f - Frequency Offset - Hz  
f - Frequency Offset - Hz  
Figure 42. Open Loop VCO Phase Noise  
Figure 43. Closed Loop VCO Phase Noise  
20  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181AOCTOBER 2005REVISED AUGUST 2006  
TRP3761-2116 TYPICAL CHARACTERISTICS (continued)  
Figure 44. Direct Output: PFD Frequency Spurs  
Figure 45. Divide-By-2 Output: PFD Frequency Spurs  
Figure 46. Divide-By-4 Output: PFD Frequency Spurs  
21  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181AOCTOBER 2005REVISED AUGUST 2006  
TRP3761-2289 TYPICAL CHARACTERISTICS  
0
-20  
-40  
-60  
-80  
-70  
-80  
CL = 2289 MHz  
OL = 2289 MHz  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-120  
-140  
-160  
-180  
-150  
-160  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
10 M  
10 M  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
f - Frequency - Hz  
f - Frequency - Hz  
Figure 47. Open Loop VCO Phase Noise  
Figure 48. Closed Loop VCO Phase Noise  
0
-20  
-40  
-60  
-80  
-70  
-80  
CL = 1144p5 MHz/2  
OL = 1144p5  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-100  
-120  
-140  
-160  
-180  
-160  
-170  
100  
1 k  
10 k  
100 k  
1 M  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
f - Frequency - Hz  
f - Frequency - Hz  
Figure 49. Open Loop VCO Phase Noise  
Figure 50. Closed Loop VCO Phase Noise  
-70  
0
-20  
-40  
-60  
-80  
-90  
CL = 572.25 MHz/4  
OL = 572.25 MHz/4  
-100  
-110  
-80  
-100  
-120  
-140  
-120  
-130  
-140  
-150  
-160  
-180  
-160  
-170  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
100  
1 k  
10 k  
100 k  
1 M  
f - Frequency - Hz  
f - Frequency - Hz  
Figure 51. Open Loop VCO Phase Noise  
Figure 52. Closed Loop VCO Phase Noise  
22  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181AOCTOBER 2005REVISED AUGUST 2006  
TRP3761-2289 TYPICAL CHARACTERISTICS (continued)  
Figure 53. Direct Output: PFD Frequency Spurs  
Figure 54. Divide-By-2 Output: PFD Frequency Spurs  
Figure 55. Divide-By-4 Output: PFD Frequency Spurs  
23  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181AOCTOBER 2005REVISED AUGUST 2006  
SERIAL INTERFACE PROGRAMMING REGISTERS DEFINITION  
The TRF3761 features a 3-wire serial programming interface that controls an internal, 32-bit shift register. There  
are a total of 3 signals that need to be applied: the CLOCK (pin 3), the serial DATA (pin 4) and the STROBE  
(pin 5). The DATA (DB0-DB31) is loaded LSB first and is read on the rising edge of the CLOCK. The STROBE  
is asynchronous to the CLOCK and at it's rising edge the data in the shift register gets loaded onto the selected  
internal register. The first four bits (DB0-DB3) is the address to select the available internal registers.  
Table 1. Register 1: Device Setup  
REGISTER 1 MAPPING  
Data Field DB31  
FULL_CAL_REQ  
This is a read only bit, that indicates if a 0 power-up cal is not required  
power-up cal is required  
1 power-up cal is required  
DB30  
DB29  
CP_TEST  
TRIS_CP  
Up and down pulse charge pump test  
1 test enabled  
High-impedance state charge pump  
output  
1 CP high-impedance state  
DB28  
DB27  
PFD_POL  
ABPW1  
Select Polarity of PFD  
0 negative  
1 positive  
ABPW<1,0>: antibacklash pulse width  
00 1.5ns delay  
01 0.9ns delay  
10 3.8ns delay  
11 2.7ns delay  
DB26  
DB25  
DB24  
DB23  
DB22  
DB21  
DB20  
DB19  
DB18  
DB17  
DB16  
DB15  
DB14  
DB13  
DB12  
DB11  
ABPW0  
RDIV_13  
RDIV_12  
RDIV_11  
RDIV_10  
RDIV_9  
RDIV_8  
RDIV_7  
RDIV_6  
RDIV_5  
RDIV_4  
RDIV_3  
RDIV_2  
RDIV_1  
RDIV_0  
PD_BUFOUT  
14-bit reference clock divider  
RDIV<13,0>:00...01: divide by 1  
RDIV<13,0>:00...10: divide by 2  
RDIV<13,0>:00...11: divide by 3  
If Bit10 = 0 then it controls power down <DB10:11>:  
of output buffer  
00 default; output buffer on  
01 output buffer off  
1x output buffer on/off controlled by  
OUTBUF_EN pin  
DB10  
DB9  
OUTBUF_EN_SEL  
OUT_MODE_1  
Select Output Buffer enable control:  
0 internal  
1 through OUTBUF_EN pin  
OUTBUFMODE<1,0>: Selection of RF  
output buffer division ratio  
00 divide by 1  
01 divide by 2  
10 divide by4  
DB8  
DB7  
DB6  
DB5  
DB4  
OUT_MODE_0  
ICP2  
ICP<2,0>: select charge pump current  
(1 mA step)  
ICP1  
ICP0  
RESET  
Registers reset  
24  
Submit Documentation Feedback  
 
TRF3761  
www.ti.com  
SLWS181AOCTOBER 2005REVISED AUGUST 2006  
Table 1. Register 1: Device Setup (continued)  
REGISTER 1 MAPPING  
Address  
Bits  
DB3  
DB2  
DB1  
DB0  
0
0
0
0
OUT_MODE<1,0>: TRF3761 has an optional divide by 2 or 4 output, which is selectable by programming bits  
<OUT_MODE_1, OUT_MODE_0> of register 1 (see Table 1).  
Up and Down Pulse Test: By setting bit DB30 to 1 it is possible to test the PFD up or down pulses.  
Charge Pump Tristate: If bit DB29 is set to 1, the charge pump output goes in tri-state. For normal operation,  
DB29 must be set to 0.  
Anti-Backlash Pulse: Bits <DB27, DB26> are used to program the width of the anti-backlash pulses of the PFD.  
The user selects one of the following values: 0.9ns, 1.5ns, 2.7ns and 3.8ns.  
PFD Polarity: Bit DB28 of register 0 sets the polarity of the PFD: A 0 selects a negative polarity, and a 1 selects  
a positive polarity. By choosing the correct polarity, the TRF3761 works with an external VCO having both  
positive and negative Kv.  
Reference Divider: A 14-bit word programs the R divider for the reference signal, DB25 is the MSB and DB12 is  
the LSB.  
Charge Pump Current: Bits <DB7, DB5> set the charge pump current.  
OUTBUF_EN_SEL: Output buffer on/off state is controlled through serial interface or an external pin. If bit DB10  
is a 0 (default state) the output buffers state is elected through bit DB11. If DB10 is a 1, the buffers on/off are  
directly controlled by the OUTBU_EN pin.  
Reset: Setting bit DB4 to 1, all registers are reset to default values.  
25  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181AOCTOBER 2005REVISED AUGUST 2006  
Table 2. Register 2: VCO Calibration  
REGISTER 2 MAPPING  
Data Field DB31  
DB30  
DB29  
DB28  
DB27  
DB26  
DB25  
DB24  
DB23  
DB22  
DB21  
DB20  
DB19  
DB18  
DB17  
DB16  
DB15  
DB14  
DB13  
DB12  
DB11  
DB10  
DB9  
START_CAL  
FOUT12  
FOUT11  
FOUT10  
FOUT9  
FOUT8  
FOUT7  
FOUT6  
FOUT5  
FOUT4  
FOUT3  
FOUT2  
FOUT1  
FOUT0  
REF_FRAC6  
REF_FRAC5  
REF_FRAC4  
REF_FRAC3  
REF_FRAC2  
REF_FRAC1  
REF_FRAC0  
REF6  
VCO frequency in MHz start calibration 1 start calibration  
Reference frequency in MHz (fractional 0000000 = X.00MHz  
part)  
0000001 = X.01MHz  
0000010 = X.02MHz  
. . . . .  
1100011 = X.99MHz  
Reference frequency in MHz (integer  
part)  
0001010 =10MHz  
0001011 =11MHz  
. . . . .  
REF5  
DB8  
REF4  
1101000 = 104MHz  
DB7  
REF3  
DB6  
REF2  
DB5  
REF1  
DB4  
REF0  
Address  
Bits  
DB3  
DB2  
DB1  
DB0  
0
0
0
1
Reference Frequency: The 14 bits <DB17, DB4> are used to specify the input reference frequency as multiples  
of 10kHz. Bits <DB10,DB4> specify the integer part of the reference frequency expressed in MHz. Bits  
<DB17,DB11> set the fraction part. Those values are then used during the calibration of the internal VCO.  
Start Calibration: A 1 in DB31 starts the internal VCO calibration. When the calibration is complete, DB31 bit is  
internally reset to 0.  
FOUT<12,0>: This 13-bit word <DB30,DB18> specifies the VCO output frequency in MHz. If output frequency is  
not a integer multiple of MHz, this value must be approximated to the closest integer in MHz.  
26  
Submit Documentation Feedback  
 
TRF3761  
www.ti.com  
SLWS181AOCTOBER 2005REVISED AUGUST 2006  
Table 3. Register 3: A and B Counters  
REGISTER 3 MAPPING  
Data Field DB31  
DB30  
DB29  
DB28  
DB27  
DB26  
DB25  
DB24  
DB23  
DB22  
DB21  
DB20  
DB19  
DB18  
DB17  
DB16  
DB15  
DB14  
DB13  
DB12  
DB11  
DB10  
DB9  
Rsrv  
Reserved  
Rsrv  
Reserved  
START_LK  
Lock PLL to frequency  
1 active  
TEST_MUX_3  
0001 = LOCK_DETECT enabled  
TEST_MUX_2  
TEST_MUX_1  
TEST_MUX_0  
B_12  
B_11  
B_10  
B_9  
13-bit B counter  
B_8  
B_7  
B_6  
B_5  
B_4  
B_3  
B_2  
B_1  
B_0  
A_5  
6-bit A counter  
A_4  
A_3  
DB8  
A_2  
DB7  
A_1  
DB6  
A_0  
DB5  
PRESC_MOD1  
PRESC_MOD0  
Dual-modulus prescaler mode  
<B5,B4>:00 8/9  
<B5,B4>:01 16/17  
<B5,B4>:10 32/33  
<B5,B4>:11 64/65  
DB4  
Address  
Bits  
DB3  
DB2  
DB1  
DB0  
0
0
1
0
B<12,0>: This 13-bit word <DB24,DB12> controls the value of the B counter of the N divider. The valid range is  
from 3 to 8191.  
A<5,0>: These 6 bits <DB11,DB6> control the value of the A counter. The valid range is from 0 to 63.  
PRESC_MOD<1,0>: These bits <DB5,DB4> define the mode of the dual-modulus prescaler according Table 3.  
START_LK: TRF3761 does not load the serial interface registers values into the dividers registers until bit DB29  
of register 3 is set to 1. After TRF3761 is locked to the new frequency, bit DB29 is internally reset to 0.  
27  
Submit Documentation Feedback  
 
TRF3761  
www.ti.com  
SLWS181AOCTOBER 2005REVISED AUGUST 2006  
FUNCTIONAL DESCRIPTION  
VCO  
TRF3761 integrates a high-performance, LC tank, voltage-controlled oscillator (VCO). For each of the devices of  
TRF3761 family, the inductance and capacitance of the tank are optimized to yield best phase-noise  
performance. The VCO output is fed externally and to the prescaler through a series of very low noise buffers,  
that greatly reduce the effect of load pulling onto the VCO.  
Divider by 2, by 4, and Output Buffer  
To extend the frequency coverage, the TRF3761 integrates a divider by 2 and by 4 with very low noise floor.  
The VCO signal is fed externally through a final open-collector differential-output buffer. This buffer is able to  
provide up to 3dBm (typical) of power into a 200differential resistive load. The open-collector structure gives  
the flexibility to choose different load configurations to meet different requirements.  
Prescaler Stage  
This stage divides down the VCO frequency before the A and B counters. This is a dual-modulus prescaler and  
the user can select any of the following settings: 8/9, 16/17, 32/33, and 64/65.  
A and B Counter Stage  
The TRF3761 includes a 6-bit A counter and a 13-bit B counter that operate on the output of the prescaler. The  
A counter can take values from 0 to 63, while the B counter can take values from 3 to 8191. Also, the value for  
the B counter must be greater than or equal to the value for the A counter. The A and B counter with the  
prescaler stage create the VCO N-divider.  
R Divider  
TRF3761 includes a 14-bit R divider that allows the input reference frequency to be divided down to produce the  
reference clock to the phase frequency detector (PFD). Division ratios from 1 to 16,383 are allowed.  
Phase Frequency Detector (PFD) and Charge Pump Stage  
The outputs of the R divider and the N counter are fed into the PFD stage, where the two signals are compared  
in frequency and phase. The TRF3761 features an anti-backlash pulse, whose width is controllable by the user  
through the serial programming interface. The PFD feeds the charge pump, whose output current pulses are fed  
into an external loop filter, which eventually produces the tuning voltage needed to control the integrated VCO to  
the desired frequency.  
28  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181AOCTOBER 2005REVISED AUGUST 2006  
APPLICATION INFORMATION  
Initial Calibration and Frequency Setup at Power Up  
The integrated high performance VCO requires an internal frequency calibration at power up. To perform such  
calibration the following procedure is recommended:  
Apply 5V power supply to IC.  
Apply an input reference frequency and ensure the signal is stable.  
Turn on the TRF3761 using the chip enable pin (CHIP_EN, pin 2).  
Setup the device through Register 1 referencing Table 1.  
a. The first 4 bits of the 32-bit code sent to the chip are set DB <3:0> to 0000; which is the address of  
register 1.  
b. Bit 5, DB4 sets the soft reset for the chip. If a soft reset is used then write to register 1 twice: once with  
DB4 set high and once with DB4 set low. Typically, this bit is only used when the chip has been  
powered up and registers 1, 2, and 3 have been already written to, so on power-up reset is not required,  
so DB4 is, by default, set low.  
c. DB <7: 5> sets the charge pump current based on the resistor value on pin 28 of the TRF3761 and the  
decimal value of Register 1, DB<7:5> used in this equation, Icp = (1.2V/Rbias)×((n+1)×22.168)/8, where  
n = decimal value of [Reg1 DB<7:5>]. This equation reduces to Icp = 3.3252×(n+1)/Rbias.  
d. DB <9: 8> sets the mode of the chip. The mode is how the device will or will not divide down the VCO’s  
frequency. There are 3 choices for the mode setting, divide by 1, 2 or 4. For example if 525MHz is  
required from the TRF3761 then the divide-by-4 mode is chosen by setting DB <9: 8> to 10. With a  
2100MHz VCO frequency set on Register 2 the output frequency will be divided by 4 to give 525MHz.  
e. DB <11:10> controls the output buffer. Both of these are set to 00 by default, so the buffer is controlled  
internally. See Table 2 for more information.  
f. DB <25:12> sets the R-divide value. Once the calculations under the Synthesizing a Selected  
Frequency have been completed the value is known, based on the external reference oscillator. The  
value for R is entered into the DB <25:12>. For example, if the reference oscillator is at 61.44MHz and a  
120kHz step is required, which is also the Fpfd, then Refin /Fpfd = 512, which is entered as follows:  
MSB: LSB 0001000000000.  
g. By default, DB <27:26> are set to 00 for a 1.5ns delay on the ant backlash pulse width. See Table 1 for  
more information.  
h. DB 28 is set to 1 for positive by default. See Table 1 for more information.  
i. DB 29 is set to 0 for normal operation. See Table 1 for more information.  
j. DB 30 is set to 0 by default. See Table 1 for more information.  
k. DB 31 is set to 0 by default. See Table 1 for more information.  
Initiate calibration procedure by programming register 2 as follows: Reference Table 2  
a. Use bits DB<17, 4> of register 2 to specify the input reference frequency in MHz. The value is split into  
an integer and a fraction part. For example: to insert a fREF of 30.72MHz, set:  
b. DB<10, 4> (integer part) equal to 0011110 (30) and  
c. DB<17, 11> (fraction part) equal to 1001000 (72).  
d. Set DB<30:18> of register 2 to the desired frequency. For example: 2200MHz would be 0100010011000  
(2200).  
e. Set DB31of register 2 to 1 to start the calibration. The VCO calibration runs for 5ms. During the cal  
procedure it will not be possible to program register 2 and 3. At the end of the calibration, bit DB31 of  
register 2 resets to 0.  
f. Subsequent frequency programming requires DB31 to be set to 0.  
29  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181AOCTOBER 2005REVISED AUGUST 2006  
APPLICATION INFORMATION (continued)  
Completion of the frequency set up, on initial calibration, cannot proceed until 5ms has elapsed, due to full  
calibration, then it will require that the A and B values, the prescalar ratio, be known. See Synthesizing a  
Selected Frequency section below for calculation. Reference Table 3.  
a. Register 3 DB<3:0> is the address of register 3, 0010 (2).  
b. DB<5:4> sets the prescalar ratio, 8/9, 16/17, 32/33, 64/65. For example: if 16/17 are required, set the  
register bits DB<5:4> to 01.  
c. DB<11:6> sets the A value for the N counter. For example: if A is 4, set DB<11:6> as follows: 000100  
(4).  
d. DB<24:12> sets the B value for the N counter. For example: if B is 1156, set DB<24:12> as follows:  
0010010000100 (4).  
e. DB<28:25> sets the TEST_MUX.  
Table 4. Settings  
STATE  
DB<28:25>  
0000  
STATE  
DB<28:25>  
0100  
3-state o/p  
Digital lock Detect  
N-Divider o/p  
DVDD  
R-divider o/p  
Analog lock detect  
Read back  
DGND  
0001  
0101  
0010  
0110  
0011  
0111  
f. DB29 sets the START LOCK, which is set to 0, on the initial frequency setup and then set to 1 on  
additional frequency changes.  
Once all registers are written to the TRF3761 will lock to the desired frequency.  
Re-Calibration After Power Up  
Assuming the TRF3761 is powered up and operational, a VCO calibration is also possible without powering  
down the IC. To perform such calibration the following procedure is recommended:  
Set bit DB4 (RESET) of register 1 to 1. This performs a software reset and clears all registers of VCO  
calibration data.  
Repeat form Initial Calibration and Frequency setup at Power up from above at section A.  
Synthesizing a Selected Frequency  
The TRF3761 is an integer-N PLL synthesizer, and because of its flexibility (14-bit R, 6-bit A, 13-bit B counter,  
and dual modulus prescaler), is ideal for synthesizing virtually any desired frequency. Let us assume that we  
need to synthesize a 900MHz local oscillator, with spacing capability (minimum frequency increment) of 200kHz,  
as in a typical GSM application. The choice of the external reference oscillator to be used is beyond the scope of  
this section, but assuming that a 10MHz reference is selected, the settings are calculated to yield the desired  
output frequency and channel spacing. There is more than one solution to a specific set of conditions, so below  
is one way of achieving the desired result. First, select the appropriate R counter value. Since a channel spacing  
of 200kHz is desired, the PFD is set to 200kHz. Calculate the R value through R = REFIN/PFD = 10MHz/  
200kHz = 50. Assume a prescaler value of 8/9 is selected. This is a valid choice, since the prescaler output is  
well within the 200MHz limit (900MHz / 8 = 112.5MHz). Select the appropriate A and B counter values. RFOUT  
= Fpfd × N = (fREFIN / R) × (A + P × B). Therefore, the following equation must be solved: 900MHz = 200kHz x  
(A + 8 × B). There are many solutions to this single equation with two unknowns; there are some basic  
constraints on the solution, since 3 B 8191, and also B A. So, if A = 4, solving the equation yields B = 562.  
One complete solution would be to choose: R = 50, A = 4, B = 562 and P = 8/9, resulting in the desired N =  
4500.  
When this procedure is complete the values for A, B, R, and the prescalar ratio should be known. Registers 2  
and 3 need to be set up for operation of the chip. See Table 2 and Table 3 for this procedure. Register 2 bits  
<DB30:DB18> 12:0 set the output frequency of the device along with register 3.  
30  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181AOCTOBER 2005REVISED AUGUST 2006  
Application Schematic  
Figure 56 shows a typical application schematic for the TRF3761. In this example, the output signal is taken  
differential using the 2 resistive pull-up resistors of the final output buffer. A single-ended and tuned load  
configuration is also available.  
The loop filter components, shown in the application schematic, are typical ones used for the plots shown above.  
Those values can be optimized differently according to the requirements of the different applications.  
R2  
C1  
C3  
R1  
C2  
C4  
1000 pF  
40 39 38 37 36 35 34 33 32 31  
1
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
PD_OUTBUF  
CHIP_EN  
CLOCK  
DATA  
GND  
R3  
2.37 k  
2
AVDD_BIAS  
RBIAS1  
3
4
GND  
5
STROBE  
GND  
VCTRL_IN  
AVDD_VCO  
AVDD_BUF  
TRF3761  
(TOP VIEW)  
6
7
GND  
8
DVDD1  
AVDD_PRES  
GND  
AVDD_CAPARRAY  
GND  
9
10  
AVDD  
11 12 13 14 15 16 17 18 19 20  
R4  
4.75 kΩ  
C7  
1000 pF  
R5  
120 Ω  
R6  
120 Ω  
V
DD  
V
DD  
C5  
C6  
LOAD  
Figure 56. TRF3761 Application Schematic  
31  
Submit Documentation Feedback  
 
TRF3761  
www.ti.com  
SLWS181AOCTOBER 2005REVISED AUGUST 2006  
Loop Filter Design  
Numerous methodologies and design techniques exist for designing optimized loop filters for particular  
applications. The loop filter design can affect the stability of the loop, the lock time, the bandwidth, the extra  
attenuation on the reference spurs, etc. The role of the loop filter is to integrate and lowpass the pulses of the  
charge pump and eventually yield an output tuning voltage that drives the VCO. Several filter topologies can be  
implemented, including both passive and active. In this section, a third-order passive filter is used. For this  
example, assume these several design parameters. The internal VCO has a value of 23MHz/V, meaning that in  
the linear region, changing the tuning voltage of the VCO by 1V induces a change of the output frequency of  
about 23MHz. It is known that N = 4500 and Fpfd = 200kHz. It is assumed that current setting 1 will be used and  
be set to a maximum current of 5.6mA. In addition, the bandwidth of the loop filter must be determined. This is a  
critical consideration as it affects the lock time of the system. Assuming an approximate bandwidth of around  
20kHz is required and that for stability a phase margin of about 45 degrees is desired, the following values for  
the components of the loop filter can be derived. There is almost an infinite number of solutions to the problem  
of designing the loop filter and the designer is called to make tradeoff decisions for each application.  
Loop filter components:  
C1 = 303pF  
R1 = 8.87kW  
C2 = 1650pF  
C3 = 330pF  
Frequency jump from  
1046MHz to 1085mHz:  
Locktime freq ~ 250mS  
Figure 57. Frequency Locktime  
Layout/PCB Considerations  
This section of the design of the complete PLL is of paramount importance in achieving the desired  
performance. Wherever possible, a multi-layer PCB board should be used, with at least one dedicated ground  
plane. A dedicated power plane (split between the supplies if necessary) is also recommended. The impedance  
of all RF traces (the VCO output and feedback into the PLL) should be controlled to 50. All small value  
decoupling capacitors should be placed as close to the device pins as possible. It is also recommended that  
both top and bottom layers of the circuit board be flooded with ground, with plenty of ground vias dispersed as  
appropriate. The most sensitive part of any PLL is the section between the charge pump output and the input to  
the VCO. This includes the loop filter components, and the corresponding traces. The charge pump is a  
precision element of the PLL and any extra leakage on its path can adversely affect performance. Extra care  
should be given to ensure that parasitics are minimized in the charge pump output, and that the trace runs are  
short and optimized. Similarly, it is also recommend that extra care is taken in ensuring that any flux residue is  
thoroughly cleaned and moisture baked out of the PCB. From an EMI perspective, and since the synthesizer is  
typically a small portion of a bigger, complex circuit board, shielding is recommended to minimize EMI effects.  
Application Example for a High Performance RF Transmit Signal Chain  
Much in the same way as described above, the TRF3761 is an ideal synthesizer to use in implementing a  
complete high performance RF transmitter chain such as the TSW3000 and up-and-coming TSW 3003  
Demonstration kits. Using a complete suite of high performance Texas Instruments components, a  
state-of-the-art transmitter can be implemented featuring excellent performance. Texas Instruments offers ideal  
solutions for the digital-to-analog conversion portion of transmitter as well as the analog and RF components  
needed to complete the transmitter. The baseband digital data is converted to I and Q signals through the dual  
32  
Submit Documentation Feedback  
TRF3761  
www.ti.com  
SLWS181AOCTOBER 2005REVISED AUGUST 2006  
DAC5687, which features a 16-bit interpolating dual digital-to-analog converter (DAC). The device incorporates a  
digital modulator, independent differential offset control, and I/Q amplitude control. The device is typically used in  
baseband mode or in low IF mode in conjunction with an analog quadrature modulator. The DAC5687, after  
filtering, feeds a TRF3703, which is a direct, upconversion IQ modulator. This device accepts a differential input  
voltage quadrature signal at baseband or low IF frequencies and outputs a modulated RF signal based on the  
LO drive frequency. The LO drive input of the IQ modulator is generated by the TRF3761. The TRF3761 is a  
family of high performance, highly integrated frequency synthesizers, optimized for wireless infrastructure  
applications. The TRF3761 includes an integrated VCO and integer-N PLL. Different members of the TRF3761  
family can be chosen for application specific VCO frequency ranges. In addition, the CDC7005 clocking solution  
can be used to clock the DAC and other portions of the transmitter. A block diagram of the proposed  
architecture is shown in Figure 58 and Figure 59. For more details, contact Texas Instruments directly.  
TX  
DAC  
LPA  
ANT  
0°  
90°  
Diplexer  
I/Q  
Demod  
A/D  
RX  
LNA  
Figure 58. Transmit Chain Block Diagram  
16  
TRF3703  
I/Q  
RF Out  
DAC5687  
Modulator  
16  
CLK1  
CLK1  
CDCM7005  
Clock Generator  
VCXO  
TRF3761  
PLL  
LO Generator  
Ref Osc  
Figure 59. Transmit Chain Block Diagram  
33  
Submit Documentation Feedback  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Aug-2006  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TRF3761IRHAR  
PREVIEW  
QFN  
RHA  
40  
2500  
TBD  
Call TI  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Low Power Wireless www.ti.com/lpw  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2006, Texas Instruments Incorporated  

相关型号:

TRF376117IRHAT

TRF376117IRHAT
TI

TRF376118IRHAR

TRF376118IRHAR
TI

TRF376119IRHAR

IC,FREQUENCY SYNTHESIZER,LLCC,40PIN,PLASTIC
TI

TRF376119IRHAT

TRF376119IRHAT
TI

TRF376121IRHAR

IC,FREQUENCY SYNTHESIZER,LLCC,40PIN,PLASTIC
TI

TRF376121IRHAT

TRF376121IRHAT
TI

TRF376122IRHAT

TRF376122IRHAT
TI

TRF3761IRHAR

INTEGER-N PLL WITH INTEGRATED VCO
TI

TRF3761_07

INTEGER-N PLL WITH INTEGRATED VCO
TI

TRF3762

INTEGER-N PLL WITH INTEGRATED VCO
TI

TRF3762-E

INTEGER-N PLL WITH INTEGRATED VCO
TI

TRF3762-EIRHAR

INTEGER-N PLL WITH INTEGRATED VCO
TI