TRF4903PWRG4 [TI]

315-915 MHz ISM Band RF Transmitter 24-TSSOP -40 to 85;
TRF4903PWRG4
型号: TRF4903PWRG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

315-915 MHz ISM Band RF Transmitter 24-TSSOP -40 to 85

电信 ISM频段 光电二极管 电信集成电路
文件: 总26页 (文件大小:395K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁ ꢂꢃ ꢄꢅ ꢆ  
ꢇꢈ ꢉꢊ ꢋ ꢌꢍꢎꢏꢈ ꢐ ꢑ ꢒꢋꢀ ꢈꢓꢔ ꢉꢕ ꢁꢂ ꢀ ꢁꢔꢉꢇ ꢑ ꢈꢀ ꢀꢌ ꢁ  
SWRS023B − MAY 2004 − REVISED MARCH 2005  
D
Single-Chip RF Transmitter for 315-MHz,  
433-MHz, 868-MHz, and 915-MHz Industrial,  
Scientific, and Medical (ISM) Bands  
D
D
Programmable Brownout Detector  
Integrated Data Bit Synchronizer and Baud  
Rate Selection  
D
D
D
D
2.2-V to 3.6-V Operation  
Low Power Consumption  
FSK/OOK Operation  
D
Flexible 3-Wire Serial Interface  
D
Minimal Number of External Components  
Required  
Integer-N Synthesizer With Fully Integrated  
Voltage Controlled Oscillator (VCO)  
D
24-Pin Plastic Thin-Shrink Small Outline  
Package (TSSOP)  
D
D
On-Chip Reference Oscillator and  
Phase-Locked Loop (PLL)  
D
D
D
Programmable XTAL Trimming  
Lock Detect Indicator  
Power Amplifier With 8-dBm Typical Output  
Power  
Companion Transmitter to the TRF6903  
Transceiver  
PW PACKAGE  
(TOP VIEW)  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
TX_DATA  
MODE  
STDBY  
PA_OUT  
PA_GND1  
CLOCK  
DATA  
STROBE  
GND  
XTAL_SW  
XTAL  
DGND  
2
3
4
5
6
PA_VCC  
PA_GND2  
7
8
VCO_PRE_VCC  
VCO_GND  
VCO_CORE_VCC  
VCO_BYPASS  
VCO_TUNE  
DVDD  
9
DET_LD_DCLK  
CP_GND  
CP_OUT  
CP_VCC  
10  
11  
12  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the gates.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢀꢢ  
Copyright 2005, Texas Instruments Incorporated  
ꢞ ꢢ ꢟ ꢞꢗ ꢘꢬ ꢚꢙ ꢝ ꢥꢥ ꢣꢝ ꢛ ꢝ ꢜ ꢢ ꢞ ꢢ ꢛ ꢟ ꢧ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ  
ꢇ ꢈꢉ ꢊꢋ ꢌꢍ ꢎꢏ ꢈ ꢐ ꢑ ꢒꢋꢀꢈ ꢓ ꢔꢉ ꢕ ꢁꢂ ꢀꢁ ꢔꢉ ꢇꢑ ꢈꢀ ꢀ ꢌꢁ  
SWRS023B − MAY 2004 − REVISED MARCH 2005  
description  
The TRF4903 single-chip solution is an integrated circuit intended for use as a low-cost multiband FSK or OOK  
transmitter to establish a frequency-programmable, half-duplex RF link. The multichannel transmitter is  
intended for digital (FSK, OOK) modulated applications in the North American and European 315-MHz,  
433-MHz, 868-MHz, and 915-MHz ISM bands. The single-chip operates down to 2.2 V and is designed for low  
power consumption. The synthesizer has a typical channel spacing of better than 200 kHz and features a  
fully-integrated VCO. Only the PLL loop filter is external to the device.  
Two fully-programmable operation modes, Mode0 and Mode1, allow extremely fast switching between two  
preprogrammed settings (for example, TX_frequency_0/TX_frequency_1; ) without reprogramming the  
device.  
ISM band standards  
Europe has assigned an unlicensed frequency band of 868 MHz to 870 MHz. This band is specifically defined  
for short range devices with duty cycles from 0.1% to 100% in several subbands. The new European frequency  
band, due to the duty cycle assignment, allows a reliable RF link and makes many new applications possible.  
The North American unlicensed ISM band covers 902 MHz to 928 MHz (center frequency of 915 MHz) and is  
suitable for short range RF links.  
transmitter  
The transmitter consists of an integrated VCO and tank circuit, a complete integer-N synthesizer, and a power  
amplifier. The dividers, prescaler, and reference oscillator require only the addition of an external crystal and  
a loop filter to provide a complete PLL with a typical frequency resolution of better than 200 kHz.  
Since the typical RF output power is approximately 8 dBm, no additional external RF power amplifier is  
necessary in most applications.  
Four attenuation setting for the power amplifier are offered. This feature allows the user to fine tune the amplifier  
for optimal output power.  
baseband interface  
The TRF4903 can easily be interfaced to a baseband processor such as the Texas Instruments MSP430  
ultralow-power microcontroller (see Figure 1). The TRF4903 serial control registers are programmed by the  
MSP430 and the MSP430 performs baseband operations in the software.  
A synchronized data clock, programmable for most common data rates, is provided by the TRF4903. During  
transmit, the data clock can be used to clock the transmit data from the microcontroller to the TRF4903 at  
predefined data rates.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆ  
ꢇꢈ ꢉꢊ ꢋ ꢌꢍꢎꢏꢈ ꢐ ꢑ ꢒꢋꢀ ꢈꢓꢔ ꢉꢕ ꢁꢂ ꢀ ꢁꢔꢉꢇ ꢑ ꢈꢀ ꢀꢌ ꢁ  
SWRS023B − MAY 2004 − REVISED MARCH 2005  
Microcontroller  
Section  
Antenna  
RF Section  
Transmit Data  
TX_DATA  
Brownout Detector, Lock Detect,  
Data Clock  
DET_LD_DCLK  
PA_OUT  
TRF4903  
Transmitter  
+
RF Out  
Mode Select  
Standby  
MODE  
MSP430  
Family µC  
STDBY  
Discretes  
Serial Control Data  
Serial Control Clock  
Serial Control Strobe  
DATA  
CLOCK  
STROBE  
Figure 1. System Block Diagram for Interfacing to the MSP430 Microcontroller  
functional block diagram  
DET_LD_DCLK  
16  
Bit Synchronizer  
and  
Data Clock  
MUX  
Band-gap  
8
24  
23  
22  
3
/A-  
CLOCK  
/Div. CTRL  
/B-  
Counter  
Serial  
DATA  
STROBE  
6
Interface  
STDBY  
MODE  
Brownout  
Detector  
/N Prescaler  
2
32/33  
Counter  
Lock  
Detect  
Output  
Divider  
1, 2, 3  
4
PFD  
CPs  
PA_OUT  
PA  
/Ref  
2...255  
1
TX_DATA  
XTAL  
Switch  
VCO  
19  
20  
VCO_TUNE 12  
14 CP_OUT  
Loop Filter  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ  
ꢇ ꢈꢉ ꢊꢋ ꢌꢍ ꢎꢏ ꢈ ꢐ ꢑ ꢒꢋꢀꢈ ꢓ ꢔꢉ ꢕ ꢁꢂ ꢀꢁ ꢔꢉ ꢇꢑ ꢈꢀ ꢀ ꢌꢁ  
SWRS023B − MAY 2004 − REVISED MARCH 2005  
Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
CLOCK  
NO.  
24  
15  
14  
13  
23  
I
Serial interface clock signal input  
Charge pump ground  
CP_GND  
CP_OUT  
CP_VCC  
DATA  
O
Charge pump output  
Charge pump supply voltage  
Serial interface data signal input  
I
Brownout detector (active high), PLL lock detect (active high), and data clock multiplexed  
output  
DET_LD_DCLK  
16  
O
DGND  
18  
17  
21  
2
Digital and XTAL oscillator ground  
Digital and XTAL oscillator power supply  
Substrate ground  
DVDD  
GND  
MODE  
I
Mode select input  
PA_GND1  
PA_GND2  
PA_OUT  
5
Power amplifier ground  
7
Power amplifier ground  
4
O
Power amplifier output  
PA_VCC  
6
Power amplifier supply voltage  
Standby input signal; active low  
Serial interface strobe signal  
STDBY  
3
I
I
I
I
STROBE  
TX_DATA  
VCO_BYPASS  
VCO_GND  
VCO_TUNE  
VCO_CORE_VCC  
VCO_PRE_VCC  
XTAL  
22  
1
Buffered TX data input  
11  
9
VCO bypass; connect to ground through a 100-pF capacitor  
VCO ground  
12  
10  
8
I
Tuning voltage for the integrated VCO  
VCO core supply voltage  
Divider and prescaler supply voltage  
Connection to an external crystal reference  
Connection to external capacitor, which sets the frequency deviation of the transmitted signal  
19  
20  
I/O  
I
XTAL_SW  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.6 to 4.5 Vdc  
Input voltage, logic signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.6 to 4.5 Vdc  
Storage temperature range, T  
ESD protection, human body model (HBM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 kV  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
recommended operating conditions  
PARAMETER  
Analog supply voltage  
TEST CONDITIONS  
MIN  
2.2  
TYP  
MAX  
3.6  
3.6  
85  
UNIT  
V
Digital supply voltage  
2.2  
V
Operating free-air temperature  
40  
°C  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆ  
ꢇꢈ ꢉꢊ ꢋ ꢌꢍꢎꢏꢈ ꢐ ꢑ ꢒꢋꢀ ꢈꢓꢔ ꢉꢕ ꢁꢂ ꢀ ꢁꢔꢉꢇ ꢑ ꢈꢀ ꢀꢌ ꢁ  
SWRS023B − MAY 2004 − REVISED MARCH 2005  
dc electrical characteristics, V  
= 2.7 V, T = 25°C  
A
CC  
supply current  
PARAMETER  
TEST CONDITIONS  
STDBY low  
MIN  
TYP  
0.6  
12  
11  
MAX  
4
UNIT  
Standby current  
µA  
315-MHz band  
433-MHz band  
868-MHz band  
915-MHz band  
315-MHz band  
315-MHz band  
315-MHz band  
433-MHz band  
433-MHz band  
433-MHz band  
868-MHz band  
868-MHz band  
868-MHz band  
915-MHz band  
915-MHz band  
915-MHz band  
15  
14  
12  
12  
43  
TX current, PA disabled. PLL, VCO, dividers, and reference active  
mA  
10  
10  
37  
30  
29  
36  
29  
28  
35  
28  
27  
35  
28  
27  
0-dB attenuation  
10-dB attenuation  
20-dB attenuation  
0-dB attenuation  
10-dB attenuation  
42  
40  
40  
20-dB attenuation  
0-dB attenuation  
10-dB attenuation  
20-dB attenuation  
0-dB attenuation  
10-dB attenuation  
20-dB attenuation  
TX current , PA enabled. PLL, VCO, dividers,  
mA  
reference, and data clock active  
The TX current consumption is dependent upon the external PA matching circuit. The matching network is normally designed to achieve the  
highest output power at the 0-dB attenuation setting. Changing the external matching components to optimize the output power for other  
attenuation settings alters the typical current consumption from the typical values noted.  
digital interface  
PARAMETER  
High-level input voltage  
TEST CONDITIONS  
MIN  
−0.4  
TYP MAX  
UNIT  
V
V
V
V
V
V
V
V
DD  
0.4  
IH  
DD  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
Digital input leakage current  
0
V
IL  
I
I
= 0.5 mA  
= 0.5 mA  
−0.4  
DD  
V
OH  
OL  
OH  
0.4  
V
OL  
<0.01  
µA  
VCO/output divider  
PARAMETER  
TEST CONDITIONS  
Low-side injection, A<1:0> = 11  
High-side injection, A<1:0> = 10  
High-side injection, A<1:0> = 01  
Low-side injection, A<1:0> = 01  
Frequency offset = 50 kHz  
MIN  
304  
430  
868  
902  
TYP  
MAX  
316  
450  
870  
928  
UNIT  
MHz  
MHz  
MHz  
MHz  
Frequency range: 315-MHz band  
Frequency range: 433-MHz band  
Frequency range: 868-MHz band  
Frequency range: 915-MHz band  
315  
433  
869  
915  
77  
90  
Closed loop phase noise  
Tuning voltage  
dBc/Hz  
V
Frequency offset = 200 kHz  
VCC at  
terminal 11  
0.1  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ  
ꢎꢏ  
ꢋꢀ  
ꢇꢑ  
SWRS023B − MAY 2004 − REVISED MARCH 2005  
ac electrical characteristics, V  
impedances and loads  
= 2.7 V, T = 25°C (continued)  
CC  
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PA_OUT  
See Figure 6  
transmitter (XTAL, PLL, VCO, and PA), 315-MHz band  
PARAMETER  
TEST CONDITIONS  
A<1:0> = 11  
0-dB attenuation  
MIN  
TYP  
315  
8
MAX  
UNIT  
TX frequency range  
304  
316  
MHz  
10-dB attenuation  
20-dB attenuation  
Disabled, B<3> = 0  
−2  
Output power  
dBm  
12  
80  
−25  
−30  
Second harmonic  
Third harmonic  
dBc  
dBc  
DCLK active: E<15> = 1,  
E<12:11> = 01  
w
DCLK spurious at f  
f
−28  
dBc  
C
DCLK  
Frequency deviation  
FSK  
32  
75  
64  
kHz  
dB  
Power ON-OFF ratio  
OOK, 0-dB mode  
FSK  
Maximum data rate (NRZ)  
kbit/s  
OOK  
32  
§
Matched to 50 using external matching network.  
Dependent upon external circuitry.  
This spur is only present if DCLK is active. The resulting spur is within modulation (OOK or FSK) bandwidth and is considered a modulation  
product. Within the authorized bands, this spur does not violate FCC or ETSI regulatory compliance.  
transmitter (XTAL, PLL, VCO, and PA), 433-MHz band  
PARAMETER  
TEST CONDITIONS  
A<1:0> = 10  
0-dB attenuation  
MIN  
TYP  
433  
8
MAX  
UNIT  
TX frequency range  
430  
450  
MHz  
10-dB attenuation  
20-dB attenuation  
Disabled, B<3> = 0  
−2  
Output power  
dBm  
−12  
80  
−25  
−30  
Second harmonic  
Third harmonic  
dBc  
dBc  
DCLK active: E<15> = 1,  
E<12:11> = 01  
w
DCLK spurious at f  
f
−28  
dBc  
C
DCLK  
Frequency deviation  
FSK  
32  
75  
64  
kHz  
dB  
Power ON-OFF ratio  
OOK, 0-dB mode  
FSK  
Maximum data rate (NRZ)  
kbit/s  
OOK  
32  
§
Matched to 50 using external matching network.  
Dependent upon external circuitry.  
This spur is only present if DCLK is active. The resulting spur is within modulation (OOK or FSK) bandwidth and is considered a modulation  
product. Within the authorized bands, this spur does not violate FCC or ETSI regulatory compliance.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆ  
ꢇꢈ ꢉꢊ ꢋ ꢌꢍꢎꢏꢈ ꢐ ꢑ ꢒꢋꢀ ꢈꢓꢔ ꢉꢕ ꢁꢂ ꢀ ꢁꢔꢉꢇ ꢑ ꢈꢀ ꢀꢌ ꢁ  
SWRS023B − MAY 2004 − REVISED MARCH 2005  
ac electrical characteristics, V  
= 2.7 V, T = 25°C (continued)  
A
CC  
transmitter (XTAL, PLL, VCO, and PA), 868-MHz band  
PARAMETER  
TEST CONDITIONS  
A<1:0> = 11  
0-dB attenuation  
MIN  
TYP  
869  
8
MAX  
UNIT  
TX frequency range  
868  
870  
MHz  
10-dB attenuation  
20-dB attenuation  
Disabled, B<3> = 0  
−2  
Output power  
dBm  
12  
80  
−25  
−30  
Second harmonic  
Third harmonic  
dBc  
dBc  
DCLK active: E<15> = 1,  
E<12:11> = 01  
w
DCLK spurious at f  
f
−28  
dBc  
C
DCLK  
Frequency deviation  
FSK  
32  
75  
kHz  
dB  
Power ON-OFF ratio  
OOK, 0-dB mode  
FSK  
64  
Maximum data rate (NRZ)  
kbit/s  
OOK  
32  
§
Matched to 50 using external matching network.  
Dependent upon external circuitry.  
This spur is only present if DCLK is active. The resulting spur is within modulation (OOK or FSK) bandwidth and is considered a modulation  
product. Within the authorized bands, this spur does not violate FCC or ETSI regulatory compliance.  
transmitter (XTAL, PLL, VCO, and PA), 915-MHz band  
PARAMETER  
TEST CONDITIONS  
A<1:0> = 11  
0-dB attenuation  
MIN  
TYP  
915  
8
MAX  
UNIT  
TX frequency range  
902  
928  
MHz  
10-dB attenuation  
20-dB attenuation  
Disabled, B<3> = 0  
−2  
Output power  
dBm  
12  
80  
−25  
−30  
Second harmonic  
Third harmonic  
dBc  
dBc  
DCLK active: E<15> = 1,  
E<12:11> = 01  
w
DCLK spurious at f  
f
−28  
dBc  
C
DCLK  
Frequency deviation  
FSK  
32  
75  
kHz  
dB  
Power ON-OFF ratio  
OOK, 0-dB mode  
FSK  
64  
Maximum data rate (NRZ)  
kbit/s  
OOK  
32  
§
Matched to 50 using external matching network.  
Dependent upon external circuitry.  
This spur is only present if DCLK is active. The resulting spur is within modulation (OOK or FSK) bandwidth and is considered a modulation  
product. Within the authorized bands, this spur does not violate FCC or ETSI regulatory compliance.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ  
ꢎꢏ  
ꢋꢀ  
ꢇꢑ  
SWRS023B − MAY 2004 − REVISED MARCH 2005  
ac electrical characteristics, V  
= 2.7 V, T = 25°C (continued)  
CC  
A
XTAL  
PARAMETER  
Frequency range  
TEST CONDITIONS  
MIN  
TYP  
TYP  
MAX  
UNIT  
9.5  
20  
MHz  
brownout detector  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
V
Voltage threshold, V  
Voltage steps (V)  
Number of steps  
Output level  
Set by B<2:1>  
2.2  
2.8  
det  
200  
4
mV  
Connected to typical input port of microcontroller  
CMOS  
timing data for serial interface  
PARAMETER  
Clock frequency  
MIN  
TYP  
MAX  
UNIT  
MHz  
ns  
f
t
t
t
t
t
t
t
20  
(CLOCK)  
w(CLKHI)  
w(CLKLO)  
su(D)  
Clock high-time pulse width, clock high  
Clock low-time pulse width, clock low  
20  
20  
0
ns  
Setup time, data valid before CLOCK↑  
Hold time, data valid after CLOCK ↑  
ns  
10  
20  
20  
20  
ns  
h(D)  
Delay time of CLOCK low before STROBE high  
STROBE high-time pulse width, STROBE high  
STROBE low-time pulse width, STROBE low  
ns  
d(CLKLO)  
w(STROBEHI)  
w(STROBELO)  
ns  
ns  
Data  
Data  
Change  
Valid  
−V  
H
MSB  
MSB  
LSB  
DATA  
−V  
L
Start of  
t
t
t
w(CLKHI)  
Next Word  
su(D)  
h(D)  
t
d(CLKLO)  
t
−V  
CLOCK  
H
−V  
L
w(STROBEHI)  
t
w(CLKLO)  
t
w(STROBELOW)  
t
r
t
STROBE  
f
−V  
H
Clock Disabled  
−V  
L
Shift in Data  
Clock Enabled  
Note: Most significant bit (MSB) clocked in first to the synthesizer.  
Store Data  
Strobe Enabled  
Figure 2. Timing Data for Serial Interface  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆ  
ꢇꢈ ꢉꢊ ꢋ ꢌꢍꢎꢏꢈ ꢐ ꢑ ꢒꢋꢀ ꢈꢓꢔ ꢉꢕ ꢁꢂ ꢀ ꢁꢔꢉꢇ ꢑ ꢈꢀ ꢀꢌ ꢁ  
SWRS023B − MAY 2004 − REVISED MARCH 2005  
timing data for DCLK and TX_DATA  
PARAMETER  
MIN  
100  
100  
TYP  
MAX  
UNIT  
ns  
t
t
Setup time, TX_DATA valid before DCLK ↑  
Hold time, TX_DATA valid after DCLK ↑  
su(TX)  
ns  
h(TX)  
Transmit  
t
t
h(TX)  
su(TX)  
TX_DATA  
Input  
DCLK  
Output  
1
T
SK  
=
f
c
NOTE: TX_DATA is latched at the rising edge of DCLK.  
Figure 3. Timing Data for DCLK and TX_DATA  
If transmit capture mode is selected (by setting bit 15 in word E), the data transitions (high-to-low or low-to-high)  
on the TXDATA pin is timed to coincide with the falling edge of DCLK. Any microcontroller using the TRF6903  
can then latch TXDATA on the rising edge of DCLK. For more details, see the data clock section.  
detailed description  
bit synchronizer and data clock  
When enabled, the integrated bit synchronizer and data clock circuitry provide as an output at terminal 16,  
DET_LD_DCLK, a data clock based on a programmable bit rate. The bit rate is programmable via variables D1,  
D2, and D3 and is always relative to the master clock (XTAL) frequency, F . Table 1 shows common bit rates  
x
(kbps) vs selected crystal frequencies (MHz) and the respective settings of D1, D2, and D3.  
The preprogrammed bit rate can be calculated based on the following equation:  
F
crystal frequency (kHz)  
x
Bit rate (kbps) +  
+
+ f (kHz)  
c
D1   D2   D3  
D1   D2   D3  
where:  
D1 = 1, 5, 6, or 8  
D2 = 1, 2, 4, 8, 16, 32, 64, or 128  
D3 = 15 or 16  
The data clock circuit is designed to reset/clear internally with no user action required.  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ  
ꢇ ꢈꢉ ꢊꢋ ꢌꢍ ꢎꢏ ꢈ ꢐ ꢑ ꢒꢋꢀꢈ ꢓ ꢔꢉ ꢕ ꢁꢂ ꢀꢁ ꢔꢉ ꢇꢑ ꢈꢀ ꢀ ꢌꢁ  
SWRS023B − MAY 2004 − REVISED MARCH 2005  
detailed description (continued)  
Table 1. Common Bit Rates, Corresponding Crystal Frequencies, and Values of D1, D2, and D3  
D1, D2, AND D3 MULTIPLIERS FOR COMMON CRYSTAL VALUES (CRYSTAL FREQUENCIES IN MHZ)  
BIT RATE  
(kbps)  
9.8304  
12.288  
14.7456  
15.72864  
8x128x15  
8x64x15  
8x32x15  
8x16x15  
8x8x15  
16.384  
19.6608  
0.6  
0.9  
8x128x16  
8x128x16  
1
6x128x16  
5x128x16  
6x64x16  
5x64x16  
6x32x16  
5x32x16  
6x16x16  
5x16x16  
6x8x16  
8x128x16  
1.024  
1.2  
5x128x15  
8x64x16  
6x128x16  
8x64x16  
8x128x16  
1.8  
2
8x64x16  
8x32x16  
8x16x16  
8x8x16  
8x4x16  
8x2x16  
8x1x16  
2.048  
2.4  
5x64x15  
8x32x16  
5x128x15  
8x64x16  
6x64x16  
8x32x16  
3.6  
4
4.096  
4.8  
5x32x15  
8x16x16  
5x64x15  
8x32x16  
6x32x16  
8x16x16  
7.2  
8
8.192  
9.6  
5x16x15  
8x8x16  
5x32x15  
8x16x16  
6x16x16  
8x8x16  
14.4  
16  
16.384  
19.2  
28.8  
32  
5x8x15  
8x4x16  
5x16x15  
8x8x16  
5x8x16  
6x8x16  
8x4x16  
6x4x16  
32.768  
38.4  
57.6  
64  
5x4x15  
8x2x16  
8x4x15  
5x8x15  
8x4x16  
5x4x16  
6x4 x16  
8x2x16  
6x2x16  
65.536  
76.8  
115.2  
128  
5x2x15  
8x1x16  
8x2x15  
5x4x15  
8x2x16  
5x2x16  
6x2x16  
8x1x16  
6x1x16  
main divider  
The main divider is composed of a 5-bit A-counter and a 9-bit B-counter and a prescaler. The A-counter controls  
the divider ratio of the prescaler, which divides the VCO signal by either 33 or 32. The prescaler divides by 33  
until the A-counter reaches its terminal count and then divides by 32 until the B-counter reaches terminal count,  
whereupon both counters reset and the cycle repeats. The total divide-by-N operation is related to the 32/33  
prescaler by:  
N
= 33 x A + 32 x (B – A)  
TOTAL  
where 0 A 31 and 31 B 511 or, N  
= A + 32B  
TOTAL  
Thus, the N-divider has a range of 992 N  
16383  
TOTAL  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆ  
ꢇꢈ ꢉꢊ ꢋ ꢌꢍꢎꢏꢈ ꢐ ꢑ ꢒꢋꢀ ꢈꢓꢔ ꢉꢕ ꢁꢂ ꢀ ꢁꢔꢉꢇ ꢑ ꢈꢀ ꢀꢌ ꢁ  
SWRS023B − MAY 2004 − REVISED MARCH 2005  
detailed description (continued)  
PLL  
The phase-locked loop is the radio frequency synthesizer for the TRF4903. It is used to generate the transmit  
signal and as the local oscillator for the receive mixer. The signal (F ) from a reference crystal oscillator (XO)  
X
is divided by an integer factor R down to F . The minimum frequency resolution, and thus, the minimum channel  
R
spacing, is F .  
R
F = F ÷ R where 1 R 256  
R
X
The phase-locked loop is an integer-N design. The voltage-controlled oscillator (VCO) signal is divided by an  
integer factor N to get a frequency at the phase detector input.  
F
= F  
÷ N  
VCO  
PD  
The phase detector compares the divided VCO signal to the divided crystal frequency and implements an error  
signal from two charge pumps. The error signal corrects the VCO output to the desired frequency.  
As is in any integer-N PLLs, the VCO output has spurs at integer multiples of the reference frequency (nF ).  
R
In applications requiring contiguous frequency channels, the reference frequency is often chosen to be equal  
to the channel spacing, thus, channel spacing = F = F ÷ R. When enabled and when the PLL is locked, the  
R
X
DET_LD_DCLK terminal is high.  
With the addition of an output divider for multiband operation, the actual output frequency, F , is given by:  
out  
F
F
VCO  
P
A ) 32B  
X
N
P
N
P
F
+
+
 
+ F  
 
+
  F  
out  
R
R
R
P
where F = F  
under locked conditions. The actual minimum channel spacing is:  
R
PD  
F
F
B R  
R
X
+
P
P
where P = 1, 2, 3 and is set by A<1:0>.  
oscillator circuit and reference divider  
The reference divider reduces the frequency of the external crystal (F ) by an 8-bit programmable integer  
X
divisor, R, to an internal reference frequency (F ) used for the phase-locked loop. The choice of internal  
R
reference frequency also has implications for lock time, maximum data rate, noise floor, and loop-filter design.  
The crystal frequency can be tuned using the F word to control internal trimming capacitors, which are placed  
in parallel with the crystal. These offset a small frequency error in the crystal. In an FSK application, an additional  
capacitor is placed in parallel (through terminal 19) with the external capacitor that is connected in series with  
the crystal, thus, changing the load capacitance as the transmit data switch (TX_DATA, terminal 1) is toggled.  
The change in load capacitance pulls the crystal off-frequency by the total frequency deviation.  
Hence, the 2-FSK frequency, set by the level of TX_DATA and the external capacitor, can be represented as  
follows:  
ƒ
+ TX_DATA Low (XTAL switch closed) ƒ  
+ TX_DATA High (XTAL switch open)  
out1  
out2  
Note that the frequencies ƒ  
and ƒ  
are centered about the frequency ƒ  
= (ƒ  
+ ƒ  
)/2. When  
out1  
out2  
center  
out1  
out2  
transmitting FSK, ƒ  
is considered to be the effective carrier frequency and any receiver local oscillator (LO)  
center  
should be set to the same ƒ  
frequency the receiver’s IF frequency (ƒ ) for proper reception and  
center  
IF  
demodulation.  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ  
ꢇ ꢈꢉ ꢊꢋ ꢌꢍ ꢎꢏ ꢈ ꢐ ꢑ ꢒꢋꢀꢈ ꢓ ꢔꢉ ꢕ ꢁꢂ ꢀꢁ ꢔꢉ ꢇꢑ ꢈꢀ ꢀ ꢌꢁ  
SWRS023B − MAY 2004 − REVISED MARCH 2005  
oscillator circuit and reference divider (continued)  
For the case of high-side injection, the receiver LO would be set to ƒ = ƒ  
+ ƒ . Using high-side injection,  
LO  
center  
IF  
the received data would be inverted from the transmitted data applied at terminal 1, TX_DATA. Conversely, for  
low-side injection, the receiver LO would be set to ƒ = ƒ  
ƒ . Using low-side injection, the received data  
LO  
center  
IF  
would be the same as the transmitted data.  
20  
V
CC  
÷R  
Reference  
Divider  
2...255  
Crystal  
Oscillator  
Circuit  
F
F
19  
R
Phase-  
Frequency  
Detector  
External  
Loop  
Filter  
14  
12  
F
x
PD  
External Crystal  
VCO  
External Cap  
for FSK  
Charge Pumps  
÷N  
Main Divider  
A, B Counters  
32/33  
Output  
Divider  
P = 1, 2, 3  
Fvco  
992 N 16383  
F
out  
Figure 4. TRF4903 PLL and Output Divider  
phase detector and charge pumps  
The phase detector is a phase-frequency design. The phase-frequency detector gain is given by:  
K = I /2π  
P
(CP)  
where, I  
is the peak charge pump current. The peak charge pump current is programmable with A<3:2> in  
(CP)  
three steps: 250 µA, 500 µA, and 1000 µA.  
loop filter  
The loop filter must be carefully chosen for proper operation of the TRF4903. The loop filter is typically a second-  
or third-order passive design, and in FSK operation should have a bandwidth wide enough to allow the PLL to  
relock quickly as the external crystal frequency is pulled off-center during modulation. The loop filter should also  
be wider than the data modulation rate. These requirements should be balanced with making the loop narrow  
enough in consideration of the reference frequency. In OOK the VCO frequency is not changed during data  
modulation, so the filter bandwidth may be narrower than the modulation bandwidth. Filters can be calculated  
using standard formulas in reference literature. Some third-order filter examples are shown in Table 2.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆ  
ꢇꢈ ꢉꢊ ꢋ ꢌꢍꢎꢏꢈ ꢐ ꢑ ꢒꢋꢀ ꢈꢓꢔ ꢉꢕ ꢁꢂ ꢀ ꢁꢔꢉꢇ ꢑ ꢈꢀ ꢀꢌ ꢁ  
SWRS023B − MAY 2004 − REVISED MARCH 2005  
loop filter (continued)  
1
C3R3  
1
1 ) sC2R2  
F(s) +  
 
(
)
s C1 ) C2 ) sC1C2R2  
s )  
C3R3  
R3  
lcp  
14  
Vtune  
12  
C3  
VCO_TUNE  
VCO_VCC  
CP_OUT  
C1  
C2  
R2  
External-Loop Filter  
Figure 5. Third-Order Loop Filter and Transfer Function  
Table 2. Loop Filter Component Values For Various Data Rates at a Reference Frequency of 409.6 kHz,  
0.5-mA Charge Pump Current  
Manchester coding  
NRZ coding  
1.024  
2.048  
1.024  
47  
2.048  
4.096  
2.048  
12  
4.096  
8.192  
4.096  
2.7  
8.192  
16.384  
8.192  
0.68  
27  
16.384  
32.768  
16.384  
0.18  
6.8  
19.2  
38.4  
19.2  
0.12  
5.1  
32.768  
65.536  
32.768  
0.043  
1.8  
65.536  
131.072  
65.536  
0.01  
Bit rate − kbps  
Data rate − kHz  
Fundamental freq of BB  
C1, nF  
C2, nF  
1800  
27  
430  
100  
1.5  
0.47  
Loop filter component  
(selected to nearest  
standard value)  
C3, nF  
R2, kΩ  
R3, kΩ  
6.8  
0.39  
3
0.1  
0.075  
6.8  
0.027  
12  
0.0068  
24  
0.39  
0.75  
1.28  
0.75  
1.5  
1.5  
5.7  
3
5.7  
12  
15  
22  
47  
−3−dB bandwidth, kHz (approximate)  
2.56  
5.12  
10.24  
20.48  
24  
40.96  
81.92  
VCO  
The voltage-controlled oscillator (VCO) produces an RF output signal with a frequency that is dependent upon  
the dc-tuning voltage at terminal 12. The tank circuit is passive and has integrated varactor diodes and  
inductors. The open-loop VCO gain is approximately 100 MHz/V.  
A <1:0> is used to set the output divider ratio for operation within the 315-MHz, 433-MHz, 868-MHz, or 915-MHz  
bands.  
When the STDBY terminal is high, the reference, PLL, VCO, and dividers are powered up. When STDBY is low,  
these blocks are powered down.  
power amplifier  
The power amplifier has three programmable attenuation states as determined by A<7:6> and B<7:6>: full  
power (0-dB attenuation), 10-dB attenuation, and 20-dB attenuation. This adjustment feature allows the user  
to fine-tune the device for optimal output power. The power amplifier can be enabled/disabled during transmit  
by bit B<3>, PAED. During ASK or OOK operation, the TX_DATA signal turns the output stage of the power  
amplifier on and off according to the transmit data incident at terminal 1.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ  
ꢎꢏ  
ꢋꢀ  
ꢇꢑ  
SWRS023B − MAY 2004 − REVISED MARCH 2005  
power amplifier (continued)  
1  
U
CH1 S22  
1
0.5  
2
5
CAL  
OFS  
0
0.2  
0.5  
1
2
5
10  
CPL  
−5  
FIL  
1k  
−0.5  
−2  
−1  
START 300 MHz  
STOP 1000 MHz  
Figure 6. Typical PA Output Impedance (S22) at Device Terminal PA_OUT  
brownout detector  
The brownout detector provides an output voltage to indicate a low supply voltage. This may be used to signal  
the need to change transmit power to conserve battery life, or for system power down. The brownout detector  
threshold is set with the B word. Four different thresholds are available.  
serial control interface  
The TRF4903 is controlled through a serial interface; there are five 24-bit control words (A, B, C, D, E) which  
set the device state. The A and B words are almost identical, and provide configuration settings for two modes,  
designated 0 and 1, which are commonly used to configure the transmit states. Two transmit states can then  
be rapidly selected using MODE (terminal 2). The C word sets the reference dividers, the power amplifier bias,  
and contains various reset bits. The E word contains the bit-rate select, data clock control bits, and the power  
amplifier bias control registers. The D word is used to trim the external crystal frequency and tune the  
demodulator.  
The register address is the composite of bits 23, 22, 1, and 0 of the 24 bits written to the serial interface. For  
some words, certain bits of the address are don’t cares and are noted as XX. This flexible addressing scheme  
allows compatibility with the TRF6901/TRF6903 and because of this flexibility, the data length of each register  
varies from 15 bits to 22 bits.  
Normal (write) operation of the serial interface is to clock in 24 bits through the CLOCK and DATA terminals.  
DATA values are clocked into the 24-bit serial interface shift register on the rising edge of CLOCK. The 24-bit  
value is decoded and written into the appropriate data register on the rising edge of STROBE.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆ  
ꢇꢈ ꢉꢊ ꢋ ꢌꢍꢎꢏꢈ ꢐ ꢑ ꢒꢋꢀ ꢈꢓꢔ ꢉꢕ ꢁꢂ ꢀ ꢁꢔꢉꢇ ꢑ ꢈꢀ ꢀꢌ ꢁ  
SWRS023B − MAY 2004 − REVISED MARCH 2005  
PRINCIPLES OF OPERATION  
register description  
ꢀ ꢁ ꢀ ꢀ ꢀ ꢂ  
ꢊꢋ ꢌꢍ ꢎ ꢍ ꢍꢌꢏ ꢐ ꢐ  
ꢀ ꢃ  
ꢂ ꢄ  
ꢂ ꢅ  
ꢂ ꢆ  
ꢂ ꢇ  
ꢂ ꢈ  
ꢂꢉ  
ꢂꢁ  
ꢂꢀ  
ꢂꢂ  
ꢂꢃ  
ꢎꢍ ꢍ ꢌꢏ ꢐꢐ  
ꢑ ꢒ ꢓꢔ ꢎꢕꢖ ꢓꢗꢓ ꢍ ꢏ ꢌ ꢘꢋ ꢏ ꢙꢙꢓ ꢚꢓ ꢏ ꢔ ꢛ  
ꢜꢑ ꢋ ꢍꢏ ꢃ ꢝ  
ꢑ ꢒꢓ ꢔ ꢞ ꢕꢖꢓ ꢗꢓ ꢍꢏ ꢌ ꢘ ꢋꢏꢙꢙ ꢓ ꢚꢓꢏ ꢔꢛ ꢜꢑ ꢋꢍ ꢏ ꢃꢝ  
ꢑ ꢒꢓ ꢔ ꢞ ꢕꢖꢓ ꢗꢓ ꢍꢏ ꢌ ꢘ ꢋꢏꢙꢙ ꢓ ꢚꢓꢏ ꢔꢛ ꢜꢑ ꢋꢍ ꢏ ꢂꢝ  
ꢟ ꢎ ꢃ  
ꢟ ꢎ ꢂ  
ꢘ ꢟ ꢎ ꢚꢚꢠ  
ꢞꢡ ꢖ  
ꢑ ꢒ ꢓꢔ ꢎꢕꢖ ꢓꢗꢓ ꢍ ꢏ ꢌ ꢘꢋ ꢏ ꢙꢙꢓ ꢚꢓ ꢏ ꢔ ꢛ  
ꢜꢑ ꢋ ꢍꢏ ꢂ ꢝ  
ꢢꢣ ꢤ ꢥ  
ꢦ ꢦ ꢤ  
ꢖꢏ ꢛ ꢏ ꢚꢛ ꢋꢌ ꢖꢏ ꢛ ꢠ  
ꢨ ꢩꢌ ꢏ ꢐꢩꢋ ꢪ ꢍ ꢧꢔ ꢒ ꢫ ꢪꢏ  
ꢟꢎ ꢧꢖ  
ꢬꢏ ꢙ ꢏꢌ ꢏꢔ ꢚ ꢏ ꢖꢓ ꢗꢓ ꢍ ꢏ ꢌ ꢘꢋ ꢏ ꢙꢙꢓ ꢚꢓ ꢏ ꢔ ꢛ  
ꢬ ꢏꢐꢏ ꢌꢗꢏꢍ  
ꢞꢬ ꢎ  
ꢞꢬꢞ  
ꢞꢬ ꢘ ꢨ ꢭꢑ  
ꢑ ꢮꢭ  
ꢟꢢ ꢖ  
ꢌꢏ ꢐꢏ ꢛ  
ꢦ ꢦ ꢤꢭꢣ  
ꢭꢨꢎꢯ ꢰꢨꢱꢔ ꢏ  
NOTE: r = reserved. All reserved bits should be set low (0) during normal operation.  
NOTE: All bits indicated as 1 should be set high (1) during normal operation.  
NOTE: All bits indicated as 0 should be set low (0) during normal operation.  
ADDRESS LOCATION NO. OF  
BITS  
DESCRIPTION  
Main A divider coefficient (Mode 0)  
DEFAULT VALUE  
00xx  
00xx  
00xx  
00xx  
00xx  
00xx  
01xx  
01xx  
01xx  
01xx  
01xx  
01xx  
01xx  
01xx  
1000  
1001  
1001  
1001  
1001  
1001  
11x0  
11x0  
11x0  
21:17  
16:8  
7:6  
5
5
9
2
1
2
2
5
9
2
1
1
1
2
1
8
2
3
1
1
2
1
3
1
00000  
Main B divider coefficient (Mode 0)  
Controls the PA attenuation (Mode 0)  
Enables transmit path (Mode 0); set to 1  
Controls charge pump peak current  
Output divider coefficient; band select  
Main A divider coefficient (Mode 1)  
Main B divider coefficient (Mode 1)  
Controls the PA attenuation (Mode 1)  
Enables transmit path (Mode 1); set to 1  
Controls modulation scheme (FSK or OOK)  
Enables or disables the power amplifier  
Sets threshold for the brownout detector  
Enables brownout detector  
001110000  
10  
1
3:2  
1:0  
21:17  
16:8  
7:6  
5
00  
10  
00000  
001110000  
10  
1
4
0
3
0
2:1  
0
00  
0
21:14  
21:20  
19:17  
16  
Reference divider coefficient  
01000000  
Bit-rate divider D1  
11  
010  
0
Bit-rate divider D2  
Bit-rate divider D3  
15  
Transmit capture mode select  
0
12:11  
20  
Determines the function of terminal 16, DET_LD_DCLK  
00  
0
Controls the position of the XTAL switch during OOK operation  
Tunes the XTAL frequency by using an internal capacitor bank  
PFD reset  
18:16  
15  
000  
1
NOTE: x = don’t care  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ  
ꢇ ꢈꢉ ꢊꢋ ꢌꢍ ꢎꢏ ꢈ ꢐ ꢑ ꢒꢋꢀꢈ ꢓ ꢔꢉ ꢕ ꢁꢂ ꢀꢁ ꢔꢉ ꢇꢑ ꢈꢀ ꢀ ꢌꢁ  
SWRS023B − MAY 2004 − REVISED MARCH 2005  
PRINCIPLES OF OPERATION  
At power on/startup, all of the TRF4903 register contents are as per the default values.  
Address 00XX (A-Word)  
Word A is a 22-bit data register comprising five fields. The main A-divider coefficient (mode 0), A<21:17>, is  
the 5-bit divider ratio of the A counter when the MODE terminal is low. The main B-divider coefficient (mode  
0), A<16:8>, is the 9-bit value of the B counter when the MODE terminal is low. A <21:17> and A <16:8> are  
unsigned binary values. PA0, A<7:6>, is the 2-bit PA attenuation setting when the MODE terminal is low. CP  
Acc., A<3:2>, sets the charge pump current. BND, A<1:0>, sets the output divider, which in turn determines  
the band of operation.  
Terminal 2 (MODE) selects bits A<21:5> if low, or B<21:5> if high.  
Main divider A<21:17>: 5-bit value for divider ratio of the A counter  
Main divider A<16:8>: 9-bit value for divider ratio of the B counter  
PA attenuation A<7:6>: 2 bits for setting the PA attenuation  
A<7:6>  
PA ATTENUATION  
0 dB  
00  
01  
10  
11  
10 dB  
20 dB  
Not defined  
A<5>: 1-bit; set high  
A<3:2>: 2 bits for setting the charge pump current  
A<3:2>  
00  
CP CURRENT  
0.5 mA  
01  
1 mA  
10  
0.25 mA  
11  
Not defined  
A<1:0>: 2-bit value to set the output divider and thus select the band of operation.  
A<1:0>  
OUTPUT DIVIDER  
RATIO, P  
BAND OF  
OPERATION  
00  
01  
3
2
315 MHz  
433 MHz  
10  
11  
1
1
868 MHz or 915 MHz  
868 MHz or 915 MHz  
Bit A<4> is reserved and should be set to 0.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆ  
ꢇꢈ ꢉꢊ ꢋ ꢌꢍꢎꢏꢈ ꢐ ꢑ ꢒꢋꢀ ꢈꢓꢔ ꢉꢕ ꢁꢂ ꢀ ꢁꢔꢉꢇ ꢑ ꢈꢀ ꢀꢌ ꢁ  
SWRS023B − MAY 2004 − REVISED MARCH 2005  
PRINCIPLES OF OPERATION  
Address 01XX (B-Word)  
Word B is a 22-bit data register comprising seven fields. The main A-divider coefficient (mode 1), B<21:17>,  
is the 5-bit divider ratio of the A counter when the MODE terminal is high. The main B-divider coefficient  
(mode 1), B<16:8>, is the 9-bit value of the B counter when the MODE terminal is high. B<21:17> and  
B<16:8> are unsigned binary values. PA1, B<7:6>, is the 2-bit PA attenuation setting when the MODE  
terminal is high. FSK/OOK, B<4>, sets the modulation scheme for TX. Bit B<3> enables/disables the power  
amplifier while in transmit mode. The detector threshold, B<2:1>, is the 2-bit setting for the threshold voltage  
of the brownout detector. Det. Enable, B<0>, is the brownout detector enable flag.  
Terminal 21 (MODE) selects bits A<21:5> if low, or B<21:5> if high.  
Main divider B<21:17>: 5-bit value for divider ratio of the A-counter  
Main divider B<16:8>: 9-bit value for divider ratio of the B-counter  
PA attenuation B<7:6>: 2 bits for setting the PA attenuation  
B<7:6>  
PA ATTENUATION  
0 dB  
00  
01  
10  
11  
10 dB  
20 dB  
Not defined  
B<5>: 1-bit; set high  
B<4> 1-bit modulation select  
B<4>  
TX MODULATION  
0
1
OOK  
FSK  
B<3>: 1-bit PA enable/disable  
B<3>  
PA ENABLE/DISABLE  
PA disabled  
0
1
PA enabled  
B<2:1>: 2-bit value to set the threshold voltage for the brownout detector  
B<2:1>  
THRESHOLD VOLTAGE  
00  
01  
10  
11  
2.2 V  
2.4 V  
2.6 V  
2.8 V  
B<0>: 1 bit to enable brownout detector  
B<0>  
BROWNOUT DETECTOR  
0
1
Off  
On  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ  
ꢇ ꢈꢉ ꢊꢋ ꢌꢍ ꢎꢏ ꢈ ꢐ ꢑ ꢒꢋꢀꢈ ꢓ ꢔꢉ ꢕ ꢁꢂ ꢀꢁ ꢔꢉ ꢇꢑ ꢈꢀ ꢀ ꢌꢁ  
SWRS023B − MAY 2004 − REVISED MARCH 2005  
PRINCIPLES OF OPERATION  
Address 1000 (C-Word)  
Word C is a 20-bit data register comprising four fields. The reference divider coefficient, C<21:14>, is the  
8-bit divider ratio of the reference divider. The allowable reference divider range is 2 (C <21:14> =  
00000010) through 255 (C <21:14> = 11111111).  
Reference divider C <21:14>: 8-bit value for divider ratio of reference divider. C<21:14> is an unsigned  
binary value.  
Bits C<13> through C<2> are reserved and should be set to 0.  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆ  
ꢇꢈ ꢉꢊ ꢋ ꢌꢍꢎꢏꢈ ꢐ ꢑ ꢒꢋꢀ ꢈꢓꢔ ꢉꢕ ꢁꢂ ꢀ ꢁꢔꢉꢇ ꢑ ꢈꢀ ꢀꢌ ꢁ  
SWRS023B − MAY 2004 − REVISED MARCH 2005  
PRINCIPLES OF OPERATION  
Address 1001 (E-Word)  
Word E is a 20-bit data register comprising five fields. The bit rate or bit frequency, used by the transmit  
synchronous mode is controlled by the BRA, E<21:20>, BRB, E<19:17>, and BRC, E<16>, fields. These  
three fields control a sequence of dividers, D1 through D3, that divide the reference (crystal) frequency, F .  
X
E<21:20>: 2 bits to set D1 divider setting  
E<21:20>  
D1  
1
00  
01  
10  
11  
5
6
8
E<19:17>: 3 bits to set D2 divider setting  
E<19:17>  
000  
D2  
1
001  
2
010  
4
011  
8
100  
101  
110  
111  
16  
32  
64  
128  
E<16>: 1 bit to set D3 divider setting  
E<16>  
D3  
0
1
16  
15  
TXM, E<15>, sets the transmit capture mode. If TXM is low, the TX_DATA terminal controls the transmit  
function asynchronously. If TXM is high and the bit-rate clock enabled, the bit-rate clock, DCLK, is output at  
the DET_LD_DCLK terminal and the transmit data at the TX_DATA terminal is latched on the rising edge of  
DCLK.  
E<12:11>: 2 bits to determine the function of terminal 16  
E<12:11>  
TERMINAL 16, DET_LD_DCLK, FUNCTION  
PLL lock detect output (default)  
Data clock output  
00  
01  
10  
11  
Brownout detect output  
Not used  
Bits E<14>, E<13> and E<10> through E<2> are reserved and should be set to 0.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ  
ꢇ ꢈꢉ ꢊꢋ ꢌꢍ ꢎꢏ ꢈ ꢐ ꢑ ꢒꢋꢀꢈ ꢓ ꢔꢉ ꢕ ꢁꢂ ꢀꢁ ꢔꢉ ꢇꢑ ꢈꢀ ꢀ ꢌꢁ  
SWRS023B − MAY 2004 − REVISED MARCH 2005  
PRINCIPLES OF OPERATION  
Address 11X0 (D-Word)  
Word D is a 21-bit data register comprising two fields. Bit D<20> controls the position of the XTAL switch  
during OOK operation. XTAL_Tune, D<18:16>, is used to fine tune the crystal frequency by using an internal  
capacitor bank. PFD reset, D<15>, selects the source of the PFD reset signal.  
D<20>: 1-bit value to control the position of the XTAL switch during OOK operation, when B<4>=0.  
D<20>  
XTAL SWITCH DURING  
OOK OPERATION  
TERMINAL 20  
0
1
Unconnected (open)  
Connected (closed)  
High-Z  
Shorted to ground externally  
It is recommended that D<20> be set to 0 during OOK operation.  
D<18:16>: 3-bit value to fine-tune the XTAL frequency by using an internal capacitor bank  
D<18:16>  
000  
TYPICAL LOAD CAPACITANCE  
13.23 pF  
22.57 pF  
17.9 pF  
001  
010  
011  
27.24 pF  
15.56 pF  
24.9 pF  
100  
101  
110  
20.23 pF  
29.57 pF  
111  
D<15>: 1-bit value to select the reset signal for the PFD  
D<15>  
RESET SIGNAL  
Derived from XTAL  
Derived from prescaler  
0
1
NOTE: The default setting for D<15> is 1.  
Bits D<21>, D<19>, and D<12> through D<1> are reserved and should be set to 0.  
operating modes  
Controlled with terminal 3, STDBY  
STDBY  
OPERATING MODE  
0
1
Power down of all blocks—programming mode  
Operational mode and programming mode  
Controlled with terminal 2, MODE  
MODE  
OPERATING MODE  
Enable A-word  
Enable B-word  
0
1
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆ  
ꢇꢈ ꢉꢊ ꢋ ꢌꢍꢎꢏꢈ ꢐ ꢑ ꢒꢋꢀ ꢈꢓꢔ ꢉꢕ ꢁꢂ ꢀ ꢁꢔꢉꢇ ꢑ ꢈꢀ ꢀꢌ ꢁ  
SWRS023B − MAY 2004 − REVISED MARCH 2005  
operating modes (continued)  
The transmit mode is controlled by the A<5>, B<5>, and B<3> fields and the MODE and STDBY terminals.  
A<5>  
B<5>  
B<3>  
MODE  
STDBY  
OPERATING MODE  
X
1
X
X
X
1
X
0
1
0
1
X
0
0
1
1
0
1
1
1
1
Off, programming mode; SPI enabled  
Transmit mode 0, PA disabled; reference, PLL, VCO, and dividers enabled  
Transmit mode 0, PA enabled; reference, PLL, VCO, and dividers enabled  
Transmit mode 1, PA disabled; reference, PLL, VCO, and dividers enabled  
Transmit mode 1, PA enabled; reference, PLL, VCO, and dividers enabled  
1
X
X
1
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ  
ꢇ ꢈꢉ ꢊꢋ ꢌꢍ ꢎꢏ ꢈ ꢐ ꢑ ꢒꢋꢀꢈ ꢓ ꢔꢉ ꢕ ꢁꢂ ꢀꢁ ꢔꢉ ꢇꢑ ꢈꢀ ꢀ ꢌꢁ  
SWRS023B − MAY 2004 − REVISED MARCH 2005  
APPLICATION INFORMATION  
24  
23  
1
TX_DATA  
CLOCK  
U1  
TRF4903  
2
MODE  
DATA  
3
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
STDBY  
STROBE  
PA_OUT  
TX_OUT  
C1  
L2  
4
PA  
C3  
R1  
100 W  
5
6
XTAL_SW  
XTAL  
L1  
Reference  
Generator  
C6  
(See Note B)  
PA_VCC2  
PA_VCC1  
XTAL 1  
C5  
C7  
C4  
7
Brownout  
Detector  
Crystek  
017119  
8
VCO_VCC  
DVDD  
Bit  
Synchronizer  
and  
9
10  
11  
MUX  
1, 2, 3  
Divider  
DET_LD_DCLK  
Data Clock  
C8  
0.1 mF  
PA_VCC1  
VCC  
CP_OUT  
C11  
C10  
PA_VCC2  
10 mF  
0.1 mF  
100 pF  
C9  
12  
PLL  
VCO  
VCO_VCC  
CP_VCC  
DVDD  
CP_VCC  
C15  
C13  
C14  
R2  
0.1 mF  
C12  
VCO_VCC  
R3  
C16  
0.1 mF  
Component Selection for Band of Operation  
433 MHz 868 MHz  
Component Component  
315 MHz  
915 MHz  
Component  
Value  
390 pF  
5.1 pF  
390 pF  
390 pF  
560 nH  
75 nH  
Value  
270 pF  
4.7 pF  
270 pF  
270 pF  
470 nH  
43 nH  
Value  
43 pF  
1.5 pF  
39 pF  
39 pF  
330 nH  
18 nH  
Component  
Value  
43 pF  
C1  
C3  
C4  
C5  
L1  
L2  
C1  
C3  
C4  
C5  
L1  
L2  
C1  
C3  
C4  
C5  
L1  
L2  
C1  
C3  
C4  
C5  
L1  
L2  
1.5 pF  
33 pF  
33 pF  
270 nH  
15 nH  
TX PA  
Matching  
Network  
C12  
C13  
C15  
R2  
5600 pF  
120 pF  
75 pF  
C12  
C13  
C15  
R2  
5600 pF  
120 pF  
75 pF  
C12  
C13  
C15  
R2  
5600 pF  
120 pF  
75 pF  
C12  
C13  
C15  
R2  
5600 pF  
120 pF  
75 pF  
PLL Loop  
Filter  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
R3  
7.5 kΩ  
R3  
7.5 kΩ  
R3  
7.5 kΩ  
R3  
7.5 kΩ  
C6  
C7  
27 pF  
C6  
C7  
27 pF  
C6  
C7  
27 pF  
20 pF  
C6  
C7  
27 pF  
22 pF  
XTAL Switch  
Capacitors  
5.6 pF  
9.1 pF  
Figure 7. Typical TRF4903 FSK Application Schematic  
NOTES: A. Loop filter components selected for 19.2-kbps Manchester or 38.4-kbps NRZ for each band. I  
Reference Frequency = 409.6 kHz  
= 0.5 mA,  
CP  
B. R1 = 100 is optional for operation in the 868-MHz and 915-MHz bands.  
C. XTAL switch capacitors selected for the frequency deviation of 50 kHz.  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆ  
ꢇꢈ ꢉꢊ ꢋ ꢌꢍꢎꢏꢈ ꢐ ꢑ ꢒꢋꢀ ꢈꢓꢔ ꢉꢕ ꢁꢂ ꢀ ꢁꢔꢉꢇ ꢑ ꢈꢀ ꢀꢌ ꢁ  
SWRS023B − MAY 2004 − REVISED MARCH 2005  
APPLICATION INFORMATION  
24  
1
TX_DATA  
CLOCK  
U1  
TRF4903  
23  
2
MODE  
DATA  
3
22  
STDBY  
STROBE  
PA_OUT  
TX_OUT  
C1  
L2  
4
21  
PA  
C3  
5
6
20  
19  
18  
17  
16  
15  
14  
13  
XTAL_SW  
XTAL  
L1  
C6  
27 pF  
Reference  
Generator  
PA_VCC2  
PA_VCC1  
XTAL 1  
C5  
C4  
7
Brownout  
Detector  
Crystek  
017119  
8
VCO_VCC  
DVDD  
Bit  
Synchronizer  
and  
9
10  
11  
MUX  
1, 2, 3  
Divider  
DET_LD_DCLK  
Data Clock  
C8  
0.1 mF  
PA_VCC1  
VCC  
CP_OUT  
C11  
10 mF  
C10  
0.1 mF  
PA_VCC2  
100 pF  
C9  
12  
PLL  
VCO  
VCO_VCC  
CP_VCC  
DVDD  
CP_VCC  
C15  
C13  
C14  
R2  
0.1 mF  
C12  
VCO_VCC  
R3  
C16  
0.1 mF  
Component Selection for Band of Operation  
433 MHz 868 MHz  
Component Component  
315 MHz  
915 MHz  
Component  
Value  
390 pF  
5.1 pF  
390 pF  
390 pF  
560 nH  
75 nH  
Value  
270 pF  
4.7 pF  
270 pF  
270 pF  
470 nH  
43 nH  
Value  
43 pF  
1.5 pF  
39 pF  
39 pF  
330 nH  
18 nH  
Component  
Value  
43 pF  
C1  
C3  
C4  
C5  
L1  
L2  
C1  
C3  
C4  
C5  
L1  
L2  
C1  
C3  
C4  
C5  
L1  
L2  
C1  
C3  
C4  
C5  
L1  
L2  
1.5 pF  
33 pF  
33 pF  
270 nH  
15 nH  
TX PA  
Matching  
Network  
C12  
C13  
C15  
R2  
5600 pF  
120 pF  
75 pF  
C12  
C13  
C15  
R2  
5600 pF  
120 pF  
75 pF  
C12  
C13  
C15  
R2  
5600 pF  
120 pF  
75 pF  
C12  
C13  
C15  
R2  
5600 pF  
120 pF  
75 pF  
PLL Loop  
Filter  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
R3  
7.5 kΩ  
R3  
7.5 kΩ  
R3  
7.5 kΩ  
R3  
7.5 kΩ  
Figure 8. Typical TRF4903 OOK Application Schematic  
NOTE: Loop filter components selected for 19.2 kbps Manchester or 38.4 kbps NRZ for each band. I  
Reference Frequency = 409.6 kHz  
= 0.5 mA,  
CP  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
TRF4903PW  
TRF4903PWG4  
TRF4903PWR  
TRF4903PWRG4  
NRND  
NRND  
NRND  
NRND  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
24  
24  
24  
24  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
TRF4903  
PW  
PW  
TRF4903  
PW  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4)  
Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES  
Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,  
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are  
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you  
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of  
this Notice.  
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI  
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,  
enhancements, improvements and other changes to its TI Resources.  
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your  
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications  
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You  
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)  
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that  
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you  
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any  
testing other than that specifically described in the published documentation for a particular TI Resource.  
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include  
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO  
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY  
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or  
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR  
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO  
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF  
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL  
PROPERTY RIGHTS.  
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT  
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF  
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,  
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR  
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE  
POSSIBILITY OF SUCH DAMAGES.  
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-  
compliance with the terms and provisions of this Notice.  
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.  
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation  
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2017, Texas Instruments Incorporated  

相关型号:

TRF4903_13

SINGLE-CHIP MULTIBAND RF TRANSMITTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TRF5001GQE

RECEIVER|BICMOS|BGA|80PIN|PLASTIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TRF5901

SINGLE-CHIP RF TRANSCEIVER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TRF5901PT

Single-Chip RF Transceiver 48-LQFP -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TRF600-150

PolySwitch™ Resettable Device Short Form Catalog

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TE

TRF600-150-2

PolySwitch Resettable Devices Telecommunications & Networking Devices

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TE

TRF600-150-B-0.5

PolySwitch®PTC Devices

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TE

TRF600-150-B-0.5-2

PolySwitch®PTC Devices

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TE

TRF600-150-RB

PolySwitch Resettable Devices Telecommunications & Networking Devices

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TE

TRF600-150-RB-2

Overcurrent Protection Device

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TE

TRF600-150-RB-B-0.5

PTC Resettable Fuse, Through Hole Mount, RADIAL LEADED, ROHS COMPLIANT

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
LITTELFUSE

TRF600-150S

PTC Thermistor, Through Hole Mount, RADIAL LEADED, ROHS COMPLIANT

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
LITTELFUSE