TS3DDR4000 [TI]

3.3V、2:1 (SPDT)、12 通道 DDR2、DDR3 和 DDR4 开关;
TS3DDR4000
型号: TS3DDR4000
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3.3V、2:1 (SPDT)、12 通道 DDR2、DDR3 和 DDR4 开关

开关 双倍数据速率 光电二极管
文件: 总24页 (文件大小:1050K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TS3DDR4000  
ZHCSDL6C NOVEMBER 2014REVISED MARCH 2019  
TS3DDR4000 12 1:2 高速 DDR2/DDR3/DDR4 开关/多路复用器  
1 特性  
3 说明  
1
VDD 范围:2.375V 3.6V  
TS3DDR4000 是一款 1:2 2:1 高速  
DDR2/DDR3/DDR4 开关,可实现 12 位宽总线切换。  
该器件可针对所有位同时将 A 端口切换为 B C 端  
口。TS3DDR4000 设计用于 DDR2DDR3 DDR4  
存储器总线系统,并且采用一种专有架构,可提供高带  
宽(单端 5.6GHz 下的带宽为 -3dB)、低频下的低插  
入损耗以及超低传播延迟等诸多优势。TS3DDR4000  
兼容 1.8V 逻辑,并且所有开关均为双向开关,提高了  
设计灵活性。此外,TS3DDR4000 还具有低功耗模  
式。在此模式下,所有通道均呈高阻态且器件功耗最  
低。  
高带宽:5.6GHz(单端典型值);6.0GHz(差分  
典型值)  
低开关导通电阻 (RON)8(典型值)  
低位间偏差:3ps(典型值);所有通道的最大值  
6ps  
低串扰:1067MHz 下的典型值为 –34dB  
低工作电流:40μA(典型值)  
具有低功耗模式,电流消耗极低:2µA(典型值)  
IOFF保护防止断电状态 (VCC = 0V) 下的电流泄漏  
支持 POD_12SSTL_12SSTL_15 SSTL_18  
信令  
器件信息(1)  
静电放电 (ESD) 性能:  
器件型号  
封装  
封装尺寸(标称值)  
3kV 人体放电模式(A114BII 类)  
1kV 组件充电模式 (C101)  
TS3DDR4000  
NFBGA (48)  
8.00mm x 3.00mm  
(1) 如需了解所有可用封装,请见产品说明书末尾的可订购产品附  
录。  
8mm x 3mm 48 焊球 0.65mm 间距 ZBA 封装  
2 应用  
NVDIMM 模块  
企业级数据系统和服务器  
笔记本/台式机  
通用 DDR3/DDR4 信号切换  
通用高速信号切换  
应用图  
NVDIMM Module  
Memory  
Controller  
Register  
& PLL  
DRAM  
Battery/  
Supercapacitor  
NVDIMM  
controller  
NAND  
Flash  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SCDS356  
 
 
 
 
TS3DDR4000  
ZHCSDL6C NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 12  
8.4 Device Functional Modes........................................ 12  
Application and Implementation ........................ 13  
9.1 Application Information............................................ 13  
9.2 Typical Application ................................................. 13  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Static Electrical Characteristics................................. 5  
6.6 Dynamic Electrical Characteristics............................ 6  
6.7 Typical Characteristics.............................................. 7  
Parameter Measurement Information .................. 9  
Detailed Description ............................................ 11  
8.1 Overview ................................................................. 11  
8.2 Functional Block Diagram ....................................... 11  
9
10 Power Supply Recommendations ..................... 14  
11 Layout................................................................... 15  
11.1 Layout Guidelines ................................................. 15  
11.2 Layout Example .................................................... 16  
12 器件和文档支持 ..................................................... 17  
12.1 接收文档更新通知 ................................................. 17  
12.2 社区资源................................................................ 17  
12.3 ....................................................................... 17  
12.4 静电放电警告......................................................... 17  
12.5 术语表 ................................................................... 17  
13 机械、封装和可订购信息....................................... 17  
7
8
4 修订历史记录  
Changes from Revision B (May 2017) to Revision C  
Page  
Changed the Pin Configuration image.................................................................................................................................... 3  
Changed VIH From: SEL1m and SEL2 To: SEL0 and SEL1 with a MIN value of 1 V in the Recommended Operating  
Conditions............................................................................................................................................................................... 4  
Changed SEL1 To: SEL0 and SLE2 To: SEL1 in 18 ...................................................................................................... 11  
Changed text 'Standard layout technique for 0.5 mm pitch BGA package" To: "Standard layout technique for 0.65  
mm pitch BGA package..." in the Layout Guidelines............................................................................................................ 15  
Changes from Revision A (March 2015) to Revision B  
Page  
Changed VDD Max value From: 5.5 V toTo: 4.8 V in the Absolute Maximum Ratings........................................................... 4  
Added the Note to the Application and Implementation section........................................................................................... 13  
Changes from Original (November 2014) to Revision A  
Page  
已将文档更新为完整版。 ........................................................................................................................................................ 1  
2
Copyright © 2014–2019, Texas Instruments Incorporated  
 
TS3DDR4000  
www.ti.com.cn  
ZHCSDL6C NOVEMBER 2014REVISED MARCH 2019  
5 Pin Configuration and Functions  
ZBA Package  
48-Balls (NFBGA)  
Top View  
1
2
3
4
A0  
SEL0  
B0  
C0  
A
B
C
D
E
F
A1  
A2  
GND  
VDD  
GND  
GND  
GND  
VDD  
EN  
B1  
B2  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
A3  
B3  
A4  
B4  
A5  
B5  
A6  
B6  
G
H
J
A7  
B7  
A8  
GND  
VDD  
GND  
SEL1  
B8  
A9  
B9  
K
L
A10  
A11  
B10  
B11  
M
Not to scale  
Pin Functions  
PINS  
TYPE  
DESCRIPTION  
NAME  
VDD  
NO.  
C2, G2, K2  
Power  
Power supply  
Ground  
GND  
B2, D2, E2, F2, J2, L2  
Ground  
A0-A11  
B0-B11  
C0-C11  
SEL0  
SEL1  
EN  
A1-M1  
A3-M3  
A4-M4  
A2  
I/O  
Port A, signal 0-11  
Port B, signal 0-11  
Port C, signal 0-11  
Select control 0  
Select control 1  
Enable  
I/O  
I/O  
I
I
I
M2  
H2  
Copyright © 2014–2019, Texas Instruments Incorporated  
3
TS3DDR4000  
ZHCSDL6C NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
-0.3  
-0.3  
-0.3  
-40  
MAX  
4.8  
UNIT  
V
VDD  
VIN  
VI/O  
TA  
Voltage range on VDD  
Control input voltage range: SEL0, SEL1, and /EN  
Analog voltage range: A0-A11, B0-B11, and C0-C11  
Operating ambient temperature range  
Storage temperature range  
5.5  
V
3.6  
V
85  
°C  
°C  
Tstg  
-65  
125  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE UNIT  
Charge device model (CDM)(1)  
Human body model (HBM) on all pins(2)  
±1000  
±3000  
V
V
Electrostatic  
discharge  
V(ESD)  
(1) Tested in accordance with JEDEC Standard 22, Test Method C101  
(2) Tested in accordance with JEDEC Standard 22, Test Method A114  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.375  
0
MAX  
UNIT  
V
VDD Voltage range on VDD  
3.6  
3.3  
VDD  
VDD  
0.5  
85  
VI/O  
Analog voltage range: A0-A11, B0-B11, and C0-C11  
High-level control input voltage threshold (EN)  
V
1.4  
1
V
VIH  
High-level control input voltage threshold (SEL0 and SEL1)  
Low-level control input voltage threshold (EN, SEL0 and SEL1)  
Operating ambient temperature range  
V
VIL  
TA  
0
V
-40  
°C  
6.4 Thermal Information  
TS3DDR4000  
BGA (48)  
92.6  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
33.4  
56.2  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
1.3  
ψJB  
54.9  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report .  
4
Copyright © 2014–2019, Texas Instruments Incorporated  
 
 
 
TS3DDR4000  
www.ti.com.cn  
ZHCSDL6C NOVEMBER 2014REVISED MARCH 2019  
6.5 Static Electrical Characteristics  
Unless otherwise noted the specification applies over the VDD range and operation junction temp of –40°C TJ 85°C.  
Typical values are for VDD = 3.3 V and TJ = 25°C.  
PARAMETER  
TEST CONDITION  
VDD = 2.375 V, VI/O = 1.2 V,  
MIN  
TYP  
8.3  
8.3  
0.6  
0.6  
0.2  
0.2  
MAX  
11.2  
11.2  
UNIT  
Ω
Port A to B  
Port A to C  
Port A to B  
Port A to C  
Port A to B  
Port A to C  
RON  
On-state resistance  
II/O = 10 mA  
Ω
Ω
RON  
On-state resistance flatness for all  
I/Os  
VDD = 2.375 V, VI/O = 1.2 V, II/O = 10 mA  
(FLAT)  
Ω
1.0  
1.0  
±1  
Ω
On-state resistance match between  
channels  
RON  
VDD = 2.375 V, VI/O = 1.2 V, II/O = 10 mA  
Ω
VDD = 3.6 V, V/EN = 1.4 V  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
EN  
VDD = 2.375 V, V/EN = 3.3 V  
±1  
VDD = 3.6 V, VSEL1 = 1.4 V  
±1  
IIH  
Control input high leakage current  
Control input low leakage current  
SEL1  
SEL2  
VDD = 2.375 V, VSEL1 = 3.3 V  
±1  
VDD = 3.6 V, VSEL2 = 1.4 V  
±1  
VDD = 2.375 V, VSEL2 = 3.3 V  
±1  
EN  
VDD = 3.6 V, V/EN = 0 V  
±0.5  
±0.5  
±0.5  
±5  
IIL  
SEL1  
SEL2  
VDD = 3.6 V, VSEL1 = 0 V  
VDD = 3.6 V, VSEL2 = 0 V  
VDD = 0 V, V/EN = 0 V, VI/O = 0 V to 3.3 V  
VDD = 0 V, V//EN = 3.6 V, VI/O = 0 V to 3.3 V  
VDD = 0 V, VSEL1 = 0 V, VI/O = 0 V to 3.3 V  
VDD = 0 V, VSEL1 = 3.6 V, VI/O = 0 V to 3.3 V  
VDD = 0 V, VSEL2 = 0 V, VI/O = 0 V to 3.3 V  
VDD = 0 V, VSEL2 = 3.6 V, VI/O = 0 V to 3.3 V  
EN  
±5  
±5  
Leakage under power off condition for  
all I/Os  
IOFF  
SEL1  
SEL2  
±5  
±5  
±5  
VDD = 3.6 V, II/O = 0 A, /EN = 0 V, VSEL1 = VSEL2= 0  
V
28  
40  
40  
35  
48  
44  
µA  
µA  
µA  
VDD = 3.6 V, II/O = 0 A, /EN = 0 V, VSEL1 = VSEL2  
=
1.8 V  
IDD  
VDD supply current  
VDD = 3.6 V, II/O = 0 A, /EN = 0 V, VSEL1 = 0 V,  
VSEL2= 1.8 V  
VDD = 3.6 V,II/O = 0 A, /EN = 0 V, VSEL1 = 1.8 V,  
VSEL2= 0 V  
40  
2
44  
5
µA  
µA  
IDD, PD  
VDD supply current in power-down mode  
VDD = 3.6 V, II/O = 0 A, /EN = 1.8 V  
Copyright © 2014–2019, Texas Instruments Incorporated  
5
TS3DDR4000  
ZHCSDL6C NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
MAX UNIT  
6.6 Dynamic Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
VDD = 2.375 V, RL = 50 Ω, VAn = 3.3 V, V/EN  
= 1.8 V0 V, VSEL1 = VSEL2 = 0 V  
(See 12)  
EN to B  
EN to C  
SEL to B  
SEL to C  
65  
65  
65  
50  
140  
µs  
µs  
ns  
ns  
tON  
Switch turn-on time  
VDD = 2.375 V, RL = 50 Ω, VAn = 3.3 V, V/EN  
= 1.8 V0 V, VSEL1 = VSEL2 = 1.8 V  
(See 12)  
140  
VDD = 2.375 V, V/EN = 0 V, RL = 50 Ω, VAn  
3.3 V,  
(See 13)  
=
=
Switching time between channels for  
all I/Os  
tSWITCH  
VDD = 2.375 V, V/EN = 0 V, RL = 50 Ω, VAn  
3.3 V,  
(See 13)  
VDD = 2.375 V,  
(See 14)  
Port A to B  
Port A to C  
85  
85  
ps  
ps  
tPD  
Propagation delay  
VDD = 2.375 V,  
(See 14)  
B0 to B11  
C0 to C11  
EN  
3
3
6
6
6
8
6
ps  
ps  
pF  
pF  
pF  
VDD = 2.375 V, from any output to any other  
output  
(1)  
tSKEW  
CIN  
Singe-ended skew between channels  
Control input capacitance  
f = 1 MHz, VIN= 0 V  
f = 1 MHz, VIN= 0 V  
f = 1 MHz, VIN= 0 V  
SEL1  
SEL2  
f = 1067 MHz, VI/O = 0 V, VSEL1 = VSEL2  
1.8V  
=
COFF  
Switch off capacitance  
Switch on capacitance  
Crosstalk between channels  
Port A to B  
Port A to C  
Port A to B  
Port A to C  
B0 to B11  
C0 to C11  
Port A to B  
Port A to C  
0.5  
0.5  
1.0  
1.0  
-34  
-31  
-21  
-21  
pF  
pF  
pF  
pF  
dB  
dB  
dB  
dB  
f = 1067 MHz, VI/O = 0 V, VSEL1 = VSEL2 = 0  
V
f = 1067 MHz, VI/O = 1.2 V, VSEL1 = VSEL2  
0V  
=
CON  
f = 1067 MHz, VI/O= 1.2 V, VSEL1 = VSEL2  
1.8V  
=
f = 1067 MHz, VSEL1 = VSEL2 = 0 V, RL = 50  
Ω
XTALK  
f = 1067 MHz, VSEL1 = VSEL2 = 1.8 V, RL = 50  
Ω
f = 1067 MHz, VSEL1 = VSEL2 = 1.8 V, RL = 50  
Ω
OISO  
Off-isolation  
f = 1067 MHz, VSEL1 = VSEL2 = 0 V, RL = 50  
Ω
IL  
Insertion loss (channel on)  
Port A to B  
Port A to C  
Port A to B  
Port A to C  
Port A to B  
Port A to C  
f = DC, RL = 50 Ω  
f = DC, RL = 50 Ω  
-0.75  
-0.75  
5.6  
5.6  
6
-1  
-1  
dB  
dB  
BWSE  
-3 dB bandwidth (Single-ended)  
-3 dB bandwidth (Differential)  
RL = 50 Ω  
GHz  
GHz  
BWDIFF  
RL = 100 Ω  
6
(1) Verified by design.  
6
版权 © 2014–2019, Texas Instruments Incorporated  
TS3DDR4000  
www.ti.com.cn  
ZHCSDL6C NOVEMBER 2014REVISED MARCH 2019  
6.7 Typical Characteristics  
0
-1  
0
-1  
-2  
-2  
-3  
-3  
-4  
-4  
-5  
-5  
-6  
-6  
-7  
-7  
-8  
-8  
-9  
-9  
-10  
-10  
1M  
10M  
100M  
1G  
10G  
1M  
10M  
100M  
1G  
10G  
Frequency (Hz)  
Frequency (Hz)  
D001  
D002  
1. Single-Ended S21 vs Frequency for Port B  
2. Single-Ended S21 vs Frequency for Port C  
0
-1  
0
-1  
-2  
-2  
-3  
-3  
-4  
-4  
-5  
-5  
-6  
-6  
-7  
-7  
-8  
-8  
-9  
-9  
-10  
-10  
1M  
10M  
100M  
1G  
10G  
1M  
10M  
100M  
1G  
10G  
Frequency (Hz)  
Frequency (Hz)  
D003  
D004  
3. Differential S21 vs Frequence for Port B  
4. Differential S21 vs Frequence for Port C  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
1M  
10M  
100M  
1G  
10G  
1M  
10M  
100M  
1G  
10G  
Frequency (Hz)  
Frequency (Hz)  
D005  
D006  
5. Crosstalk vs Frequency for Port B  
6. Crosstalk vs Frequency for Port C  
版权 © 2014–2019, Texas Instruments Incorporated  
7
TS3DDR4000  
ZHCSDL6C NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
1M  
10M  
100M  
1G  
10G  
1M  
10M  
100M  
1G  
10G  
Frequency (Hz)  
Frequency (Hz)  
D007  
D008  
7. Off-Isolation vs Frequency for Port B  
8. Off-Isolation vs Frequency for Port C  
9. Eye Diagram (6 Gbps Data Rate): Through Path  
10. Eye Diagram (6 Gbps Data Rate): Port A to Port B  
Without Device  
Through TS3DDR4000  
11. Eye Diagram (6 Gbps Data Rate): Port A to Port C Through TS3DDR4000  
8
版权 © 2014–2019, Texas Instruments Incorporated  
TS3DDR4000  
www.ti.com.cn  
ZHCSDL6C NOVEMBER 2014REVISED MARCH 2019  
7 Parameter Measurement Information  
VDD  
VDD  
Port B  
Port B  
Port A  
Port A  
CL  
RL  
CL  
RL  
RL  
Port C  
Port C  
CL  
+
+
SEL1/  
SEL2  
/EN  
CL  
RL  
Control  
Input  
Control  
Input  
VDD  
0
VDD  
0
RL= 50  
VPORTA= VDD  
SEL1/  
SEL2  
RL= 50  
VPORTA= VDD  
/EN  
50%  
50%  
tON  
tON  
VOH  
VOL  
VOH  
VOL  
Switch  
Output  
Switch  
Output  
50%  
50%  
12. Switch Turn-on Time (tON) Measurement  
13. Switch Switching Time (tSWITCH)  
Measurement  
VDD  
3V  
0
Network Analyzer  
Input 50%  
50%  
R
S
RT  
V
S
RT  
tPLH  
tPLH  
V
OUT  
VOH  
VOL  
NC  
Output  
50%  
50%  
RT  
SEL  
GND  
RT  
tPD= (tPLH+tPLH)/2  
Control  
Input  
Channel ON  
SEL = H or L  
RS=RT=50Ω  
VS= -10dBm (200mV at 50Ω Load)  
VDC_BIAS = 0.6V  
14. Propagation Delay (tPD) Measurement  
15. Crosstalk Measurement  
版权 © 2014–2019, Texas Instruments Incorporated  
9
TS3DDR4000  
ZHCSDL6C NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
Parameter Measurement Information (接下页)  
VDD  
VDD  
Network Analyzer  
Network Analyzer  
VOUT+  
RS  
RS  
R
T
V
OUT  
VS  
V
S
R
T
SEL  
SEL  
GND  
GND  
RT  
R
T
Control  
Input  
Control  
Input  
Channel OFF  
SEL = H or L  
RS=RT=50Ω  
Channel ON  
SEL = H or L  
RS=RT=50Ω  
VS= -10dBm (200mV at 50Ω Load)  
VS= -10dBm (200mV at 50Ω Load)  
VDC_BIAS = 0.6V  
VDC_BIAS = 0.6V  
16. Off Isolation Measurement  
17. Bandwidth Measurement  
10  
版权 © 2014–2019, Texas Instruments Incorporated  
TS3DDR4000  
www.ti.com.cn  
ZHCSDL6C NOVEMBER 2014REVISED MARCH 2019  
8 Detailed Description  
8.1 Overview  
The TS3DDR4000 is 1:2 or 2:1 high speed DDR2/DDR3/DDR4 switch that offers 12-bit wide bus switching. The  
A port can be routed to the B or C port for all bits simultaneously. Designed for operation in DDR2, DDR3 and  
DDR4 memory bus systems that support POD_12, SSTL_12, SSTL_135, SSTL_15, or SSTL_18 signaling, the  
TS3DDR4000 uses a proprietary architecture that delivers high bandwidth (differential -3dB bandwidth of up to 6  
GHz), and very low propagation delay and skew across all channels. The TS3DDR4000 is 1.8 V logic  
compatible, and all switches are bi-directional for added design flexibility. The TS3DDR4000 also offers a low-  
power mode, in which all channels become high-Z and the device operates with minimal power.  
8.2 Functional Block Diagram  
The following diagram (18) represents the switch function block diagram of the TS3DDR4000. Port A (A0-A11)  
can be routed to either port B (B0-B11) or port C (C0-C11) by configuring the SEL0 and SEL1 pins. The EN pin  
can be toggled high to put the device into the low-power mode with minimal power consumption.  
A0  
B0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
A8  
A9  
B10  
B11  
A10  
A11  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
SEL0  
SEL1  
EN  
Control Logic  
18. TS3DDR4000 Switch Function Block Diagram  
版权 © 2014–2019, Texas Instruments Incorporated  
11  
 
TS3DDR4000  
ZHCSDL6C NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
8.3 Feature Description  
IOFF Protection: When no power is provided to the device (VCC = 0 V), the TS3DDR4000 prevents any I/O  
signals from back-powering the device. The leakage current is tightly controlled under such condition (refer to  
the IOFF in the Specifications section) so it does not cause any system issues.  
Low-power mode: The EN pin can be driven high to make the TS3DDR4000 enter the low-power mode.  
When in low power mode, all channels are isolated and the device consumes less than 5 µA of current.  
8.4 Device Functional Modes  
When EN pin is driven high, the TS3DDR4000 enters into the power-down mode, in which all channels are  
isolated and the device consumes less than 5 µA of current. When EN pin is driven low, the A port is routed to  
either B port or C port depending on the configuration of SEL0 and SEL1 signals. The B and C port can also be  
partially turned on when SEL0 and SEL1 are not both high or both low. Refer to 1 for the control logic details.  
1. Logic Control Table  
CONTROL PINS  
FUNCTION  
EN  
SEL0  
SEL1  
H
X
X
Power –down mode. All channels off (isolated)  
Port A to port B ON  
L
L
L
Port A to port C OFF (isolated)  
A [0,1,4,5,8,9] B [0,1,4,5,8,9]  
A [2,3,6,7,10,11] C [2,3,6,7,10,11]  
All other channels OFF (isolated)  
A [2,3,6,7,10,11] B [2,3,6,7,10,11]  
A [0,1,4,5,8,9] C [0,1,4,5,8,9]  
All other channels OFF (isolated)  
Port A to port B OFF (isolated)  
Port A to port C ON  
L
L
H
L
L
H
H
L
H
12  
版权 © 2014–2019, Texas Instruments Incorporated  
 
TS3DDR4000  
www.ti.com.cn  
ZHCSDL6C NOVEMBER 2014REVISED MARCH 2019  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TS3DDR4000 is a high-speed switch targeted for DDR memory applications that require 1:2 or 2:1  
switching. The following sections describe two application scenarios that are widely used. In addition to memory  
applications, the TS3DDR4000 can also be used for generic high-speed switching that requires high bandwidth  
and minimal signal degradation.  
9.2 Typical Application  
9.2.1 Non-Volatile Dual In-line Memory Module (NVDIMM) application  
NVDIMM Module  
Power-good signal  
Battery/  
Supercapacitor  
DDR bus  
Termination  
Resistor  
Memory  
Controller  
Register  
& PLL  
DRAM  
Control  
DDR bus  
during power  
failure  
NVDIMM Controller  
NAND Flash  
19. TS3DDR4000 Used In NVDIMM Application  
9.2.1.1 Design Requirements  
The TS3DDR4000 can be used in the NVDIMM application to provide server systems reliable data backups  
when the system encounters power-failure conditions. 19 depicts a typical NVDIMM design utilizing the  
TS3DDR4000.  
In normal system operation, the TS3DDR4000 routes the DDR signals between the system and the DRAM for  
normal data access. When the system encounters power failure, the charge stored in the battery or the super  
capacitor is used to power the NVDIMM controller, which configures the TS3DDR4000 to save the data from  
DRAM into the NAND Flash. The NAND Flash is non-volatile in nature, so the data stored internally stays intact  
even when the power goes away eventually. When the system power comes back on, the NVDIMM controller  
can re-route the data from the NAND Flash through the TS3DDR4000 back into the DRAM and can  
subsequently re-start the normal system operation.  
版权 © 2014–2019, Texas Instruments Incorporated  
13  
 
TS3DDR4000  
ZHCSDL6C NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
Typical Application (接下页)  
9.2.1.2 Detailed Design Procedure  
The battery or the super capacitor needs to be designed to have enough capacity to maintain the power long  
enough for the backup procedure to be completed. At a backup speed of 128 MB/sec, it takes about 10 seconds  
per 1 GB to either backup or restore the data. Typically a super capacitor is preferred for its longer life of  
operation. The super capacitor is usually a separate module and is connected to the NVDIMM via a cable.  
NVDIMMs require support from the system motherboard. When plugged in, the BIOS must recognize the  
NVDIMMs. Manufacturers who control the BIOS and MRC (memory reference code) can make the necessary  
code changes to implement NVDIMMs into their servers.  
9.2.2 Load Isolation Application  
SSD Controller  
Control  
SSTL  
signaling  
Processor  
SSTL  
Flash Memory  
signaling  
Flash  
Controller  
Bank #1  
PCIe, Fiber  
Channel, or iSCSI  
SSTL  
signaling  
Flash Memory  
Bank #2  
Buffer  
20. TS3DDR4000 Used In Load Isolation Application  
9.2.2.1 Design Requirements  
In recent years, the size of Solid-State-Drives (SSDs) has increased rapidly, making it necessary to increase the  
number of flash memory devices in each drive. The flash memory devices sometimes share the same control  
and data channel to communicate with the controller. This causes increased loading to each communication  
channel as the number of flash memory devices increases. To meet the performance requirement of an SSD, the  
ability to isolate the loading becomes necessary.  
9.2.2.2 Detailed Design Procedure  
As depicted in 20, the TS3DDR4000 can be used for load isolation purpose. Flash memory bank #1 and #2  
can share the same communication channel to the flash controller without increasing the loading to each other.  
While the TS3DDR4000 is enabled for one channel, the other channel is fully isolated. The off-isolation  
specification is about –21 dB at 1067 MHz, as described in the Specifications section.  
10 Power Supply Recommendations  
VDD should be in the range of 2.375 V to 3.6 V. A 0.1 µF or higher decoupling capacitors placed as closed to the  
BGA pad as possible is recommended. There are no power sequence requirements for the TS3DDR4000.  
14  
版权 © 2014–2019, Texas Instruments Incorporated  
 
TS3DDR4000  
www.ti.com.cn  
ZHCSDL6C NOVEMBER 2014REVISED MARCH 2019  
11 Layout  
11.1 Layout Guidelines  
Standard layout technique for 0.65 mm pitch BGA package shall be employed. The following commonly-used  
printed-circuit-board (PCB) layout guidelines are recommended:  
Use Non-Solder-Mask-Defined (NSMD), rather than Solder-Mask-Defined (SMD) pads for the BGA solder  
balls to adhere if possible. For most applications, the NSMD pads provide more flexibility, fewer stress.  
Solder mask  
Solder mask  
Copper pad  
PCB  
PCB  
Solder Mask Defined  
(SMD) Pads  
Non-Solder Mask Defined  
(NSMD) Pads  
21. Solder-Mask-Defined (SMD) and Non-Solder-Mask-Defined (NSMD) Pads  
One trace can generally be routed between two solder pads of a 0.65 mm pitch BGA. This allows the outer  
two rows of solder pads to be routed on the same top/bottom layer. The TS3DDR4000 has 4 rows, and thus  
no VIAs is generally required to route all the inner balls out.  
Generally high-speed signal layout guidelines:  
To minimize the effects of crosstalk on adjacent traces, keep the traces at least two times the trace width  
apart.  
Separate high-speed signals from low-speed signals and digital from analog signals.  
Avoid right-angle bends in a trace and try to route them at least with two 45° corners.  
The high-speed differential signal traces should be routed parallel to each other as much as possible. The  
traces are recommended to be symmetrical.  
A solid ground plane should be placed next to the high-speed signal layer. This also provides an excellent  
low-inductance path for the return current flow.  
版权 © 2014–2019, Texas Instruments Incorporated  
15  
TS3DDR4000  
ZHCSDL6C NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
11.2 Layout Example  
To GND Plane  
To VDD Plane  
Decoupling  
capacitor  
Port C  
SEL0  
A0  
B0  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
GND  
A1  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
B10  
B11  
VDD  
A2  
GND  
A3  
GND  
A4  
GND  
A5  
Port A  
VDD  
A6  
EN  
GND  
VDD  
GND  
SEL1  
A7  
A8  
A9  
Top Layer  
Bottom Layer  
A10  
A11  
Decoupling  
capacitor  
Port B  
To VDD Plane  
To GND Plane  
Controller  
22. TS3DDR4000 Layout Example  
16  
版权 © 2014–2019, Texas Instruments Incorporated  
TS3DDR4000  
www.ti.com.cn  
ZHCSDL6C NOVEMBER 2014REVISED MARCH 2019  
12 器件和文档支持  
12.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书书的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014–2019, Texas Instruments Incorporated  
17  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TS3DDR4000ZBAR  
ACTIVE  
NFBGA  
ZBA  
48  
3000 RoHS & Green  
SNAGCU  
Level-3-260C-168 HR  
-40 to 85  
DDR4000  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TS3DDR4000ZBAR  
NFBGA  
ZBA  
48  
3000  
330.0  
16.4  
3.4  
8.4  
1.65  
8.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
NFBGA ZBA 48  
SPQ  
Length (mm) Width (mm) Height (mm)  
336.6 336.6 31.8  
TS3DDR4000ZBAR  
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
ZBA0048A  
NFBGA - 1.2 mm max height  
SCALE 2.200  
BALL GRID ARRAY  
1.95 TYP  
0.65 TYP  
3.1  
2.9  
B
A
0.65 TYP  
4
2
1
3
A
B
C
D
E
F
BALL A1  
CORNER  
SYMM  
8.1  
7.9  
7.15  
TYP  
G
H
J
K
L
M
SYMM  
48X  
(0.43) TYP  
(0.53) TYP  
0.4  
0.3  
1.2 MAX  
0.15  
0.08  
C A  
B
NOTE 4  
C
C
NOTE 3  
SEATING PLANE  
0.24  
TYP  
0.19  
0.1  
BALL TYP  
4221524/A 07/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Dimension is measured at the maximum solder ball diameter, parallel to primary datum C.  
4. Primary datum C and seating plane are defined by the spherical crowns of the solder balls.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ZBA0048A  
NFBGA - 1.2 mm max height  
BALL GRID ARRAY  
(0.65) TYP  
48X ( 0.35)  
(0.65) TYP  
4
3
1
2
A
B
C
D
E
F
SYMM  
G
H
J
K
L
M
SYMM  
LAND PATTERN EXAMPLE  
SCALE:10X  
0.05 MAX  
0.05 MIN  
METAL  
UNDER MASK  
(
0.35)  
METAL  
(
0.35)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221524/A 07/2014  
NOTES: (continued)  
5. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments Literature number SPRAA99 (www.ti.com/lit/spraa99).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ZBA0048A  
NFBGA - 1.2 mm max height  
BALL GRID ARRAY  
(0.65) TYP  
48X ( 0.35)  
3
1
2
4
A
(0.65)  
TYP  
B
C
D
E
F
SYMM  
G
H
J
K
L
M
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4221524/A 07/2014  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TS3DDR4000ZBAR

3.3V、2:1 (SPDT)、12 通道 DDR2、DDR3 和 DDR4 开关 | ZBA | 48 | -40 to 85
TI

TS3DS10224

High-Speed 2:4 Differential Multiplexer / Demultiplexer
TI

TS3DS10224RUKR

High-Speed 2:4 Differential Multiplexer / Demultiplexer
TI

TS3DS26227

HIGH-BANDWIDTH DUAL-SPDT DIFFERENTIAL SIGNAL SWITCH WITH INPUT LOGIC TRANSLATION
TI

TS3DS26227YZPR

HIGH-BANDWIDTH DUAL SPDT DIFFERENTIAL SIGNAL SWITCH WITH INPUT LOGIC TRANSLATION
TI

TS3DS26227YZTR

HIGH-BANDWIDTH DUAL-SPDT DIFFERENTIAL SIGNAL SWITCH WITH INPUT LOGIC TRANSLATION
TI

TS3DS26227_10

HIGH-BANDWIDTH DUAL SPDT DIFFERENTIAL SIGNAL SWITCH WITH INPUT LOGIC TRANSLATION
TI

TS3DS26227_14

HIGH-BANDWIDTH DUAL SPDT DIFFERENTIAL SIGNAL SWITCH WITH INPUT LOGIC TRANSLATION
TI

TS3DV20812

2-Gbps DIFFRETIAL SWITCH 8-bit, 1:2 MULTIPLEXER/DEMULTIPEXER WITH 3-SIDE BAND SIGNALS
TI

TS3DV20812RHH

2-Gbps DIFFRETIAL SWITCH 8-bit, 1:2 MULTIPLEXER/DEMULTIPEXER WITH 3-SIDE BAND SIGNALS
TI

TS3DV20812RHHR

2-Gbps DIFFRETIAL SWITCH 8-bit, 1:2 MULTIPLEXER/DEMULTIPEXER WITH 3-SIDE BAND SIGNALS
TI

TS3DV20812_1

2-Gbps DIFFERENTIAL SWITCH 8-Bit, 1:2 MULTIPLEXER/DEMULTIPLEXER WITH 3-SIDE BAND SIGNALS
TI