TS3DV642-Q1 [TI]

TS3DV642-Q1 8 Gbps 12-Channel differential 1-to-2 and 2-to-1 mux;
TS3DV642-Q1
型号: TS3DV642-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TS3DV642-Q1 8 Gbps 12-Channel differential 1-to-2 and 2-to-1 mux

文件: 总26页 (文件大小:1103K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TS3DV642-Q1
SCDS430 – DECEMBER 2020  
TS3DV642-Q1 8 Gbps 12-Channel differential 1-to-2 and 2-to-1 mux  
1 Features  
3 Description  
Automotive Q100 qualified  
The TS3DV642-Q1 is an analog high-speed  
bidirectional passive switch in mux or demux  
configurations that works for many high-speed  
differential interfaces with data rates up to 8.1 Gbps. It  
is suited for many applications including HDMI 1.4 /  
2.0, DisplayPort 1.4 and Mipi DPHY/CPHY DSI /  
CSI-2. The TS3DV642-Q1 supports both differential  
and single-ended signaling - virtually compatible to  
most standard and non standard interfaces. The  
dynamic characteristics of the TS3DV642-Q1 allows  
high-speed switching with minimal attenuation to the  
signal eye diagram, and with very little added jitter.  
The device's silicon design is optimized for excellent  
frequency response at higher frequency spectrum of  
the signals. The device supports differential signaling  
with common mode voltage range (CMV) of 0 to 3.6 V  
and 0 - 5.5 V CMOS signals.  
Temperature range of -40 to 105 °C (grade 2)  
Support 6 differential or 12 single-ended signals or  
other differential/single ended combinations  
Supports HDMI 1.4b / 2.0, DisplayPort 1.4 HBR3,  
Mipi DPHY / CPHY DSI / CSI-2  
Bidirectional analog mux - handles most electrical  
signals within 0 to 5 V and DC to 8.1 Gbps range  
–3-dB differential BW of 6.5 GHz  
Excellent dynamic characteristics  
– Insertion loss: –1.5 dB at 3.0 GHz  
– Return loss: –14 dB at 3.0 GHz  
Support 1.8 V, 3.3 V or 5.0 V control logic  
Single supply voltage of 3.3 V  
Low active (45 μA) and standby power (6 μA)  
IOFF protection that prevents current leakage when  
supply rail collapsed (VCC = 0 V)  
The TS3DV642-Q1 consumes very low active power  
of 45 μA. The device also offers a power-down mode,  
in which all channels become Hi-Z and the device  
operates with minimal power.  
ESD Performance of 2 kV HBM and 1 kV CDM  
42-pin, 3.5 x 9 mm, 0.5 mm pitch WQFN package  
with wettable flank  
Device Information (1)  
2 Applications  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
Advanced driver assistance systems (ADAS)  
Automotive infotainment & cluster  
Rear seat entertainment  
Automotive head unit  
Aerospace & defense  
TS3DV642-Q1  
WQFN (42)  
3.50 mm x 9.00 mm  
(1) For all available packages, see the orderable addendum at  
the end of the datasheet.  
Simplified Use Cases  
T0A  
T1A  
T2A  
AUXA/DDCA  
D0A  
D1A  
D2A  
D3A/CKA  
D0A  
D1A  
D2A  
D3A  
CKA  
AUX/DDC  
T0  
T1  
T2  
D0  
D1  
D2  
D3  
CK  
D0  
D1  
D2  
HPDA  
CECA  
D3/CK  
HPD  
CEC  
AUXB/DDCB  
D0B  
D1B  
D2B  
D3B/CKB  
T0B  
T1B  
T2B  
D0B  
D1B  
D2B  
D3B  
CKB  
HPDB  
CECB  
Mipi DPHY CSI-2/DSI  
DisplayPort/HDMI  
Mipi CPHY CSI-2  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. ADVANCE INFORMATION for preproduction products; subject to change  
without notice.  
 
 
 
TS3DV642-Q1  
SCDS430 – DECEMBER 2020  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
Pin Functions.................................................................... 3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings ....................................... 5  
6.2 ESD Ratings .............................................................. 5  
6.3 Recommended Operating Conditions ........................5  
6.4 Thermal Information ...................................................5  
6.5 Electrical Characteristics ............................................6  
6.6 High-Speed Performances .........................................6  
6.7 Switching Characteristics ...........................................7  
6.8 Typical Characteristics................................................8  
7 Parameter Measurement Information............................9  
8 Detailed Description......................................................11  
8.1 Overview................................................................... 11  
8.2 Functional Block Diagram......................................... 11  
8.3 Feature Description...................................................11  
8.4 Device Functional Modes..........................................12  
9 Application and Implementation..................................13  
9.1 Application Information............................................. 13  
9.2 Typical Application - Switching HDMI Source...........13  
10 Power Supply Recommendations..............................17  
11 Layout...........................................................................18  
11.1 Layout Guidelines................................................... 18  
11.2 Layout Example...................................................... 19  
12 Device and Documentation Support..........................20  
12.1 Receiving Notification of Documentation Updates..20  
12.2 Support Resources................................................. 20  
12.3 Trademarks.............................................................20  
12.4 Electrostatic Discharge Caution..............................20  
12.5 Glossary..................................................................20  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 20  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Date  
Revision  
Notes  
December 2020  
*
Initial Release  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TS3DV642-Q1  
 
TS3DV642-Q1  
SCDS430 – DECEMBER 2020  
www.ti.com  
5 Pin Configuration and Functions  
VCC  
EN  
1
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
D0+A  
D0œA  
D1+A  
D1-A  
D2+A  
D2œA  
D3+A  
D3œA  
NC  
2
SCL  
SDA  
D0+  
D0œ  
D1+  
D1œ  
NC  
3
4
5
6
7
8
Thermal  
Pad  
9
D2+  
D2œ  
D3+  
D3œ  
HPD  
CEC  
SEL1  
SEL2  
10  
11  
12  
13  
14  
15  
16  
17  
D0+B  
D0œB  
D1+B  
D1œB  
D2+B  
D2œB  
D3+B  
D3œB  
Not to scale  
Figure 5-1. 42 Pin WQFN RUA Package with exposed thermal pad - top view - not to scale  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
VCC  
NO.  
1
Power  
I
Supply Voltage  
SEL1  
SEL2  
EN  
16  
17  
2
Select Input 1  
I
Select Input 2  
I
Device Enable  
D0+A  
D0–A  
D1+A  
D1-A  
38  
37  
36  
35  
34  
33  
32  
31  
42  
41  
19  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Port A, Channel 0, +ve signal  
Port A, Channel 0, –ve signal  
Port A, Channel 1, +ve signal  
Port A, Channel 1, –ve signal  
Port A, Channel 2, +ve signal  
Port A, Channel 2,–ve signal  
Port A, Channel 3, +ve signal  
Port A, Channel 3, –ve signal  
Port A, DDC Clock  
D2+A  
D2–A  
D3+A  
D3–A  
SCL_A  
SDA_A  
HPD_A  
Port A, DDC Data  
Port A, Hot Plug Detects  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TS3DV642-Q1  
 
 
TS3DV642-Q1  
SCDS430 – DECEMBER 2020  
www.ti.com  
PIN  
TYPE  
DESCRIPTION  
Port A, Consumer Electronics Control  
NAME  
CEC_A  
D0+B  
D0–B  
D1+B  
D1–B  
D2+B  
D2–B  
D3+B  
D3–B  
SCL_B  
SDA_B  
HPD_B  
CEC_B  
D0+  
NO.  
18  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
GND  
29  
Port B, Channel 0, +ve signal  
Port B, Channel 0, –ve signal  
Port B, Channel 1, +ve signal  
Port B, Channel 1, –ve signal  
Port B, Channel 2, +ve signal  
Port B, Channel 2,–ve signal  
Port B, Channel 3, +ve signal  
Port B, Channel 3, –ve signal  
Port B, DDC Clock  
28  
27  
26  
25  
24  
23  
22  
40  
39  
Port B, DDC Data  
21  
Port B, Hot Plug Detects  
20  
Port B, Consumer Electronics Control  
Common Port, Channel 0, +ve signal  
Common Port, Channel 0, –ve signal  
Common Port, Channel 1, +ve signal  
Common Port, Channel 1, –ve signal  
Common Port, Channel 2, +ve signal  
Common Port, Channel 2, –ve signal  
Common Port, Channel 3, +ve signal  
Common Port, Channel 3,–ve signal  
Common Port, DDC Clock  
5
D0–  
6
D1+  
7
D1–  
8
D2+  
10  
D2–  
11  
D3+  
12  
D3–  
13  
SCL  
3
SDA  
4
14  
Common Port, DDC Data  
HPD  
Common Port, Hot Plug Detects  
Common Port, Consumer Electronics Control  
No Connect  
CEC  
15  
NC  
9, 30  
PowerPad  
GND  
Ground  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TS3DV642-Q1  
TS3DV642-Q1  
SCDS430 – DECEMBER 2020  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
VCCABS  
Supply voltage range  
–0.5  
5.5  
V
MAX  
VI/O-  
Analog voltage range(2) (3) (4)  
Digital input voltage range(2) (3)  
All I/O (data pins)  
SEL1, SEL2, EN  
–0.5  
–0.5  
5.5  
5.5  
V
V
ABSMAX  
VIN-  
ABSMAX  
Tjmax  
Tstg  
Maximum junction temperature  
Storage temperature range  
–40  
–65  
125  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Theseare stress ratings  
only, which do not imply functional operation of the device at these or anyother conditions beyond those indicated under  
Recommended OperatingConditions. Exposure to absolute-maximum-rated conditions for extended periods mayaffect device  
reliability.  
(2) All voltages are with respect to ground, unless otherwisespecified.  
(3) The input and output voltage ratings may be exceeded if theinput and output clamp-current ratings are observed.  
(4) VI and VO areused to denote specific conditions for VI/O  
.
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, (1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101,  
±1000  
(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safemanufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safemanufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
3.6  
UNIT  
V
VCC  
Supply voltage  
3.0  
0
VI/O,CM Input/Output common mode voltage (data pins)  
3.6  
V
VI/O  
VIN  
DR  
TA  
Input/Output voltage (data pins)  
Digital input voltage (control pins)  
Data rate for differential signals  
Operating ambient temperature  
Operating junction temperature  
0
5.5  
V
0
5.5  
V
8.1  
Gbps  
°C  
°C  
–40  
–40  
105  
110  
TJ  
(1) All unused control inputs of the device must be held at VDD orGND to ensure proper device operation. Refer to the TI application  
report,Implications of Slow or Floating CMOS Inputs, literature numberSCBA004.  
6.4 Thermal Information  
TS3DV642-Q1  
THERMAL METRIC(1)  
RUA  
42 PINS  
28.7  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
16.7  
9.7  
ψJT  
0.3  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TS3DV642-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
TS3DV642-Q1  
SCDS430 – DECEMBER 2020  
www.ti.com  
UNIT  
TS3DV642-Q1  
RUA  
THERMAL METRIC(1)  
42 PINS  
9.7  
ψJB  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
°C/W  
°C/W  
RθJC(bot)  
2.9  
(1) For more information about traditional and new thermalmetrics, see the Semiconductor and ICPackage Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS(1)  
MIN TYP(2)  
MAX UNIT  
DC Characteristics  
RON  
ON-state resistance  
All data pins  
All data pins  
VI/O = 0 V, II/O = –10 mA  
7
12  
Ω
Ω
RON,FLAT  
ON-state resistance  
flatness  
RON at VI/O = 1.5 V minus RON at VI/O  
= 0 V, II/O = –10 mA  
0.6  
(3)  
Leakage under power off  
(failsafe current)  
All data and control  
pins  
IOFF  
VCC = 0 V, VI/O or VIN = 0 V to 5.5 V  
±10  
µA  
Control Inputs (SEL1, SEL2, EN)  
High-level input voltage for  
control pins  
VIH  
SEL1, SEL2, EN  
SEL1, SEL2, EN  
SEL1, SEL2, EN  
SEL1, SEL2, EN  
1.4  
V
V
Low-level input voltage for  
control pins  
VIL  
0.5  
±10  
±10  
Input high leakage current  
for control pins  
IIH  
VCC = 3.6 V, VIN = 5.5 V  
VCC = 3.6 V, VIN = GND  
µA  
µA  
Input low leakage current  
for control pins  
IIL  
Power Supply  
ICC  
VCC supply current in active mode  
VCC supply current in power-down mode  
EN = H  
EN = L  
45  
6
µA  
µA  
ICC_PD  
(1) VI, VO,II, and IO refer to data I/O pins,VIN refers to the control inputs.  
(2) All typical values are at VDD = 3.3 V (unless otherwise noted), TA = 25°C.  
(3) RON,FLAT is the difference of RON in a given channel at specified voltages.  
6.6 High-Speed Performances  
Over recommended operation free-air temperature range, VDD =3.3V ± 0.3V (unless otherwise noted). For all data pins. RL =  
50 Ω where applicable.  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX  
UNIT  
Differential Bandwidth (–3 dB from  
DC)  
BW  
IL  
6.5  
GHz  
DC  
–0.6  
–0.9  
–1.3  
-1.5  
–1.9  
–24  
–22  
–16  
–14  
–11  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
1.7 GHz  
2.7 GHz  
3.0 GHz  
4.05 GHz  
DC  
Differential insertion loss  
1.7 Ghz  
2.7Ghz  
3.0 Ghz  
4.05 Ghz  
Differential return loss for Port A and  
B (DA, DB)  
RLDAB  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TS3DV642-Q1  
 
 
 
 
 
 
TS3DV642-Q1  
SCDS430 – DECEMBER 2020  
www.ti.com  
Over recommended operation free-air temperature range, VDD =3.3V ± 0.3V (unless otherwise noted). For all data pins. RL =  
50 Ω where applicable.  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX  
UNIT  
DC  
-80  
dB  
1.7 GHz  
2.7 GHz  
3.0 GHz  
4.05 GHz  
DC  
–40  
Xtalk  
Differential crosstalk  
–30  
dB  
dB  
–27  
-
–22  
–80  
1.7 GHz  
2.7 GHz  
3.0 GHz  
4.05 GHz  
–21  
OISO Differential off isolation  
–16  
–16  
–15  
(1) All Typical Values are at VDD = 3.3 V(unless otherwise noted), TA = 25°C.  
6.7 Switching Characteristics  
over recommended operation free-air temperature range, VDD =3.3 V± 0.3 V (unless otherwise noted). For all data pins.  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
tpd  
Propagation Delay  
All I/O  
All I/O  
All I/O  
66  
ps  
(2)  
tON  
Switch turn-on time  
100  
µs  
µs  
(3)  
tSWITCH  
Switching time between channels  
20  
(1) All typical values are at VDD = 3.3 V(unless otherwise noted), TA = 25°C.  
(2) tON is the time it takes the output to recover within 95% of final value after enabling switches  
(3) tSWITCH is the time it takes for theoutput to recover within 95% of final value after the state is changed  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TS3DV642-Q1  
 
 
 
 
 
TS3DV642-Q1  
SCDS430 – DECEMBER 2020  
www.ti.com  
6.8 Typical Characteristics  
Figure 6-1 shows typical s-parameter plots for TS3DV642-Q1 - top differential forward gain (S21/S12) and  
bottom differential return loss (S11/S22) in TI evaluation board with measurement parasitics calibrated out.  
Figure 6-1. Differential gain (S21/S12) and return loss (S11/S22) vs frequency of TS3DV642-Q1  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TS3DV642-Q1  
 
 
TS3DV642-Q1  
SCDS430 – DECEMBER 2020  
www.ti.com  
7 Parameter Measurement Information  
VCC  
RL  
CL  
4 pF  
VCOM  
VCC  
50  
*CL includes probe, cable, and board  
capacitance  
Port A  
VCOM  
2.6 V  
CL  
RL  
EN  
50%  
Port B  
CL  
+
0
EN  
RL  
tON  
VOH  
Switch  
Output  
50%  
Control  
Input  
VOL  
Figure 7-1. Switch Turn-On Time (tON  
)
VCC  
RL  
CL  
4 pF  
VCOM  
VCC  
50 Ω  
*CL includes probe, cable, and board  
capacitance  
Port A  
VCOM  
CL  
RL  
Port B  
CL  
2.6 V  
+
50%  
SEL1/SEL2  
tON  
0
SEL1/SEL2  
RL  
VOH  
Switch  
Output  
Control  
Input  
50%  
VOL  
Figure 7-2. Switching Time Between Channels (tSWITCH  
)
3 V  
Input  
50%  
50%  
0
tpd = (tPLH + tPLH) / 2  
tPLH  
tPLH  
VOH  
VOL  
Output  
50%  
50%  
Figure 7-3. Propagation Delay (tpd)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TS3DV642-Q1  
 
TS3DV642-Q1  
SCDS430 – DECEMBER 2020  
www.ti.com  
VDD  
Network Analyzer  
TS3DV642  
RS  
RT  
VS  
Channel ON  
RT  
VOUT  
NC  
SEL = H or L  
RS = RT = 50Ω  
VS  
RT  
VS = -10dBm (200mV at 50Ω Load)  
VDC_BIAS = 1 V  
SEL  
GND  
RT  
Control  
Input  
Figure 7-4. Crosstalk (Xtalk)  
VCC  
TS3DV642  
Network Analyzer  
RS  
VOUT+  
RT  
VS  
Channel OFF  
RS  
SEL = H or L  
RS = RT = 50Ω  
RT  
VS  
SEL  
GND  
VS = -10dBm (200mV at 50Ω Load)  
VDC_BIAS = 1 V  
VOUT-  
RT  
RT  
Control  
Input  
Figure 7-5. Differential Off-Isolation (OISO)  
VDD  
Network Analyzer  
TS3DV642  
VOUT+  
RS  
VS  
Channel ON  
RT  
VOUT-  
RS  
SEL = H or L  
RS = RT = 50Ω  
VS  
RT  
VS = -10dBm (200mV at 50Ω Load)  
VDC_BIAS = 1 V  
GND  
RT  
RT  
Control  
Input  
Figure 7-6. Differential Bandwidth (BW)  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TS3DV642-Q1  
TS3DV642-Q1  
SCDS430 – DECEMBER 2020  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The TS3DV642-Q1 is a 6 differential channel or 12 single ended channel bidirectional multiplexer/demultiplexer.  
It offers low on-state resistance as well as low I/O capacitance which allows it to achieve a high bandwidth. The  
TS3DV642-Q1 is a passive mux that is recommended for data rates up to 8.1 Gbps, however the device can be  
used for interfaces with higher data rates if overall electrical link loss permits. The device provides the high  
bandwidth necessary for many interfaces to handle differential and as well as single ended signals. The device  
supports differential signaling with common mode voltage range (CMV) of 0 to 3.6 V and 0 - 5.5 V CMOS  
signals.  
The TS3DV642-Q1 has total 6 differential channels. All these channels are functionaly equivalent and provides  
almost identical electrical performance. The channels can be used in an arbitrary fashion for differental and  
single ended signals in any order.  
8.2 Functional Block Diagram  
TS3DV642-Q1  
SEL1,  
SEL2,  
EN  
D0+  
D0+A  
D0+B  
CEC  
CEC_A  
CEC_B  
8.3 Feature Description  
The TS3DV642-Q1 is based on proprietary TI technology which uses FET switches driven by a high-voltage  
generated from an integrated charge-pump to achieve a low on-state resistance. TS3DV642-Q1 has 6  
differential channel or 12 single ended channel bidirectional switches with a high bandwidth. TS3DV642-Q1 uses  
an extremely low power technology and uses only 45 µA ICC in active mode. The device has integrated ESD that  
can support up to 2-kV Human-Body Model (HBM) and 1-kV Charge Device Model (CDM). TS3DV642-Q1 is  
offered in a 42-pin QFN package (9 mm x 3.5 mm) with 0.5 mm pitch. The device can support analog I/O signal  
in 0 to 5.5 V range. TS3DV642-Q1 also has a special feature that prevents the device from back-powering when  
the VCC supply is not available and an analog signal is applied on the I/O pin. In this situation this special feature  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TS3DV642-Q1  
 
 
 
 
TS3DV642-Q1  
SCDS430 – DECEMBER 2020  
www.ti.com  
prevents leakage current in the device. The TS3DV642-Q1 is not designed for passing signals with negative  
swings.  
8.4 Device Functional Modes  
D0+  
D0+A  
D0-  
D1+  
D1-  
D2+  
D2-  
D3+  
D3-  
D0-A  
D1+A  
D1-A  
D2+A  
D2-A  
D3+A  
D3-A  
D0+B  
D0-B  
D1+B  
D1-B  
D2+B  
D2-B  
D3+B  
D3-B  
SCL  
SCL_A  
SDA_A  
HPD_A  
CEC_A  
SDA  
HPD  
CEC  
SCL_B  
SDA_B  
HPD_B  
CEC_B  
SEL1  
SEL2  
EN  
Control Logic  
Figure 8-1. Logic Diagram  
Table 8-1 lists the device functions for the TS3DV642-Q1 device.  
Table 8-1. Functional Table  
EN  
SEL1  
SEL2  
FUNCTION  
L
X
X
Switch disabled. All channels are Hi-Z.  
Channel D0+/D0– to D0+A/D0–A is ON. All the other channels (D1+/D1-, D2+/  
D2-, D3+/D3-, SCL, SDA, HPD, CEC) are Hi-Z.  
H
H
L
L
L
Channel D0+/D0– to D0+B/D0–B is ON. All the other channels (D1+/D1-, D2+/  
D2-, D3+/D3-, SCL, SDA, HPD, CEC) are Hi-Z.  
H
H
H
H
H
L
All A channels are enabled. All B channels are Hi-Z.  
All B channels are enabled. All A channels are Hi-Z.  
H
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TS3DV642-Q1  
 
 
TS3DV642-Q1  
SCDS430 – DECEMBER 2020  
www.ti.com  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The TS3DV642-Q1 is an analog differential passive mux or demux that works for many high-speed differential  
interfaces with data rates up to 8.1 Gbps. The device also works for single ended signals. The TS3DV642-Q1  
supports differential signaling with common mode voltage range (CMV) of 0 to 3.6 V and with differential  
amplitude up to 1800 mVpp, and single ended CMOS signaling with swing limited to 0 to 5.5 V. TS3DV642-Q1  
can be used as mux or demux switch for:  
HDMI 1.4 and HDMI 2.0 - up to 6 Gbps per channel  
DisplayPort (DP) for RBR, HBR, and HBR-3 data rates - up to 8.1 Gbps per lane  
Mipi DPHY interfaces such as DSI and CSI-2 - up to 4.5 Gbps per lane  
Mipi CPHY based CSI-2  
LVDS  
6 Channels of the TS3DV642-Q1 are functionaly equivalent and can be used in an arbitrary fashion for  
differential and single ended signals in any order. For example in Mipi DPHY applications any of the 6 differential  
channels can be used for clock signals. For Mipi CPHY applications the data pins can be grouped any order to  
form trio signals. For HDMI application, while TS3DV642-Q1 data signal pins are marked for specific HDMI use,  
the main-link data, main-link clock, DDC, HPD, CEC can be assigned in any order if required.  
9.2 Typical Application - Switching HDMI Source  
The TS3DV642-Q1 can be used to switch HDMI signals. Figure 9-1 shows use case where TS3DV642-Q1  
switches HDMI signals either from an external connector or from an SOC. This is a multiplexing use case. The  
device can also be used as a demultiplexer where a graphics processor can be switched into one of the two  
HDMI connectors. This section provides detailed design implemenation for a HDMI application where  
TS3DV642-Q1 provides 2:1 multiplexing function.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TS3DV642-Q1  
 
 
 
TS3DV642-Q1  
SCDS430 – DECEMBER 2020  
www.ti.com  
VCC  
TMDS0+A  
TMDS0-A  
5V  
D0+A  
D0-A  
HDMI  
user  
input  
47kO  
47kO  
TMDS1+A  
TMDS1-A  
D1+A  
D1-A  
TMDS2+A  
TMDS2-A  
D2+A  
D2-A  
TMDS0+  
TMDS0-  
D0+  
D0-  
TMDS3+A  
TMDS3-A  
D3+A  
D3-A  
TMDS1+  
TMDS1-  
D1+  
D1-  
DDC_CLKA  
DDC_DATA  
SCL_A  
SDA_A  
TMDS2+  
TMDS2-  
D2+  
D2-  
5V  
HPDA  
HDMI  
Sink  
(Display)  
HPD_A  
2kO  
2kO  
TS3DV642-Q1  
TMDS0+B  
TMDS0-B  
TMDS3+  
TMDS3-  
D0+B  
D3+  
D0-B  
D3-  
TMDS1+B  
TMDS1-B  
DDC_CLK  
DDC_DAT  
D1+B  
D1-B  
SCL  
SDA  
HPD  
TMDS2+B  
TMDS2-B  
HPD  
D2+B  
D2-B  
SOC/  
HDMI  
Source  
TMDS3+B  
TMDS3-B  
D3+B  
D3-B  
DDC_CLKB  
DDC_DATB  
VCC  
SCL_B  
SDA_B  
0.1F  
HPDB  
HPD_B  
VCC  
100kO  
10kO  
SEL  
Figure 9-1. Switching HDMI application schematic  
9.2.1 Design Requirements  
Table 9-1. Design Parameters for HDMI Application  
Design parameter  
Example value  
VCC  
3.0 V to 3.6 V  
0.1 µF  
VCC decoupling capacitor  
DDC Pull-up resistors on sink side  
DDC Pull-up resistors on source side  
HPD pulldown resistor on source side  
Pull-up / Pull-down resistors for SEL1 / SEL2 pins  
47 kΩ to 5 V  
2 kΩ to 5 V  
100 kΩ to GND  
10 kΩ  
9.2.2 Detailed Design Procedure  
The TS3DV642-Q1 is designed to operate with 3.0 V to 3.6 V power supply. Decoupling capacitors may be used  
to reduce noise and improve power supply integrity. Pull-up resistors to 5 V must be placed on the sinke side  
DDC clock and data lines according to the HDMI standard.  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TS3DV642-Q1  
 
TS3DV642-Q1  
SCDS430 – DECEMBER 2020  
www.ti.com  
9.2.3 Systems Examples  
9.2.3.1 DisplayPort 2:1 mulitplexing  
ML0A+  
ML0A-  
D0+A  
D0-A  
ML1A+  
ML1A-  
D1+A  
D1-A  
ML2A+  
ML2A-  
D2+A  
D2-A  
ML0+  
ML0-  
D0+  
D0-  
ML3A+  
ML3A-  
D3+A  
D3-A  
ML1+  
ML1-  
D1+  
D1-  
AUXA+  
AUXA-  
SCL_A  
SDA_A  
ML2+  
ML2-  
D2+  
D2-  
HPDA  
HPD_A  
TS3DV642-Q1  
ML0B+  
ML0B-  
ML3+  
ML3-  
D0+B  
D3+  
D0-B  
D3-  
ML1B+  
ML1B-  
AUX+  
AUX-  
D1+B  
D1-B  
SCL  
SDA  
ML2B+  
ML2B-  
HPD  
D2+B  
D2-B  
HPD  
ML3B+  
ML3B-  
D3+B  
D3-B  
AUXB+  
AUXB-  
SCL_B  
SDA_B  
HPDB  
HPD_B  
Figure 9-2. DisplayPort 2:1 switching  
9.2.3.2 Mipi DPHY based CSI-2 switching  
DATA_A4+  
D0+A  
D0-A  
DATA_A4-  
DATA_A3+  
DATA_A3-  
D1+A  
D1-A  
DATA_A2+  
DATA_A2-  
DATA4+  
DATA4-  
D2+A  
D2-A  
D0+  
D0-  
DATA_A1+  
DATA_A1-  
DATA3+  
DATA3-  
D3+A  
D3-A  
D1+  
D1-  
CLOCK_A+  
CLOCK_A-  
DATA2+  
DATA2-  
HPD_A  
CEC_A  
D2+  
D2-  
TS3DV642-Q1  
DATA_B4+  
DATA_B4-  
DATA1+  
DATA1-  
D0+B  
D0-B  
D3+  
D3-  
DATA_B3+  
DATA_B3-  
D1+B  
D1-B  
CLOCK+  
CLOCK-  
HPD  
CEC  
DATA_B2+  
DATA_B2-  
D2+B  
D2-B  
DATA_B1+  
DATA_B1-  
D3+B  
D3-B  
CLOCK_B+  
CLOCK_B-  
HPD_B  
CEC_B  
Figure 9-3. Mipi DPHY based CSI-2 switching  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TS3DV642-Q1  
TS3DV642-Q1  
SCDS430 – DECEMBER 2020  
www.ti.com  
9.2.3.3 Mipi CPHY based CSI-2 switching  
T0A_A  
T0A_B  
T0A_C  
D0+A  
D0-A  
D1+A  
T1A_A  
T1A_B  
T1A_C  
D1-A  
D2+A  
D2-A  
T0_A  
T0_B  
T0_C  
D0+  
D0-  
D1+  
T2A_A  
T2A_B  
D3+A  
D3-A  
T1_A  
T1_B  
T1_C  
D1-  
T2A_C  
HPD_A  
D2+  
D2-  
TS3DV642-Q1  
T0A_A  
T0A_B  
T0A_C  
T2_A  
T2_B  
T2_C  
D0+B  
D0-B  
D1+B  
D3+  
D3-  
HPD  
T1A_A  
T1A_B  
T1A_C  
D1-B  
D2+B  
D2-B  
T2A_A  
T2A_B  
T2A_C  
D3+B  
D3-B  
HPD_B  
Figure 9-4. Mipi CPHY based CSI-2 switching  
9.2.3.4 Mipi DPHY based DSI switching  
DATA_A4+  
DATA_A4-  
D0+A  
D0-A  
DATA_A3+  
DATA_A3-  
D1+A  
D1-A  
DATA4+  
DATA4-  
D0+  
D0-  
DATA_A2+  
DATA_A2-  
D2+A  
D2-A  
DATA3+  
DATA3-  
D1+  
D1-  
DATA_A1+  
DATA_A1-  
D3+A  
D3-A  
DATA2+  
DATA2-  
CLOCK_A+  
CLOCK_A-  
D2+  
D2-  
HPD_A  
CEC_A  
TS3DV642-Q1  
DATA1+  
DATA1-  
DATA_B4+  
DATA_B4-  
D3+  
D3-  
D0+B  
D0-B  
CLOCK+  
CLOCK-  
DATA_B3+  
DATA_B3-  
HPD  
CEC  
D1+B  
D1-B  
DATA_B2+  
DATA_B2-  
D2+B  
D2-B  
DATA_B1+  
DATA_B1-  
D3+B  
D3-B  
CLOCK_B+  
CLOCK_B-  
HPD_B  
CEC_B  
Figure 9-5. Mipi DPHY based DSI2 switching  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TS3DV642-Q1  
TS3DV642-Q1  
SCDS430 – DECEMBER 2020  
www.ti.com  
10 Power Supply Recommendations  
VCC should be in the range of 3.0 V to 3.6 V. Voltage levels above those listed in the Absolute Ratings table  
should not be used. Decoupling capacitors may be used to reduce noise and improve power supply integrity.  
There are no power sequence requirements for the TS3DV642-Q1.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TS3DV642-Q1  
 
TS3DV642-Q1  
SCDS430 – DECEMBER 2020  
www.ti.com  
11 Layout  
11.1 Layout Guidelines  
To ensure reliability of the device, the following commonly used printed-circuit board layout guidelines are  
recommended:  
Decoupling capacitors should be used between power supply pin and ground pin to ensure low impedance to  
reduce noise To achieve a low impedance over a wide frequency range use capacitors with a high self-  
resonance frequency.  
ESD and EMI protection devices (if used) should be placed as close as possible to the connector.  
Short trace lengths should be used to avoid excessive loading.  
To minimize the effects of crosstalk on adjacent traces, keep the traces at least two times the trace width  
apart.  
Separate high-speed signals from low-speed signals and digital from analog signals  
Avoid right-angle bends in a trace and try to route them at least with two 45° corners.  
The high-speed differential signal traces should be routed parallel to each other as much as possible. The  
traces are recommended to be symmetrical.  
A solid ground plane should be placed next to the high-speed signal layer. This also provides an excellent  
low-inductance path for the return current flow.  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TS3DV642-Q1  
 
 
TS3DV642-Q1  
SCDS430 – DECEMBER 2020  
www.ti.com  
11.2 Layout Example  
TS3DV642-Q1 application with a single controller interfacing with two HDMI connectors.  
1
2
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
3
HDMI  
controller  
SCL  
SDA  
D0+  
D0-  
4
5
6
7
D1+  
D1-  
HDMI Connector A  
8
9
D2+  
D2-  
10  
11  
12  
13  
14  
15  
16  
17  
D3+  
D3-  
HPD  
CEC  
MCU  
GPIOA  
GPIOB  
GPIOC  
: VIA to GND  
: VIA to signal plane  
HDMI Connector B  
Figure 11-1. Layout Example  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TS3DV642-Q1  
 
TS3DV642-Q1  
SCDS430 – DECEMBER 2020  
www.ti.com  
12 Device and Documentation Support  
12.1 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
12.2 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
12.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.5 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TS3DV642-Q1  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TS3DV642RUARQ1  
TS3DV642RUATQ1  
XTS3DV642RUAQ1  
PREVIEW  
WQFN  
WQFN  
WQFN  
RUA  
42  
42  
42  
3000 RoHS (In work)  
& Non-Green  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 105  
-40 to 105  
-40 to 105  
PREVIEW  
ACTIVE  
RUA  
250  
RoHS (In work)  
& Non-Green  
Call TI  
Call TI  
RUA  
3000 RoHS (In work)  
& Non-Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TS3DV642-Q1 :  
Catalog: TS3DV642  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE OUTLINE  
RUA0042A  
WQFN - 0.8 mm max height  
S
C
A
L
E
1
.
8
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.6  
3.4  
A
B
PIN 1 INDEX AREA  
9.1  
8.9  
0.8  
0.6  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.05 0.1  
2X 1.5  
SYMM  
(0.1) TYP  
EXPOSED  
THERMAL PAD  
21  
18  
17  
22  
SYMM  
43  
2X 8  
7.55 0.1  
0.3  
0.2  
1
38  
42X  
42  
39  
38X 0.5  
0.1  
C A B  
0.5  
0.3  
42X  
PIN 1 ID  
0.05  
4219139/A 03/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RUA0042A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(2.05)  
SYMM  
SEE SOLDER MASK  
DETAIL  
42X (0.6)  
42X (0.25)  
42  
39  
1
38X (0.5)  
38  
(3.525) TYP  
(R0.05) TYP  
(
0.2) TYP  
VIA  
1.17 TYP  
SYMM  
43  
(7.55) (8.8)  
17  
22  
18  
21  
(0.775)  
TYP  
(3.3)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219139/A 03/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RUA0042A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.56) TYP  
42X (0.6)  
42X (0.25)  
42  
39  
1
38X (0.5)  
38  
(R0.05) TYP  
(0.585)  
TYP  
43  
SYMM  
(8.8)  
12X (0.97)  
22  
17  
21  
18  
12X (0.92)  
SYMM  
(3.3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 12X  
EXPOSED PAD 43  
69% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4219139/A 03/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

TS3DV642A0RUAR

12-Channel 1:2 MUX/DEMUX with1.8V Compatible Control and Power-Down Mode
TI

TS3DV642RUARQ1

TS3DV642-Q1 8 Gbps 12-Channel differential 1-to-2 and 2-to-1 mux
TI

TS3DV642RUATQ1

TS3DV642-Q1 8 Gbps 12-Channel differential 1-to-2 and 2-to-1 mux
TI

TS3K10A

Modular Jacks
YAMAICHI

TS3K10B

Modular Jacks
YAMAICHI

TS3K10C

Modular Jacks
YAMAICHI

TS3K4A

Modular Jacks
YAMAICHI

TS3K4B

Modular Jacks
YAMAICHI

TS3K4C

Modular Jacks
YAMAICHI

TS3K6A

Modular Jacks
YAMAICHI

TS3K6B

Modular Jacks
YAMAICHI

TS3K6C

Modular Jacks
YAMAICHI