TS5A22364QDGSRQ1 [TI]

具有负信号处理功能的汽车类 0.65Ω、5V、2:1 (SPDT) 2 通道模拟开关 | DGS | 10 | -40 to 125;
TS5A22364QDGSRQ1
型号: TS5A22364QDGSRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有负信号处理功能的汽车类 0.65Ω、5V、2:1 (SPDT) 2 通道模拟开关 | DGS | 10 | -40 to 125

开关 光电二极管
文件: 总29页 (文件大小:1522K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TS5A22364-Q1  
ZHCSF59A OCTOBER 2014REVISED JULY 2016  
TS5A22364-Q1 具有负信号功能的 0.65Ω 双路 SPDT 模拟开关  
1 特性  
2 应用  
1
适用于汽车电子 应用  
车用信息娱乐  
音频路由  
指定的先断后合 (BBM) 开关  
负信号摆幅功能:最大摆幅范围为 –2.75V 到  
2.75V (VCC = 2.75V)  
工业自动化  
医疗成像  
内部分流开关,可防止在切换电源时出现喀哒声和  
噼啪声  
3 说明  
低导通状态电阻(0.65典型值)  
低电荷注入  
TS5A22364-Q1 是一款双通道单刀双掷 (SPDT) 模拟  
开关,设计用于 2.3V 5.5V 电源。该器件 支持 负信  
号摆幅,允许低于接地电平的信号通过开关,同时不发  
生失真。此外,TS5A22364-Q1 还包含一个内部分流  
开关,能够在常闭或常开引脚未连接至 COM 时使其电  
容放电。此开关可降低在切换电源时出现的喀哒声和噼  
啪声。先断后合特性可防止信号在跨路径传输时出现失  
真。该器件同时拥有低导通电阻、出色的通道间导通状  
态电阻匹配以及最小总谐波失真 (THD) 性能,是音频  
应用的 理想选择。  
出色的通道间导通状态电阻匹配  
2.25V 5.5V 电源 (VCC  
)
锁断性能达 100mA,符合 AEC Q100-004  
静电放电 (ESD) 性能  
通过 2500V 人体模型测试,符合 AEC Q100-  
002  
通过 1500V 带电器件模型测试,符合 AEC  
Q100-011  
器件信息(1)  
器件型号  
封装  
封装尺寸(标称值)  
TS5A22364-Q1  
VSSOP (10)  
3.00mm x 3.00mm  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
LP38690 的  
TS5A22364-Q1  
OUT+  
OUT-  
NC1  
NO1  
Audio  
Source 1  
COM1  
IN1  
Input Select  
8-  
Speaker  
Shunt  
Switch  
IN2  
NC2  
NO2  
COM2  
OUT+  
OUT-  
Audio  
Source 2  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SCDS361  
 
 
 
 
TS5A22364-Q1  
ZHCSF59A OCTOBER 2014REVISED JULY 2016  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ....................................... 16  
8.3 Feature Description................................................. 16  
8.4 Device Functional Modes........................................ 16  
Application and Implementation ........................ 17  
9.1 Application Information............................................ 17  
9.2 Typical Application ................................................. 17  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ..................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions ...................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics—2.5-V Supply ................. 5  
6.6 Electrical Characteristics—3.3-V Supply ................. 6  
6.7 Electrical Characteristics—5-V Supply .................... 7  
6.8 Typical Characteristics.............................................. 9  
Parameter Measurement Information ................ 12  
Detailed Description ............................................ 16  
8.1 Overview ................................................................. 16  
9
10 Power Supply Recommendations ..................... 19  
11 Layout................................................................... 20  
11.1 Layout Guidelines ................................................. 20  
11.2 Layout Example ................................................... 20  
12 器件和文档支持 ..................................................... 21  
12.1 接收文档更新通知 ................................................. 21  
12.2 社区资源................................................................ 21  
12.3 ....................................................................... 21  
12.4 静电放电警告......................................................... 21  
13 机械、封装和可订购信息....................................... 21  
7
8
4 修订历史记录  
Changes from Original (October 2014) to Revision A  
Page  
器件状态从产品预览改为量产数.......................................................................................................................................... 1  
2
Copyright © 2014–2016, Texas Instruments Incorporated  
 
TS5A22364-Q1  
www.ti.com.cn  
ZHCSF59A OCTOBER 2014REVISED JULY 2016  
5 Pin Configuration and Functions  
DGS Package  
10-Pin VSSOP  
Top View  
VCC  
NO1  
1
2
3
4
5
10  
9
NO2  
COM2  
NC2  
IN2  
COM1  
NC1  
8
7
IN1  
6
GND  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
VCC  
NO1  
COM1  
NC1  
1
2
3
4
5
6
7
8
9
10  
I
Supply power  
I/O  
I/O  
I/O  
I
Normally open (NO) signal path, switch 1  
Common signal path, switch 1  
Normally closed (NC) signal path, switch 1  
Digital control pin to connect COM1 to NO1, switch 1  
Ground  
IN1  
GND  
IN2  
I
Digital control pin to connect COM2 to NO2, switch 2  
Normally closed (NC) signal path, switch 2  
Common signal path, switch 2  
NC2  
I/O  
I/O  
I/O  
COM2  
NO2  
Normally open (NO) signal path, switch 2  
Copyright © 2014–2016, Texas Instruments Incorporated  
3
TS5A22364-Q1  
ZHCSF59A OCTOBER 2014REVISED JULY 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
(2)  
MIN  
MAX  
UNIT  
VCC  
Supply voltage(3)  
–0.5  
6
V
VNC  
Analog voltage on NC1-NC2 pin(3) (4) (5)  
Analog voltage on NO1-NO2 pin(3) (4) (5)  
Analog voltage on COM1-COM2 pin(3) (4) (5)  
VNO  
VCOM  
VCC – 6  
–50  
VCC + 0.5  
V
VNC, VNO, VCOM < 0  
or  
VNC, VNO, VCOM > VCC  
II/OK  
Analog port diode input clamp current  
50  
mA  
mA  
INC  
INO  
ICOM  
On-state switch continuous current  
On-state switch peak current(6)  
–150  
–300  
150  
300  
VNC, VNO, VCOM = 0 to VCC  
IRSH  
VIN  
IIK  
Off-state switch shunt resistor current  
Digital input voltage  
Digital input clamp current(3) (4)  
–20  
–0.5  
–50  
20  
6.5  
50  
mA  
V
VIN < 0  
mA  
ICC  
IGND  
Continuous current through VCC or GND  
Storage temperature  
–100  
–65  
100  
150  
mA  
°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.  
(3) All voltages are with respect to ground, unless otherwise specified.  
(4) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.  
(5) This value is limited to 5.5 V maximum.  
(6) Pulse at 1-ms duration <10% duty cycle.  
6.2 ESD Ratings  
MIN  
MAX  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
–2500  
2500  
VESD  
Electrostatic discharge  
V
Charged device model (CDM), per  
all pins  
–1500  
1500  
AEC Q100-011  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
VCC  
VNC  
VNO  
VCOM  
VIN  
Supply voltage  
Signal path voltage  
Digital control  
2.3  
VCC – 5.5  
GND  
5.5  
VCC  
VCC  
V
V
V
4
Copyright © 2014–2016, Texas Instruments Incorporated  
TS5A22364-Q1  
www.ti.com.cn  
ZHCSF59A OCTOBER 2014REVISED JULY 2016  
6.4 Thermal Information  
TS5A22364-Q1  
THERMAL METRIC(1) (2)  
DGS (VSSOP)  
10 PINS  
163.3  
56.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
83.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
6.8  
ψJB  
81.8  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) The package thermal impedance is calculated in accordance with JESD 51-7.  
6.5 Electrical Characteristics—2.5-V Supply  
VCC = 2.3 V to 2.7 V, TA = –40°C to +125°C (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
VCOM  
VNO  
VNC  
VCC  
5.5  
Analog signal  
VCC  
V
VNC or VNO = VCC, 1.5 V,  
VCC – 5.5 V  
ICOM = –100 mA  
25°C  
–40°C to +125°C  
25°C  
0.65  
0.023  
0.18  
0.94  
1.3  
On-state  
resistance  
COM to NO or NC,  
See Figure 14  
Ron  
2.7 V  
2.7 V  
2.7 V  
On-state  
resistance match  
between channels  
0.11  
0.15  
0.46  
0.56  
VNC or VNO = 1.5 V,  
ICOM = –100 mA  
COM to NO or NC,  
See Figure 14  
ΔRon  
–40°C to +125°C  
25°C  
On-state  
resistance  
flatness  
VNC or VNO = VCC, 1.5 V,  
VCC – 5.5 V  
ICOM = –100 mA  
COM to NO or NC,  
See Figure 14  
Ron(flat)  
–40°C to +125°C  
Shunt switch  
resistance  
RSH  
INO or INC = 10 mA  
–40°C to +125°C  
2.7 V  
2.7 V  
25  
55  
25°C  
–200  
200  
On-state leakage  
current  
VNC and VNO = floating,  
VCOM = VCC , VCC – 5.5 V  
ICOM(ON)  
See Figure 16  
nA  
–40°C to +125°C  
–2500  
2500  
DIGITAL CONTROL INPUTS (IN)(2)  
Input logic high  
Input logic low  
VIH  
VIL  
–40°C to +125°C  
–40°C to +125°C  
25°C  
1.4  
VCC  
0.4  
V
V
–250  
–250  
250  
250  
Input leakage  
current  
IIH, IIL  
VIN = VCC or 0  
2.7 V  
2.5 V  
nA  
–40°C to +125°C  
DYNAMIC  
25°C  
44  
22  
80  
120  
70  
VCOM = VCC  
,
CL = 35 pF,  
See Figure 18  
Turnon time  
tON  
ns  
ns  
2.3 V to  
2.7 V  
RL = 300  
–40°C to +125°C  
25°C  
2.5 V  
VCOM = VCC  
,
CL = 35 pF,  
See Figure 18  
Turnoff time  
tOFF  
2.3 V to  
2.7 V  
RL = 300 Ω  
–40°C to +125°C  
70  
Break-before-make  
time  
tBBM  
QC  
See Figure 19  
25°C  
25°C  
2.5 V  
2.5 V  
1
7
ns  
VGEN = 0,  
RGEN = 0,  
CL = 1 nF,  
See Figure 23  
Charge injection  
215  
pC  
On-State  
NC, NO, COM  
capacitance  
VCOM = VCC or GND,  
Switch ON, f = 10 MHz  
CCOM(ON)  
See Figure 17  
25°C  
2.5 V  
370  
pF  
Digital input  
capacitance  
CI  
VIN = VCC or GND  
See Figure 17  
See Figure 20  
25°C  
25°C  
2.5 V  
2.5 V  
2.6  
17  
pF  
Bandwidth  
BW  
RL = 50 , –3 dB  
MHz  
(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.  
(2) All unused digital inputs of the device must be held at VCC or GND to ensure proper device operation. See the Implications of Slow or  
Floating CMOS Inputs application report, SCBA004.  
Copyright © 2014–2016, Texas Instruments Incorporated  
5
TS5A22364-Q1  
ZHCSF59A OCTOBER 2014REVISED JULY 2016  
www.ti.com.cn  
Electrical Characteristics—2.5-V Supply (continued)  
VCC = 2.3 V to 2.7 V, TA = –40°C to +125°C (unless otherwise noted) (1)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
MAX UNIT  
f = 100 kHz,  
See Figure 21  
Off-state isolation  
OISO  
RL = 50 Ω  
RL = 50 Ω  
25°C  
2.5 V  
–66  
dB  
f = 100 kHz,  
See Figure 22  
Crosstalk  
XTALK  
25°C  
25°C  
2.5 V  
2.5 V  
–75  
dB  
%
f = 20 Hz to  
20 kHz,  
See Figure 24  
Total harmonic  
distortion  
RL = 600 ,  
CL = 35 pF  
THD  
0.01  
SUPPLY  
25°C  
0.2  
1.1  
μA  
VCOM and VIN = VCC or GND, VNC and VNO = floating  
2.7 V  
2.7 V  
Positive  
supply current  
–40°C to +125°C  
1.3  
ICC  
VCOM = VCC – 5.5 V, VIN = VCC or GND, VNC and VNO  
= floating  
–40°C to +125°C  
3.3  
μA  
6.6 Electrical Characteristics—3.3-V Supply  
VCC = 3 V to 3.6 V, TA = –40°C to +125°C (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP MAX UNIT  
ANALOG SWITCH  
VCOM  
VNO  
VNC  
VCC  
5.5  
Analog signal  
VCC  
V
VNC or VNO VCC  
1.5 V,  
VCC – 5.5 V,  
ICOM = –100 mA  
,
25°C  
–40°C to +125°C  
25°C  
0.61  
0.024  
0.12  
0.87  
0.97  
0.13  
0.13  
0.46  
0.5  
On-state  
resistance  
COM to NO or NC,  
See Figure 14  
Ron  
3 V  
3 V  
3 V  
On-state  
resistance match  
between  
channels  
VNC or VNO = 1.5 V,  
ICOM = –100 mA  
COM to NO or NC,  
See Figure 14  
ΔRon  
–40°C to +125°C  
25°C  
VNC or VNO VCC  
,
On-state  
resistance  
flatness  
1.5 V,  
VCC – 5.5 V,  
ICOM = –100 mA  
COM to NO or NC,  
See Figure 14  
Ron(flat)  
–40°C to +125°C  
Shunt switch  
resistance  
INO or  
INC = 10 mA  
RSH  
–40°C to +125°C  
3 V  
25  
40  
25°C  
–200  
200  
On-state leakage  
current  
VNC and VNO = floating,  
VCOM = VCC,VCC – 5.5 V  
COM to NO or NC,  
See Figure 16  
ICOM(ON)  
3.6 V  
nA  
–40°C to +125°C  
–2500  
2500  
DIGITAL CONTROL INPUTS (IN)(2)  
Input logic high  
Input logic low  
VIH  
VIL  
–40°C to +125°C  
–40°C to +125°C  
25°C  
1.4  
VCC  
0.6  
V
V
–250  
–250  
250  
250  
Input leakage  
current  
IIH, IIL  
VIN = VCC or 0  
3.6 V  
3.3 V  
nA  
–40°C to +125°C  
DYNAMIC  
25°C  
34  
19  
80  
80  
70  
70  
VCOM = VCC  
,
CL = 35 pF,  
See Figure 18  
Turnon time  
tON  
ns  
ns  
3 V to 3.6  
V
RL = 300 Ω  
–40°C to +125°C  
25°C  
3.3 V  
VCOM = VCC  
,
CL = 35 pF,  
See Figure 18  
Turnoff time  
tOFF  
3 V to 3.6  
V
RL = 300 Ω  
–40°C to +125°C  
Break-before-  
make time  
tBBM  
QC  
See Figure 19  
25°C  
25°C  
3.3 V  
3.3 V  
1
7
ns  
VGEN = 0,  
RGEN = 0,  
CL = 1 nF,  
See Figure 23  
Charge injection  
On-State  
NC, NO, COM  
capacitance  
300  
pC  
VCOM = VCC or GND,  
f = 10 MHz  
CCOM(ON)  
See Figure 17  
25°C  
3.3 V  
370  
pF  
(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.  
(2) All unused digital inputs of the device must be held at VCC or GND to ensure proper device operation. See the Implications of Slow or  
Floating CMOS Inputs application report, SCBA004.  
6
Copyright © 2014–2016, Texas Instruments Incorporated  
 
TS5A22364-Q1  
www.ti.com.cn  
ZHCSF59A OCTOBER 2014REVISED JULY 2016  
Electrical Characteristics—3.3-V Supply (continued)  
VCC = 3 V to 3.6 V, TA = –40°C to +125°C (unless otherwise noted) (1)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP MAX UNIT  
Digital input  
CI  
VIN = VCC or GND  
RL = 50 , –3 dB  
RL = 50 Ω  
See Figure 17  
25°C  
3.3 V  
2.6  
17.5  
–68  
pF  
MHz  
dB  
capacitance  
Bandwidth  
Switch ON,  
See Figure 20  
BW  
25°C  
25°C  
25°C  
25°C  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
f = 100 kHz,  
See Figure 21  
Off-state isolation  
Crosstalk  
OISO  
XTALK  
THD  
f = 100 kHz,  
See Figure 22  
RL = 50 Ω  
–76  
dB  
Total harmonic  
distortion  
RL = 600 ,  
CL = 35 pF  
f = 20 Hz to 20 kHz,  
See Figure 24  
0.008  
%
SUPPLY  
VCOM and VIN = VCC or  
25°C  
0.1  
1.2  
1.3  
GND, VNC and VNO  
floating  
=
3.6 V  
3.6 V  
μA  
μA  
–40°C to +125°C  
Positive  
supply current  
ICC  
VCOM = VCC – 5.5 V, VIN  
VCC or GND, VNC and VNO  
= floating  
=
–40°C to +125°C  
3.4  
6.7 Electrical Characteristics—5-V Supply(1)  
VCC = 4.5 V to 5.5 V, TA = –40°C to +125°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
VCOM  
VNO, VNC  
,
VCC –  
5.5  
Analog signal  
VCC  
V
VNC or VNO = VCC, 1.6 V,  
VCC = –5.5 V,  
ICOM = –100 mA  
25°C  
–40°C to +125°C  
25°C  
0.52  
0.04  
0.74  
0.83  
0.23  
On-state  
resistance  
COM to NO or NC,  
See Figure 14  
Ron  
4.5 V  
4.5 V  
4.5 V  
On-state  
resistance match  
between  
VNC or VNO = 1.6 V,  
ICOM = –100 mA  
COM to NO or NC,  
See Figure 14  
ΔRon  
–40°C to +125°C  
0.30  
channels  
On-state  
resistance  
flatness  
VNC or VNO = VCC, 1.6 V,  
VCC = –5.5 V,  
ICOM = –100 mA  
25°C  
0.076  
16  
0.46  
0.5  
COM to NO or NC,  
See Figure 14  
Ron(flat)  
–40°C to +125°C  
Shunt switch  
resistance  
RSH  
INO or INC = 10 mA  
–40°C to +125°C  
4.5 V  
5.5 V  
36  
25°C  
–200  
200  
On-state leakage  
current  
VNC and VNO = Floating,  
VCOM = VCC, VCC – 5.5 V  
ICOM(ON)  
See Figure 16  
nA  
–40°C to +125°C  
–2500  
2500  
DIGITAL CONTROL INPUTS (IN)(2)  
Input logic high  
Input logic low  
VIH  
VIL  
–40°C to +125°C  
–40°C to +125°C  
25°C  
2.4  
VCC  
0.8  
V
V
–250  
–250  
250  
250  
Input leakage  
current  
IIH, IIL  
VIN = VCC or 0  
5.5 V  
5 V  
nA  
–40°C to +125°C  
DYNAMIC  
25°C  
27  
13  
80  
80  
70  
70  
VCOM = VCC  
,
CL = 35 pF,  
See Figure 18  
Turnon time  
tON  
ns  
ns  
4.5 V to  
5.5 V  
RL = 300 Ω  
–40°C to +125°C  
25°C  
5 V  
VCOM = VCC  
,
CL = 35 pF,  
See Figure 18  
Turnoff time  
tOFF  
4.5 V to  
5.5 V  
RL = 300 Ω  
–40°C to +125°C  
Break-before-  
make time  
VNC = VNO = VCC/2  
RL = 300 Ω  
C = 35 pF,  
See Figure 19  
tBBM  
25°C  
25°C  
5 V  
5 V  
1
3.5  
ns  
VGEN = 0,  
RGEN = 0  
CL = 1L nF,  
See Figure 23  
Charge injection QC  
500  
pC  
(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.  
(2) All unused digital inputs of the device must be held at VCC or GND to ensure proper device operation. See the Implications of Slow or  
Floating CMOS Inputs application report, SCBA004.  
Copyright © 2014–2016, Texas Instruments Incorporated  
7
 
TS5A22364-Q1  
ZHCSF59A OCTOBER 2014REVISED JULY 2016  
www.ti.com.cn  
Electrical Characteristics—5-V Supply(1) (continued)  
VCC = 4.5 V to 5.5 V, TA = –40°C to +125°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
MAX UNIT  
ON-State  
CCOM(ON)  
VCOM = VCC or GND  
See Figure 17  
25°C  
5 V  
370  
pF  
NC, NO, COM  
capacitance  
Digital input  
capacitance  
CI  
VIN = VCC or GND  
RL = 50 Ω  
See Figure 17  
See Figure 20  
25°C  
25°C  
25°C  
5 V  
5 V  
5 V  
2.6  
18.3  
–70  
pF  
MHz  
dB  
Bandwidth  
BW  
f = 100 kHz,  
See Figure 21  
Off-state isolation OISO  
RL = 50 Ω  
f = 100 kHz,  
See Figure 22  
Crosstalk  
XTALK  
THD  
RL = 50 Ω  
25°C  
25°C  
5 V  
5 V  
–78  
dB  
%
Total harmonic  
distortion  
RL = 600 ,  
CL = 35 pF  
f = 20 Hz to 20 kHz,  
See Figure 24  
0.009  
SUPPLY  
25°C  
0.2  
1.3  
VCOM and VIN = VCC or GND,  
VNC or VNO = floating  
–40°C to +125°C  
3.5  
Positive  
supply current  
ICC  
5.5 V  
μA  
VCOM = VCC – 5.5 V, VIN  
VCC or GND, VNC or VNO  
floating  
=
=
–40°C to +125°C  
5
8
Copyright © 2014–2016, Texas Instruments Incorporated  
 
TS5A22364-Q1  
www.ti.com.cn  
ZHCSF59A OCTOBER 2014REVISED JULY 2016  
6.8 Typical Characteristics  
1.1  
1
1.1  
1
VCC = 2.3 V  
VCC = 3 V  
VCC = 4.5 V  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
-3.5  
-2.5  
-1.5  
-0.5  
0.5  
1.5  
2.5  
3.5  
4.5  
-3 -2.4 -1.8 -1.2 -0.6  
0
0.6 1.2 1.8 2.4  
3
Voltage VCOM (V)  
Voltage VCOM (V)  
D001  
D001  
Figure 1. On-Resistance vs Voltage VCOM  
Figure 2. On-Resistance vs Voltage VCOM (VCC = 2.3 V)  
0.75  
0.65  
0.55  
0.45  
0.35  
0.25  
0.7  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
0.65  
0.6  
0.55  
0.5  
0.45  
0.4  
0.35  
0.3  
0.25  
0.2  
0.15  
0.1  
-3  
-2  
-1  
0
1
2
3
4
-1  
0
1
2
3
4
5
Voltage VCOM (V)  
Voltage VCOM (V)  
D001  
D001  
Figure 3. On-Resistance vs Voltage VCOM (VCC = 3 V)  
Figure 4. On-Resistance vs Voltage VCOM (VCC = 4.5 V)  
0
-1  
0
-1  
-2  
-2  
-3  
-3  
-4  
-4  
-5  
-5  
-6  
-6  
-7  
-7  
-8  
-8  
-9  
-9  
VCC = 2.5 V  
VCC = 3.3 V  
VCC = 5 V  
T = -40 C  
T = 25 C  
T = 125 C  
-10  
-11  
-12  
-10  
-11  
-12  
1x105  
4.01x107 8.01x107 1.201x108 1.601x108  
Frequency (Hz)  
2x108  
1x105  
4.01x107 8.01x107 1.201x108 1.601x108  
Frequency (Hz)  
2x108  
D005  
D006  
Figure 5. Insertion Loss vs Frequency for Varying VCC  
Figure 6. Insertion Loss vs Frequency for Varying  
Temperature  
Copyright © 2014–2016, Texas Instruments Incorporated  
9
TS5A22364-Q1  
ZHCSF59A OCTOBER 2014REVISED JULY 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
0
-8  
0
-8  
-16  
-24  
-32  
-40  
-48  
-56  
-64  
-72  
-80  
-16  
-24  
-32  
-40  
-48  
-56  
-64  
-72  
-80  
VCC = 2.5 V  
VCC = 3.3 V  
VCC = 5 V  
T = -40 C  
T = 25 C  
T = 125 C  
1x105  
4.01x107 8.01x107 1.201x108 1.601x108  
Frequency (Hz)  
2x108  
1x105  
4.01x107 8.01x107 1.201x108 1.601x108  
Frequency (Hz)  
2x108  
D007  
D008  
Figure 7. Off Isolation vs Frequency for Varying VCC  
Figure 8. Off Isolation vs Frequency for Varying  
Temperature  
5
0
-10  
-20  
-20  
-45  
-30  
-40  
-50  
-60  
-70  
-70  
-80  
-90  
-95  
VCC = 2.5 V  
VCC = 3.3 V  
VCC = 5 V  
T = -40 C  
T = 25 C  
T = 125 C  
-100  
-110  
-120  
-120  
100000  
2.01E+7  
4.01E+7  
6.01E+7  
8.01E+7  
1E+8  
1x105  
4.01x107 8.01x107 1.201x108 1.601x108  
Frequency (Hz)  
2x108  
Frequency (Hz)  
D009  
D010  
Figure 9. Crosstalk vs Frequency for Varying VCC  
Figure 10. Crosstalk vs Frequency (VCC = 3.3 V)  
500  
400  
300  
200  
100  
0
0.009  
0.008  
0.007  
0.006  
0.005  
0.004  
0.003  
0.002  
0.001  
0
VCC = 2.5 V  
VCC = 3.3 V  
VCC = 5 V  
VCC = 2.5 V  
VCC = 3.3 V  
VCC = 5.5 V  
-100  
-200  
5x100  
6.005x103  
1.2005x104  
1.8005x104  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Frequency (Hz)  
Voltage (V)  
D012  
D011  
Figure 12. Total Harmonic Distortion vs Frequency  
Figure 11. Charge Injection vs Voltage VCOM  
10  
Copyright © 2014–2016, Texas Instruments Incorporated  
TS5A22364-Q1  
www.ti.com.cn  
ZHCSF59A OCTOBER 2014REVISED JULY 2016  
Typical Characteristics (continued)  
2.25E-8  
2E-8  
1.75E-8  
1.5E-8  
1.25E-8  
1E-8  
7.5E-9  
5E-9  
2.5E-9  
0
-2.5E-9  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Voltage (V)  
D001  
T = 25°C  
VNC and VNO = Floating  
VCOM and VIN = GND  
Figure 13. Power-Supply Current vs Voltage  
Copyright © 2014–2016, Texas Instruments Incorporated  
11  
TS5A22364-Q1  
ZHCSF59A OCTOBER 2014REVISED JULY 2016  
www.ti.com.cn  
7 Parameter Measurement Information  
VCC  
-
R
IN  
++  
Figure 14. On-State Resistance (Ron)  
VCC  
Off-State leakage current  
Channel Off  
VI = VIH or VIL  
++  
IN  
+
Figure 15. Off-State Leakage Current (ICOM(OFF), INO(OFF)  
)
VCC  
On-state leakage current  
Channel On  
VI = VIH or VIL  
IN  
++  
Figure 16. On-State Leakage Current  
(ICOM(ON), INO(ON)  
)
12  
Copyright © 2014–2016, Texas Instruments Incorporated  
TS5A22364-Q1  
www.ti.com.cn  
ZHCSF59A OCTOBER 2014REVISED JULY 2016  
Parameter Measurement Information (continued)  
VCC  
ë
bh  
bh  
/ꢀpꢀcitꢀnce  
aeter  
VBIAS = VCC or GND and  
VI = VIH or VIL  
Capacitance is measured at NO,  
COM, and IN inputs during ON  
and OFF conditions.  
/ha  
/ha  
.L!{  
Figure 17. Capacitance  
(CI, CCOM(OFF), CCOM(ON), CNO(OFF), CNO(ON)  
)
VCC  
R
C
L
VCOM  
VCC  
TEST  
L
t
300  
300 ꢀ  
35 pF  
35 pF  
ON  
VCC  
OFF  
IN  
Logic  
Input  
(VI)  
VCC  
t
t
OFF  
ON  
90%  
90%  
Switch  
Output(  
VNO  
)
A. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr < 5 ns,  
tf < 5 ns.  
B. CL includes probe and jig capacitance.  
Figure 18. Turnon (tON) and Turnoff time (tOFF  
)
Copyright © 2014–2016, Texas Instruments Incorporated  
13  
TS5A22364-Q1  
ZHCSF59A OCTOBER 2014REVISED JULY 2016  
www.ti.com.cn  
Parameter Measurement Information (continued)  
VCC  
VNC  
or  
VNO  
VCC  
RPU  
VCC  
NC or NO  
NC or NO  
VOH  
10%  
10%  
VNC or VNO = GND  
RL = 1 k  
RPU = 100 ꢀ  
CL = 35 pF  
A. CL includes probe and jig capacitance.  
B. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr < 5 ns,  
tf < 5 ns.  
Figure 19. Break-Before-Make Time (tBBM  
)
VCC  
Channel ON:NO to COM  
VI = VIH or VIL  
50  
Network Analyzer Setup  
Source power = 0 dBm  
(632-mV P-P at 50 load)  
DC Bias=350 mV  
IN  
50 ꢀ  
+
Figure 20. Bandwidth (BW)  
VCC  
Channel OFF: NO to COM  
VI = VIH or VIL  
50  
NetworkAnalyzerSetup  
Source power = 0 dBm  
(632-mV P-P at 50 Ω load)  
DC bias = 350 mVꢀ  
IN  
50 ꢀ  
+
Figure 21. Off Isolation (OISO  
)
14  
Copyright © 2014–2016, Texas Instruments Incorporated  
TS5A22364-Q1  
www.ti.com.cn  
ZHCSF59A OCTOBER 2014REVISED JULY 2016  
Parameter Measurement Information (continued)  
VCC  
Channel ON: NC to COM  
VNC  
50 Ω  
NCNO  
Channel OFF: NO to COM  
VI = VIH or VIL  
VNO  
NetworkAnalyzerSetup  
50 Ω  
Source power = 0 dBm  
(632-mV P-P at 50 load)  
DC bias = 350 mV  
50 Ω  
IN  
+
Figure 22. Crosstalk (XTALK  
)
VCC  
û
VCC  
IN  
x û  
A. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr < 5 ns,  
tf < 5 ns.  
B. CL includes probe and jig capacitance.  
Figure 23. Charge Injection (QC)  
Channel ON: COM to NO  
VSOURCE = 0.5 V P-P  
VI = VIH or VIL  
fSOURCE = 20 Hz to 20 kHz CL = 35 pF  
RL = 600  
VCC  
Audio Analyzer  
NO  
600  
COM  
IN  
+
600 ꢀ  
A. CL includes probe and jig capacitance.  
Figure 24. Total Harmonic Distortion (THD)  
Copyright © 2014–2016, Texas Instruments Incorporated  
15  
TS5A22364-Q1  
ZHCSF59A OCTOBER 2014REVISED JULY 2016  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TS5A22364-Q1 is a 2-channel single-pole double-throw (SPDT) analog switch designed to operate from 2.3-  
V to 5.5-V power supply. The device features negative signal swing capability that allows signals below ground to  
pass through the switch without distortion. Additionally, the TS5A22364-Q1 includes an internal shunt switch,  
which automatically discharges any capacitance at the NC or NO terminals when they are not connected to  
COM. This reduces the audible click-and-pop noise when switching between two sources. The break-before-  
make feature prevents signal distortion during the transferring of a signal from one path to another. Low On-state  
resistance, excellent channel-to-channel On-state resistance matching, and minimal total harmonic distortion  
(THD) performance are ideal for audio applications.  
8.2 Functional Block Diagram  
TS5A22364-Q1  
OUT+  
OUT-  
NC1  
NO1  
Audio  
Source 1  
COM1  
IN1  
Input Select  
8-ꢀ  
Speaker  
Shunt  
Switch  
IN2  
NC2  
NO2  
COM2  
OUT+  
OUT-  
Audio  
Source 2  
8.3 Feature Description  
8.3.1 Click-and-Pop Reduction  
The 50-Ω shunt switches on the TS5A22364-Q1 automatically discharge any capacitance at the NC or NO  
terminals when they are not connected to COM. This reduces the audible click-and-pop sounds that occur when  
switching between audio sources. Audible clicks and pops are caused when a step DC voltage is switched into  
the speaker. By automatically discharging the side that is not connected, any residual DC voltage is removed,  
thereby reducing the clicks and pops.  
8.4 Device Functional Modes  
Table 1 shows the function table for the TS5A22364-Q1.  
Table 1. Function Table  
NC TO COM,  
COM TO NC  
NO TO COM,  
COM TO NO  
IN  
L
ON  
OFF  
ON  
H
OFF  
16  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
TS5A22364-Q1  
www.ti.com.cn  
ZHCSF59A OCTOBER 2014REVISED JULY 2016  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 Negative Signal Swing Capability  
The TS5A22364-Q1 dual SPDT switches feature negative signal capability that allows signals below ground to  
pass through without distortion. These analog switches operate from a single 2.3-V to 5.5-V supply. The input  
and output signal swing of the device is dependant on the supply voltage VCC: the device can pass signals as  
high as VCC and as low as VCC – 5.5 V, including signals below ground with minimal distortion. The Off state  
signal path (either NC or NO) during the operation of the TS5A22364-Q1 cannot handle negative DC voltage.  
Table 2 shows the input-output signal swing the user can get with different supply voltages.  
Table 2. Input-Output Signal Swing  
MINIMUM  
(VNC, VNO, VCOM) =  
VCC – 5.5  
MAXIMUM  
MINIMUM  
MAXIMUM  
SUPPLY  
VOLTAGE,  
VCC  
(VNC, VNO, VCOM) = (VNC, VNO, VCOM) = (VNC, VNO, VCOM) =  
VCC  
VCC – 5.5  
VCC  
ON State signal path  
OFF state signal path  
5.5 V  
4.2 V  
3.3 V  
3 V  
0 V  
5.5 V  
4.2 V  
3.3 V  
3 V  
0 V  
0 V  
0 V  
0 V  
0 V  
5.5 V  
4.2 V  
3.3 V  
3 V  
–1.3 V  
–2.2 V  
–2.5 V  
–3 V  
2.5 V  
2.5 V  
2.5 V  
9.2 Typical Application  
The 50-shunt switches on the TS5A22364-Q1 automatically discharge any capacitance at the NC or NO  
terminals when they are unconnected to COM. This reduces audible click-and-pop sounds that occur when  
switching between audio sources. Audible clicks and pops are caused when a step DC voltage is switched into  
the speaker. By automatically discharging the side that is not connected, any residual DC voltage is removed,  
thereby reducing the clicks and pops. See Figure 25.  
Copyright © 2014–2016, Texas Instruments Incorporated  
17  
 
TS5A22364-Q1  
ZHCSF59A OCTOBER 2014REVISED JULY 2016  
www.ti.com.cn  
Typical Application (continued)  
TS5A22364-Q1  
OUT+  
NC1  
NO1  
Audio  
OUT-  
Source 1  
COM1  
IN1  
Input Select  
8-ꢀ  
Speaker  
Shunt  
Switch  
IN2  
NC2  
NO2  
COM2  
OUT+  
OUT-  
Audio  
Source 2  
Figure 25. Shunt Switch Block Diagram  
9.2.1 Design Requirements  
Tie the digitally controlled input select pins IN1 and IN2 to VCC or GND to avoid unwanted switch states that  
could result if the logic control pins are left floating.  
9.2.2 Detailed Design Procedure  
Select the appropriate supply voltage to cover the entire voltage swing of the signal passing through the switch  
because the TS5A22364-Q1 operates from a single 2.3-V to 5.5-V supply and the input-output signal swing of  
the device is dependant of the supply voltage VCC. The device passes signals as high as VCC and as low as  
VCC – 5.5 V. Use Table 2 as a guide for selecting supply voltage based on the signal passing through the switch.  
Limit the current through the shunt resistor so as not to exceed the ±20 mA.  
Ensure that the device is powered up with a supply voltage on VCC before a voltage can be applied to the signal  
paths NC and NO.  
9.2.3 Application Curve  
1.1  
1
VCC = 2.3 V  
VCC = 3 V  
VCC = 4.5 V  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
-3.5  
-2.5  
-1.5  
-0.5  
0.5  
1.5  
2.5  
3.5  
4.5  
Voltage VCOM (V)  
D001  
Figure 26. On-Resistance vs Voltage VCOM  
18  
Copyright © 2014–2016, Texas Instruments Incorporated  
TS5A22364-Q1  
www.ti.com.cn  
ZHCSF59A OCTOBER 2014REVISED JULY 2016  
10 Power Supply Recommendations  
The TS5A22364-Q1 operates from a single 2.3-V to 5.5-V supply. The device must be powered up with a supply  
voltage on VCC before a voltage can be applied to the signal paths NC and NO. It is recommended to include a  
100 μs delay after VCC is at voltage before applying a signal on NC and NO paths.  
It is also good practice to place a 0.1-μF bypass capacitor on the supply pin VCC to GND to smooth out lower  
frequency noise to provide better load regulation across the frequency spectrum.  
Copyright © 2014–2016, Texas Instruments Incorporated  
19  
TS5A22364-Q1  
ZHCSF59A OCTOBER 2014REVISED JULY 2016  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
It is recommended to place a bypass capacitor as close to the supply pin VCC as possible to help smooth out  
lower frequency noise to provide better load regulation across the frequency spectrum.  
Minimize trace lengths and vias on the signal paths in order to preserve signal integrity.  
11.2 Layout Example  
LEGEND  
Polygonal Copper Pour  
VIA to Power Plane  
VIA to GND  
Bypass Capacitor  
VCC  
To System  
To System  
VCC  
1
10  
9
NO2  
COM2  
NC2  
To System  
NO1  
2
To System  
To System  
To System  
To System  
To System  
COM1  
8
3
IN2  
7
6
NC1  
IN1  
4
5
GND  
Figure 27. Layout Example of TS5A22364-Q1  
20  
版权 © 2014–2016, Texas Instruments Incorporated  
TS5A22364-Q1  
www.ti.com.cn  
ZHCSF59A OCTOBER 2014REVISED JULY 2016  
12 器件和文档支持  
12.1 接收文档更新通知  
如需接收文档更新通知,请访问 ti.com 上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册后,即可每周定  
期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
12.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。要获得这份数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014–2016, Texas Instruments Incorporated  
21  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TS5A22364QDGSRQ1  
ACTIVE  
VSSOP  
DGS  
10  
2500 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
-40 to 125  
SJN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TS5A22364QDGSRQ1 VSSOP  
DGS  
10  
2500  
330.0  
12.4  
5.3  
3.4  
1.4  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VSSOP DGS 10  
SPQ  
Length (mm) Width (mm) Height (mm)  
366.0 364.0 50.0  
TS5A22364QDGSRQ1  
2500  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DGS0010A  
VSSOP - 1.1 mm max height  
S
C
A
L
E
3
.
2
0
0
SMALL OUTLINE PACKAGE  
C
SEATING PLANE  
0.1 C  
5.05  
4.75  
TYP  
PIN 1 ID  
AREA  
A
8X 0.5  
10  
1
3.1  
2.9  
NOTE 3  
2X  
2
5
6
0.27  
0.17  
10X  
3.1  
2.9  
1.1 MAX  
0.1  
C A  
B
B
NOTE 4  
0.23  
0.13  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.7  
0.4  
0 - 8  
DETAIL A  
TYPICAL  
4221984/A 05/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-187, variation BA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
(R0.05)  
TYP  
SYMM  
10X (0.3)  
1
5
10  
SYMM  
6
8X (0.5)  
(4.4)  
LAND PATTERN EXAMPLE  
SCALE:10X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221984/A 05/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
SYMM  
(R0.05) TYP  
10X (0.3)  
8X (0.5)  
1
5
10  
SYMM  
6
(4.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4221984/A 05/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TS5A22364YZPR

0.65-ヘ DUAL SPDT ANALOG SWITCHES WITH NEGATIVE SIGNALING CAPABILITY
TI

TS5A22366

0.7-Ω DUAL SPDT ANALOG SWITCH WITH NEGATIVE RAIL CAPABILITY AND 1.8-V COMPATIBLE INPUT LOGIC
TI

TS5A22366RSER

DUAL 1-CHANNEL, SGL POLE DOUBLE THROW SWITCH, QCC10, 2 X 1.50 MM, 0.50 MM PITCH, QFN-10
TI

TS5A22366YFCR

0.7-Ω DUAL SPDT ANALOG SWITCH WITH NEGATIVE RAIL CAPABILITY AND 1.8-V COMPATIBLE INPUT LOGIC
TI

TS5A22366_14

0.7-Ω DUAL SPDT ANALOG SWITCH WITH NEGATIVE RAIL CAPABILITY AND 1.8-V COMPATIBLE INPUT LOGIC
TI

TS5A23157

SPDT ANALOG SWITCH
TI

TS5A23157-Q1

DUAL 15-W SPDT ANALOG SWITCH
TI

TS5A23157DGSR

SPDT ANALOG SWITCH
TI

TS5A23157DGSRE4

DUAL 10-Ω SPDT ANALOG SWITCH
TI

TS5A23157DGSRG4

DUAL 10-Ω SPDT ANALOG SWITCH
TI

TS5A23157DGST

DUAL 10-Ω SPDT ANALOG SWITCH
TI

TS5A23157DGSTE4

DUAL 10-Ω SPDT ANALOG SWITCH
TI