TS5A3153YEPR [TI]

1-ohm SPDT ANALOG SWITCH 5-V/3.3-V SINGLE-CHANNEL 2:1 MULTIPLEXER/DEMULTIPLEXER; 1欧姆SPDT模拟开关5 -V / 3.3 -V单通道2 : 1多路复用器/
TS5A3153YEPR
型号: TS5A3153YEPR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

1-ohm SPDT ANALOG SWITCH 5-V/3.3-V SINGLE-CHANNEL 2:1 MULTIPLEXER/DEMULTIPLEXER
1欧姆SPDT模拟开关5 -V / 3.3 -V单通道2 : 1多路复用器/

复用器 开关 复用器或开关 信号电路 光电二极管
文件: 总21页 (文件大小:276K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁ ꢂꢃ ꢄꢅ ꢂꢄ  
W ꢁꢇ ꢈꢀ ꢃꢉꢃ ꢊꢋ ꢌ ꢁ ꢍꢎ ꢀꢏ ꢐ  
ꢂ ꢆꢑ ꢒ ꢄꢓ ꢄ ꢆꢑ ꢁꢎ ꢉꢌ ꢊ ꢔꢆꢏꢐꢃꢉꢉ ꢔꢊ ꢕ ꢖꢅ ꢗ ꢘꢊꢀ ꢎꢇ ꢊꢔ ꢙꢔꢚꢒ ꢈꢔꢗ ꢘꢊꢀꢎ ꢇ ꢊꢔ ꢙꢔ ꢚ  
www.ti.com  
SCDS215 – OCTOBER 2005  
Description  
Features  
D
D
D
D
D
D
D
D
D
Isolation in the Powered-Off Mode, V = 0  
+
The TS5A3153 is a single-pole double-throw (SPDT)  
analog switch that is designed to operate from 1.65 V  
to 5.5 V. The device offers a low ON-state resistance  
and an excellent on-resistance matching with the  
break-before-make feature, to prevent signal distortion  
during the transferring of a signal from one channel to  
another. The device has an excellent total harmonic  
distortion (THD) performance and consumes very low  
power. These features make this device suitable for  
portable audio applications.  
Specified Break-Before-Make Switching  
Low ON-State Resistance (1 W)  
Control Inputs Are 5.5-V Tolerant  
Low Charge Injection  
Excellent ON-State Resistance Matching  
Low Total Harmonic Distortion (THD)  
1.65-V to 5.5-V Single-Supply Operation  
Latch-Up Performance Exceeds 100 mA Per  
JESD 78, Class II  
Applications  
D
ESD Performance Tested Per JESD 22  
− 2000-V Human-Body Model  
(A114-B, Class II)  
D
D
D
D
D
D
D
D
D
D
Cell Phones  
PDAs  
− 1000-V Charged-Device Model (C101)  
Portable Instrumentation  
Audio and Video Signal Routing  
Low-Voltage Data Acquisition System  
Communication Circuits  
Modems  
Summary of Characteristics  
V = 5 V, T = 25°C  
+
A
2:1 Multiplexer/  
Demultiplexer  
(SPDT)  
Configuration  
Number of channels  
1
1.1  
Hard Drives  
ON-state resistance (r  
)
on  
Computer Peripherals  
Wireless Terminals and Peripherals  
ON-state resistance match (r  
)
on  
0.1 Ω  
ON-state resistance flatness (r  
)
0.15 Ω  
on(flat)  
Turn-on/turn-off time (t /t  
)
20 ns/15 ns  
12 ns  
ON OFF  
Break-before-make time (t  
)
BBM  
SSOP OR VSSOP PACKAGE  
(TOP VIEW)  
Charge injection (Q )  
C
36 pC  
Bandwidth (BW)  
100 MHz  
−65 dB at 1 MHz  
−66 dB at 1 MHz  
0.01%  
1
2
3
4
8
7
6
5
COM  
EN  
V
+
OFF isolation (O  
ISO  
)
NC  
NO  
IN  
Crosstalk (X )  
TALK  
Total harmonic distortion (THD)  
Leakagecurrent(I /I  
GND  
GND  
Logic  
Control  
)
20 nA  
COM(OFF) NO(OFF)  
Power-supply current (I )  
+
0.1 µA  
Package option  
8-pin SSOP, VSSOP, or  
DSBGA  
YEA, YEP, YZA, OR YZP PACKAGE  
(BOTTOM VIEW)  
FUNCTION TABLE  
NC TO COM,  
COM TO NC  
NO TO COM,  
COM TO NO  
Logic  
Control  
EN  
IN  
4
5
6
7
8
GND  
GND  
EN  
IN  
3
2
1
NO  
NC  
L
L
L
H
X
ON  
OFF  
ON  
OFF  
COM  
V
+
H
OFF  
OFF  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢇꢚ ꢋ ꢈꢘ ꢏ ꢀꢎ ꢋ ꢉ ꢈ ꢃꢀꢃ ꢛꢜ ꢝꢞ ꢟ ꢠꢡ ꢢꢛꢞꢜ ꢛꢣ ꢤꢥ ꢟ ꢟ ꢦꢜꢢ ꢡꢣ ꢞꢝ ꢧꢥꢨ ꢩꢛꢤ ꢡꢢꢛ ꢞꢜ ꢪꢡ ꢢꢦꢓ ꢇꢟ ꢞꢪꢥ ꢤꢢꢣ  
ꢤ ꢞꢜ ꢝꢞꢟ ꢠ ꢢꢞ ꢣ ꢧꢦ ꢤ ꢛ ꢝꢛ ꢤ ꢡ ꢢꢛ ꢞꢜꢣ ꢧ ꢦꢟ ꢢꢫꢦ ꢢꢦ ꢟ ꢠꢣ ꢞꢝ ꢀꢦꢬ ꢡꢣ ꢎꢜꢣ ꢢꢟ ꢥꢠ ꢦꢜꢢ ꢣ ꢣꢢ ꢡꢜꢪ ꢡꢟ ꢪ ꢭ ꢡꢟ ꢟ ꢡ ꢜꢢꢮꢓ  
ꢇꢟ ꢞ ꢪꢥꢤ ꢢ ꢛꢞ ꢜ ꢧꢟ ꢞ ꢤ ꢦ ꢣ ꢣ ꢛꢜ ꢯ ꢪꢞ ꢦ ꢣ ꢜꢞꢢ ꢜꢦ ꢤꢦ ꢣꢣ ꢡꢟ ꢛꢩ ꢮ ꢛꢜꢤ ꢩꢥꢪ ꢦ ꢢꢦ ꢣꢢꢛ ꢜꢯ ꢞꢝ ꢡꢩ ꢩ ꢧꢡ ꢟ ꢡꢠ ꢦꢢꢦ ꢟ ꢣꢓ  
Copyright 2005, Texas Instruments Incorporated  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢂ ꢄ  
W ꢁꢇ ꢈꢀ ꢃ ꢉꢃ ꢊ ꢋ ꢌ ꢁ ꢍꢎ ꢀ ꢏꢐ  
ꢓꢄ  
ꢊꢀ  
ꢊꢀ  
ꢊꢔ  
www.ti.com  
SCDS215 – OCTOBER 2005  
ORDERING INFORMATION  
(1)  
PACKAGE  
(2)  
T
A
ORDERABLE PART NUMBER  
TOP-SIDE MARKING  
NanoStar− WCSP (DSBGA)  
0.17−mm Small Bump − YEA  
TS5A3153YEAR  
PREVIEW  
NanoFree− WCSP (DSBGA)  
0.17-mm Small Bump − YZA (Pb-free)  
TS5A3153YZAR  
TS5A3153YEPR  
TS5A3153YZPR  
PREVIEW  
PREVIEW  
PREVIEW  
Tape and reel  
NanoStar− WCSP (DSBGA)  
0.23-mm Large Bump − YEP  
−40°C to 85°C  
NanoFree− WCSP (DSBGA)  
0.23-mm Large Bump − YZP (Pb-free)  
SSOP − DCT  
Tape  
TS5A3153DCT  
PREVIEW  
JCD  
VSSOP − DCU  
Tape and reel  
TS5A3153DCUR  
(1)  
(2)  
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.  
DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site.  
YEP/YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character  
to designate the assembly/test site. Pin 1 identifier indicates solder-bump composition (1 = SnPb, = Pb-free).  
(1)(2)  
Absolute Minimum and Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
(3)  
V
+
Supply voltage range  
−0.5  
6.5  
V
V
V
NC  
NO  
(3)(4)(5)  
Analog voltage range  
−0.5  
V
+
+ 0.5  
V
V
COM  
I
Analog port diode current  
On-state switch current  
V
V
, V , V  
< 0  
−50  
mA  
K
NC NO COM  
I
I
I
−200  
200  
NC  
NO  
COM  
, V , V  
NC NO COM  
= 0 to V  
mA  
+
(6)  
On-state peak switch current  
−400  
400  
6.5  
(3)(4)  
V
Digital input voltage range  
−0.5  
−50  
V
I
I
I
I
Digital input clamp current  
V < 0  
I
mA  
mA  
mA  
IK  
Continuous current through V  
100  
100  
220  
227  
140  
102  
150  
+
+
Continuous current through GND  
−100  
−65  
GND  
DCT package  
DCU package  
(7)  
θ
Package thermal impedance  
°C/W  
°C  
JA  
YEA/YZA package  
YEP/YZP package  
T
Storage temperature range  
stg  
(1)  
Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade  
device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified  
is not implied.  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum  
All voltages are with respect to ground, unless otherwise specified.  
The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.  
This value is limited to 5.5 V maximum.  
Pulse at 1 ms duration < 10% duty cycle  
The package thermal impedance is calculated in accordance with JESD 51-7.  
2
ꢀꢁ ꢂꢃ ꢄ ꢅꢂ ꢄ  
W ꢁꢇ ꢈꢀ ꢃꢉꢃ ꢊꢋ ꢌ ꢁ ꢍꢎ ꢀꢏ ꢐ  
ꢂ ꢆꢑ ꢒ ꢄꢓ ꢄ ꢆꢑ ꢁꢎ ꢉꢌ ꢊ ꢔꢆꢏꢐꢃꢉꢉ ꢔꢊ ꢕ ꢖꢅ ꢗ ꢘꢊꢀ ꢎꢇ ꢊꢔ ꢙꢔꢚꢒ ꢈꢔꢗ ꢘꢊꢀꢎ ꢇ ꢊꢔ ꢙꢔ ꢚ  
www.ti.com  
SCDS215 – OCTOBER 2005  
(1)  
Electrical Characteristics for 5-V Supply  
V
+
= 4.5 V to 5.5 V, T = −40°C to 85°C (unless otherwise noted)  
A
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
SYMBOL  
T
A
V
+
TYP  
Analog Switch  
Analog signal  
range  
V
, V ,  
COM NO  
0
V
V
+
V
NC  
25 °C  
Full  
0.9  
0.8  
1.1  
1.3  
0.9  
1.1  
Peak ON  
resistance  
0 (V  
or V ) V ,  
NC  
Switch ON,  
See Figure 13  
NO  
= −100 mA,  
+
r
4.5 V  
4.5 V  
peak  
I
COM  
25°C  
Full  
ON-state  
resistance  
V
I
or V  
= 2.5 V,  
= 100 mA,  
Switch ON,  
See Figure 13  
NO  
NC  
r
on  
COM  
ON-state  
resistance match  
between channels  
25°C  
0.05  
0.10  
0.10  
V
or V  
= 2.5 V,  
= 100 mA,  
Switch ON,  
See Figure 13  
NO  
NC  
r  
on  
4.5 V  
4.5 V  
I
COM  
Full  
25°C  
Full  
0.15  
0.09  
0 (V  
or V ) V ,  
NC  
Switch ON,  
See Figure 13  
NO  
= 100 mA,  
+
I
COM  
ON-state  
resistance flatness  
r
on(flat)  
25°C  
Full  
0.15  
0.15  
V
I
or V  
= 1 V, 1.5 V, 2.5 V,  
= 100 mA,  
Switch ON,  
See Figure 13  
NO  
COM  
NC  
V
or V  
NO  
= 1 V, V = 4.5 V,  
COM  
25°C  
−20  
2
20  
NC  
NC  
I
I
Switch OFF,  
See Figure 14  
NC(OFF),  
NO(OFF)  
or  
or V  
5.5 V  
0 V  
nA  
NC, NO  
Full  
−150  
150  
V
= 4.5 V, V  
COM  
= 1 V,  
NO  
OFF leakage  
current  
25°C  
−5  
0.7  
2
5
I
I
V
V
or V  
NO  
= 5.5 V to 0,  
= 0 to 5.5 V,  
Switch OFF,  
See Figure 14  
NC(PWROFF),  
NO(PWROFF)  
NC  
COM  
mA  
Full  
−25  
25  
V
NC  
or V  
NO  
= 1 V, V  
COM  
= Open,  
25°C  
−20  
20  
NC, NO  
I
,
Switch ON,  
See Figure 15  
or  
NC(ON)  
ON leakage  
current  
5.5 V  
nA  
I
V
V
or V  
NO  
= Open,  
= 4.5 V,  
NO(ON)  
NC  
COM  
Full  
−150  
150  
V
or  
or V  
NO  
= 4.5 V, V  
COM  
= 1 V,  
25°C  
−20  
2
20  
NC  
Switch ON,  
See Figure 14  
I
5.5 V  
0 V  
nA  
COM(OFF)  
COM  
Full  
−150  
150  
V
NC  
or V  
NO  
= 1 V, V = 4.5 V,  
COM  
OFF leakage  
current  
25°C  
−5  
0.7  
2
5
V
V
or V  
= 0 to 5.5 V,  
= 5.5 V to 0,  
Switch OFF,  
See Figure 14  
NC  
COM  
NO  
I
mA  
COM(PWROFF)  
Full  
−25  
25  
V
NC  
or V  
NO  
= Open, V = 1 V,  
COM  
25°C  
−20  
20  
COM  
Switch ON,  
See Figure 15  
or  
ON leakage  
current  
I
5.5 V  
nA  
COM(ON)  
V
V
or V  
NO  
= 4.5 V,  
= Open,  
NC  
COM  
Full  
−150  
150  
(2)  
Digital Control Inputs (IN, EN)  
Input logic high  
Input logic low  
V
Full  
Full  
2.4  
0
5.5  
0.8  
V
V
IH  
V
IL  
25°C  
Full  
−100  
−100  
25  
100  
100  
Input leakage  
current  
I , I  
IH IL  
V = 5.5 V or 0  
I
5.5 V  
nA  
(1)  
(2)  
The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum  
All unused digital inputs of the device must be held at V or GND to ensure proper device operation. Refer to the TI application report, Implications  
+
of Slow or Floating CMOS Inputs, literature number SCBA004.  
3
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢂ ꢄ  
W ꢁꢇ ꢈꢀ ꢃ ꢉꢃ ꢊ ꢋ ꢌ ꢁ ꢍꢎ ꢀ ꢏꢐ  
ꢑꢒ  
ꢓꢄ  
ꢊꢀ  
ꢊꢔ  
www.ti.com  
SCDS215 – OCTOBER 2005  
(1)  
Electrical Characteristics for 5-V Supply (continued)  
V
+
= 4.5 V to 5.5 V, T = −40°C to 85°C (unless otherwise noted)  
A
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
SYMBOL  
T
V
TYP  
12.5  
8.5  
7
A
+
Dynamic  
25°C  
Full  
5 V  
1
1
16  
V
R
= V ,  
C = 35 pF,  
L
COM  
L
+
Turn-on time  
t
ns  
ON  
= 50 ,  
See Figure 17  
C = 35 pF,  
L
4.5 V to 5.5 V  
5 V  
17.5  
25°C  
Full  
2.5  
2
15  
V
R
= V ,  
COM  
+
Turn-off time  
t
ns  
OFF  
= 50 ,  
See Figure 17  
C = 35 pF,  
L
4.5 V to 5.5 V  
5 V  
18  
L
25°C  
Full  
1
12  
Break-before-  
make time  
V
R
= V  
NO  
= V ,  
+
NC  
t
ns  
BBM  
= 50 ,  
See Figure 18  
4.5 V to 5.5 V  
0.5  
15  
L
V
C
= 0, R  
= 1 nF,  
= 0,  
GEN  
L
GEN  
Charge injection  
Q
See Figure 22 25°C  
See Figure 16 25°C  
5 V  
5 V  
12  
19  
pC  
pF  
C
NC, NO  
OFF capacitance  
C
C
,
V
NC  
or V = V or GND,  
NO +  
NC(OFF)  
NO(OFF)  
Switch OFF,  
NC, NO  
ON capacitance  
C
C
,
V
or V = V or GND,  
NO +  
NC(ON)  
NC  
See Figure 16 25°C  
See Figure 16 25°C  
5 V  
5 V  
57  
36  
pF  
pF  
Switch ON,  
NO(ON)  
COM  
OFF capacitance  
V
NC  
or V  
= V or GND,  
+
NO  
C
COM(OFF)  
Switch OFF,  
COM  
ON capacitance  
V
= V or GND,  
+
COM  
Switch ON,  
C
See Figure 16 25°C  
See Figure 16 25°C  
See Figure 19 25°C  
5 V  
5 V  
5 V  
5 V  
5 V  
57  
2
pF  
pF  
COM(ON)  
Digital input  
capacitance  
C
I
V = V or GND,  
I
+
R
= 50 ,  
L
Bandwidth  
OFF isolation  
Crosstalk  
BW  
97  
MHz  
dB  
Switch ON,  
R
= 50 ,  
Switch OFF,  
25°C  
L
O
−64  
−64  
ISO  
f = 1 MHz,  
See Figure 20  
R
= 50 ,  
Switch ON,  
25°C  
L
X
TALK  
dB  
f = 1 MHz,  
See Figure 21  
f = 20 Hz to  
20 kHz,  
See Figure 23  
Total harmonic  
distortion  
R
L
C
L
= 600 ,  
= 50 pF,  
THD  
25°C  
5 V  
0.004  
0.02  
%
Supply  
25°C  
0.10  
Positive supply  
current  
Switch ON or  
OFF  
I
+
V = V or GND,  
5.5 V  
µA  
I
+
Full  
0.50  
(1)  
The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum  
4
ꢀꢁ ꢂꢃ ꢄ ꢅꢂ ꢄ  
W ꢁꢇ ꢈꢀ ꢃꢉꢃ ꢊꢋ ꢌ ꢁ ꢍꢎ ꢀꢏ ꢐ  
www.ti.com  
ꢄꢓ  
ꢊꢀ  
ꢊꢔ ꢙꢔꢚꢒ ꢈꢔꢗ ꢘꢊꢀꢎ ꢇ ꢊꢔ ꢙꢔ ꢚ  
SCDS215 – OCTOBER 2005  
(1)  
Electrical Characteristics for 3.3-V Supply  
V
+
= 3 V to 3.6 V, T = −40°C to 85°C (unless otherwise noted)  
A
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
SYMBOL  
T
A
V
+
TYP  
Analog Switch  
Analog signal  
range  
V
, V ,  
COM NO  
0
V
V
+
V
NC  
25 °C  
Full  
1.3  
1.2  
1.6  
1.8  
1.5  
1.7  
Peak ON  
resistance  
0 (V  
or V ) V ,  
NC  
Switch ON,  
See Figure 13  
NO  
= −100 mA,  
+
r
3 V  
3 V  
peak  
I
COM  
25°C  
Full  
ON-state  
resistance  
V
I
or V  
= 2 V,  
= 100 mA,  
Switch ON,  
See Figure 13  
NO  
NC  
r
on  
COM  
ON-state  
resistance match  
between channels  
25°C  
0.08  
0.15  
0.15  
V
or V  
= 2 V, 0.8 V  
= 100 mA,  
Switch ON,  
See Figure 13  
NO  
NC  
r  
on  
3 V  
3 V  
I
COM  
Full  
0 (V  
NO  
or V ) V ,  
NC  
Switch ON,  
See Figure 13  
+
25°C  
0.2  
I
= 100 mA,  
COM  
ON-state  
resistance flatness  
r
on(flat)  
25°C  
0.09  
0.15  
0.15  
V
I
or V  
= 2 V, 0.8 V,  
= 100 mA,  
Switch ON,  
See Figure 13  
NO  
COM  
NC  
Full  
V
or V  
NO  
= 1 V, V  
= 3 V,  
= 1 V,  
25°C  
−20  
−50  
2
20  
50  
NC  
NC  
COM  
I
I
Switch OFF,  
See Figure 14  
NO(OFF),  
NC(OFF)  
or  
3.6 V  
0 V  
nA  
mA  
nA  
NC, NO  
OFF leakage  
current  
Full  
V
or V  
= 3V, V  
NO  
COM  
25°C  
−1  
0.2  
2
1
I
I
V
V
or V  
= 0 to 3.6 V,  
Switch OFF,  
See Figure 14  
NO(PWROFF),  
NC(PWROFF)  
NC  
COM  
NO  
= 3.6 V to 0,  
Full  
−15  
15  
NC, NO  
ON leakage  
current  
V
NC  
or V  
NO  
= 1 V, V  
= Open,  
25°C  
Full  
−20  
−50  
−20  
−50  
20  
50  
20  
50  
COM  
I
,
Switch ON,  
See Figure 15  
NC(ON)  
or  
or V  
3.6 V  
I
NO(ON)  
V
V
= 3 V, V  
= Open,  
= 1 V,  
NC  
NO  
COM  
or V  
= 3 V, V  
= 1 V, V  
25°C  
Full  
2
NC  
NO  
or  
COM  
Switch ON,  
See Figure 14  
I
3.6 V  
0 V  
nA  
mA  
nA  
COM(OFF)  
COM  
OFF leakage  
current  
V
NC  
or V  
= 3 V,  
NO  
COM  
25°C  
−1  
0.2  
2
1
V
V
or V  
= 3.6 to 0 V,  
Switch OFF,  
See Figure 14  
NC  
COM  
NO  
I
COM(PWROFF)  
= 0 to 3.6 V,  
Full  
−15  
15  
COM  
ON leakage  
current  
V
or V  
NO  
= Open, V  
COM  
= 1 V,  
25°C  
−20  
−50  
20  
50  
NC  
NC  
Switch ON,  
See Figure 15  
or  
or V  
I
3.6 V  
COM(ON)  
Full  
V
= Open, V  
COM  
= 3 V,  
NO  
(2)  
Digital Control Inputs (IN, EN)  
Input logic high  
Input logic low  
V
Full  
Full  
2
0
5.5  
0.8  
V
V
IH  
V
IL  
25°C  
Full  
−100  
−100  
25  
100  
100  
Input leakage  
current  
I , I  
IH IL  
V = 5.5 V or 0  
I
3.6 V  
nA  
(1)  
(2)  
The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum  
All unused digital inputs of the device must be held at V or GND to ensure proper device operation. Refer to the TI application report, Implications  
+
of Slow or Floating CMOS Inputs, literature number SCBA004.  
5
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢂ ꢄ  
W ꢁꢇ ꢈꢀ ꢃ ꢉꢃ ꢊ ꢋ ꢌ ꢁ ꢍꢎ ꢀ ꢏꢐ  
ꢑꢒ  
ꢓꢄ  
ꢊꢀ  
ꢊꢀ  
ꢊꢔ  
www.ti.com  
SCDS215 – OCTOBER 2005  
(1)  
Electrical Characteristics for 3.3-V Supply (continued)  
V
+
= 3 V to 3.6 V, T = −40°C to 85°C (unless otherwise noted)  
A
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
SYMBOL  
T
V
TYP  
17  
A
+
Dynamic  
25°C  
Full  
3.3 V  
1
1
22  
V
R
= V ,  
C = 35 pF,  
L
COM  
L
+
Turn-on time  
t
ns  
ON  
= 50 ,  
See Figure 17  
C = 35 pF,  
L
3 V to 3.6 V  
3.3 V  
24  
25°C  
Full  
4.3  
4
9.5  
12  
16  
V
R
= V ,  
COM  
+
Turn-off time  
t
ns  
OFF  
= 50 ,  
See Figure 17  
C = 35 pF,  
L
3 V to 3.6 V  
3.3 V  
19  
L
25°C  
Full  
2
22  
Break-before-  
make time  
V
R
= V  
NO  
= V ,  
+
NC  
t
ns  
BBM  
= 50 ,  
See Figure 18  
3 V to 3.6 V  
1
25  
L
V
C
= 0, R  
= 1 nF,  
= 0,  
GEN  
L
GEN  
Charge injection  
Q
See Figure 22  
25°C  
25°C  
3.3 V  
3.3 V  
8
pC  
pF  
C
NC, NO  
OFF capacitance  
C
C
,
V
NC  
or V = V or GND,  
NO +  
NC(OFF)  
NO(OFF)  
See Figure 16  
See Figure 16  
See Figure 16  
19  
Switch OFF,  
NC, NO  
ON capacitance  
C
C
,
V
NC  
or V = V or GND,  
NO +  
NC(ON)  
NO(ON)  
25°C  
25°C  
3.3 V  
3.3 V  
57  
36  
pF  
pF  
Switch ON,  
COM  
OFF capacitance  
V
NC  
or V  
= V or GND,  
+
NO  
C
COM(OFF)  
Switch OFF,  
COM  
ON capacitance  
V
= V or GND,  
+
COM  
Switch ON,  
C
See Figure 16  
See Figure 16  
See Figure 19  
25°C  
25°C  
25°C  
25°C  
25°C  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
57  
2
pF  
pF  
COM(ON)  
Digital input  
capacitance  
C
I
V = V or GND,  
I
+
R
= 50 ,  
L
Bandwidth  
OFF isolation  
Crosstalk  
BW  
97  
MHz  
dB  
Switch ON,  
R
= 50 ,  
Switch OFF,  
See Figure 20  
L
O
−64  
−64  
ISO  
f = 1 MHz,  
R
= 50 ,  
Switch ON,  
See Figure 21  
L
X
TALK  
dB  
f = 1 MHz,  
f = 20 Hz to 20  
kHz,  
See Figure 23  
Total harmonic  
distortion  
R
C
= 600 ,  
= 50 pF,  
L
L
THD  
25°C  
3.3 V  
0.010  
0.01  
%
Supply  
25°C  
0.10  
Positive supply  
current  
Switch ON or  
OFF  
I
+
V = V or GND,  
I
3.6 V  
µA  
+
Full  
0.25  
(1)  
The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum  
6
ꢀꢁ ꢂꢃ ꢄ ꢅꢂ ꢄ  
W ꢁꢇ ꢈꢀ ꢃꢉꢃ ꢊꢋ ꢌ ꢁ ꢍꢎ ꢀꢏ ꢐ  
ꢂ ꢆꢑ ꢒ ꢄꢓ ꢄ ꢆꢑ ꢁꢎ ꢉꢌ ꢊ ꢔꢆꢏꢐꢃꢉꢉ ꢔꢊ ꢕ ꢖꢅ ꢗ ꢘꢊꢀ ꢎꢇ ꢊꢔ ꢙꢔꢚꢒ ꢈꢔꢗ ꢘꢊꢀꢎ ꢇ ꢊꢔ ꢙꢔ ꢚ  
www.ti.com  
SCDS215 – OCTOBER 2005  
(1)  
Electrical Characteristics for 2.5-V Supply  
V
+
= 2.3 V to 2.7 V, T = −40°C to 85°C (unless otherwise noted)  
A
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
SYMBOL  
T
A
V
+
TYP  
Analog Switch  
Analog signal  
range  
V
, V ,  
COM NO  
0
V
V
+
V
NC  
25 °C  
Full  
1.9  
1.6  
2.5  
2.7  
2.1  
2.5  
Peak ON  
resistance  
0 (V  
or V ) V ,  
NC  
Switch ON,  
See Figure 13  
NO  
= −8 mA,  
+
r
2.3 V  
2.3 V  
peak  
I
COM  
25°C  
Full  
ON-state  
resistance  
V
I
or V  
= 1.8 V,  
= 8 mA,  
Switch ON,  
See Figure 13  
NO  
NC  
r
on  
COM  
ON-state  
resistance match  
between channels  
25°C  
0.12  
0.2  
0.2  
V
or V  
= 0.8 V,  
= 8 mA,  
Switch ON,  
See Figure 13  
NO  
NC  
r  
on  
2.3 V  
2.3 V  
I
COM  
Full  
0 (V  
NO  
or V ) V ,  
NC  
Switch ON,  
See Figure 13  
+
25°C  
0.65  
0.5  
I
= 8 mA,  
COM  
ON-state  
resistance flatness  
r
on(flat)  
25°C  
1
1
V
I
or V  
= 0.8 V, 1.8 V,  
= 8 mA,  
Switch ON,  
See Figure 13  
NO  
COM  
NC  
Full  
V
or V  
NO  
= 0.5 V, V  
= 2.2 V,  
= 0.5 V,  
25°C  
−20  
−50  
2
20  
50  
NC  
NC  
COM  
I
I
Switch OFF,  
See Figure 14  
NO(OFF),  
NC(OFF)  
or  
or V  
2.7 V  
0 V  
nA  
mA  
nA  
NC, NO  
OFF leakage  
current  
Full  
V
= 2.2 V, V  
NO  
COM  
25°C  
−1  
0.1  
2
1
I
I
V
V
or V  
NO  
= 2.7 V to 0,  
= 0 to 2.7 V,  
Switch OFF,  
See Figure 14  
NO(PWROFF),  
NC(PWROFF)  
NC  
COM  
Full  
−10  
10  
NC, NO  
ON leakage  
current  
V
NC  
or V  
= 0.5 V, V  
= Open,  
25°C  
Full  
−20  
−50  
−20  
−50  
20  
50  
20  
50  
NO  
or  
COM  
I
,
Switch ON,  
See Figure 15  
NC(ON)  
2.7 V  
I
NO(ON)  
V
V
or V  
= 2.2 V, V  
= 2.2 V, V  
= Open,  
= 0.5 V,  
NC  
NO  
COM  
or V  
NO  
or  
= 0.5 V, V  
25°C  
Full  
2
NC  
COM  
Switch ON,  
See Figure 14  
I
2.7 V  
0 V  
nA  
mA  
nA  
COM(OFF)  
COM  
OFF leakage  
current  
V
NO  
= 2.2 V,  
COM  
25°C  
−1  
0.1  
2
1
V
V
or V  
NO  
= 0 to 2.7 V,  
= 2.7 V to 0,  
Switch OFF,  
See Figure 14  
NC  
COM  
I
COM(PWROFF)  
Full  
−10  
10  
COM  
ON leakage  
current  
V
or V  
= Open, V  
= 0.5 V,  
= 2.2 V,  
25°C  
−20  
−50  
20  
50  
NC  
NC  
NO  
or  
COM  
Switch ON,  
See Figure 15  
I
2.7 V  
COM(ON)  
Full  
V
or V  
= Open, V  
NO  
COM  
(2)  
Digital Control Inputs (IN, EN)  
Input logic high  
Input logic low  
V
Full  
Full  
1.8  
0
5.5  
0.6  
V
V
IH  
V
IL  
25°C  
Full  
−100  
−100  
25  
100  
100  
Input leakage  
current  
I , I  
IH IL  
V = 5.5 V or 0  
I
2.7 V  
nA  
(1)  
(2)  
The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum  
All unused digital inputs of the device must be held at V or GND to ensure proper device operation. Refer to the TI application report, Implications  
+
of Slow or Floating CMOS Inputs, literature number SCBA004.  
7
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢂ ꢄ  
W ꢁꢇ ꢈꢀ ꢃ ꢉꢃ ꢊ ꢋ ꢌ ꢁ ꢍꢎ ꢀ ꢏꢐ  
ꢓꢄ  
ꢊꢀ  
ꢊꢔ  
ꢊꢀ  
ꢊꢔ  
www.ti.com  
SCDS215 – OCTOBER 2005  
(1)  
Electrical Characteristics for 2.5-V Supply (continued)  
V
+
= 2.3 V to 2.7 V, T = −40°C to 85°C (unless otherwise noted)  
A
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
SYMBOL  
T
V
TYP  
24  
A
+
Dynamic  
25°C  
Full  
2.5 V  
1.7  
1.5  
5.2  
5
31  
V
R
= V ,  
= 50 ,  
C = 35 pF,  
L
COM  
L
+
Turn-on time  
t
ns  
ON  
See Figure 17  
C = 35 pF,  
L
2.3 V to 2.7 V  
2.5 V  
33.5  
25°C  
Full  
10.5  
10  
17  
V
R
= V ,  
COM  
+
Turn-off time  
t
ns  
OFF  
= 50 ,  
See Figure 17  
C = 35 pF,  
L
2.3 V to 2.7 V  
2.5 V  
20  
L
25°C  
Full  
3
30  
Break-before-  
make time  
V
R
= V  
NO  
= 50 ,  
= V ,  
+
NC  
t
ns  
BBM  
See Figure 18  
2.3 V to 2.7 V  
2
40  
L
V
C
= 0, R  
= 1 nF,  
= 0,  
GEN  
L
GEN  
Charge injection  
Q
See Figure 22  
25°C  
25°C  
2.5 V  
6
pC  
pF  
C
NC, NO  
OFF  
capacitance  
C
C
,
V
NC  
or V = V or GND,  
NO +  
NC(OFF)  
NO(OFF)  
See Figure 16  
See Figure 16  
See Figure 16  
2.5 V  
19  
Switch OFF,  
NC, NO  
ON capacitance  
C
C
,
V
or V = V or GND,  
NO +  
NC(ON)  
NO(ON)  
NC  
Switch ON,  
25°C  
25°C  
2.5 V  
2.5 V  
57  
36  
pF  
pF  
COM  
OFF  
capacitance  
V
or V = V or GND,  
NO +  
NC  
Switch OFF,  
C
COM(OFF)  
COM  
ON capacitance  
V
= V or GND,  
+
COM  
Switch ON,  
C
See Figure 16  
See Figure 16  
See Figure 19  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
2.5 V  
2.5 V  
2.5 V  
2.5 V  
2.5 V  
2.5 V  
57  
2
pF  
pF  
COM(ON)  
Digital input  
capacitance  
C
I
V = V or GND,  
I
+
R
= 50 ,  
L
Bandwidth  
OFF isolation  
Crosstalk  
BW  
100  
−64  
−64  
0.020  
MHz  
dB  
Switch ON,  
R
= 50 ,  
Switch OFF,  
See Figure 20  
L
O
ISO  
f = 1 MHz,  
R
= 50 ,  
Switch ON,  
See Figure 21  
L
X
dB  
TALK  
f = 1 MHz,  
Total harmonic  
distortion  
R
C
= 600 ,  
= 50 pF,  
f = 20 Hz to 20 kHz,  
See Figure 23  
L
L
THD  
%
Supply  
25°C  
0.001  
0.05  
Positive supply  
current  
I
+
V = V or GND,  
Switch ON or OFF  
2.7 V  
µA  
I
+
Full  
0.15  
(1)  
The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum  
8
ꢀꢁ ꢂꢃ ꢄ ꢅꢂ ꢄ  
W ꢁꢇ ꢈꢀ ꢃꢉꢃ ꢊꢋ ꢌ ꢁ ꢍꢎ ꢀꢏ ꢐ  
www.ti.com  
ꢊꢀ  
ꢊꢔ ꢙꢔꢚꢒ ꢈꢔꢗ ꢘꢊꢀꢎ ꢇ ꢊꢔ ꢙꢔ ꢚ  
SCDS215 – OCTOBER 2005  
(1)  
Electrical Characteristics for 1.8-V Supply  
V
+
= 1.65 V to 1.95 V, T = −40°C to 85°C (unless otherwise noted)  
A
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
SYMBOL  
T
A
V
+
TYP  
Analog Switch  
Analog signal  
range  
V
, V ,  
COM NO  
0
V
V
+
V
NC  
25°C  
Full  
5.2  
2
15  
20  
Peak ON  
resistance  
0 (V  
or V ) V ,  
NC  
Switch ON,  
See Figure 13  
NO  
= −2 mA,  
+
r
1.65 V  
1.65 V  
peak  
I
COM  
25°C  
Full  
2.7  
3.1  
ON-state  
resistance  
V
I
or V  
= 1.5 V,  
= 2 mA,  
Switch ON,  
See Figure 13  
NO  
NC  
r
on  
COM  
ON-state  
resistance match  
between  
25°C  
Full  
0.16  
0.3  
0.3  
V
or V  
= 0.6 V, 1.5 V,  
= 2 mA,  
Switch ON,  
See Figure 13  
NO  
NC  
r  
on  
1.65 V  
1.65 V  
I
COM  
channels  
0 (V  
NO  
or V ) V ,  
NC  
Switch ON,  
See Figure 13  
+
25°C  
3
3
ON-state  
resistance  
flatness  
I
= 2 mA,  
COM  
r
on(flat)  
25°C  
6
8
V
I
or V  
= 0.6 V, 1.5 V,  
= 2 mA,  
Switch ON,  
See Figure 13  
NO  
COM  
NC  
Full  
V
or V  
NO  
= 0.3 V, V = 1.65 V,  
COM  
25°C  
−20  
−50  
1.5  
20  
50  
NC  
NC  
I
I
Switch OFF,  
See Figure 14  
NO(OFF),  
NC(OFF)  
or  
or V  
1.95 V  
0 V  
nA  
mA  
nA  
NC, NO  
OFF leakage  
current  
Full  
V
= 1.65 V, V = 0.3 V,  
COM  
NO  
25°C  
−1  
0.1  
1.5  
1
I
I
V
V
or V  
NO  
= 1.95 V to 0,  
= 0 to 1.95 V,  
Switch OFF,  
See Figure 14  
NO(PWROFF),  
NC(PWROFF)  
NC  
COM  
Full  
−10  
10  
NC, NO  
ON leakage  
current  
V
NC  
or V  
NO  
= 0.3 V, V  
COM  
= Open,  
25°C  
Full  
−20  
−50  
−20  
−50  
20  
50  
20  
50  
I
,
Switch ON,  
See Figure 15  
NC(ON)  
or  
or V  
1.95 V  
I
NO(ON)  
V
V
= 1.65 V, V  
NO COM  
= Open,  
= 0.3 V,  
NC  
or V  
= 1.65 V, V  
COM  
25°C  
Full  
1.5  
NC  
NO  
or  
or V  
Switch ON,  
See Figure 14  
I
1.95 V  
0 V  
nA  
mA  
nA  
COM(OFF)  
COM  
OFF leakage  
current  
V
NC  
= 0.3 V, V  
COM  
= 1.65 V,  
NO  
25°C  
−1  
0.06  
1.5  
1
V
V
or V  
NO  
= 0 to 1.95 V,  
= 1.95 V to 0,  
Switch OFF,  
See Figure 14  
NC  
COM  
I
COM(PWROFF)  
Full  
−10  
10  
COM  
ON leakage  
current  
V
or V  
NO  
= Open, V  
COM  
= 0.3 V,  
25°C  
−20  
−50  
20  
50  
NC  
NC  
Switch ON,  
See Figure 15  
or  
or V  
I
1.95 V  
COM(ON)  
Full  
V
= Open, V  
COM  
= 1.65 V,  
NO  
(2)  
Digital Control Inputs (IN, EN)  
Input logic high  
Input logic low  
V
Full  
Full  
1.5  
0
5.5  
0.6  
V
V
IH  
V
IL  
25°C  
Full  
−100  
−100  
25  
100  
100  
Input leakage  
current  
I , I  
IH IL  
V = 5.5 V or 0  
I
1.95 V  
nA  
(1)  
(2)  
The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum  
All unused digital inputs of the device must be held at V or GND to ensure proper device operation. Refer to the TI application report, Implications  
+
of Slow or Floating CMOS Inputs, literature number SCBA004.  
9
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢂ ꢄ  
W ꢁꢇ ꢈꢀ ꢃ ꢉꢃ ꢊ ꢋ ꢌ ꢁ ꢍꢎ ꢀ ꢏꢐ  
ꢓꢄ  
ꢊꢀ  
ꢊꢀ  
ꢊꢔ  
www.ti.com  
SCDS215 – OCTOBER 2005  
(1)  
Electrical Characteristics for 1.8-V Supply (continued)  
V
+
= 1.65 V to 1.95 V, T = −40°C to 85°C (unless otherwise noted)  
A
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
SYMBOL  
T
V
TYP  
45  
A
+
Dynamic  
25°C  
Full  
1.8 V  
4.5  
4
61  
V
R
= V ,  
C = 35 pF,  
L
COM  
L
+
Turn-on time  
t
ns  
ON  
= 50 ,  
See Figure 17  
C = 35 pF,  
L
1.65 V to 1.95 V  
1.8 V  
63  
25°C  
Full  
5.4  
5
12  
19  
V
R
= V ,  
COM  
+
Turn-off time  
t
ns  
OFF  
= 50 ,  
See Figure 17  
C = 35 pF,  
L
1.65 V to 1.95 V  
1.8 V  
21  
L
25°C  
Full  
4
31  
60  
Break-before-  
make time  
V
R
= V  
NO  
= V ,  
+
NC  
t
ns  
BBM  
= 50 ,  
See Figure 18  
1.65 V to 1.95 V  
3
65  
L
V
C
= 0, R  
= 1 nF,  
= 0,  
GEN  
L
GEN  
Charge injection  
Q
See Figure 22 25°C  
See Figure 16 25°C  
1.8 V  
4
pC  
pF  
C
NC, NO  
OFF  
capacitance  
C
C
,
V
NC  
or V = V or GND,  
NO +  
NC(OFF)  
NO(OFF)  
1.8 V  
19  
Switch OFF,  
NC, NO  
ON capacitance  
C
C
,
V
or V = V or GND,  
NO +  
NC(ON)  
NC  
Switch ON,  
See Figure 16 25°C  
See Figure 16 25°C  
1.8 V  
1.8 V  
57  
36  
pF  
pF  
NO(ON)  
COM  
OFF  
capacitance  
V
or V = V or GND,  
NO +  
NC  
Switch OFF,  
C
COM(OFF)  
COM(ON)  
COM  
ON capacitance  
V
= V or GND,  
+
COM  
Switch ON,  
C
See Figure 16 25°C  
See Figure 16 25°C  
See Figure 19 25°C  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
57  
2
pF  
pF  
Digital input  
capacitance  
C
I
V = V or GND,  
I
+
R
= 50 ,  
L
Bandwidth  
OFF isolation  
Crosstalk  
BW  
100  
−64  
−64  
MHz  
dB  
Switch ON,  
R
= 50 ,  
Switch OFF,  
25°C  
L
O
ISO  
f = 1 MHz,  
See Figure 20  
R
= 50 ,  
Switch ON,  
25°C  
L
X
TALK  
dB  
f = 1 MHz,  
See Figure 21  
f = 20 Hz to  
20 kHz,  
See Figure 23  
Total harmonic  
distortion  
R
L
C
L
= 600 ,  
= 50 pF,  
THD  
25°C  
1.8 V  
0.060  
0.001  
%
Supply  
25°C  
0.05  
Positive supply  
current  
Switch ON or  
OFF  
I
+
V = V or GND,  
1.95 V  
µA  
I
+
Full  
0.1  
(1)  
The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum  
10  
ꢀꢁ ꢂꢃ ꢄ ꢅꢂ ꢄ  
W ꢁꢇ ꢈꢀ ꢃꢉꢃ ꢊꢋ ꢌ ꢁ ꢍꢎ ꢀꢏ ꢐ  
www.ti.com  
ꢄꢓ  
ꢊꢀ  
ꢊꢔ  
ꢙꢔ  
SCDS215 – OCTOBER 2005  
TYPICAL PERFORMANCE  
3.5  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
V
+
= 1.8 V  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
T
= 855C  
= 255C  
A
T
A
V
+
= 2.5 V  
T
A
= –405C  
V
+
= 3.3 V  
V
= 5 V  
+
0.2  
0.0  
0
1
2
3
4
5
6
0
1
2
3
4
V
COM  
(V)  
V
COM  
(V)  
Figure 2. r vs V  
on  
(V = 3 V)  
COM +  
Figure 1. r vs V  
on  
COM  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
T
= 855C  
= 255C  
= –405C  
A
I
COM(OFF)  
T
A
I
/
NONC(OFF)  
T
A
I
/
NO NC(ON)  
I
COM(ON)  
0
0
1
2
3
4
5
6
−40  
25  
(°C)  
85  
V
(V)  
T
A
COM  
Figure 4. Leakage Current vs Temperature  
Figure 3. r vs V  
(V = 5 V)  
+
on  
COM  
(V = 5.5 V)  
+
20  
10  
50  
40  
30  
20  
10  
0
t
ON  
5
5
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
V
+
= 5 V  
V
+
= 3 V  
t
OFF  
5
1
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
0
1
2
3
4
5
V
COM  
(V)  
V
+
(V)  
Figure 6. t  
and t  
vs Supply Voltage  
ON  
OFF  
Figure 5. Charge Injection (Q ) vs V  
C
COM  
11  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢂ ꢄ  
W  
ꢑꢒ  
ꢓꢄ  
ꢊꢀ  
ꢊꢔ  
ꢊꢀ  
ꢊꢔ  
www.ti.com  
SCDS215 – OCTOBER 2005  
TYPICAL PERFORMANCE  
16  
14  
12  
10  
8
2
t
1.8  
1.6  
1.4  
1.2  
ON  
V
IH  
V
IL  
t
OFF  
1
6
0.8  
0.6  
0.4  
0.2  
4
2
0
0
−40  
25  
85  
0
1
2
3
(V)  
4
5
6
T
(5C)  
OFF  
V
+
A
Figure 7. t  
and t  
(V = 4.5 V)  
+
vs Temperature  
ON  
Figure 8. Logic-Level Threshold vs V  
+
0
0
−10  
−2  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−4  
−6  
−8  
−10  
−12  
−14  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Frequency (MHz)  
Frequency (MHz)  
Figure 9. Bandwidth (Gain vs Frequency)  
(V = 5 V)  
Figure 10. OFF Isolation vs Crosstalk  
(V = 5 V)  
+
+
0.010  
0.009  
0.008  
0.007  
0.006  
0.005  
0.004  
0.003  
0.002  
0.001  
V
= 3 V  
+
140  
120  
100  
80  
60  
V
= 5 V  
+
40  
20  
0
0
0
0.5  
1
1.5  
2
(5C)  
2.5  
3
3.5  
4
0.001  
0.1  
1
10  
100  
T
A
Frequency (kHz)  
Figure 11. Total Harmonic Distortion  
vs Frequency  
Figure 12. Power-Supply Current  
vs Temperature (V = 5 V)  
12  
ꢀꢁ ꢂꢃ ꢄ ꢅꢂ ꢄ  
W ꢁꢇ ꢈꢀ ꢃꢉꢃ ꢊꢋ ꢌ ꢁ ꢍꢎ ꢀꢏ ꢐ  
ꢂ ꢆꢑ ꢒ ꢄꢓ ꢄ ꢆꢑ ꢁꢎ ꢉꢌ ꢊ ꢔꢆꢏꢐꢃꢉꢉ ꢔꢊ ꢕ ꢖꢅ ꢗ ꢘꢊꢀ ꢎꢇ ꢊꢔ ꢙꢔꢚꢒ ꢈꢔꢗ ꢘꢊꢀꢎ ꢇ ꢊꢔ ꢙꢔ ꢚ  
www.ti.com  
SCDS215 – OCTOBER 2005  
PIN DESCRIPTION  
PIN  
NUMBER  
NAME  
DESCRIPTION  
1
2
3
4
5
6
7
8
COM  
EN  
Common  
Enable control input  
Digital ground  
GND  
GND  
IN  
Digital ground  
Digital control to connect COM to NO or NC  
Normally open  
NO  
NC  
Normally closed  
V
+
Power supply  
PARAMETER DESCRIPTION  
SYMBOL  
COM  
NC  
DESCRIPTION  
V
V
V
Voltage at COM  
Voltage at NC  
Voltage at NO  
NO  
r
r
Resistance between COM and NC or COM and NO ports when the channel is ON  
Peak on-state resistance over a specified voltage range  
on  
peak  
r  
on  
Difference of r between channels in a specific device  
on  
r
Difference between the maximum and minimum value of r in a channel over the specified range of conditions  
on  
on(flat)  
Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state under worst-case  
input and output conditions  
I
I
I
I
I
NC(OFF)  
Leakage current measured at the NC port during the power-off condition, V = 0  
+
NC(PWROFF)  
NO(OFF)  
Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state under  
worst-case input and output conditions  
Leakage current measured at the NO port during the power-off condition, V = 0  
+
NO(PWROFF)  
NC(ON)  
Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output  
(COM) open  
Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output  
(COM) open  
I
I
I
NO(ON)  
Leakage current measured at the COM port, with the corresponding channel (COM to NO or COM to NC) in the ON state  
and the output (NC or NO) open  
COM(ON)  
COM(OFF)  
Leakage current measured at the COM port, with the corresponding channel (COM to NO or COM to NC) in the OFF state  
and the output (NC or NO) open  
I
Leakage current measured at the COM port during the power-off condition, V = 0  
+
COM(PWROFF)  
V
Minimum input voltage for logic high for the control input (IN, EN)  
Maximum input voltage for logic low for the control input (IN, EN)  
Voltage at the control input (IN, EN)  
IH  
IL  
I
V
V
I , I  
IH IL  
Leakage current measured at the control input (IN, EN)  
Turn-on time for the switch. This parameter is measured under the specified range of conditions and by the propagation  
delay between the digital control (IN) signal and analog output (COM, NC, or NO) signal when the switch is turning ON.  
t
ON  
Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation  
delay between the digital control (IN) signal and analog output (COM, NC, or NO) signal when the switch is turning OFF.  
t
t
OFF  
Break-before-make time. This parameter is measured under the specified range of conditions and by the propagation delay  
between the output of two adjacent analog channels (NC and NO) when the control signal changes state.  
BBM  
Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NC, NO, or COM)  
output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input.  
Q
C
Charge injection, Q = C × ∆V  
, C is the load capacitance, and V is the change in analog output voltage.  
C
L
COM  
L
COM  
13  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢂ ꢄ  
W ꢁꢇ ꢈꢀ ꢃ ꢉꢃ ꢊ ꢋ ꢌ ꢁ ꢍꢎ ꢀ ꢏꢐ  
ꢑꢒ  
ꢓꢄ  
ꢊꢀ  
ꢊꢀ  
ꢊꢔ  
www.ti.com  
SCDS215 – OCTOBER 2005  
PARAMETER DESCRIPTION (continued)  
SYMBOL  
DESCRIPTION  
C
C
C
C
Capacitance at the NC port when the corresponding channel (NC to COM) is OFF  
Capacitance at the NO port when the corresponding channel (NO to COM) is OFF  
Capacitance at the NC port when the corresponding channel (NC to COM) is ON  
Capacitance at the NO port when the corresponding channel (NO to COM) is ON  
Capacitance at the COM port when the corresponding channel (COM to NC or COM to NO) is ON  
Capacitance at the COM port when the corresponding channel (COM to NC or COM to NO) is OFF  
Capacitance of control input (IN, EN)  
NC(OFF)  
NO(OFF)  
NC(ON)  
NO(ON)  
C
COM(ON)  
C
COM(OFF)  
C
I
OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency,  
with the corresponding channel (NC to COM or NO to COM) in the OFF state.  
O
ISO  
Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC to NO or NO to NC). This  
is measured in a specific frequency and in dB.  
X
TALK  
BW  
Bandwidth of the switch. This is the frequency in which the gain of an ON channel is −3 dB below the DC gain.  
Total harmonic distortion describes the signal distortion caused by the analog switch. This is defined as the ratio of root mean  
square (RMS) value of the second, third, and higher harmonic to the absolute magnitude of the fundamental harmonic.  
THD  
I
+
Static power-supply current with the control (IN, EN) pin at V or GND  
+
14  
ꢀꢁ ꢂꢃ ꢄ ꢅꢂ ꢄ  
W ꢁꢇ ꢈꢀ ꢃꢉꢃ ꢊꢋ ꢌ ꢁ ꢍꢎ ꢀꢏ ꢐ  
ꢂ ꢆꢑ ꢒ ꢄꢓ ꢄ ꢆꢑ ꢁꢎ ꢉꢌ ꢊ ꢔꢆꢏꢐꢃꢉꢉ ꢔꢊ ꢕ ꢖꢅ ꢗ ꢘꢊꢀ ꢎꢇ ꢊꢔ ꢙꢔꢚꢒ ꢈꢔꢗ ꢘꢊꢀꢎ ꢇ ꢊꢔ ꢙꢔ ꢚ  
www.ti.com  
SCDS215 – OCTOBER 2005  
PARAMETER MEASUREMENT INFORMATION  
V
+
V
NC  
NC  
COM  
V
COM  
+
Channel ON  
V
NO  
NO  
VCOM * VNO or VNC  
r
+
W
on  
ICOM  
IN or EN  
I
COM  
V
I
V = V or V  
IH IL  
I
+
GND  
Figure 13. ON-State Resistance (r  
)
on  
V
+
V
NC  
NC  
OFF-State Leakage Current  
Channel OFF  
COM  
V
COM  
+
+
V
NO  
NO  
V = V or V  
I IH IL  
IN or EN  
V
I
+
GND  
Figure 14. OFF-State Leakage Current (I  
, I  
, I  
, I  
I
)
NC(OFF) NC(PWROFF) NO(OFF) NO(PWROFF), COM(PWROFF)  
V
+
V
V
NC  
NC  
COM  
ON-State Leakage Current  
Channel ON  
V
COM  
+
NO  
NO  
V = V or V  
I IH IL  
IN or EN  
V
I
+
GND  
Figure 15. ON-State Leakage Current (I  
, I  
, I  
)
COM(ON) NC(ON) NO(ON)  
15  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢂ ꢄ  
W  
ꢑꢒ  
ꢓꢄ  
ꢊꢀ  
ꢊꢔ  
ꢊꢔ  
www.ti.com  
SCDS215 – OCTOBER 2005  
V
+
V
V
NC  
NC  
Capacitance  
Meter  
V
= V or GND  
+
BIAS  
NO  
NO  
V = V or GND  
I
+
V
COM  
COM  
Capacitance is measured at NC,  
NO, COM, and IN inputs during  
ON and OFF conditions.  
V
BIAS  
V
I
IN or EN  
GND  
Figure 16. Capacitance (C , C  
, C , C , C , C , C  
)
I
COM(OFF) COM(ON) NC(OFF) NO(OFF) NC(ON) NO(ON)  
V
+
TEST  
R
L
C
L
V
COM  
V
NC  
or V  
NC or NO  
NC or NO  
NO  
t
50 Ω  
50 Ω  
35 pF  
35 pF  
V
ON  
+
+
COM  
V
COM  
(2)  
C
L
R
L
t
V
OFF  
IN or EN  
V
I
V
0
Logic  
Input  
(V )  
I
+
(2)  
C
R
L
50%  
50%  
L
Logic  
(1)  
GND  
Input  
t
t
OFF  
ON  
Switch  
Output  
90%  
90%  
(V  
NC  
orV )  
NO  
(1)  
(2)  
All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z = 50 , t < 5 ns, t < 5 ns.  
O
r
f
C
L
includes probe and jig capacitance.  
Figure 17. Turn-On (t ) and Turn-Off Time (t  
)
ON  
OFF  
V
+
V
Logic  
Input  
(V )  
I
+
V
NC  
orV  
NO  
50%  
NC or NO  
NC or NO  
0
V
COM  
COM  
Switch  
Output  
90%  
t
90%  
(2)  
C
R
L
L
(V  
)
COM  
IN  
V
I
BBM  
Logic  
(1)  
V
or V = V  
NO +  
= 50 Ω  
= 35 pF  
NC  
GND  
Input  
R
C
L
L
(1)  
(2)  
All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z = 50 , t < 5 ns, t < 5 ns.  
L
O
r
f
C
includes probe and jig capacitance.  
Figure 18. Break-Before-Make Time (t  
)
BBM  
16  
ꢀꢁ ꢂꢃ ꢄ ꢅꢂ ꢄ  
W ꢁꢇ ꢈꢀ ꢃꢉꢃ ꢊꢋ ꢌ ꢁ ꢍꢎ ꢀꢏ ꢐ  
ꢑ ꢒ ꢄꢓ ꢄ ꢆꢑ ꢁꢎ ꢉꢌ ꢊ ꢔꢆꢏꢐꢃꢉꢉ ꢔꢊ ꢕ ꢖꢅ ꢗ ꢘꢊꢀ ꢎꢇ ꢊꢔ ꢙꢔꢚꢒ ꢈꢔꢗ ꢘꢊꢀꢎ ꢇ ꢊꢔ ꢙꢔ ꢚ  
www.ti.com  
SCDS215 – OCTOBER 2005  
V
+
Network Analyzer  
50 W  
V
NC  
NC  
NO  
Channel ON: NC to COM  
V = V or GND  
V
COM  
COM  
I
+
Source  
Signal  
Network Analyzer Setup  
IN or EN  
V
I
Source Power = 0 dBm  
50 W  
(632-mV P-P at 50-W load)  
+
GND  
DC Bias = 350 mV  
Figure 19. Bandwidth (BW)  
V
+
Network Analyzer  
Channel OFF: NC to COM  
50 W  
V
NC  
NC  
V = V or GND  
I
+
V
COM  
COM  
Source  
Signal  
50 W  
NO  
Network Analyzer Setup  
IN or EN  
Source Power = 0 dBm  
V
I
(632-mV P-P at 50-W load)  
50 W  
+
GND  
DC Bias = 350 mV  
Figure 20. OFF Isolation (O  
)
ISO  
V
+
Network Analyzer  
Channel ON: NC to COM  
Channel OFF: NO to COM  
V = V or GND  
50 W  
V
V
NC  
NC  
V
COM  
I
+
Source  
Signal  
NO  
IN or EN  
NO  
Network Analyzer Setup  
50 W  
V
I
50 W  
Source Power = 0 dBm  
(632-mV P-P at 50-W load)  
+
GND  
DC Bias = 350 mV  
Figure 21. Crosstalk (X  
)
TALK  
17  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢂ ꢄ  
W ꢁꢇ ꢈꢀ ꢃ ꢉꢃ ꢊ ꢋ ꢌ ꢁ ꢍꢎ ꢀ ꢏꢐ  
ꢑꢒ  
ꢓꢄ  
ꢊꢔ  
ꢊꢀ  
ꢊꢔ  
www.ti.com  
SCDS215 – OCTOBER 2005  
V
IH  
V
+
Logic  
Input  
OFF  
ON  
OFF  
V
(V  
I)  
IL  
R
GEN  
NC or NO  
COM  
V
COM  
+
V
COM  
V  
COM  
NC or NO  
IN or EN  
V
GEN  
(2)  
C
L
V
= 0 to V  
= 0  
= 1 nF  
GEN  
+
V
I
R
C
GEN  
L
Logic  
(1)  
GND  
Q = C ×V  
V = V or V  
I IH IL  
C L COM  
Input  
(1)  
(2)  
All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z = 50 , t < 5 ns, t < 5 ns.  
O
r
f
C
L
includes probe and jig capacitance.  
Figure 22. Charge Injection (Q )  
C
V = V or V  
IH  
Channel ON: COM to NC  
R
L
C
L
= 600 Ω  
I
IL  
V /2  
+
V
= V P-P  
+
f
= 20 Hz to 20 kHz  
= 50 pF  
SOURCE  
SOURCE  
V
+
Audio Analyzer  
R
L
10 mF  
NC  
NO  
10 mF  
Source  
Signal  
COM  
IN  
(1)  
C
L
600 W  
600 W  
V
I
GND  
600 W  
(1)  
C
L
includes probe and jig capacitance.  
Figure 23. Total Harmonic Distortion (THD)  
18  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Nov-2005  
PACKAGING INFORMATION  
Orderable Device  
TS5A3153DCUR  
TS5A3153DCURE4  
Status (1)  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
US8  
DCU  
8
3000  
Pb-Free  
(RoHS)  
CU NIPDAU Level-1-260C-UNLIM  
US8  
DCU  
8
3000  
Pb-Free  
(RoHS)  
CU NIPDAU Level-1-260C-UNLIM  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

TS5A3153YZAR

1-ohm SPDT ANALOG SWITCH 5-V/3.3-V SINGLE-CHANNEL 2:1 MULTIPLEXER/DEMULTIPLEXER
TI

TS5A3153YZPR

1-ohm SPDT ANALOG SWITCH 5-V/3.3-V SINGLE-CHANNEL 2:1 MULTIPLEXER/DEMULTIPLEXER
TI

TS5A3153_09

5-V/3.3-V SINGLE-CHANNEL 2:1 MULTIPLEXER/DEMULTIPLEXER
TI

TS5A3153_14

5-V/3.3-V SINGLE-CHANNEL 2:1 MULTIPLEXER/DEMULTIPLEXER
TI

TS5A3154

0.9-W SPDT ANALOG SWITCH 5-V/3.3-V SINGLE-CHANNEL 2:1 MULTIPLEXER/DEMULTIPLEXER
TI

TS5A3154DCTRE6

0.9-W SPDT ANALOG SWITCH 5-V/3.3-V SINGLE-CHANNEL 2:1 MULTIPLEXER/DEMULTIPLEXER
TI

TS5A3154DCUR

0.9-W SPDT ANALOG SWITCH 5-V/3.3-V SINGLE-CHANNEL 2:1 MULTIPLEXER/DEMULTIPLEXER
TI

TS5A3154DCURE4

0.9-W SPDT ANALOG SWITCH 5-V/3.3-V SINGLE-CHANNEL 2:1 MULTIPLEXER/DEMULTIPLEXER
TI

TS5A3154DCURE6

0.9-W SPDT ANALOG SWITCH 5-V/3.3-V SINGLE-CHANNEL 2:1 MULTIPLEXER/DEMULTIPLEXER
TI

TS5A3154DCURG4

5-V/3.3-V SINGLE-CHANNEL 2:1 MULTIPLEXER/DEMULTIPLEXER
TI

TS5A3154YEAR

0.9-W SPDT ANALOG SWITCH 5-V/3.3-V SINGLE-CHANNEL 2:1 MULTIPLEXER/DEMULTIPLEXER
TI

TS5A3154YEPR

0.9-W SPDT ANALOG SWITCH 5-V/3.3-V SINGLE-CHANNEL 2:1 MULTIPLEXER/DEMULTIPLEXER
TI