TS5MP645YFPR [TI]

具有断电保护和 1.8V 逻辑的 1.5pF、5V、2:1 (SPDT)、10 通道 MIPI 模拟开关 | YFP | 36 | -40 to 85;
TS5MP645YFPR
型号: TS5MP645YFPR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有断电保护和 1.8V 逻辑的 1.5pF、5V、2:1 (SPDT)、10 通道 MIPI 模拟开关 | YFP | 36 | -40 to 85

开关 光电二极管
文件: 总35页 (文件大小:1233K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TS5MP645  
ZHCSHH3B JANUARY 2018REVISED JULY 2018  
TS5MP645 4 数据通道 2:1 MIPI 开关(10 通道,2:1 模拟开关)  
1 特性  
3 说明  
1
电源电压范围 1.65V 5.5V  
10 通道 2:1 开关  
TS5MP645 是一款四数据通道 MIPI 开关。此器件是一  
款经优化的 10 通道(包含 5 个差动通道)单极双投开  
关,适用于高速 应用。TS5MP645 可方便地将多个符  
MIPI 标准的器件与单个 CSI/DSIC-PHY/D-PHY  
模块相连接。  
关断保护  
VDD = 0V 时,I/O 类型为 Hi-Z  
RON,典型值 2.45Ω  
CON,为 1.5pF  
此器件具有出色的带宽、几乎不会造成信号恶化的低通  
道间偏斜以及可补偿布局损失的宽裕量。其低电流消耗  
可满足低功率 应用供电。  
1.5GHz 最小带宽  
-40dB 超低串扰  
低功耗禁用模式  
器件信息(1)  
1.8V 兼容型逻辑输入  
ESD 保护性能超出 JESD 22 标准  
器件编号  
TS5MP645  
封装  
封装尺寸(标称值)  
DSBGA (YFP)  
2.42mm x 2.42mm  
2000V 人体放电模型 (HBM)  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
2 应用  
移动电话  
平板电脑  
台式机/笔记本电脑  
虚拟现实  
扩增实境  
简化原理图  
1.65 V œ 5.5 V  
100 nF  
2.2 µF  
VDD  
CLK  
Data[1:4]  
CLK  
MIPI Module 1  
Data[1:4]  
TS5MP645  
4-Data Lane  
MIPI Switch  
Processor  
CLK  
Data[1:4]  
MIPI Module 2  
SEL  
/OE  
Copyright © 2018, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SCDS385  
 
 
 
TS5MP645  
ZHCSHH3B JANUARY 2018REVISED JULY 2018  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 19  
Application and Implementation ........................ 20  
9.1 Application Information............................................ 20  
9.2 Typical Application ................................................. 20  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Typical Characteristics.............................................. 9  
Parameter Measurement Information ................ 10  
Detailed Description ............................................ 16  
8.1 Overview ................................................................. 16  
8.2 Functional Block Diagram ....................................... 16  
8.3 Feature Description................................................. 17  
9
10 Power Supply Recommendations ..................... 21  
11 Layout................................................................... 22  
11.1 Layout Guidelines ................................................. 22  
11.2 Layout Example .................................................... 22  
12 器件和文档支持 ..................................................... 23  
12.1 文档支持 ............................................................... 23  
12.2 接收文档更新通知 ................................................. 23  
12.3 社区资源................................................................ 23  
12.4 ....................................................................... 23  
12.5 静电放电警告......................................................... 23  
12.6 术语表 ................................................................... 23  
13 机械、封装和可订购信息....................................... 24  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (March 2018) to Revision B  
Page  
Changed the IOFF Test conditions From: VDD = 1.65 V to 5.5 V To: VDD = 0 V, 1.65 V to 5.5 V in the Electrical  
Characteristics table .............................................................................................................................................................. 6  
Changes from Original (January 2018) to Revision A  
Page  
器件信息表中的封装尺寸(标称值)2.459 x 2.459 更改成了 2.42 x 2.42................................................................. 1  
2
Copyright © 2018, Texas Instruments Incorporated  
 
TS5MP645  
www.ti.com.cn  
ZHCSHH3B JANUARY 2018REVISED JULY 2018  
5 Pin Configuration and Functions  
DSBGA Package  
36 Pin (YFP)  
Top View  
1
2
3
4
5
6
A
B
C
D
E
F
VDD  
GND  
DA4N  
DA4P  
OE  
SEL  
DB4N  
DB3N  
DB2N  
DB1N  
CLKBN  
DB4P  
DB3P  
DB2P  
DB1P  
CLKBP  
DA3N  
NC  
DA3P  
NC  
D4N  
D3N  
D4P  
D3P  
D2P  
D1P  
DA2N  
DA1N  
CLKAN  
DA2P  
DA1P  
CLKAP  
D2N  
D1N  
CLKN  
CLKP  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
VDD  
GND  
DA4N  
DA4P  
OE  
NO.  
A1  
A2  
A3  
A4  
A5  
A6  
B1  
B2  
B3  
B4  
B5  
B6  
C1  
C2  
C3  
C4  
C5  
C6  
D1  
D2  
D3  
PWR  
GND  
I/O  
I/O  
I
Power supply input  
Device Ground  
Differential I/O  
Differential I/O  
Output enable (Active Low)  
Channel Select  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
No connect  
SEL  
I
DB4N  
DB4P  
DA3N  
DA3P  
D4N  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
-
D4P  
DB3N  
DB3P  
NC  
NC  
-
No connect  
D3N  
I/O  
I/O  
I/O  
I/O  
I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
D3P  
DB2N  
DB2P  
DA2N  
Copyright © 2018, Texas Instruments Incorporated  
3
TS5MP645  
ZHCSHH3B JANUARY 2018REVISED JULY 2018  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
DA2P  
D2N  
NO.  
D4  
D5  
D6  
E1  
E2  
E3  
E4  
E5  
E6  
F1  
F2  
F3  
F4  
F5  
F6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
D2P  
DB1N  
DB1P  
DA1N  
DA1P  
D1N  
D1P  
CLKBN  
CLKBP  
CLKAN  
CLKAP  
CLKN  
CLKP  
4
Copyright © 2018, Texas Instruments Incorporated  
TS5MP645  
www.ti.com.cn  
ZHCSHH3B JANUARY 2018REVISED JULY 2018  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
(2)  
MIN  
MAX  
UNIT  
VDD  
VI/O  
Supply Voltage  
-0.5  
6
V
Analog voltage range (DxN, CLKN, DxP, CLKP, DAxN, CLKAN, DAxP, CLKAP, DBxN,  
CLKBN, DBxP, CLKBP)  
-0.5  
4
V
VSEL , VOE Digital Input Voltage (SEL, OE)  
-0.5  
-65  
-65  
6
V
TJ  
Junction temperature  
Storage temperature  
150  
150  
°C  
°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage are with respect to ground, unless otherwise specified  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
±2000  
ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
VDD  
VI/O  
Supply Voltage  
1.65  
5.5  
V
Analog voltage range (DxN, CLKN, DxP, CLKP, DAxN, CLKAN, DAxP,  
CLKAP, DBxN, CLKBN, DBxP, CLKBP)  
0
3.6  
V
VSEL, VOE Digital Input Voltage (SEL, OE)  
0
-35  
-40  
-65  
5.5  
35  
V
II/O  
TA  
TJ  
Continuous I/O current  
mA  
°C  
°C  
Operating ambient temperature  
Junction temperature  
85  
150  
6.4 Thermal Information  
TS5MP645  
THERMAL METRIC(1)  
YFP  
36  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
57.6  
0.3  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
12.6  
0.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
ΨJB  
12.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
版权 © 2018, Texas Instruments Incorporated  
5
 
TS5MP645  
ZHCSHH3B JANUARY 2018REVISED JULY 2018  
www.ti.com.cn  
6.5 Electrical Characteristics  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
0
TYP  
30  
MAX  
60  
UNIT  
µA  
POWER SUPPLY  
VDD = 1.65 V to 5.5 V  
OE = 0 V  
SEL = 0 V to 5.5 V  
Dn, CLKn = 0 V  
IDD  
Active Supply Current  
VDD = 1.65 V to 5.5 V  
OE = VDD  
SEL = 0 V to 5.5 V  
Dn, CLKn = 0 V  
IDD_PD  
Power-down Supply current  
Power-down Supply current  
0
0.1  
0.1  
1
µA  
VDD = 1.65 V to 5.5 V  
OE = 1.8 V  
SEL = 0 V to 5.5 V  
Dn, CLKn = 0 V  
IDD_PD_1.8  
0
10  
µA  
DC CHARACTERISTICS  
VDD = 1.65 V to 5.5 V  
OE = 0 V  
Dn,CLKn = -8 mA, 0.2V  
RON_HS  
On-state resistance  
2.45  
2.65  
0.1  
5.5  
6.5  
Ω
Ω
Ω
Ω
Ω
Ω
DAn, DBn, CLKAn, CLKBn = 0.2 V, -8 mA  
VDD = 1.65 V to 5.5 V  
OE = 0 V  
Dn, CLKn = -8 mA, 1.2V  
RON_LP  
On-state resistance  
DAn, DBn, CLKAn, CLKBn = 1.2 V, -8 mA  
VDD = 1.65 V to 5.5 V  
OE = 0 V  
Dn, CLKn = -8 mA, 0 V to 0.3 V  
RON_flat_HS  
RON_flat_LP  
ΔRON_HS  
ΔRON_LP  
On-state resistance flatness  
On-state resistance flatness  
DAn, DBn, CLKAn, CLKBn = 0 V to 0.3 V,-8 mA  
VDD = 1.65 V to 5.5 V  
OE = 0 V  
Dn, CLKn = -8 mA, 0 V to 1.3 V  
0.9  
DAn, DBn, CLKAn, CLKBn = 0 V to 1.3 V, -8 mA  
VDD = 1.65 V to 5.5 V  
OE = 0 V  
Dn, CLKn = -8 mA, 0.2 V  
On-state resistance match between+and -  
paths  
0.1  
DAn, DBn, CLKAn, CLKBn = 0.2 V, -8 mA  
VDD = 1.65 V to 5.5 V  
OE = 0 V  
Dn, CLKn = -8 mA, 1.2 V  
On-state resistance match between+and -  
paths  
0.1  
DAn, DBn, CLKAn, CLKBn = 1.2 V, -8 mA  
VDD = 0 V, 1.65 V to 5.5 V  
OE = 0 V to 5.5 V  
SEL= 0 V to 5.5 V  
Dn, CLKn = 0 V to 1.3 V  
DAn, DBn, CLKAn, CLKBn = 0 V to 1.3 V  
IOFF  
Switch off leakage current  
Switch on leakage current  
-0.5  
-0.5  
0.5  
0.5  
µA  
µA  
VDD = 1.65 V to 5.5 V  
OE = 0 V  
SEL= 0 V to 5.5 V  
ION  
Dn, CLKn = 0 V to 1.3 V  
DAn, DBn, CLKAn, CLKBn = 0 V to 1.3 V  
DYNAMIC CHARACTERISTICS  
VDD = 1.65 V to 5.5 V  
OE = 0 V  
Dn, CLKn = 0.6 V  
tSWITCH  
Switching time between channels  
1.5  
µs  
DAn, DBn, CLKAn, CLKBn: RL=50 Ω, CL = 5 pF  
fSEL_MAX  
Maximum toggling frequency for the SEL  
line  
VDD = 1.65 V to 5.5 V  
Dn, CLKn = 0.6 V  
100  
kHz  
DAn, DBn, CLKAn, CLKBn: RL= 50 Ω, CL=1 pF  
VDD = 1.65 V to 5.5 V  
tON_OE  
Device enable time OE to switch on  
Device enable time VDD to switch on  
Dn, CLKn = 0.6 V  
DAn, DBn, CLKAn, CLKBn: RL= 50 Ω, CL= 1 pF  
50  
50  
300  
300  
µs  
µs  
tON_VDD  
VDD = 0 V to 1.65 V  
Dn, CLKn = 0.6 V  
DAn, DBn, CLKAn, CLKBn: RL= 50 Ω, CL= 1 pF  
6
Copyright © 2018, Texas Instruments Incorporated  
TS5MP645  
www.ti.com.cn  
ZHCSHH3B JANUARY 2018REVISED JULY 2018  
Electrical Characteristics (continued)  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VDD = 1.65 V to 5.5 V  
tOFF_OE  
Device disable time OE to switch off  
Dn, CLKn = 0.6 V  
0.5  
1
µs  
DAn, DBn, CLKAn, CLKBn: RL= 50 Ω, CL= 1 pF  
VDD = 5 V to 0 V  
VDD ramp rate = 250 µs  
Dn, CLKn = 0.6 V  
DAn, DBn, CLKAn, CLKBn: RL = 50 Ω, CL = 1pF  
tOFF_VDD  
Device disable time VDD to switch off  
Minimum pulse width for OE  
0.5  
1
ms  
ns  
tMIN_OE  
VDD = 1.65 V to 5.5 V  
Dn, CLKn = 0.6 V  
DAn, DBn, CLKAn, CLKBn: RL = 50 Ω, CL = 1 pF  
500  
50  
VDD = 1.65 V to 5.5 V  
OE = 0 V  
Dn, CLKn = RL = 50 Ω, CL = 1 pF  
tBBM  
Break before make time  
Intrapair skew  
ns  
ps  
ps  
DAn, DBn, CLKAn, CLKBn: 0.6 V  
VDD = 1.65 V to 5.5 V  
OE = 0 V  
Dn, CLKn = 0.3 V  
tSKEW  
1
4
DAn, DBn, CLKAn, CLKBn: RL = 50 Ω, CL = 1 pF  
VDD = 1.65 V to 5.5 V  
OE = 0 V  
Dn, CLKn = 0.3 V  
tSKEW  
Interpair Skew  
DAn, DBn, CLKAn, CLKBn: RL = 50 Ω, CL = 1 pF  
VDD = 1.65 V to 5.5 V  
OE = 0 V  
Dn, CLKn = 0.6 V  
tPD  
Propagation delay with 100 ps rise time  
40  
ps  
DAn, DBn, CLKAn, CLKBn: RL = 50 Ω, CL = 1 pF  
tRISE = 100 ps  
VDD = 1.65 V  
OE = 0 V, VDD  
SEL = 0 V, VDD  
OISO  
Differential off isolation  
Dn, CLKn, DAn, DBn, CLKAn, CLKBn: RS = 50 Ω,  
RL = 50 Ω, CL = 1 pF  
-20  
dB  
VI/O = 200 mV + 200 mVPP (differential)  
f = 1250 MHz  
VDD = 1.65 V to 5.5 V  
OE = 0 V, VDD  
SEL = 0 V, VDD  
XTALK  
Differential channel to channel crosstalk  
Dn, CLKn, DAn, DBn, CLKAn, CLKBn: RS = 50 Ω,  
RL = 50 Ω, CL = 1 pF  
VI/O = 200 mV + 200 mVPP (differential)  
f = 1250 MHz  
-40  
dB  
GHz  
dB  
VDD = 1.65 V to 5.5 V  
OE = 0 V  
SEL = 0 V, VDD  
Dn, CLKn, DAn, DBn, CLKAn, CLKBn: RS = 50 Ω,  
RL = 50 Ω, CL = 1 pF  
VI/O = 200 mV + 200 mVPP (differential)  
BW  
Differential Bandwidth  
1.5  
2
VDD = 1.65 V to 5.5 V  
OE = 0 V  
SEL = 0 V, VDD  
Dn, CLKn, DAn, DBn, CLKAn, CLKBn: RS = 50 Ω,  
RL = 50 Ω, CL = 1 pF  
ILOSS  
Insertion Loss  
-0.4  
VI/O = 200 mV + 200 mVPP (differential)  
f = 100 kHz  
VDD = 1.65 V to 5.5 V  
OE = 0 V, VDD  
SEL = 0 V, VDD  
Dn, CLKn, DAn, DBn, CLKAn, CLKBn = 0 V , 0.2 V  
f = 1250 MHz  
COFF  
Off capacitance  
On capacitance  
1.5  
1.5  
pF  
pF  
VDD = 1.65 V to 5.5 V  
OE = VDD  
SEL = 0 V, VDD  
CON  
Dn, CLKn, DAn, DBn, CLKAn, CLKBn = 0 V , 0.2 V  
f = 1250 MHz  
Copyright © 2018, Texas Instruments Incorporated  
7
TS5MP645  
ZHCSHH3B JANUARY 2018REVISED JULY 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL CHARACTERISTICS  
VIH  
VIL  
IIH  
Input logic high (SEL, OE)  
VI/O = 0.6 V, RL = 50 Ω, CL = 5 pF  
VI/O = 0.6 V, RL = 50 Ω, CL = 5 pF  
VI/O = 0.6 V, RL = 50 Ω, CL = 5 pF  
VI/O = 0.6 V, RL = 50 Ω,CL = 5 pF  
1.425  
0
5.5  
0.5  
5
V
V
Input logic low (SEL, OE)  
Input high leakage current (SEL, OE)  
Input low leakage current (SEL, OE)  
-5  
µA  
µA  
IIL  
-5  
5
Internal pull-down resistance on digital  
input pins  
RPD  
VI/O = 0.6 V, RL = 50 Ω, CL = 5 pF  
6
5
MΩ  
CSEL, COE  
Digital Input capacitance (SEL, OE)  
f = 1 MHz  
pF  
8
版权 © 2018, Texas Instruments Incorporated  
TS5MP645  
www.ti.com.cn  
ZHCSHH3B JANUARY 2018REVISED JULY 2018  
6.6 Typical Characteristics  
4.5  
4
4.5  
4
RON (-40°C)  
RON (25°C)  
RON (85°C)  
RON (-40°C)  
RON (25°C)  
RON (85°C)  
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1.5  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
Input Voltage (V)  
Input Voltage (V)  
D003  
D002  
1. RON vs Input Voltage. VDD = 1.65 V  
2. RON vs Input Voltage. VDD = 3.3 V  
4.5  
4
0
-1  
RON (-40°C)  
RON (25°C)  
RON (85°C)  
-2  
-3  
-4  
3.5  
3
-5  
-6  
-7  
-8  
-9  
2.5  
2
-10  
-11  
-12  
-13  
-14  
Bandwidth  
1.5  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
300000  
1E+7  
1E+8  
1E+9  
1E+10  
Input Voltage (V)  
Frequency (Hz)  
D004  
D001  
3. RON vs Input Voltage. VDD = 5.5 V  
4. Differential Bandwidth  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
Off Isolation  
Crosstalk  
-120  
100000  
1000000  
1E+7  
1E+8  
1E+9  
1E+10  
200000 1000000  
1E+7  
1E+8  
1E+9  
1E+10  
Frequency (Hz)  
Frequency (Hz)  
D002  
D003  
5. Off Isolation  
6. Differential Crosstalk  
版权 © 2018, Texas Instruments Incorporated  
9
TS5MP645  
ZHCSHH3B JANUARY 2018REVISED JULY 2018  
www.ti.com.cn  
7 Parameter Measurement Information  
Channel ON  
RON = V/ION  
V
VI/O  
ION  
Switch  
Copyright © 2018, Texas Instruments Incorporated  
7. On Resistance  
VI/O  
VI/O  
A
A
Switch  
8. Off Leakage  
VI/O  
A
Switch  
9. On Leakage  
VI/OA  
VI/OB  
VI/O  
CL  
RL  
RL  
SEL  
CL  
VSEL  
1.8 V  
0 V  
1.8 V  
0 V  
VSEL  
tSWITCH  
VI/OA  
VIL  
VIH  
VSEL  
tSWITCH  
VI/OB  
VIH  
VIL  
tSWITCH  
tSWITCH  
20 %  
VI/O  
VI/O  
80  
%
80 %  
20 %  
0 V  
0 V  
Copyright © 2018, Texas Instruments Incorporated  
(1) All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 Ω , tr = 3 ns,  
tf = 3 ns.  
(2) CL includes probe and jig capacitance.  
10. tSWITCH timing  
10  
版权 © 2018, Texas Instruments Incorporated  
TS5MP645  
www.ti.com.cn  
ZHCSHH3B JANUARY 2018REVISED JULY 2018  
Parameter Measurement Information (接下页)  
1.65 V  
VDD  
VI/O  
/OE  
VI/O  
1.8 V  
0 V  
VIL  
VIH  
V/OE  
CL  
RL  
tON  
tOFF  
VI/O  
90 %  
10 %  
VI/O  
V/OE  
0 V  
Copyright © 2018, Texas Instruments Incorporated  
(1) All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 Ω , tr = 3 ns,  
tf = 3 ns.  
(2) CL includes probe and jig capacitance.  
11. tON and tOFF Timing for OE  
Network Analyzer  
Switch  
50  
DXP  
DXN  
50 ꢀ  
Source  
Signal  
50 ꢀ  
50 ꢀ  
Source  
Signal  
50 ꢀ  
50 ꢀ  
Copyright © 2018, Texas Instruments Incorporated  
12. Off Isolation  
版权 © 2018, Texas Instruments Incorporated  
11  
TS5MP645  
ZHCSHH3B JANUARY 2018REVISED JULY 2018  
www.ti.com.cn  
Parameter Measurement Information (接下页)  
Network Analyzer  
Switch  
50  
DXP  
50 ꢀ  
50 ꢀ  
Source  
Signal  
50 ꢀ  
50 ꢀ  
DXN  
Source  
Signal  
50 ꢀ  
DXP  
DXN  
50 ꢀ  
50 ꢀ  
50 ꢀ  
50 ꢀ  
50 ꢀ  
50 ꢀ  
Copyright © 2018, Texas Instruments Incorporated  
13. Crosstalk  
Network Analyzer  
Switch  
50  
DXN  
DXP  
50 ꢀ  
Source  
Signal  
50 ꢀ  
50 ꢀ  
Source  
Signal  
50 ꢀ  
50 ꢀ  
Copyright © 2017, Texas Instruments Incorporated  
14. BW and Insertion Loss  
12  
版权 © 2018, Texas Instruments Incorporated  
TS5MP645  
www.ti.com.cn  
ZHCSHH3B JANUARY 2018REVISED JULY 2018  
Parameter Measurement Information (接下页)  
Generator  
Switch  
50  
D1P  
D1N  
D2P  
D2N  
DX1P  
50 ꢀ  
50 ꢀ  
50 ꢀ  
50 ꢀ  
50 ꢀ  
50 ꢀ  
50 ꢀ  
50 ꢀ  
50 ꢀ  
50 ꢀ  
Source  
Signal  
50 ꢀ  
50 ꢀ  
50 ꢀ  
50 ꢀ  
50 ꢀ  
50 ꢀ  
DX1N  
Source  
Signal  
50 ꢀ  
50 ꢀ  
50 ꢀ  
DX2P  
Source  
Signal  
DX2N  
Source  
Signal  
50 ꢀ  
50 ꢀ  
50 ꢀ  
D3P  
D3N  
DX3P  
Source  
Signal  
DX3N  
Source  
Signal  
50 ꢀ  
50 ꢀ  
50 ꢀ  
D4P  
DX4P  
Source  
Signal  
D4N  
DX4N  
Source  
Signal  
50 ꢀ  
50 ꢀ  
50 ꢀ  
CLKP  
CLKN  
CLKXP  
Source  
Signal  
CLKXN  
Source  
Signal  
50 ꢀ  
Copyright © 2017, Texas Instruments Incorporated  
15. tPD, tSKEW(INTRA) and tSKEW Setup  
版权 © 2018, Texas Instruments Incorporated  
13  
TS5MP645  
ZHCSHH3B JANUARY 2018REVISED JULY 2018  
www.ti.com.cn  
Parameter Measurement Information (接下页)  
DXX/CLKX  
50%  
50%  
tPD  
tPD  
DXXX/CLKXX  
50%  
50%  
(1) All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 Ω , tr = 100  
ps, tf = 100 ps.  
(2) CL includes probe and jig capacitance.  
16. tPD  
DXX/CLKX  
50%  
50%  
tSKEW  
tSKEW  
50%  
DXXX/CLKXX  
50%  
(1) All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 Ω , tr = 100  
ps, tf = 100 ps.  
(2) CL includes probe and jig capacitance.  
17. tSKEW  
14  
版权 © 2018, Texas Instruments Incorporated  
TS5MP645  
www.ti.com.cn  
ZHCSHH3B JANUARY 2018REVISED JULY 2018  
Parameter Measurement Information (接下页)  
tSKEW  
DX/CLKX  
tSKEW  
tSKEW  
DX1  
50%  
50%  
50%  
50%  
50%  
DX2  
50%  
DX3  
50%  
DX4  
50%  
CLK  
50%  
50%  
(1) All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 Ω , tr = 100  
ps, tf = 100 ps.  
(2) CL includes probe and jig capacitance.  
(3) tSK(INTER) is the max skew between all channels. Diagram exaggerates tSK(INTER) to show measurement technique  
18. tSKEW  
0.6 V  
VI/O  
VSEL  
CL  
RL  
SEL  
0.6 V  
tBBM  
80 %  
VI/O  
VSEL  
tBBM  
Copyright © 2017, Texas Instruments Incorporated  
(1) All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 Ω , tr = 3 ns,  
tf = 3 ns.  
(2) CL includes probe and jig capacitance.  
19. tBBM  
版权 © 2018, Texas Instruments Incorporated  
15  
TS5MP645  
ZHCSHH3B JANUARY 2018REVISED JULY 2018  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TS5MP645 is a high-speed 4 Data lane 2:1 MIPI Switch. The device includes 10 channels (5 differential)  
with 4 differential data lanes and 1 differential clock lane for D-PHY, CSI or DSI. The switch allows a single MIPI  
port to interface between two MIPI modules, expanding the number of potential MIPI devices that can be used  
within a system that is MIPI port limited.  
8.2 Functional Block Diagram  
VDD  
SEL  
6 MO  
6 MO  
Control  
Logic  
/OE  
CLKAP  
CLKBP  
CLKP  
CLKN  
D1P  
D1N  
D2P  
D2N  
D3P  
D3N  
D4P  
D4N  
CLKAN  
CLKBN  
DA1P  
DB1P  
DA1N  
DB1N  
DA2P  
DB2P  
DA2N  
DB2N  
DA3P  
DB3P  
DA3N  
DB3N  
DA4P  
DB4P  
DA4N  
DB4N  
GND  
Copyright © 2018, Texas Instruments Incorporated  
16  
版权 © 2018, Texas Instruments Incorporated  
TS5MP645  
www.ti.com.cn  
ZHCSHH3B JANUARY 2018REVISED JULY 2018  
8.3 Feature Description  
8.3.1 Powered-Off Protection  
When the TS5MP645 is powered off (VDD = 0 V) the I/Os and digital logic pins of the device will remain in a high  
impedance state. The crosstalk, off-isolation, and leakage remains within the electrical specifications. This  
prevents errant voltages from reaching the rest of the system and maintains isolation when the system is  
powering up.  
20 shows an example system containing a switch without powered-off protection with the following system  
level scenario  
1. Subsystem A powers up and starts sending information to Subsystem B that remains unpowered.  
2. The I/O voltage back powers the supply rail in Subsystem B.  
3. The digital logic is back powered and turns on the switch. The signal is transmitted to Subsystem B before it  
is powered and damages it.  
Unpowered  
Powered  
LDO  
2
VDD  
1
ESD  
Subsystem A  
Subsystem B  
SEL  
3
Switch  
20. System Without Powered-Off Protection  
With powered-off protection, the switch prevents back powering the supply and the switch remains high-  
impedance. Subsystem B remains protected.  
Unpowered  
Powered  
LDO  
VDD  
Protection  
ESD  
Subsystem A  
Subsystem B  
SEL  
Hi-Z  
Switch  
21. System With Powered-Off Protection  
This features has the following system level benefits.  
Protects the system from damage.  
Prevents data from being transmitted unintentionally  
Eliminates the need for power sequencing solutions reducing BOM count and cost, simplifying system design  
and improving reliability.  
版权 © 2018, Texas Instruments Incorporated  
17  
 
TS5MP645  
ZHCSHH3B JANUARY 2018REVISED JULY 2018  
www.ti.com.cn  
Feature Description (接下页)  
8.3.2 1.8 V Logic Compatible Inputs  
The TS5MP645 has 1.8 V logic compatible digital inputs for switch control. Regardless of the VDD voltage the  
digital input thresholds remained fixed, allowing a 1.8 V processor GPIO to control the TS5MP645 without the  
need for an external translator. This saves both space and BOM cost.  
An example setup for a system without a 1.8 V logic compatible input is shown in 22. Here the supply  
mismatch between the process and its GPIO output and the supply to the switch require a translator.  
3.3 V  
1.8 V  
Processor  
VDD  
SEL  
1.8 V  
GPIO  
Switch  
22. System Without 1.8 V Logic Compatible Inputs  
With the 1.8 V logic compatibility in the TS5MP645, the translator is built in to the device so that the external  
components are no longer needed, simplifying the system design and overall cost.  
3.3 V  
1.8 V  
VDD  
Processor  
1.8 V  
GPIO  
SEL  
Switch  
23. System With 1.8 V Logic Compatible Inputs  
8.3.3 Low Power Disable Mode  
The TS5MP645 has a low power mode that places all the signal paths in a high impedance state and lowers the  
current consumption while the device is not in use. To put the device in low power mode and disable the switch,  
the output enable pin OE must be supplied with a logic high signal.  
18  
版权 © 2018, Texas Instruments Incorporated  
 
TS5MP645  
www.ti.com.cn  
ZHCSHH3B JANUARY 2018REVISED JULY 2018  
8.4 Device Functional Modes  
8.4.1 Pin Functions  
SEL and OE have weak 6-MΩ pulldown resistors to prevent floating input logic.  
1. Function Table  
OE  
SEL  
Function  
I/O pins High-Impedance  
CLK(P/N) = CLKA(P/N)  
Dn(P/N) = DAn(P/N)  
H
X
L
L
L
CLK(P/N) = CLKB(P/N)  
Dn(P/N) = DBn(P/N)  
H
8.4.2 Low Power Mode  
While the output enable pin OE is supplied with a logic high the device remains in low power state. This reduces  
the current consumption substantially and the switches are be high impedance. The SEL pin is ignored while the  
OE remains high. Upon exiting low power mode, the switch status reflects the SEL pin as seen in 1.  
8.4.3 Switch Enabled Mode  
While the output enable pin OE is supplied with a logic low the device will remain in switch enabled mode.  
版权 © 2018, Texas Instruments Incorporated  
19  
 
TS5MP645  
ZHCSHH3B JANUARY 2018REVISED JULY 2018  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.2 Typical Application  
24 represents a typical application of the TS5MP645 MIPI switch. The TS5MP645 is used to switch signals  
between multiple MIPI modules and a single MIPI port on a processor. This expands the capabilities of a single  
port to handle multiple MIPI modules.  
1.65 V œ 5.5 V  
100 nF  
2.2 µF  
VDD  
CLK  
Data[1:4]  
CLK  
MIPI Module 1  
MIPI Module 2  
Data[1:4]  
TS5MP645  
4-Data Lane  
MIPI Switch  
Processor  
CLK  
Data[1:4]  
SEL  
/OE  
24. Typical TS5MP645 Application  
9.2.1 Design Requirements  
Design requirements of the MIPI standard being used must be followed. Supply pin decoupling capacitors of 2.2  
µF and 100 nF are recommended for best performance. The TS5MP645 has internal 6-MΩ pulldown resistors on  
SEL and OE. The pulldown on these pins ensure that the digital remains in a non-floating state during system  
power-up to prevent shoot through current spikes and an unknown switch status. By default the switch will power  
up enabled and with the A path selected until driven externally by the processor.  
9.2.2 Detailed Design Procedure  
The TS5MP645 can be properly operated without any external components. However, TI recommends that  
unused I/O signal pins be connected to ground through a 50 Ω resistor to prevent signal reflections and maintain  
device performance. The NC pins of the device do not require any external connections or terminations and have  
no connection to the rest of the device internally.  
The clock and data lanes can be interchanged as necessary to facilitate the best layout possible for the  
application. For example the clock can be placed on the D1 channel and a data lane can be used on the CLK  
channel if this improves the layout. In addition the signal lines of the TS5MP645 are routed single ended on the  
chip die. This makes the device suitable for both differential and single-ended high-speed systems.  
20  
版权 © 2018, Texas Instruments Incorporated  
 
TS5MP645  
www.ti.com.cn  
ZHCSHH3B JANUARY 2018REVISED JULY 2018  
Typical Application (接下页)  
9.2.3 Application Curves  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
-11  
-12  
-13  
Bandwidth  
-14  
300000  
1E+7  
1E+8  
1E+9  
1E+10  
Frequency (Hz)  
D001  
25. Differential Bandwidth  
10 Power Supply Recommendations  
When the TS5MP645 is powered off (VDD = 0 V), the I/Os of the device remains in a high-Z state. The crosstalk,  
off-isolation, and leakage remain within the electrical Specifications. Power to the device is supplied through the  
VDD pin. Decoupling capacitors of 100 nF and 2.2 µF are recommended on the supply.  
版权 © 2018, Texas Instruments Incorporated  
21  
TS5MP645  
ZHCSHH3B JANUARY 2018REVISED JULY 2018  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Place the supply de-coupling capacitors as close to the VDD and GND pin as possible. The spacing between the  
power traces, supply and ground, and the signal I/O lines, clock and data, should be a minimum of three times  
the race width of the signal I/O lines to maintain signal integrity.  
The characteristic impedance of the trace(s) must match that of the receiver and transmitter to maintain signal  
integrity. Route the high-speed traces using a minimum amount of vias and corners. This will reduce the amount  
of impedance changes.  
When it becomes necessary to make the traces turn 90°, use two 45° turns or an arc instead of making a single  
90° turn.  
Do not route high-speed traces near crystals, oscillators, external clock signals, switching regulators, mounting  
holes or magnetic devices.  
Avoid stubs on the signal lines.  
All I/O signal traces should be routed over a continuous ground plane with no interruptions. The minimum width  
from the edge of the trace to any break in the ground plane must be 3 times the trace width. When routing on  
PCB inner signal layers, the high speed traces should be between two ground planes and maintain characteristic  
impedance.  
High speed signal traces must be length matched as much as possible to minimize skew between data and clock  
lines.  
11.2 Layout Example  
VIA to  
power plane  
VIA to  
ground plane  
C
C
To Control  
Logic  
DA4  
DA4  
P
VDD  
GND  
N
/OE  
D4N  
D3N  
D2N  
D1N  
SEL  
D4P  
D3P  
D2P  
D1P  
DB4  
N
DB4  
P
DA3  
N
DA3  
P
DB3  
N
DB3  
P
To MIPI  
Modules  
NC  
NC  
To MIPI Port  
DB2  
N
DB2  
P
DA2  
N
DA2  
P
DB1  
N
DB1  
P
DA1  
N
DA1  
P
CLK  
BN  
CLK  
BP  
CLK  
AN  
CLK  
AP  
CLK  
N
CLK  
P
26. Layout Example  
22  
版权 © 2018, Texas Instruments Incorporated  
TS5MP645  
www.ti.com.cn  
ZHCSHH3B JANUARY 2018REVISED JULY 2018  
12 器件和文档支持  
12.1 文档支持  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
版权 © 2018, Texas Instruments Incorporated  
23  
TS5MP645  
ZHCSHH3B JANUARY 2018REVISED JULY 2018  
www.ti.com.cn  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查阅左侧的导航栏。  
24  
版权 © 2018, Texas Instruments Incorporated  
TS5MP645  
www.ti.com.cn  
ZHCSHH3B JANUARY 2018REVISED JULY 2018  
PACKAGE OUTLINE  
YFP0036  
DSBGA - 0.5 mm max height  
S
C
A
L
E
4
.
7
0
0
DIE SIZE BALL GRID ARRAY  
B
E
A
BALL A1  
CORNER  
D: Max = 2.45 mm, Min = 2.39 mm  
E: Max = 2.45 mm, Min = 2.39 mm  
D
C
0.5 MAX  
SEATING PLANE  
0.05 C  
BALL TYP  
0.19  
0.13  
2 TYP  
SYMM  
F
E
D
C
SYMM  
2
TYP  
B
A
0.25  
0.21  
36X  
0.015  
C A  
B
0.4 TYP  
1
2
3
4
5
6
0.4 TYP  
4222013/A 04/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
版权 © 2018, Texas Instruments Incorporated  
25  
TS5MP645  
ZHCSHH3B JANUARY 2018REVISED JULY 2018  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
YFP0036  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
3
36  
0.23)  
1
2
4
5
6
A
(0.4) TYP  
B
C
SYMM  
D
E
F
SYMM  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.05 MAX  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
( 0.23)  
METAL  
(
0.23)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4222013/A 04/2015  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
26  
版权 © 2018, Texas Instruments Incorporated  
TS5MP645  
www.ti.com.cn  
ZHCSHH3B JANUARY 2018REVISED JULY 2018  
EXAMPLE STENCIL DESIGN  
YFP0036  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
36X ( 0.25)  
(R0.05) TYP  
4
1
2
3
5
6
A
B
(0.4) TYP  
METAL  
TYP  
C
D
E
F
SYMM  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4222013/A 04/2015  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
版权 © 2018, Texas Instruments Incorporated  
27  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Jan-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TS5MP645NYFPR  
TS5MP645YFPR  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
YFP  
YFP  
36  
36  
3000 RoHS & Green  
3000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
TS5MP645  
TS5MP645  
Samples  
Samples  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Jan-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jan-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TS5MP645NYFPR  
TS5MP645YFPR  
DSBGA  
DSBGA  
YFP  
YFP  
36  
36  
3000  
3000  
180.0  
330.0  
8.4  
2.58  
2.58  
2.58  
2.58  
0.62  
0.62  
4.0  
8.0  
8.0  
Q1  
Q1  
12.4  
12.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jan-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TS5MP645NYFPR  
TS5MP645YFPR  
DSBGA  
DSBGA  
YFP  
YFP  
36  
36  
3000  
3000  
182.0  
335.0  
182.0  
335.0  
20.0  
25.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
YFP0036  
DSBGA - 0.5 mm max height  
S
C
A
L
E
4
.
7
0
0
DIE SIZE BALL GRID ARRAY  
A
B
E
BALL A1  
CORNER  
D
C
0.5 MAX  
SEATING PLANE  
0.05 C  
BALL TYP  
0.19  
0.13  
2 TYP  
SYMM  
F
E
D: Max = 2.45 mm, Min = 2.39 mm  
E: Max = 2.45 mm, Min = 2.39 mm  
D
C
SYMM  
2
TYP  
B
A
0.25  
0.21  
0.015  
36X  
C A  
B
0.4 TYP  
1
2
3
4
5
6
0.4 TYP  
4222013/A 04/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YFP0036  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
3
36X ( 0.23)  
(0.4) TYP  
1
4
5
6
2
A
B
C
SYMM  
D
E
F
SYMM  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.05 MAX  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
(
0.23)  
METAL  
(
0.23)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4222013/A 04/2015  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YFP0036  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
36X ( 0.25)  
(R0.05) TYP  
4
1
2
3
5
6
A
B
(0.4) TYP  
METAL  
TYP  
C
D
E
F
SYMM  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4222013/A 04/2015  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TS5N

Rotary Switch, 11 Positions, 5P11T, Latched, Screw Terminal, D Flat Shaft Type Actuator, Panel Mount-threaded
NKK

TS5N118

1-OF-8 FET MULTIPLEXER/DEMULTIPLEXER HIGH-BANDWIDTH BUS SWITCH
TI

TS5N118DBQR

1-OF-8 FET MULTIPLEXER/DEMULTIPLEXER HIGH-BANDWIDTH BUS SWITCH
TI

TS5N118DBQRE4

1-OF-8 FET MULTIPLEXER/DEMULTIPLEXER HIGH-BANDWIDTH BUS SWITCH
TI

TS5N118DBQRG4

1-OF-8 FET MULTIPLEXER/DEMULTIPLEXER HIGH-BANDWIDTH BUS SWITCH
TI

TS5N118PW

1-OF-8 FET MULTIPLEXER/DEMULTIPLEXER HIGH-BANDWIDTH BUS SWITCH
TI

TS5N118PWE4

1-OF-8 FET MULTIPLEXER/DEMULTIPLEXER HIGH-BANDWIDTH BUS SWITCH
TI

TS5N118PWG4

1-OF-8 FET MULTIPLEXER/DEMULTIPLEXER HIGH-BANDWIDTH BUS SWITCH
TI

TS5N118PWR

1-OF-8 FET MULTIPLEXER/DEMULTIPLEXER HIGH-BANDWIDTH BUS SWITCH
TI

TS5N118PWRE4

1-OF-8 FET MULTIPLEXER/DEMULTIPLEXER HIGH-BANDWIDTH BUS SWITCH
TI

TS5N118PWRG4

1-OF-8 FET MULTIPLEXER/DEMULTIPLEXER HIGH-BANDWIDTH BUS SWITCH
TI

TS5N118_1

1-OF-8 FET MULTIPLEXER/DEMULTIPLEXER HIGH-BANDWIDTH BUS SWITCH
TI