TSER953 [TI]

适用于高速传感器的 4.16Gbps MIPI® CSI-2 V³Link 串行器;
TSER953
型号: TSER953
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于高速传感器的 4.16Gbps MIPI® CSI-2 V³Link 串行器

传感器
文件: 总88页 (文件大小:2852K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSER953  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
TSER953 MIPI CSI-2 接口且适用于高速、高分辨率摄像头、雷达和其他传  
感器4.16Gbps V3 链接串行器  
1 特性  
2 应用  
4.16Gbps 等级串行器支持高速传感器包括全高  
1080p 2.3MP 60fps 4MP 30fps 成像器  
• 低功耗0.28W 典型值)  
• 符IEC 61000-4-2 ESD 标准  
• 同轴电缆供(PoC) 兼容收发器  
电器  
视频监控  
升降机和自动扶梯  
工业机器人  
机器视觉  
患者监护和诊断  
成像  
• 符D-PHY v1.2 CSI-2 v1.3 标准的系统接口  
– 多4 条数据通道每通道速率832Mbps  
– 支持多达四个虚拟通道  
• 精密多摄像头时钟和同步  
3 说明  
TSER953 串行器是 TI V3Link 器件系列的一部分旨  
在支持高速原始数据传感器包括 60fps 2.3MP 成  
像器以及 4MP 30fps 摄像头、卫星雷达、激光雷达和  
飞行时间 (ToF) 传感器。该器件提供 4.16Gbps 正向通  
道和超低延迟的 50Mbps 双向控制通道并支持单根  
同轴 (PoC) STP 电缆进行供电。TSER953 具有高  
级数据保护和诊断功能可支持机器人和自动化、医疗  
成像以及安全或监控等各种应用的高速数据传输同时  
简化工业和医疗摄像头应用的设计。TSER953 与配套  
的解串器一起提供精确的多摄像头传感器时钟和传感器  
同步。  
• 灵活的可编程输出时钟发生器  
• 高级数据保护和诊断CRC 数据保护、传感  
器数据完整性检查、I2C 写保护、电压和温度测  
量、可编程警报以及线路故障检测  
• 支持单端同轴或屏蔽双绞线(STP) 电缆  
• 超低延迟双I2C GPIO 控制通道支持ECU  
ISP 控制  
1.8V 单电源  
TDES954 TDES960 解串器兼容  
• 宽温度范围20°C 85°C  
• 小5mm × 5mm VQFN 封装PoC 解决方案尺  
适合紧凑型摄像头模块设计  
该串行器采用 5mm × 5mm 的小型 VQFN 封装非常  
适合空间受限型传感器应用。  
器件信息  
(1)  
封装尺寸标称值)  
器件型号  
TSER953  
VQFN (32)  
5.00mm × 5.00mm  
(1) 要了解所有可用封装请见数据表末尾的可订购产品附录。  
MIPI CSI-2  
MIPI CSI-2  
D3P/N  
D3P/N  
TDES954  
TSER953  
Full HD  
Image Sensor  
Image  
Signal  
Processor  
or  
D2P/N  
D2P/N  
D1P/N  
D0P/N  
V3Link  
(over Coax or STP)  
TDES960  
Deserializer  
Serializer  
D1P/N  
(ISP)  
D0P/N  
RIN+/-  
DOUT+/-  
CLKP/N  
CLKP/N  
I2C  
I2C  
HS-GPIO  
HS-GPIO  
典型应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNLS696  
 
 
 
 
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
Table of Contents  
7.6 Pattern Generation....................................................29  
7.7 Register Maps...........................................................32  
8 Application and Implementation..................................66  
8.1 Application Information............................................. 66  
8.2 Typical Applications.................................................. 69  
9 Power Supply Recommendations................................73  
9.1 Power-Up Sequencing..............................................73  
9.2 Power Down (PDB)...................................................74  
10 Layout...........................................................................75  
10.1 Layout Guidelines................................................... 75  
10.2 Layout Examples.................................................... 76  
11 Device and Documentation Support..........................78  
11.1 Documentation Support.......................................... 78  
11.2 Receiving Notification of Documentation Updates..78  
11.3 支持资源..................................................................78  
11.4 Trademarks............................................................. 78  
11.5 静电放电警告...........................................................78  
11.6 术语表..................................................................... 78  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................4  
6 Specifications.................................................................. 7  
6.1 Absolute Maximum Ratings........................................ 7  
6.2 ESD Ratings............................................................... 7  
6.3 Recommended Operating Conditions.........................8  
6.4 Thermal Information....................................................8  
6.5 Electrical Characteristics.............................................9  
6.6 Recommended Timing for the Serial Control Bus.....12  
6.7 Timing Diagrams.......................................................13  
6.8 Typical Characteristics..............................................13  
7 Detailed Description......................................................14  
7.1 Overview...................................................................14  
7.2 Functional Block Diagram.........................................14  
7.3 Feature Description...................................................15  
7.4 Device Functional Modes..........................................22  
7.5 Programming............................................................ 26  
Information.................................................................... 79  
4 Revision History  
Changes from Revision A (May 2021) to Revision B (March 2023)  
Page  
• 更新了首页上的典型功耗要点以匹配电气特性表................................................................................................1  
Added note for supply noise frequency range.................................................................................................... 8  
IDD_TOTAL typical value changed to 160 mA................................................................................................... 9  
Changed I2C terminology to "Controller" and "Target"..................................................................................... 14  
Removed extra arrow from DPHY Receiver to Clock Gen blocks in Functional Block Diagram ..................... 14  
Added description for non-continuous clock lane mode................................................................................... 15  
Added description for deserializer SENSOR_STS registers............................................................................ 17  
Updated script example for voltage monitoring................................................................................................ 19  
Updated description for reading GPIO status when set as output and added GPIO Configuration table.........20  
Added information for enabling Forward Channel GPIO using FC_GPIO_EN.................................................20  
Updated GPIO Output Control section description for enabling register 0x0E.................................................21  
Added typical latency to Forward Channel GPIO Typical Timing table.............................................................22  
Updated Clocking Mode table with additional modes, frequency clarifications, and CSI-2 bandwidth  
clarifications......................................................................................................................................................22  
Corrected effect of setting M value in register 0x06..........................................................................................34  
Added max and min readings to Voltage Sensor Thresholds description in Register 0x19 ............................ 39  
Updated SENSOR_V1_THRESH description to match SENSOR_V0_THRESH in register 0x1A ................. 39  
Changed "GPIO0 Sensor" to "Internal Temperature Sensor" in register 0x57..................................................51  
V3LINK_RX_ID changed to V3LINK_TX_ID in register 0xF0-0xF5................................................................. 59  
Removed IL and RL values from Suggested Components for a "4G" V3Link PoC Network Table...................66  
Changed PoC network impedance recommendation from 2 kΩto 1 kΩ........................................................ 66  
Updated PoC description..................................................................................................................................66  
Changed PDB capacitor value to "> 10 μF".................................................................................................... 69  
Changed PDB capacitor value from 1-μF to 10-μF....................................................................................... 74  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS696  
2
Submit Document Feedback  
Product Folder Links: TSER953  
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
Changes from Revision * (April 2021) to Revision A (May 2021)  
Page  
• 使用可搜索文本和布局更新了图像......................................................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
5 Pin Configuration and Functions  
VDDD  
VDDD_CAP  
GPIO_2  
VDDDRV  
VDDDRV_CAP  
DOUT+  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
DAP = GND  
TSER953  
32L QFN  
(Top View)  
GPIO_3  
DOUT-  
CSI_D3P  
CSI_D3N  
CSI_D2P  
CSI_D2N  
LPF2  
VDDPLL  
VDDPLL_CAP  
LPF1  
5-1. RHB Package  
32-Pin VQFN  
Top View  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS696  
4
Submit Document Feedback  
Product Folder Links: TSER953  
 
 
TSER953  
www.ti.com.cn  
NAME  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
CSI INTERFACE  
CSI_CLKP  
CSI_CLKN  
CSI_D0P  
5
6
I, DPHY  
I, DPHY  
I, DPHY  
I, DPHY  
I, DPHY  
I, DPHY  
I, DPHY  
I, DPHY  
I, DPHY  
I, DPHY  
CSI-2 clock input pins. Connect to a CSI-2 clock source with matched 100-Ω(±5%)  
impedance interconnects.  
3
CSI_D0N  
CSI_D1P  
4
1
CSI_D1N  
CSI_D2P  
2
CSI-2 data input pins. Connect to a CSI-2 data sources with matched 100-Ω(±5%)  
impedance interconnects. If unused, these pins may be left floating.  
31  
32  
29  
30  
CSI_D2N  
CSI_D3P  
CSI_D3N  
SERIAL CONTROL INTERFACE  
I2C_SDA  
23  
OD  
OD  
I2C Data and Clock Pins. Typically pulled up by 470-Ωto 4.7-kΩresistors to either 1.8-V or  
3.3-V supply rail depending on IDX setting. See I2C Interface Configuration for further details  
on the I2C implementation of the device. Documentation is also available to aid with I2C  
pullup resistor calculation (SLVA689).  
I2C_SCL  
24  
CONFIGURATION and CONTROL  
RES0  
RES1  
7
I
I
Reserved pin Connect to GND  
22  
Reserved pin Do not connect (leave floating)  
Power-down inverted Input Pin. Internal 1-MΩpulldown. Typically connected to processor  
GPIO with pull down. When PDB input is brought HIGH, the device is enabled and internal  
register and state machines are reset to default values. Asserting PDB signal low will power  
down the device and consume minimum power. The default function of this pin is PDB =  
LOW; POWER DOWN. PDB should remain low until after power supplies are applied and  
reach minimum required levels. See Power Down (PDB) for further details on the function of  
PDB.  
PDB  
8
I, PD  
PDB INPUT IS NOT 3.3-V TOLERANT.  
PDB = 1.8 V, device is enabled (normal operation)  
PDB = 0, device is powered down.  
Mode select configuration input. Default operational mode will be strapped at start-up based  
on the MODE input voltage when PDB transitions LOW to HIGH. Typically connected to  
voltage divider through external pullup to VDD18 and pulldown to GND applying an  
appropriate bias voltage. See MODE for details.  
MODE  
21  
19  
I, S  
IDX pin sets the I2C pullup voltage and device address; connect to external pullup to VDD  
and pulldown to GND to create a voltage divider. When PDB transitions LOW to HIGH, the  
strap input voltage is sensed at the CLOCK_OUT/IDX pin to determine functionality and then  
converted to CLK_OUT. See I2C Interface Configuration for details. If CLK_OUT is used, the  
minimum resistance on the pin is 35 kΩ. If unused, CLK_OUT/IDX may be tied to GND.  
CLK_OUT/IDX  
I/O, S  
V3LINK INTERFACE  
DOUT-  
V3Link Input/Output pins. These pins must be AC-coupled. See 8-5 and 8-6 for typical  
connection diagrams and 8-3 for recommended capacitor values.  
13  
14  
I/O  
I/O  
DOUT+  
POWER AND GROUND  
A connection for an internal analog regulator decoupling capacitor. Typically connected to  
10-µF, 0.1-µF, and 0.01-µF capacitors to GND. Do not connect to an external supply rail. See  
Typical Application for more details.  
VDDD_CAP  
26  
15  
10  
D, P  
D, P  
D, P  
A connection for an internal analog regulator decoupling capacitor. Typically connected to  
10-µF, 0.1-µF, and 0.01-µF capacitors to GND. Do not connect to an external supply rail. See  
Typical Application for more details.  
VDDDRV_CAP  
VDDPLL_CAP  
A connection for an internal analog regulator decoupling capacitor. Typically connected to  
10-µF, 0.1-µF, and 0.01-µF capacitors to GND. Do not connect to an external supply rail. See  
Typical Application for more details.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
5-1. Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
1.8-V (±5%) Power Supply pin.  
Typically connected to 1-µF and 0.01-µF capacitors to GND.  
VDDD  
25  
P
P
P
G
1.8-V (±5%) Analog Power Supply pin.  
Typically connected to 1-µF and 0.01-µF capacitors to GND.  
VDDDRV  
VDDPLL  
GND  
16  
11  
1.8-V (±5%) Analog Power Supply pin.  
Typically connected to 1-µF and 0.01-µF capacitors to GND.  
DAP is the large metal contact at the bottom side, located at the center of the VQFN  
package. Connect to the ground plane (GND).  
DAP  
LOOP FILTER  
LPF1  
9
P
P
Loop Filter 1: Connect as described in 8.2.2.4.  
Loop Filter 2: Connect as described in 8.2.2.4.  
LPF2  
12  
CLOCK INTERFACE AND GPIO  
GPIO_0  
17  
I/O, PD General-Purpose Input/Output pins. These pins can also be configured to sense the voltage  
at their inputs. See Voltage and Temperature Sensing. At power up, these GPIO pins default  
to inputs with a 300-kΩ(typical) internal pulldown resistor. These pins may be left floating if  
GPIO_1  
18  
I/O, PD  
unused, but TI recommends to set the GPIOx_INPUT_EN to 0 to disable the pins. See 节  
7.3.6 for programmability.  
GPIO_2  
GPIO_3  
27  
28  
I/O, PD General-Purpose Input/Output pins. At power up, these GPIO pins default to inputs with a  
300-kΩ(typical) internal pulldown resistor. These pins may be left floating if unused, but TI  
recommends to set the GPIOx_INPUT_EN to 0 to disable the pins. See 7.3.6 for  
programmability.  
I/O, PD  
I
Reference Clock Input pin. If operating in non-sync external clock mode, connect this pin to a  
local clock source. If unused (like other clocking modes), this pin may be left open. See 表  
7-7 for more information on clocking modes.  
CLKIN  
20  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
PIN OR  
FREQUENCY  
MIN  
MAX  
UNIT  
VDDD,  
VDDDRV,  
VDDPLL  
Supply voltage, VDD  
2.16  
V
0.3  
GPIO[3:0],  
PDB, CLKIN,  
IDX, MODE,  
CSI_CLKP/N,  
CSI_D0P/N,  
CSI_D1P/N,  
CSI_D2P/N,  
CSI_D3P/N  
Input voltage  
VDD + 0.3  
V
0.3  
DOUT+,  
DOUT-  
V3Link output voltage  
Open-drain voltage  
1.21  
3.96  
V
V
0.3  
0.3  
I2C_SDA,  
I2C_SCL  
Junction temperature, TJ  
Storage termperature, Tstg  
150  
150  
°C  
°C  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
All pins except Media Dependent  
Interface Pins  
Human body model (HBM) ESD  
Classification Level 3A(1)  
±4000  
V
Media Dependent Interface  
Pins  
Charged-device model (CDM) ESD Classification Level C6  
±1500  
±8000  
V
V
Contact Discharge  
Electrostatic  
discharge  
V(ESD)  
(DOUT+ and DOUT-)  
IEC 61000-4-2  
RD = 330 , CS = 150 pF  
Air Discharge  
(DOUT+ and DOUT-)  
±18000  
±8000  
V
V
V
Contact Discharge  
(DOUT+ and DOUT-)  
ISO 10605  
RD = 330 , CS = 150 pF and 330 pF  
RD = 2 k, CS = 150 pF and 330 pF  
Air Discharge  
(DOUT+ and DOUT-)  
±18000  
1. HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
 
 
 
 
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
VDD (VDDD, VDDDRV,  
VDDPLL)  
Supply voltage  
1.71  
1.8  
1.89  
V
Open-drain voltage  
I2C_SDA, I2C_SCL = V(I2C)  
1.71  
3.6  
85  
V
Operating free-air temperature (TA)  
25  
°C  
20  
Allowable ending ambient temperature for continuous  
PLL lock when ambient is falling under the following  
condition (Ts = starting temperature):  
(TCHL1)  
45°C < starting ambient  
temperature 85°C  
25  
Ts  
Ts  
°C(3)  
Allowable ending ambient temperature for continuous  
PLL lock when ambient is falling under the following  
condition (Ts = starting temperature):  
(TCHL2)  
0°C < starting ambient  
temperature 45°C  
Ts-20  
°C(3)  
Mipi data rate (per CSI-2 lane)  
Reference clock input frequency  
80  
25  
832  
104  
1
Mbps  
MHz  
MHz  
Local I2C frequency (fI2C  
)
VDD (VDDD, VDDDRV,  
VDDPLL)  
Supply noise(4)  
25  
25  
mVp-p  
mVp-p  
f = 10 KHz - 50 MHz  
(coax mode only)  
Differential supply noise between DOUT+ and DOUT-  
(PSR)  
f = 30 Hz, 10-90% Rise/Fall  
Time > 100µs  
25  
mVp-p  
(coax mode only)  
UI_CLK_I  
N(2)  
Input clock jitter for non-synchronous mode (tJIT  
Back channel input jitter (tJIT-BC  
)
CLKIN  
0.05  
)
DOUT+, DOUT-  
0.4 UI_BC(1)  
(1) The back channel unit interval (UI_BC) is 1/(BC line-rate). For example, the typical UI_BC is 1/100 MHz = 10 ns. If the jitter tolerance is  
0.4 UI, convert the jitter in UI to seconds using this equation: 10 ns × 0.4 UI = 4 ns  
(2) Non-synchronous mode - For a given clock, the UI is defined as 1/clock_freq. For example when the clock = 50Mhz, the typical  
UI_CLK_IN is 1/50 MHz = 20 ns.  
(3) The input and output PLLs are calibrated at the ambient startup temperature when the device is powered on or when reset using the  
PDB pin. The PLLs will stay locked up to the specified ending temperature.  
(4) DC - 50 MHz  
6.4 Thermal Information  
TSER953  
THERMAL METRIC(1)  
UNIT  
RHB (VQFN)  
32 PINS  
31.5  
10.9  
20  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJB  
RθJC(top)  
RθJC(bot)  
ΨJT  
Junction-to-case (top) thermal resistance  
Junction-to-case (bottom) thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
1
0.2  
10.9  
ΨJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS696  
8
Submit Document Feedback  
Product Folder Links: TSER953  
 
 
 
 
 
 
 
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
6.5 Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PIN OR  
FREQUENCY  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER CONSUMPTION  
VDDPLL,  
VDDD,  
IDD_TOTAL  
160  
225  
VDDDRV  
416-MHz CSI Input Clock, 4 Lane Mode,  
Checkerboard Pattern  
Supply current  
IDDPLL  
mA  
80  
VDDPLL  
VDDD  
55  
45  
60  
IDDD  
70  
75  
IDDDRV  
VDDDRV  
1.8-V LVCMOS I/O (VDD) = 1.71 V to 1.89 V)  
V(VDD)  
0.45  
GPIO[3:0],  
CLK_OUT  
VOH  
VOL  
VIH  
VIL  
IIH  
High level output voltage  
V(VDD)  
0.45  
V
V
IOH = 4 mA  
GPIO[3:0],  
CLK_OUT  
Low level output voltage IOL = +4 mA  
High level input voltage  
GND  
GPIO[3:0],  
PDB, CLKIN  
V(VDD) ×  
V(VDD)  
V
0.65  
GPIO[3:0],  
PDB, CLKIN  
V(VDD)  
×
Low level input voltage  
GND  
V
0.35  
GPIO[3:0],  
PDB, CLKIN  
Input high current  
Input low current  
VIN = V(VDD)  
20  
µA  
µA  
mA  
GPIO[3:0],  
PDB, CLKIN  
IIL  
VIN = GND  
-20  
Output short-circuit  
current  
IOS  
VOUT = 0 V  
-36  
5
TRI-STATE output  
current  
GPIO[3:0],  
CLK_OUT  
IOZ  
VOUT = V(VDD), VOUT = GND  
±20  
µA  
pF  
CIN  
Input capacitance  
V3LINK INPUT/OUTPUT  
Single-ended input  
voltage  
Coaxial configuration, 50 Ω, maximum cable  
length  
VIN-BC  
VID-BC  
DOUT+, DOUT-  
DOUT+, DOUT-  
DOUT+, DOUT-  
DOUT+, DOUT-  
DOUT+, DOUT-  
DOUT+, DOUT-  
DOUT+, DOUT-  
120  
240  
mV  
STP configuration, 100 Ω, maximum cable  
length  
Differential input voltage  
Coaxial configuration, V3Link forward  
channel = 4.16 Gbps  
425  
850  
65  
Forward channel eye  
height  
EH-FC  
tTR-FC  
tJIT-FC  
fREF  
mVp-p  
ps  
STP configuration, V3Link forward channel =  
4.16 Gbps  
Forward channel output V3Link forward channel = 4.16Gbps; 20% to  
transition time  
80%  
Synchronous mode, measured with f/15 –  
3dB CDR Loop BW  
0.21  
0.22  
Forward channel output  
jitter  
UI  
Non-synchronous mode, measured with f/15  
3dB CDR Loop BW  
Internal reference  
frequency  
Non-synchronous internal clocking mode  
24.2  
25.5 MHz  
V3LINK DRIVER SPECIFICATIONS (DIFFERENTIAL)  
Output differential  
voltage  
VODp-p  
DOUT+, DOUT-  
DOUT+, DOUT-  
1040  
1150  
5
1340 mVp-p  
24 mV  
RL = 100 Ω  
Output voltage  
imbalance  
ΔVOD  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
 
 
TSER953  
www.ti.com.cn  
MAX UNIT  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
6.5 Electrical Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PIN OR  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
FREQUENCY  
DOUT+, DOUT-  
DOUT+, DOUT-  
DOUT+, DOUT-  
Output differential offset  
voltage  
VOS  
575  
2
mV  
mV  
mA  
Offset voltage imbalance  
ΔVOS  
IOS  
Output short-circuit  
current  
DOUT = 0 V  
Between DOUT+ and DOUT-  
22  
Internal termination  
resistance  
RT  
DOUT+, DOUT-  
80  
100  
120  
V3LINK DRIVER SPECIFICATIONS (SINGLE-ENDED)  
Output single-ended  
voltage  
VOUT  
IOS  
DOUT+, DOUT-  
DOUT+, DOUT-  
DOUT+, DOUT-  
520  
575  
22  
50  
670 mVp-p  
mA  
RL = 50 Ω  
Output short-circuit  
current  
DOUT = 0 V  
Single-ended  
termination resistance  
RT  
40  
60  
VOLTAGE AND TEMPERATURE SENSING  
VACC  
TACC  
Voltage accuracy  
See Voltage and Temperature Sensing  
See Voltage and Temperature Sensing  
GPIO[1:0]  
±1  
±1  
LSB  
LSB  
Temperature accuracy  
CSI-2 HS INTERFACE DC SPECIFICATIONS  
CSI_D3P/N,  
CSI_D2P/N,  
CSI_D1P/N,  
CSI_D0P/N,  
CSI_CLKP/N  
Common-mode voltage  
VCMRX(DC)  
70  
330 mV  
70 mV  
mV  
HS receive mode  
CSI_D3P/N,  
CSI_D2P/N,  
CSI_D1P/N,  
CSI_D0P/N,  
CSI_CLKP/N  
Differential input high  
threshold  
VIDTH  
CSI_D3P/N,  
CSI_D2P/N,  
CSI_D1P/N,  
CSI_D0P/N,  
CSI_CLKP/N  
Differential input low  
threshold  
VIDTL  
70  
CSI_D3P/N,  
CSI_D2P/N,  
CSI_D1P/N,  
CSI_D0P/N,  
CSI_CLKP/N  
Differential input  
impedance  
ZID  
80  
100  
125  
CSI-2 HS INTERFACE AC SPECIFICATIONS  
CSI_D3P/N,  
CSI_D2P/N,  
CSI_D1P/N,  
CSI_D0P/N,  
CSI_CLKP/N  
tHOLD  
Data to clock setup time  
Data to clock hold time  
0.15  
0.15  
UI  
UI  
CSI_D3P/N,  
CSI_D2P/N,  
CSI_D1P/N,  
CSI_D0P/N,  
CSI_CLKP/N  
tSETUP  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS696  
10  
Submit Document Feedback  
Product Folder Links: TSER953  
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
6.5 Electrical Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PIN OR  
FREQUENCY  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
790  
710  
75  
MAX UNIT  
CSI-2 LP INTERFACE DC SPECIFICATIONS  
CSI_D3P/N,  
CSI_D2P/N,  
CSI_D1P/N,  
CSI_D0P/N,  
CSI_CLKP/N  
VIH  
Logic high input voltage  
Logic low input voltage  
Input hysteresis  
880  
mV  
550 mV  
mV  
CSI_D3P/N,  
CSI_D2P/N,  
CSI_D1P/N,  
CSI_D0P/N,  
CSI_CLKP/N  
VIL  
CSI_D3P/N,  
CSI_D2P/N,  
CSI_D1P/N,  
CSI_D0P/N,  
CSI_CLKP/N  
VHYST  
25  
LVCMOS I/O  
LVCMOS low-to-high  
transition time  
tCLH  
V(VDD) = 1.71 to 1.89 V  
GPIO[3:0]  
2
2
ns  
LVCMOS high-to-low  
transition time  
tCHL  
tPDB  
V(VDD) = 1.71 to 1.89 V  
GPIO[3:0]  
PDB  
ns  
PDB reset pulse width  
Voltage supplies applied and stable  
3
ms  
SERIAL CONTROL BUS  
I2C_SCL,  
I2C_SDA  
0.7 ×  
V(I2C)  
VIH  
VIL  
Input high level  
Input low level  
Input hysteresis  
V(I2C) mV  
I2C_SCL,  
I2C_SDA  
0.3 ×  
mV  
GND  
V(I2C)  
I2C_SCL,  
I2C_SDA  
VHY  
>50  
mV  
V(I2C) < 2 V, IOL = 3 mA, Standard-mode/  
Fast-mode  
I2C_SCL,  
I2C_SDA  
0.2 ×  
V
0
0
V(I2C)  
I2C_SCL,  
I2C_SDA  
0.2 ×  
V
V(I2C) < 2 V, IOL = 20 mA, Fast-mode plus  
V(I2C)  
VOL  
Output low level  
V(I2C) > 2 V, IOL = 3 mA, Standard-mode/  
Fast-mode  
I2C_SCL,  
I2C_SDA  
0
0.4  
0.4  
10  
V
V
I2C_SCL,  
I2C_SDA  
V(I2C) > 2 V, IOL = 20 mA, Fast-mode plus  
0
I2C_SCL,  
I2C_SDA  
IIH  
Input high current  
Input low current  
Input capacitance  
VIN = V(I2C)  
VIN = 0 V  
-10  
-10  
µA  
µA  
pf  
I2C_SCL,  
I2C_SDA  
IIL  
10  
I2C_SCL,  
I2C_SDA  
CIN  
5
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
6.6 Recommended Timing for the Serial Control Bus  
Over I2C supply and temperature ranges unless otherwise specified.  
MIN  
>0  
TYP  
MAX  
UNIT  
kHz  
kHz  
MHz  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
pF  
pF  
pF  
µs  
µs  
µs  
µs  
µs  
µs  
Standard-mode  
100  
400  
1
fSCL  
SCL Clock Frequency  
SCL Low Period  
Fast-mode  
>0  
Fast-mode Plus  
Standard-mode  
Fast-mode  
>0  
4.7  
1.3  
0.5  
4.0  
0.6  
0.26  
4.0  
0.6  
0.26  
4.7  
0.6  
0.26  
0
tLOW  
Fast-mode Plus  
Standard-mode  
Fast-mode  
tHIGH  
tHD;STA  
tSU;STA  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
SCL High Period  
Fast-mode Plus  
Standard-mode  
Fast-mode  
Hold time for a start or a repeated start  
condition  
Fast-mode Plus  
Standard-mode  
Fast-mode  
Set up time for a start or a repeated start  
condition  
Fast-mode Plus  
Standard-mode  
Fast-mode  
Data hold time  
0
Fast-mode Plus  
Standard-mode  
Fast -mode  
0
250  
100  
50  
Data set up time  
Fast-mode Plus  
Standard-mode  
Fast-mode  
4.0  
0.6  
0.26  
4.7  
1.3  
0.5  
Set up time for STOP condition  
Bus free time between STOP and START  
SCL & SDA rise time  
Fast-mode Plus  
Standard-mode  
Fast-mode  
Fast-mode Plus  
Standard-mode  
Fast-mode  
1000  
300  
120  
300  
300  
120  
400  
400  
550  
3.45  
0.9  
tr  
Fast-mode Plus  
Standard-mode  
Fast-mode  
tf  
SCL & SDA fall time  
Fast-mode Plus  
Standard-mode  
Fast-mode  
Cb  
Capacitive load for each bus line  
Data valid time  
Fast-mode Plus  
Standard-mode  
Fast-mode  
tVD:DAT  
Fast-mode Plus  
Standard-mode  
Fast-mode  
0.45  
3.45  
0.9  
tVD;ACK  
Data vallid acknowledge time  
Fast-mode Plus  
0.45  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS696  
12  
Submit Document Feedback  
Product Folder Links: TSER953  
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
6.6 Recommended Timing for the Serial Control Bus (continued)  
Over I2C supply and temperature ranges unless otherwise specified.  
MIN  
TYP  
MAX  
50  
UNIT  
ns  
Fast-mode  
tSP  
Input filter  
Fast-mode Plus  
50  
ns  
V
(VDD18)  
80%  
20%  
GND  
t
t
CHL  
CLH  
6-1. LVCMOS Transition Times  
SDA  
t
BUF  
t
f
t
t
HD;STA  
t
r
LOW  
t
t
r
f
SCL  
t
t
HD;STA  
SU;STA  
t
SU;STO  
t
HIGH  
t
t
SU;DAT  
HD;DAT  
STOP START  
START  
REPEATED  
START  
6-2. I2C Serial Control Bus Timing  
6.8 Typical Characteristics  
Vertical scale: 100 mV/div  
Horizontal scale: 62.5 ps/div  
6-3. Eye Diagram at 4-Gbps V3Link Forward Channel Rate From Serializer Output  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
 
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7 Detailed Description  
7.1 Overview  
The TSER953 serializes data from high-resolution image sensors or other sensors using the MIPI CSI-2  
interface. The serializer is optimized to interface with the TDES954 deserializer (dual hub), the TDES960  
deserializer (quad hub), as well as other future V3Link deserializers. The interconnect between the serializer and  
the deserializer can be either a coaxial cable or shielded-twisted pair (STP) cable. The TSER953 was designed  
to support multi-sensor systems such as surround view, and as such has the ability to synchronize sensors  
through the TDES954 and TDES960 hubs.  
The TSER953 serializer and companion deserializer incorporate an I2C-compatible interface. The I2C-  
compatible interface allows programming of serializer or deserializer devices from a local host controller. In  
addition, the devices incorporate a bidirectional control channel (BCC) that allows communication between the  
serializer and deserializer, as well as between remote I2C target devices.  
The bidirectional control channel (BCC) is implemented through embedded signaling in the high-speed forward  
channel (serializer to deserializer), combined with lower speed signaling in the reverse channel (deserializer to  
serializer). Through this interface, the BCC provides a mechanism to bridge I2C transactions across the serial  
link from one I2C bus to another.  
7.2 Functional Block Diagram  
Vbias_internal  
DOUT+  
DPHY  
Receiver  
Encoder/  
Formatter  
Cable  
Driver  
FIFO  
Serializer  
CSI-2  
DOUT-  
Internal AON Clock  
Clock Gen  
Controller  
CLKIN  
CLK_OUT  
/ IDX  
MODE  
PDB  
I2C_SDA  
I2C_SCL  
I2C  
Controller  
Decode/  
Encode  
Clock/Data  
Recovery  
BCC  
Receiver  
FIFO  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS696  
14  
Submit Document Feedback  
Product Folder Links: TSER953  
 
 
 
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7.3 Feature Description  
The TSER953 V3Link serializer is designed to support high-speed raw data sensors including 2-MP imagers at  
60 fps, as well as 4-MP and 30-fps cameras, satellite RADAR, LIDAR, and time of flight (ToF) cameras. The chip  
features a forward channel capable of up to 4.16 Gbps, as well as an ultra-low latency 50-Mbps bidirectional  
control channel. The transmission of the forward channel, bidirectional control channel, and power is supported  
over coaxial (Power-over-Coax) or STP cables. The TSER953 features advanced data protection and diagnostic  
features to support high-speed data transmission for various applications, such as robotics and automation,  
medical imaging, and security or surveillance, while streamlining design in industrial and medical camera  
applications. Together with a companion deserializer, the TSER953 delivers precise multi-camera sensor clock  
and sensor synchronization.  
7.3.1 CSI-2 Receiver  
The TSER953 receives CSI-2 video data from the sensor. During CSI-2 operation, the D-PHY consists of a clock  
lane and one or more data lanes. The TSER953 is a target device and only supports unidirectional lane in the  
forward direction. Low Power Escape mode is not supported.  
7.3.1.1 CSI-2 Receiver Operating Modes  
During normal operation a data lane will be in either control or high-speed mode. In high-speed mode, the data  
transmission happens in a burst and starts and ends at a stop state (LP-11). There is a transition state to take  
the D-PHY from a normal mode to the low-power state.  
The sequence to enter high-speed mode is: LP-11, LP-01, LP-00. After the sequence is entered, the data lane  
remains in high-speed mode until a stop state (LP-11) is received.  
7.3.1.2 CSI-2 Receiver High-Speed Mode  
During high-speed data transmission, the digital D-PHY will enable termination signal to allow proper termination  
of the HS RX of the Analog D-PHY, and the LP RX should stay at LP-00 state. Both CSI-2 data lane and clock  
lane operate in the same manner. The TSER953 supports both CSI-2 continuous and non-continuous clock lane  
modes which must be set using register 0x02[6] and should follow the image sensor clock mode. In the  
continuous clock lane mode, the clock lane remains in high-speed mode.  
7.3.1.3 CSI-2 Protocol Layer  
There are two different types of CSI-2 packets: a short packet and a long packet. Short packets have information  
such as the frame start/ line start, and long packets carry the data after the frame start is asserted. 7-1 shows  
the structure of the CSI-2 protocol layer with short and long packets. The TSER953 supports 1, 2, and 4 lane  
configurations.  
DATA:  
Short  
Packet  
Long  
Packet  
Long  
Packet  
Short  
Packet  
ST SP ET  
ST PH  
DATA  
PF ET  
ST PH  
DATA  
PF ET  
ST SP ET  
LPS  
LPS  
LPS  
KEY:  
ST œ Start of Transmission  
ET œ End of Transmission  
LPS œ Low Power State  
PH œ Packet Header  
PF œ Packet Footer  
7-1. CSI-2 Protocol Layer With Short and Long Packets  
7.3.1.4 CSI-2 Short Packet  
The short packet provides frame or line synchronization. 7-2 shows the structure of a short packet. A short  
packet is identified by data types 0x00 to 0x0F.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
 
 
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
32-bit SHORT PACKET (SH)  
Data Type (DT) = 0x00 œ 0x0F  
7-2. CSI-2 Short Packet Structure  
7.3.1.5 CSI-2 Long Packet  
A long packet consists of three elements: a 32-bit packet header (PH), an application-specific data payload with  
a variable number of 8-bit data words, and a 16-bit packet footer (PF). The packet header is further composed of  
three elements: an 8-bit data identifier, a 16-bit word count field, and an 8-bit ECC. The packet footer only has  
one elementa 16-bit checksum. 7-3 shows the structure of a long packet.  
32-bit  
PACKET  
HEADER  
(PH)  
PACKET DATA:  
16-bit  
PACKET  
FOOTER  
(PF)  
Length = Word Count (WC) * Data Word  
Width (8-bits). There are NO restrictions  
on the values of the data words  
7-3. CSI-2 Long Packet Structure  
7-1. CSI-2 Long Packet Structure Description  
PACKET PART  
FIELD NAME  
SIZE (BIT)  
DESCRIPTION  
VC / Data ID  
Word Count  
8
Contains the virtual channel identifier and the data-type information.  
Number of data words in the packet data. A word is 8 bits.  
16  
Header  
ECC for data ID and WC field. Allows 1-bit error recovery and 2-bit  
error detection.  
ECC  
8
Data  
Data  
WC × 8  
16  
Application-specific payload (WC words of 8 bits).  
16-bit cyclic redundancy check (CRC) for packet data.  
Footer  
Checksum  
7.3.1.6 CSI-2 Errors and Detection  
7.3.1.6.1 CSI-2 ECC Detection and Correction  
CSI-2 packet header contains 6-bit Error Correction Code (ECC). ECC in the 32-bit long packet header can be  
corrected when there is a 1-bit error and detected when there is a 2-bit error. This feature is added to monitor the  
CSI-2 input for ECC 1-bit error correction. When ECC error is detected, ECC error detection register will be set  
and an alarm indicator bit can be sent to the deserializer to indicate the ECC error has been detected. A register  
control can be used to either enable or disable the alarm.  
7.3.1.6.2 CSI-2 Check Sum Detection  
A CSI-2 long packet header contains a 16-bit check sum before the end of transmission. The TSER953  
calculates the check sum of the incoming CSI-2 data. If a check sum error is detected, the check sum error  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS696  
16  
Submit Document Feedback  
Product Folder Links: TSER953  
 
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
status can be saved in the CSI_ERR_STATUS register (0x5D), then forwarded to the deserializer through the  
bidirectional control channel.  
7.3.1.6.3 D-PHY Error Detection  
TSER953 detects and reports SoT and SoT Sync errors.  
7.3.1.6.4 CSI-2 Receiver Status  
For the receive ports, several status functions can be tracked and monitored through register access. The status  
indications are available for error conditions as well as indications of change in line length measurements. These  
are available through the CSI_ERR_CNT (0x5C), CSI_ERR_STATUS (0x5D), CSI_ERR_DLANE01 (0x5E),  
CSI_ERR_DLANE23 (0x5F), and CSI_ERR_CLK_LANE (0x60) registers.  
7.3.2 V3Link Forward Channel Transmitter  
The TSER953 features a high-speed signal transmitter capable of driving signals at rates of up to 4.16 Gbps.  
7.3.2.1 Frame Format  
The TSER953 formats the data into 40-bit long frames. Each frame is encoded to ensure DC balance and to  
ensure sufficient data line transitions. Each frame contains video payload data, I2C forward channel data, CRC  
information, framing information, and information regarding the state of the CSI-2 interface.  
7.3.3 V3Link Back Channel Receiver  
The V3Link back channel receives an encoded back channel signal over the V3Link interface. The back channel  
frame is a 30-bit frame that contains I2C commands and GPIO data. The back channel frame receives an  
encoded clock and data from the deserializer, thus the data bit rate is one-half the frequency of the highest  
frequency received.  
The back channel frequency is programmable for operation with compatible deserializers. The default setting is  
determined by the MODE strap pin. For operation with the TDES954 or TDES960, the back channel should be  
programmed for 50-Mbps operation in TSER953 synchronous mode and programmed for 10-Mbps operation for  
non-synchronous modes.  
7.3.4 Serializer Status and Monitoring  
The TSER953 features enhanced V3Link diagnostics, system monitoring, and Built-In Self Test capabilities. The  
device monitors forward channel and back channel data for errors and reports them in the status registers. The  
device also supports voltage and temperature measurement for system level diagnostics. The Built-In Self Test  
feature allows testing of the forward channel and back channel data transmissions without external data  
connections.  
The TSER953 can send alarms and sensor status data through the forward channel to monitor the CSI-2  
interface, Bidirectional Control Channel (BCC), GPIO voltage sensor and internal temperature sensor. The data  
can then be accessed through the SENSOR_STS_X registers (0x51-0x54) on the compatible linked Deserializer.  
Status bits are always transmitted, and transmission of Alarm bits needs to be enabled from registers 0x1C-0x1E  
on the serializer.  
The CSI-2 error status and alarms on the deserializer SENSOR_STS are: CSI-2 alarm, CSI-2 control error,  
CSI-2 synchronization error, CSI-2 start of transmission error, CSI-2 checksum error, and CSI-2 ECC 2-bit error.  
The status for these bits can also be read from registers 0x5D to 0x60 on the serializer. The BCC error alarm is  
triggered by are BCC link detect and CRC errors which can be read from register 0x52.  
The voltage sense level and voltage sense alarms correspond to Sensor_V0 (0x58) and Sensor_V1 (0x59). And  
the temperature sense levels and alarm are monitored from Sensor_T (0x5A).  
7.3.4.1 Forward Channel Diagnostics  
The TSER953 monitors the status of the forward channel link. The forward channel high-speed PLL lock status  
is reported in the HS_PLL_LOCK bit (Register 0x52[2]). When paired with the TDES954, the V3Link deserializer  
LOCK status is also reported in the RX_LOCK_DETECT bit (Register 0x52[6]).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7.3.4.2 Back Channel Diagnostics  
The TSER953 monitors the status of the back channel link. The back channel CRC errors are reported in the  
CRC_ERR bit (Register 0x52[1]). The number of CRC errors are stored in the CRC error counters and reported  
in the CRC_ERR_CNT1 (Register 0x55) and CRC_ERR_CNT2 (Register 0x56) registers. The CRC error  
counters are reset by setting the CRC_ERR_CLR (Register 0x49[3]) to 1.  
When running the BIST function, the TSER953 reports if a BIST CRC error is detected in the BIST_CRC_ERR  
bit (Register 0x52[3]). The number of BIST errors are reported in the BIST_ERR_CNT field (Register 0x54). The  
BIST CRC error counter is reset by setting the BIST_CRC_ERR_CLR (Register 0x49[5]) to 1.  
7.3.4.3 Voltage and Temperature Sensing  
The TSER953 supports voltage measurement and temperature measurement. The temperature and voltage  
sensors are both equipped with a 3-bit ADC. The engineer can configure these sensors to monitor a signal and  
raise a flag when a signal goes outside of a set limit. For example, a voltage sensor can be used to monitor the  
1.8-V line and raise a flag if the voltage goes above 1.85 V or below 1.75 V. This flag can then be transferred to  
the deserializer and set an interrupt at the deserializer end of the link. In a similar manner, the temperature  
sensor will trigger an alarm bit when the internal temperature of the TSER953 is outside the range.  
Both GPIO0 and GPIO1 can be configured to sense the voltage applied at their inputs. 7-33 through 7-39  
cover the registers specific to this section.  
For a given voltage or temperature, the measurement accuracy is ±1 LSB. This means that for a given input  
voltage or temperature corresponding to the nearest value in 7-2 and 7-3, the resulting ADC output code  
will be accurate to the nearest ±1 code.  
7-2. ADC Code vs Input Voltage  
GPIO VIN (V)  
CODE  
000  
001  
010  
011  
VIN < 0.85  
0.85 < VIN < 0.90  
0.90 < VIN < 0.95  
0.95 < VIN < 1.00  
1.00 < VIN < 1.05  
1.05 < VIN < 1.10  
1.10 < VIN < 1.15  
1.15 < VIN  
100  
101  
110  
111  
7-3. ADC Code vs Temperature  
TEMPERATURE (°C)  
CODE  
000  
001  
010  
011  
T < 30  
30 < T < 10  
10 < T < 15  
15 < T < 35  
35 < T < 55  
55 < T < 75  
75 < T < 100  
100 < T  
100  
101  
110  
111  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS696  
18  
Submit Document Feedback  
Product Folder Links: TSER953  
 
 
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7.3.4.3.1 Programming Example  
This section gives an example on how to configure the TSER953 and TDES954 to monitor the voltage on the  
TSER953 GPIO1 and set an alarm, which can then assert the INT pin on the TDES954.  
# TSER953 Settings  
WriteI2C(0x17,0x3E) # Enable Sensor, Select GPIO1 to sense  
WriteI2C(0x18,0x80) # Enable Sensor Gain Setting (Use Default)  
WriteI2C(0x1A,0x62) # Set Sensor Upper and Lower Limits (Use Default)  
WriteI2C(0x1D,0x3F) # Enable Sensor Alarms  
WriteI2C(0x1E,0x7F) # Enable Sending Alarms over BCC  
# Register 0x57 readout (bits 2 and 3), indicates if the voltage on the GPIO1 is below or above the  
thresholds set in the register 0x1A.  
# TDES954 Settings  
WriteI2C(0x23,0x81) # Enable Interrupts, Enable Interrupts for the camera attached to RX0  
WriteI2C(0x4C,0x01) # Enable Writes to RX0 registers  
WriteI2C(0xD8,0x08) # Interrupt on change in Sensor Status  
# Register 0x51 and 0x52 readouts indicate Sensor data. Register 0x24[7] bit readout indicates the  
Alarm bit. The alarm bit can be routed to GPIO3/INT through GPIO_PIN_CTL and GPIO_OUT_SRC registers.  
7.3.4.4 Built-In Self Test  
An optional at-speed Built-In Self Test (BIST) feature supports high-speed serial link and back channel testing  
without external data connections. This is useful in the prototype stage, equipment production, in-system test,  
and system diagnostics.  
BIST mode is enabled by the BIST configuration register 0xB3[0] on the deserializer, and should only run in the  
synchronous mode. When BIST is activated at the deserializer, a BIST enable signal is sent to the serializer  
through the back channel. The serializer outputs a continuous stream of a pseudo-random sequence and drives  
the link at speed. The deserializer detects the test pattern and monitors the pattern for errors. The serializer also  
tracks errors indicated by the CRC fields in each back channel frame. While the lock indications are required to  
identify the beginning of proper data reception, the best indication of any link failures or data corruption is the  
content of the error counter in the BIST_ERR_COUNT register 0x57 for each RX port on the deserializer side.  
BIST mode is useful in the prototype stage, equipment production, in-system test, and system diagnostics.  
7.3.5 FrameSync Operation  
When paired with compatible deserializers, any of the TSER953 GPIO pins can be use for frame  
synchronization. This feature is useful when multiple sensors are connected to a deserializer hub. A frame  
synchronization signal (FrameSync) can be sent through the back channel using any of the back channel  
GPIOs. The FrameSync signal arrives at the serializers with limited skew.  
7.3.5.1 External FrameSync  
In External FrameSync mode, an external signal is input to the deserializer through one of the GPIO pins on the  
device. The external FrameSync signal may be propagated to one or more of the attached V3Link serializers  
through a GPIO signal in the back channel. The expected skew timing for external FrameSync mode is on the  
order of one back channel frame period or 600 ns when operating at 50 Mbps.  
Deserializer  
GPIOx  
GPIOx  
V3Link  
V3Link  
BC_GPIOx  
BC_GPIOx  
Serializer #1  
Serializer #2  
GPIOy  
External  
Frame Sync  
7-4. External FrameSync  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
Enabling the external FrameSync mode is done on the deserializer side. Refer to the deserializer data sheet for  
more information.  
7.3.5.2 Internally Generated FrameSync  
In Internal FrameSync mode, an internally generated FrameSync signal is sent to one or more of the attached  
V3Link serializers through a GPIO signal in the back channel.  
Deserializer  
V3Link  
GPIOx  
BC_GPIOx  
Serializer #1  
V3Link  
GPIOx  
FrameSync  
Generator  
BC_GPIOx  
Serializer #2  
7-5. Internal FrameSync  
FrameSync operation is controlled by the deserializer registers. Refer to the deserializer data sheet for more  
information.  
7.3.6 GPIO Support  
The TSER953 supports four pins, GPIO0 through GPIO3, which can be monitored, configured, and controlled  
through the I2C bus in registers 0x0D, 0x0E, and 0x53. These GPIOs are programmable for use in multiple  
situations. GPIO0 and GPIO1 have additional diagnostics functionality and may be programmed to sense  
external voltage levels.  
7.3.6.1 GPIO Status  
The status HIGH or LOW of each GPIO pin 0 through 3 may be read through the GPIO_PIN_STS register 0x53.  
This register read operation provides the status of the GPIO pin when it is configured as an input by setting the  
corresponding GPIOx_INPUT_EN bit on register (0x0E). To read the GPIO status when the GPIO is used as  
output, both GPIOx_INPUT_EN and GPIOx_OUT_EN bits on register (0x0E) should be set.  
7-4. GPIO Configuration  
Configuration  
Purpose  
Valid  
Valid  
Valid  
Not Valid  
GPIO used as Output  
GPIO used as Output  
GPIO used as Input  
GPIO used as Input  
GPIOx_INPUT_EN  
GPIOx_OUT_EN  
GPIO_STS  
0
1
1
1
1
1(1)  
0
1
non-functional  
functional  
functional  
N/A  
备注  
(1) When GPIOx_INPUT_EN is set, the internal pull down will be connected to the GPIO output and  
the user should ensure that the pull down resistor will not interfere with the application-specific use.  
7.3.6.2 GPIO Input Control  
Upon initialization, GPIO0 through GPIO3 are enabled as inputs by default. The GPIO_INPUT_CTRL (0x0E)  
register (bits 3:0) allows control of the input enable. If a GPIO_INPUT_CTRL[3:0] bit is set to 1, then the  
corresponding GPIO_INPUT_CTRL[7:4] bit must be set to 0. The number of GPIOs should be set and enabled  
using FC_GPIO_EN in register (0x33).  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS696  
20  
Submit Document Feedback  
Product Folder Links: TSER953  
 
 
 
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7.3.6.3 GPIO Output Control  
Individual GPIO output control is programmable through the GPIO_INPUT_CTRL (0x0E) register (bits 7:4) in 表  
7-26. The GPIO_INPUT_CTRL[7:4] bits should be set to 1 to use the GPIO as output pins.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7.3.6.4 Forward Channel GPIO  
The input on the TSER953 GPIO pins can be forwarded to compatible deserializers over the V3Link interface.  
Up to four GPIOs are supported in the forward direction.  
The timing for the forward channel GPIO is dependent on the number of GPIOs assigned at the serializer. When  
a single GPIO input from the TSER953 serializer is linked to a compatible deserializer GPIO output, the value is  
sampled at every forward channel transmit frame. Two linked GPIO are sampled every two forward channel  
frames, and three or four linked GPIO are sampled every five frames. The typical latency for the GPIO is  
approximately 225 ns but will vary with the length of the cable. As the information is spread over multiple frames,  
the jitter is typically increased on the order of the sampling period (number of forward channel frames). TI  
recommends that the user maintain a 4x oversampling ratio for linked GPIO throughput. For example, when  
operating in 4-Gbps synchronous mode with REFCLK = 25 MHz, the maximum recommended GPIO input  
frequency based on the number of GPIO linked over the forward channel is shown in 7-5.  
7-5. Forward Channel GPIO Typical Timing  
MAXIMUM  
RECOMMENDED  
FORWARD CHANNEL TYPICAL LATENCY (ns)  
GPIO FREQUENCY  
(MHz)  
NUMBER OF LINKED  
FORWARD CHANNEL  
GPIOs  
SAMPLING FREQUENCY  
(MHz)  
TYPICAL JITTER (ns)  
AT V3Link LINE RATE = 4  
Gbps  
(FC_GPIO_EN)  
1
2
4
100  
50  
25  
12.5  
5
225  
225  
225  
12  
24  
60  
20  
7.3.6.5 Back Channel GPIO  
When enabled as an output, each TSER953 GPIO pin can be programed to output remote data coming from the  
compatible deserializer using the LOCAL_GPIO_DATA register (0x0D). The maximum signal frequency that can  
be received over the V3Link back channel is dependent on the TSER953 clocking mode as shown in 7-6.  
7-6. Back Channel GPIO Typical Timing  
MAXIMUM  
RECOMMENDED  
BACK CHANNEL  
GPIO  
FREQUENCY  
(kHz)  
SAMPLING  
FREQUENCY  
(kHz)  
TSER953  
CLOCKING MODE  
BACK CHANNEL  
RATE (Mbps)  
TYPICAL  
LATENCY (µs)  
TYPICAL JITTER  
(µs)  
Synchronous Mode  
50  
10  
1670  
334  
416  
83.5  
20  
1.5  
3.2  
0.7  
3
Non-Synchronous Modes  
DVP Mode  
2.5  
83.5  
12.2  
12  
7.4 Device Functional Modes  
7.4.1 Clocking Modes  
The TSER953 supports several clocking schemes, which are selected through the MODE pin. In the TSER953,  
the forward channel operates at a higher bandwidth than the requirement set by the video data transported, and  
the forward channel data rate is set by a reference clock. The clocking mode determines what the device uses  
as the reference clock, and the most common configuration is synchronous mode in which no local reference  
oscillator is required. See 7-7 for more information.  
The default mode of the TSER953 is set by the application of a bias on the MODE pin during power up. More  
information on setting the operation modes can be found in 7.4.2.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS696  
22  
Submit Document Feedback  
Product Folder Links: TSER953  
 
 
 
 
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7-7. Clocking Modes  
REF  
CSI  
REFERENCE  
SOURCE  
MODE  
DIVIDE  
FREQUENCY (f) FC DATA RATE  
CLK_OUT (3)  
BANDWIDTH ≤  
(MHz)  
f × 160 /  
HS_CLK_DIV ×  
(M/N)  
Synchronous  
N/A  
N/A  
Back Channel(1)  
23 - 26  
f × 160  
f × 160  
f × 80  
f × 128  
f × 160 /  
HS_CLK_DIV ×  
(M/N)  
Synchronous  
(Half-rate)  
Back Channel(1)  
External Clock(2)  
11.5 - 13  
25 - 52  
f × 128  
f × 64  
f × 80 /  
HS_CLK_DIV ×  
(M/N)  
CLKIN_DIV = b000  
Non-Synchronous  
external clock  
f × 40 /  
HS_CLK_DIV ×  
(M/N)  
CLKIN_DIV = b001  
OSCCLK_SEL = 1  
OSCCLK_SEL = 0  
External clock (2)  
Internal Clock  
Internal Clock  
50 - 104  
48.4 - 51  
24.2 - 25.5  
f × 40  
f × 80  
f × 80  
f × 32  
f × 64  
f × 64  
Non-Synchronous  
Internal Clock  
N/A  
N/A  
Non-Synchronous  
Internal Clock  
(Half-rate)  
DVP External  
Clock  
Deserializer  
Mode: RAW10  
f × 28 /  
HS_CLK_DIV ×  
(M/N)  
N/A  
N/A  
External clock  
External clock  
25 - 66.5  
25 - 70  
f × 28  
f × 28  
f × 20  
f × 18  
DVP External  
Clock  
Deserializer  
Mode: RAW12 HF  
f × 28 /  
HS_CLK_DIV ×  
(M/N)  
(1) The back channel is recovered from the V3Link bidirectional control channel. A local reference clock source is not required. Refer to  
the deserializer data sheet for the back channel frequency settings.  
(2) A local reference clock source is required. Provide a clock source to the CLKIN pin.  
(3) Set HS_CLK_DIV to either 16, 8, or 4 (default).  
V3Link  
Image  
TSER953  
Serializer  
Forward Channel (FC)  
TDES954  
Deserializer  
Signal  
Processor  
1920 x 1080  
60fps  
Image Sensor  
MIPI CSI-2  
MIPI CSI-2  
Bi-directional Control  
Channel (BCC)  
(ISP)  
Internal  
AON Clock  
CLK GEN  
CLK_OUT  
Clock  
REFCLK  
Optional for  
Non Sync external  
Clock Mode,  
Mandatory for DVP  
Mode  
7-6. Clocking System Diagram  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
 
 
 
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7.4.1.1 Synchronous Mode  
Operation in synchronous mode offers the advantage that the receiver and all of the sensors in a multi-sensor  
system are locked to a common clock in the same clock domain, which reduces or eliminates the need for data  
buffering and resynchronization. The synchronous clocking mode also eliminates the cost, space, and potential  
failure point of a reference oscillator within the sensor module.  
In this mode, a clock is passed from the deserializer to the serializer through the V3Link back channel, and the  
serializer is able to use this clock both as a reference clock for an attached image sensor, as well as a reference  
clock for the link back to the deserializer (V3Link forward channel). For operation in this mode, the TSER953  
must be paired with a deserializer that can support this feature such as the TDES954 or the TDES960.  
7.4.1.2 Non-Synchronous Clock Mode  
In the non-synchronous clock mode, the external reference clock is supplied to the serializer. The serializer uses  
this clock to derive the V3Link forward channel and an external reference clock for an attached image sensor.  
When in CSI-2 mode, the CSI-2 interface may be synchronous to this clock. The CSI-2 rate must be lower than  
the line rate. For example, with a 50-MHz clock, the V3Link forward channel rate is 4 Gbps, the CSI-2 throughput  
must be 3.32 Gbps (see 7-7).  
7.4.1.3 Non-Synchronous Internal Mode  
In the non-synchronous internal clocking mode, the serializer uses the internal Always-on Clock (AON) as the  
reference clock for the forward channel. The OSCCLK_SEL select must be asserted (0x05[3]=1) to enable  
maximum data rate when using internal clock mode, and the CLK_OUT function must be disabled. A separate  
reference is provided to the image sensor or ISP. When in CSI-2 mode, the CSI-2 interface may be synchronous  
to this clock. The CSI-2 rate must be lower than the line rate. For example, with the internal clock of 24.2 MHz,  
the V3Link forward channel rate is 3.872 Gbps and the CSI-2 throughput must be 3.1 Gbps (See 7-7).  
7.4.1.4 DVP Compatibility Mode  
The TSER953 can be placed into DVP mode to pair with DVP mode deserializers. While the mode should have  
been configured using the Mode pin on the TSER953, the register MODE_SEL register 0x03[2:0] can be used to  
verify or override the current mode. This field always indicates the mode setting of the device. When bit 4 of this  
register is 0, this field is read-only and shows the mode setting. Mode is latched from strap value when PDB  
transitions LOW to HIGH, and the value should read back 101 (0x5) if the resistive strap is set correctly to DVP  
external clock mode. Alternatively, when bit 4 of this register is set to 1, the MODE field is read/write and can be  
programmed to 101 to assign the correct DVP compatible MODE. This is shown in 7-15.  
CSI-2 input data provided to the TSER953 must be synchronized to the input frequency applied to CLKIN when  
using DVP external clock mode. The PCLK frequency output from the DVP mode deserializer will also be related  
to CLKIN when in DVP external clock mode. See Backward compatibility modes for operation with parallel output  
deserializers (SNLA270) for more information.  
7-8. List of Registers Used for DVP Configuration  
REGISTER  
REGISTER NAME  
REGISTER DESCRIPTION  
Used to override and verify strapped value, if necessary, and to configure for DVP with an  
external clock.  
0X03  
MODE_SEL  
BC_MODE_SELE  
CT  
0X04  
0X10  
0X11  
Allows DVP mode overwrites to RAW 10 or RAW 12.  
Allows configuration of data in DVP mode. This includes data types like long, YUV, and specified  
types.  
DVP_CFG  
DVP_DT  
Allows packets with certain data type regardless of RAW 10 or 12 mode if DVP_DT_MATCH_EN  
is asserted.  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7.4.1.5 Configuring CLK_OUT  
When using the TSER953 in either synchronous or non-synchronous external clock modes, CLK_OUT is  
intended as a reference clock for the image sensor. CLK_OUT functionality is disabled when operating in non-  
synchronous internal clocking mode. The frequency of the external CLK_OUT is set by (see 方程1 and 方程式  
2).  
M
CLK_OUT = FCì  
HS_CLK_DIV ìN  
(1)  
where  
FC is the forward channel data rate, and M, HS_CLK_DIV, and N are parameters set by registers 0x06 and  
0x07  
SPACER  
FC  
< 1.05 GHz  
HS_CLK_DIV  
(2)  
The PLL that generates CLK_OUT is a digital PLL, and as such, has very low jitter if the ratio N/M is an integer.  
If N/M is not an integer, then the jitter on the signal is approximately equal to HS_CLK_DIV/FCso if it is not  
possible to have an integer ratio of N/M, it is best to select a smaller value for HS_CLK_DIV.  
If a particular CLK_OUT frequency, such as 37.125 MHz, is required for a system, the designer can select the  
values M=9, N=0xF2, and HS_CLK_DIV=4 to achieve an output frequency of 37.190 MHz and a frequency error  
of 0.175% with an associate jitter of approximately 1 ns. Alternately, the designer could use M=1, N=0x1B,  
HS_CLK_DIV=4 for CLK_OUT = 37.037 MHz, and a frequency error of 0.24% for less jitter. A third alternative  
would be to use M=1, N=0x1B, and HS_CLK_DIV=4, but rather than using a 25.000-MHz reference clock  
frequency (REFCLK) for the deserializer in synchronous mode, use a frequency of 25.059 MHz. The 2x  
reference then fed to the TSER953 from the deserializer back channel will allow generating CLK_OUT = 37.124  
MHz with both low jitter and a low frequency error.  
7.4.2 MODE  
The TSER953 can operate in one of four different modes. The user can apply the bias voltage to the MODE pin  
during power up to operate in default mode. To set this voltage, a potential divider between VDDPLL and GND is  
used to apply the appropriate bias. This potential divider should be referenced to the potential on the VDDD pin.  
After power up, the MODE can be read or changed through register access.  
1.8V  
R
HIGH  
MODE  
TSER953  
R
LOW  
7-7. MODE Configuration  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
 
 
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7-9. Strap Configuration Mode Select  
VTARGET STRAP  
VOLTAGE  
SUGGESTED STRAP  
RESISTORS (1% TOL)  
MODE SELECT  
VTARGET VOLTAGE RANGE  
DESCRIPTION  
RATIO  
TYP  
RATIO  
MAX  
MODE  
NAME  
RATIO MIN  
V(VDD) = 1.8 V  
RHIGH (k) RLOW (k)  
CSI-2 Synchronous mode V3Link Clock  
reference derived from the deserializer.  
0.133 x  
V(VDD)  
0
2
Synchronous  
0
0
0
OPEN  
75  
10  
CSI-2 Non-synchronous clock V3Link  
Clock reference derived from external  
clock reference input on CLKIN pin.  
Non-Synchronous  
External Clock  
0.288 x  
V(VDD)  
0.325 x  
V(VDD)  
0.367 x  
V(VDD)  
0.586  
0.792  
1.202  
35.7  
CSI-2 Non-synchronous V3Link Clock  
reference derived from internal AON  
clock.  
Non-Synchronous  
Internal Clock  
0.412 x  
V(VDD)  
0.443 x  
V(VDD)  
0.474 x  
V(VDD)  
3
71.5  
39.2  
56.2  
78.7  
0.642 x  
V(VDD)  
0.673 x  
V(VDD)  
0.704 x  
V(VDD)  
5(1)  
DVP Mode  
DVP with External clock.  
(1) The DVP deserializers also contain a Mode pin (21). However, the mode pin on the deserializer determines the expected data format:  
RAW10, RAW12 LF, or RAW12 HF. Note that RAW12 LF is not supported on the TSER953.  
7.5 Programming  
7.5.1 I2C Interface Configuration  
This serializer may be configured by the use of an I2C-compatible serial control bus. Multiple devices may share  
the serial control bus (up to two device addresses are supported). The device address is set through a resistor  
divider (RHIGH and RLOW see 7-8) connected to the IDX pin.  
7.5.1.1 CLK_OUT/IDX  
The CLK_OUT/IDX pin serves two functions. At power up, the voltage on the IDX pin is compared to VDD and  
the ratio sets various parameters for configuration of the TSER953. After the TSER953 is configured, the  
CLK_OUT/IDX pin switches over to a clock source, intended to provide a reference clock to the image sensor. A  
minimum load impedance at the CLK_OUT/IDX pin of 35 kis required when using the CLK_OUT function.  
7.5.1.1.1 IDX  
The IDX pin configures the control interface to one of two possible device addresseseither the 1.8-V or 3.3-V  
referenced I2C address. A pullup resistor and a pulldown resistor must be used to set the appropriate voltage on  
the IDX input pin (see 7-10). The IDX resistor divider must be referred to Pin #25 (after the ferrite filter on the  
TSER953 pin side).  
7-10. IDX Configuration Setting  
I2C 7-  
BIT  
ADDRE  
SS  
VIDX  
TARGET  
VOLTAGE  
I2C 8-BIT  
ADDRES  
S
SUGGESTED STRAP  
RESISTORS (1% TOL)  
VTARGET VOLTAGE RANGE  
V(I2C) (I2C I/O  
VOLTAGE)  
IDX  
RATIO MIN  
RATIO TYP  
RATIO MAX VVDD = 1.8 V  
RHIGH (k) RLOW (k)  
1
2
3
4
0
0
0.131 x  
V(VDD18)  
0
Open  
40.2  
0x30  
0x18  
1.8 V  
0.178 x  
V(VDD18)  
0.214 x  
V(VDD18)  
0.256 x  
V(VDD18)  
0.385  
1.015  
1.223  
180  
82.5  
68.1  
47.5  
102  
137  
0x32  
0x30  
0x32  
0x19  
0x18  
0x19  
1.8 V  
3.3 V  
3.3 V  
0.537 x  
V(VDD18)  
0.564 x  
V(VDD18)  
0.591 x  
V(VDD18)  
0.652 x  
V(VDD18)  
0.679 x  
V(VDD18)  
0.706 x  
V(VDD18)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS696  
26  
Submit Document Feedback  
Product Folder Links: TSER953  
 
 
 
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
V
I2C  
R
PU  
R
PU  
Host (Optional)  
SDA  
SCL  
SDA  
SCL  
Image Sensor  
TSER953  
1.8V  
SDA  
SCL  
R
HIGH  
Ref Clock In  
CLK_OUT/IDX  
R
LOW  
7-8. Circuit to Bias IDX Pin  
7.5.2 I2C Interface Operation  
The serial control bus consists of two signals: SCL and SDA. SCL is a Serial Bus Clock Input / Output signal and  
the SDA is the Serial Bus Data Input / Output signal. Both SCL and SDA signals require an external pullup  
resistor to VI2C, chosen to be either 1.8 V or 3.3 V.  
For the standard and fast I2C modes, a pullup resistor of RPU = 4.7 kΩ is recommended, while a pullup resistor  
of RPU = 470 Ω is recommended for the fast plus mode. However, the pullup resistor value may be additionally  
adjusted for capacitive loading and data rate requirements. The signals are either pulled High or driven Low. The  
IDX pin configures the control interface to one of two possible device addresses. A pullup resistor (RHIGH) and a  
pulldown resistor (RLOW) may be used to set the appropriate voltage on the IDX input pin.  
The Serial Bus protocol is controlled by START, START-Repeated, and STOP phases. A START occurs when  
SDA transitions Low while SCL is High. A STOP occurs when SDA transitions High while SCL is also HIGH. See  
7-9.  
SDA  
SCL  
S
P
START condition, or  
START repeat condition  
STOP condition  
7-9. Start and Stop Conditions  
To communicate with an I2C target, the host controller (controller) sends data to the target address and waits for  
a response. This response is referred to as an acknowledge bit (ACK). If a target on the bus is addressed  
correctly, the target Acknowledges (ACKs) the controller by driving the SDA bus low. If the address does not  
match a target address of the device, the target Not-acknowledges (NACKs) the controller by pulling the SDA  
High. ACKs also occur on the bus when data is being transmitted. When the controller is writing data, the target  
ACKs after every data byte is successfully received. When the controller is reading data, the controller ACKs  
after every data byte is received to let the target know that the controller wants to receive another data byte.  
When the controller wants to stop reading, the controller NACKs after the last data byte and creates a stop  
condition on the bus. All communication on the bus begins with either a start condition or a repeated start  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
 
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
condition. All communication on the bus ends with a stop condition. A READ is shown in 7-10 and a WRITE is  
shown in 7-11.  
N
A
C
K
Bus Activity:  
Controller  
Register  
Address  
Target  
Address  
Target  
Address  
S
P
SDA  
Line  
S
7-bit Address  
7-bit Address  
0
1
A
C
K
A
C
K
A
C
K
Data  
Bus Activity:  
Target  
7-10. I2C Bus Read  
Bus Activity:  
Controller  
Register  
Address  
Tagret  
Address  
Data  
SDA Line  
7-bit Address  
P
S
0
A
C
K
A
C
K
A
C
K
Bus Activity:  
Target  
7-11. I2C Bus Write  
Any I2C controller located at the serializer must support I2C clock stretching. For more information on I2C  
interface requirements and throughput considerations, refer to the TI application note I2C communication over  
FPD-Link III with bidirectional control channel (SNLA131).  
7.5.3 I2C Timing  
The proxy controller timing parameters are based on the internal reference clock. The I2C controller regenerates  
the I2C read or write access using timing controls in registers 0x0B and 0x0C to regenerate the clock and data  
signals to meet the desired I2C timing in standard, fast, or fast-plus modes of operation.  
I2C controller SCL high time is set in register 0x0B. This field configures the high pulse width of the SCL output  
when the serializer is the controller on the local I2C bus. The default value is set to provide a minimum 5-µs SCL  
high time with the internal reference clock at 26.25 MHz including five additional oscillator clock periods or  
synchronization and response time. Units are 38.1 ns for the nominal oscillator clock frequency, giving Min_delay  
= 38.1 ns × (SCL_HIGH_TIME + 5).  
I2C controller SCL low time is set in register 0x0C. This field configures the low pulse width of the SCL output  
when the serializer is the controller on the local deserializer I2C bus. This value is also used as the SDA setup  
time by the I2C target for providing data prior to releasing SCL during accesses over the bidirectional control  
channel. The default value is set to provide a minimum 5-µs SCL high time with the reference clock at 26.25  
MHz including five additional oscillator clock periods or synchronization and response time. Units are 38.1 ns for  
the nominal oscillator clock frequency, giving Min_delay = 38.1 ns × (SCL_HIGH_TIME + 5). See 7-11  
example settings for standard mode, fast mode, and fast mode plus timing.  
7-11. Typical I2C Timing Register Settings  
SCL HIGH TIME  
SCL LOW TIME  
NOMINAL DELAY  
I2C MODE  
0x0B  
0x7F  
0x13  
NOMINAL DELAY  
5.03 µs  
0x0C  
0x7F  
0x26  
Standard  
Fast  
5.03 µs  
1.64 µs  
0.914 µs  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS696  
28  
Submit Document Feedback  
Product Folder Links: TSER953  
 
 
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7-11. Typical I2C Timing Register Settings (continued)  
SCL HIGH TIME  
SCL LOW TIME  
NOMINAL DELAY  
0.648 µs  
I2C MODE  
0x0B  
NOMINAL DELAY  
0x0C  
Fast - Plus  
0x06  
0.419 µs  
0x0B  
7.6 Pattern Generation  
The TSER953 supports an internal pattern generation feature to provide a simple way to generate video test  
patterns for the CSI-2 transmitter outputs. Two types of patterns are supported: Reference color bar patterns and  
fixed color patterns accessed by the pattern generator page 0 in the indirect register set. See 7.7.133 for  
more information on internal registers. Analog LaunchPadTM (ALP) software can be used to generate PATGEN  
with a graphical user interface.  
7.6.1 Reference Color Bar Pattern  
The reference color bar patterns are based on the pattern defined in Appendix D of the mipi_CTS_for_D-  
PHY_v1-1_r03 specification. The pattern is an 8-color bar pattern designed to provide high, low, and medium  
frequency outputs on the CSI-2 transmit data lanes.  
The CSI-2 reference pattern provides 8 color bars by default with the following byte data for the color bars: X  
bytes of 0xAA (high-frequency pattern, inverted), X bytes of 0x33 (mid-frequency pattern), X bytes of 0xF0 (low-  
frequency pattern, inverted), X bytes of 0x7F (lone 0 pattern), X bytes of 0x55 (high-frequency pattern), X bytes  
of 0xCC (mid-frequency pattern, inverted), X bytes of 0x0F (low-frequency pattern), and Y bytes of 0x80 (long 1  
pattern). In most cases, Y will be the same as X. For certain data types, the last color bar may need to be larger  
than the others to properly fill the video line dimensions.  
The pattern generator is programmable with the following options:  
Number of color bars (1, 2, 4, or 8)  
Number of bytes per line  
Number of bytes per color bar  
CSI-2 datatype field and VC-ID  
Number of active video lines per frame  
Number of total lines per frame (active plus blanking)  
Line period (possibly program in units of 10 ns)  
Vertical front porch number of blank lines prior to the FrameEnd packet  
Vertical back porch number of blank lines following the FrameStart packet  
The pattern generator relies on proper programming by software to ensure the color bar widths are set to  
multiples of the block (or word) size required for the specified datatype. For example, for RGB888, the block size  
is 3 bytes which also matches the pixel size. In this case, the number of bytes per color bar must be a multiple of  
3. The pattern generator is implemented in the CSI-2 transmit clock domain, providing the pattern directly to the  
CSI-2 transmitter. The circuit generates the CSI-2 formatted data.  
7.6.2 Fixed Color Patterns  
When programmed for fixed color pattern mode, the pattern generator can generate a video image with a  
programmable fixed data pattern. The basic programming fields for image dimensions are the same as used with  
the color bar patterns. When sending fixed color patterns, the color bar controls allow the user to alternate  
between the fixed pattern data and the bit-wise inverse of the fixed pattern data.  
The fixed color patterns assume a fixed block size for the byte pattern. The block size is programmable through  
a register and is designed to support most 8-bit, 10-bit, and 12-bit pixel formats. The block size should be set  
based on the pixel size converted to blocks that are an integer multiple of bytes. For example, an RGB888  
pattern would consist of 3-byte pixels and would therefore require a 3-byte block size. A 2x12-bit pixel image  
would also require 3-byte block size, while a 3x12-bit pixel image would require 9 bytes (2 pixels) to send an  
integer number of bytes. Sending a RAW10 pattern typically requires a 5-byte block size for 4 pixels, so 1x10-bit  
and 2x10-bit could both be sent with a 5-byte block size. For 3x10-bit, a 15-byte block size would be required.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
The fixed color patterns support block sizes up to 16 bytes in length, allowing additional options for patterns in  
some conditions. For example, an RGB888 image could alternate between four different pixels by using a  
twelve-byte block size. An alternating black and white RGB888 image could be sent with a block size of 6-bytes  
by setting the first three bytes to 0xFF and the next three bytes to 0x00.  
To support up to 16-byte block sizes, a set of sixteen registers are implemented to allow programming the value  
for each data byte.  
7.6.3 Packet Generator Programming  
The information in this section provides details on how to program the pattern generator to provide a specific  
color bar pattern, based on datatype, frame size, and line size.  
Most basic configuration information is determined directly from the expected video frame parameters. The  
requirements should include the datatype, frame rate (frames per second), number of active lines per frame,  
number of total lines per frame (active plus blanking), and number of pixels per line.  
PGEN_ACT_LPF Number of active lines per frame  
PGEN_TOT_LPF Number of total lines per frame  
PGEN_LSIZE Video line length size in bytes. Compute based on pixels per line multiplied by pixel size in  
bytes  
CSI-2 DataType field and VC-ID.  
Optional: PGEN_VBP Vertical back porch. This is the number of lines of vertical blanking following Frame  
Valid.  
Optional: PGEN_VFP Vertical front porch. This is the number of lines of vertical blanking preceding Frame  
Valid.  
PGEN_LINE_PD Line period in 10-ns units. Compute based on Frame Rate and total lines per frame.  
PGEN_BAR_SIZE Color bar size in bytes. Compute based on datatype and line length in bytes (see  
details below).  
7.6.3.1 Determining Color Bar Size  
The color bar pattern should be programmed in units of a block or word size dependent on the datatype of the  
video being sent. The sizes are defined in the MIPI CSI-2 specification. For example, RGB888 requires a 3-byte  
block size which is the same as the pixel size. RAW10 requires a 5-byte block size which is equal to 4 pixels.  
RAW12 requires a 3-byte block size which is equal to 2 pixels.  
When programming the Pattern Generator, software should compute the required bar size in bytes based on the  
line size and the number of bars. For the standard 8-color bar pattern, that would require the following algorithm:  
Select the desired datatype, and a valid length for that datatype (in pixels).  
Convert pixels/line to blocks/line (by dividing by the number of pixels/block, as defined in the datatype  
specification).  
Divide the blocks/line result by the number of color bars (8), giving blocks/bar.  
Round result down to the nearest integer.  
Convert blocks/bar to bytes/bar and program that value into the PGEN_BAR_SIZE register.  
As an alternative, the blocks/line can be computed by converting pixels/line to bytes/line and dividing by bytes/  
block.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS696  
30  
Submit Document Feedback  
Product Folder Links: TSER953  
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7.6.4 Code Example for Pattern Generator  
#Patgen RGB888 1920x1080p30 Fixed 8 Colorbar  
WriteI2C(0xB0,0x00) # Indirect Pattern Gen Registers  
WriteI2C(0xB1,0x01) # PGEN_CTL  
WriteI2C(0xB2,0x01)  
WriteI2C(0xB1,0x02) # PGEN_CFG  
WriteI2C(0xB2,0x33)  
WriteI2C(0xB1,0x03) # PGEN_CSI_DI  
WriteI2C(0xB2,0x24) # RGB888  
WriteI2C(0xB1,0x04) # PGEN_LINE_SIZE1  
WriteI2C(0xB2,0x16)  
WriteI2C(0xB1,0x05) # PGEN_LINE_SIZE0  
WriteI2C(0xB2,0x80)  
WriteI2C(0xB1,0x06) # PGEN_BAR_SIZE1  
WriteI2C(0xB2,0x02)  
WriteI2C(0xB1,0x07) # PGEN_BAR_SIZE0  
WriteI2C(0xB2,0xD0)  
WriteI2C(0xB1,0x08) # PGEN_ACT_LPF1  
WriteI2C(0xB2,0x04)  
WriteI2C(0xB1,0x09) # PGEN_ACT_LPF0  
WriteI2C(0xB2,0x38)  
WriteI2C(0xB1,0x0A) # PGEN_TOT_LPF1  
WriteI2C(0xB2,0x04)  
WriteI2C(0xB1,0x0B) # PGEN_TOT_LPF0  
WriteI2C(0xB2,0x65)  
WriteI2C(0xB1,0x0C) # PGEN_LINE_PD1  
WriteI2C(0xB2,0x0B)  
WriteI2C(0xB1,0x0D) # PGEN_LINE_PD0  
WriteI2C(0xB2,0x93)  
WriteI2C(0xB1,0x0E) # PGEN_VBP  
WriteI2C(0xB2,0x21)  
WriteI2C(0xB1,0x0F) # PGEN_VFP  
WriteI2C(0xB2,0x0A)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7.7 Register Maps  
In the register definitions under the TYPE and DEFAULT heading, the following definitions apply:  
R = Read only access  
R/W = Read / Write access  
R/RC = Read only access, Read to Clear  
(R/W)/SC = Read / Write access, Self-Clearing bit  
(R/W)/S = Read / Write access, Set based on strap pin configuration at start-up  
LL = Latched Low and held until read  
LH = Latched High and held until read  
S = Set based on strap pin configuration at start-up  
7.7.1 I2C Device ID Register  
7-12. Device ID Register (Address 0x00)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7-bit I2C ID of Serializer.  
This field always indicates the current value of the I2C ID. When bit  
0 of this register is 0, this field is read-only and shows the strapped  
ID. When bit 0 of this register is 1, this field is read/write and can be  
used to assign any valid I2C ID.  
7:1  
DEVICE_ID  
S, R/W  
S
0: Device ID is from strap  
0
SER_ID_OVERRIDE  
R/W  
0x0  
1: Register I2C Device ID overrides strapped value  
7.7.2 Reset  
7-13. RESET_CTL Register (Address 0x01)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:3  
RESERVED  
R/W  
0x00  
Reserved.  
Restart ROM Auto-load.  
2
1
RESTART_AUTOLOAD (R/W)/SC  
0x0  
0x0  
Setting this bit to 1 causes a reload of the ROM. This bit is self-  
clearing.  
Digital Reset 1.  
Resets the entire digital block including registers. This bit is self-  
clearing.  
1: Reset  
0: Normal operation  
DIGITAL_RESET_1  
DIGITAL_RESET_0  
(R/W)/SC  
(R/W)/SC  
Digital Reset 0.  
Resets the entire digital block except registers. This bit is self-  
clearing.  
0
0x0  
1: Reset  
0: Normal operation  
7.7.3 General Configuration  
7-14. General_CFG (Address 0x02)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7
RESERVED  
R/W  
R/W  
0x0  
0x0  
Reserved.  
CSI-2 Clock Lane Configuration.  
0 : Non Continuous Clock  
1 : Continuous Clock  
6
CONTS_CLK  
CSI-2 Data lane configuration.  
00: 1-lane configuration  
01: 2-lane configuration  
11: 4-lane configuration  
5:4  
3:2  
CSI_LANE_SEL  
RESERVED  
R/W  
R/W  
0x3  
0x0  
Reserved.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS696  
32  
Submit Document Feedback  
Product Folder Links: TSER953  
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7-14. General_CFG (Address 0x02) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
Transmitter CRC Generator.  
0x1 0: Disable  
CRC_TX_GEN_  
ENABLE  
1
R/W  
1: Enable  
I2C Strap Mode.  
This field indicates the I2C voltage level of the device. Upon device  
start-up, this field will display the I2C voltage level setting from the  
strapped IDX pin. This field is write capable and can be used to  
assign the I2C voltage level. Programming this bit to change the I2C  
voltage level should only be performed remotely over the back  
channel from a connected deserializer.  
0
I2C_STRAP_MODE  
S, R/W  
S
0: 3.3 V  
1: 1.8 V  
7.7.4 Forward Channel Mode Selection  
7-15. MODE_SEL (Address 0x03)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7
RESERVED  
RESERVED  
RESERVED  
R/W  
S, R  
R/W  
0x0  
S
Reserved.  
Reserved.  
Reserved.  
6
5
0x0  
0: Serializer Mode from the strapped MODE pin  
1: Register Mode overrides strapped value  
4
3
MODE_OV  
R/W  
R
0x0  
0x0  
MODE_DONE  
Indicates MODE value has stabilized and been latched.  
This field always indicates the MODE setting of the device. When bit  
4 of this register is 0, this field is read-only and shows the Mode  
Setting. When bit 4 of this register is 1, this field is read/write and can  
be used to assign MODE. Mode is latched from strap value when  
PDB transitions LOW to HIGH.  
Mode of operation:  
2:0  
MODE  
S, R/W  
S
000: CSI-2 Synchronous Mode  
001: Reserved  
010: CSI-2 Non-synchronous external clock Mode (Requires a local  
clock source)  
011: CSI-2 Non-synchronous Internal AON Clock  
101: DVP External Clock Compatible Mode (Requires local clock  
source)  
7.7.5 BC_MODE_SELECT  
7-16. BC_MODE_SELECT (Address 0x04)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:3  
RESERVED  
R/W  
0x0  
Reserved.  
28-bit RAW 10 Mode operation.  
DVP-compatible RAW 10 DVP mode (28-bit) is automatically  
configured by the Bidirectional Control Channel once RX lock has  
been detected. Software may overwrite the value, but must also set  
the DVP_MODE_OVER_EN to prevent overwriting by the  
Bidirectional Control Channel.  
MODE_OVERWRITE  
_100m  
2
R/W  
0x0  
28-bit RAW 12 Mode operation.  
DVP-compatible RAW 12 HF DVP mode (28-bit) is automatically  
configured by the Bidirectional Control Channel once RX lock has  
been detected. Software may overwrite the value, but must also set  
the DVP_MODE_OVER_EN to prevent overwriting by the  
Bidirectional Control Channel.  
MODE_OVERWRITE  
_75m  
1
0
R/W  
R/W  
0x0  
0x0  
DVP_MODE_OVER_  
EN  
Prevent auto-loading of the DVP mode (28-bit) operation by the  
Bidirectional Control Channel.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7.7.6 PLL Clock Control  
7-17. PLLCLK_CTRL Register (Address 0x05)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7
RESERVED  
R/W  
0x0  
Reserved.  
CLKIN clock divide ratio to generate internal reference.  
3'b000 : CLKIN Div by 1  
3'b001 : CLKIN Div by 2  
3'b010 : CLKIN Div by 4  
6:4  
CLKIN_DIV  
R/W  
0x0  
3'b011 : CLKIN Div by 8  
3'b100 - 3'b111 : RESERVED  
Internally generated OSC clock reference when operating with Non-  
Synchronous internal clock or external system clock not detected.  
0: 24.2 MHz to 25.5 MHz, set for 2 Gbps line rate  
3
OSCCLK_SEL  
RESERVED  
R/W  
R/W  
0x0  
0x3  
1: 48.4 MHz to 51 MHz, set for 4 Gbps line rate  
2:0  
Reserved.  
7.7.7 Clock Output Control 0  
The TSER953 provides an option for a programmable reference output clock to meet the system clock input  
requirements of various sensors. The control of the clock output frequency is set by the input divider and M value  
in register 0x06 and the N value in register 0x07.  
7-18. CLKOUT_CTRL0 (Address 0x06)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
Clock source of M/N divider is based on the forward channel data rate  
divided by this register field.  
000: Div by 1  
7:5  
HS_CLK_DIV  
R/W  
0x2  
001: Div by 2  
010: Div by 4  
011: Div by 8  
100: Div by 16  
M value for M/N divider for CLKOUT. CLKOUT can be programmed  
using the M/N ratio of an internal high-speed clock to generate a clock  
output based on the system sensor requirement. When selecting the  
M/N ratio, they should be set to yield the CLKOUT frequency less than  
100 MHz. The M value should be 0. Setting M to 0 will disable  
CLKOUT and output will remain static high or low.  
4:0  
DIV_M_VAL  
R/W  
0x01  
7.7.8 Clock Output Control 1  
The TSER953 provides option for a programmable reference output clock to meet the system clock input  
requirements of various sensors. The control of the clock output frequency is set by the input divider and M value  
in register 0x06 and the N value in register 0x07.  
7-19. CLKOUT_CTRL1 (Address 0x07)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
N value for M/N divider for CLKOUT. CLKOUT can be programmed  
using the M/N ratio of an internal high-speed clock to generate a clock  
output based on the system sensor requirement. When selecting the  
M/N ratio, they should be set to yield the CLKOUT frequency less than  
100 MHz. N must be set to non-zero value.  
7:0  
DIV_N_VAL  
R/W  
0x28  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7.7.9 Back Channel Watchdog Control  
7-20. BCC_WATCHDOG (Address 0x08)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
BCC_WD_TIMER sets the Bidirectional Control Channel Watchdog  
Timeout value in units of 2 milliseconds. This field should not be set to  
0. The watchdog timer allows termination of a control channel  
transaction if it fails to complete within a programmed amount of time.  
7:1  
BCC_WD_TIMER  
R/W  
0x7F  
0x0  
Disable Bidirectional Control Channel Watchdog Timer.  
1: Disables BCC Watchdog Timer operation  
0: Enables BCC Watchdog Timer operation  
BCC_WD_TIMER_  
DISABLE  
0
R/W  
7.7.10 I2C Control 1  
7-21. I2C_CONTROL1 (Address 0x09)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
Disable Remote Writes to Local Registers.  
Setting this bit to a 1 prevents remote writes to local device registers  
from across the control channel. This prevents writes to the Serializer  
registers from an I2C controller attached to the deserializer. Setting this  
bit does not affect remote access to I2C targets at the Serializer.  
LCL_WRITE_  
DISABLE  
7
R/W  
0x0  
Internal SDA Hold Time.  
6:4  
3:0  
I2C_SDA_HOLD  
R/W  
0x1  
0xE  
This field configures the amount of internal hold time provided for the  
SDA input relative to the SCL input. Units are 50 nanoseconds.  
I2C Glitch Filter Depth.  
This field configures the maximum width of glitch pulses on the SCL  
and SDA inputs that are rejected. Units are 5 nanoseconds.  
I2C_FILTER_DEPTH R/W  
7.7.11 I2C Control 2  
7-22. I2C_CONTROL2 (Address 0x0A)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Remote Ack SDA Output Setup.  
When a Control Channel (remote) access is active, this field configures  
setup time from the SDA output relative to the rising edge of SCL  
during ACK cycles.  
SDA_OUTPUT_  
SETUP  
7:4  
R/W  
0x1  
Setting this value increases setup time in units of 640 ns. The nominal  
output setup time value for SDA to SCL when this field is 0 is 80 ns.  
SDA Output Delay.  
This field configures additional delay on the SDA output relative to the  
falling edge of SCL. Setting this value increases output delay in units  
of 40 ns.  
SDA_OUTPUT_DELA  
Y
3:2  
R/W  
0x0  
Nominal output delay values for SCL to SDA are:  
00 : 240 ns  
01: 280 ns  
10: 320 ns  
11: 360 ns  
Speed up I2C Bus Watchdog Timer.  
1: Watchdog Timer expires after approximately 50 microseconds  
0: Watchdog Timer expires after approximately 1 second.  
I2C_BUS_TIMER_  
SPEEDUP  
1
0
R/W  
R/W  
0x0  
0x0  
Disable I2C Bus Watchdog Timer.  
When the I2C Bus Watchdog Timer may be used to detect when the  
I2C bus is free or hung up following an invalid termination of a  
transaction. If SDA is high and no signalling occurs for approximately 1  
second, the I2C bus is assumed free. If SDA is low and no signaling  
occurs, the device attempts to clear the bus by driving 9 clocks on  
SCL.  
I2C_BUS_TIMER_  
DISABLE  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7.7.12 SCL High Time  
7-23. SCL_HIGH_TIME (Address 0x0B)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
I2C Controller SCL High Time.  
This field configures the high pulse width of the SCL output when the  
Serializer is the Controller on the local I2C bus. Units are 38.1 ns for  
the nominal oscillator clock frequency of 26.25 MHz. The default value  
is set to provide a minimum 5-µs SCL high time with the internal  
oscillator clock running at 26.25 MHz. Delay includes 5 additional  
oscillator clock periods.  
7:0  
SCL_HIGH_TIME  
R/W  
0x7F  
Min_delay = 38.0952 ns × (SCL_HIGH_TIME + 5)  
7.7.13 SCL Low Time  
7-24. SCL_LOW_TIME (Address 0x0C)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
I2C SCL Low Time.  
This field configures the low pulse width of the SCL output when the  
Serializer is the Controller on the local I2C bus. This value is also used  
as the SDA setup time by the I2C Target for providing data prior to  
releasing SCL during accesses over the Bidirectional Control Channel.  
Units are 38.1 ns for the nominal oscillator clock frequency of 26.25  
MHz. The default value is set to provide a minimum 5-µs SCL low time  
with the internal oscillator clock running at 26.25 MHz. Delay includes 5  
additional clock periods.  
7:0  
SCL_LOW_TIME  
R/W  
0x7F  
Min_delay = 38.0952 ns × (SCL_LOW_TIME + 5)  
7.7.14 Local GPIO DATA  
7-25. LOCAL_GPIO_DATA (Address 0x0D)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
Enable remote deserializer GPIO data on local GPIO.  
Bit 7: Enable remote GPIO3 when this bit is set to 1  
Bit 6: Enable remote GPIO2 when this bit is set to 1  
Bit 5: Enable remote GPIO1 when this bit is set to 1  
Bit 4: Enable remote GPIO0 when this bit is set to 1  
7:4  
GPIO_RMTEN  
R/W  
0xF  
0x0  
GPIO Output Source.  
This register sets the logical output of 4 GPIOs, GPIO_RMTEN must be  
disabled and GPIOx_OUT_EN must be enabled.  
Bit 3: write 0/1 on GPIO3  
3:0  
GPIO_OUT_SRC  
R/W  
Bit 2: write 0/1 on GPIO2  
Bit 1: write 0/1 on GPIO1  
Bit 0: write 0/1 on GPIO0  
7.7.15 GPIO Input Control  
7-26. GPIO_INPUT_CTRL (Address 0x0E)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
GPIO3 Output Enable.  
0: Disabled  
7
GPIO3_OUT_EN  
R/W  
0x0  
0x0  
0x0  
0x0  
1: Enabled  
GPIO2 Output Enable.  
0: Disabled  
1: Enabled  
6
5
4
GPIO2_OUT_EN  
GPIO1_OUT_EN  
GPIO0_OUT_EN  
R/W  
R/W  
R/W  
GPIO1 Output Enable.  
0: Disabled  
1: Enabled  
GPIO0 Output Enable.  
0: Disabled  
1: Enabled  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS696  
36  
Submit Document Feedback  
Product Folder Links: TSER953  
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7-26. GPIO_INPUT_CTRL (Address 0x0E) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
GPIO3 Input Enable.  
0: Disabled  
3
GPIO3_INPUT_EN  
R/W  
0x1  
0x1  
0x1  
0x1  
1: Enabled  
GPIO2 Input Enable.  
0: Disabled  
1: Enabled  
2
1
0
GPIO2_INPUT_EN  
GPIO1_INPUT_EN  
GPIO0_INPUT_EN  
R/W  
R/W  
R/W  
GPIO1 Input Enable.  
0: Disabled  
1: Enabled  
GPIO0 Input Enable.  
0: Disabled  
1: Enabled  
7.7.16 RESERVED Register  
7-27. RESERVED (Address 0x0F)  
BIT  
7:4  
3:0  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
RESERVED  
RESERVED  
R
0x0  
0x0  
Reserved.  
Reserved.  
R/W  
7.7.17 DVP_CFG  
7-28. DVP_CFG (Address 0x10)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:5  
RESERVED  
R/W  
0x0  
0x0  
Reserved.  
When asserted, allows any packet with a Long data type (DT) packet  
through DVP.  
4
3
DVP_DT_ANY_EN  
R/W  
When asserted, allows data type matching based on the value in the  
DVP_DT register. Note: When this bit is asserted, writes to the  
DVP_DT register are blocked.  
DVP_DT_MATCH_EN R/W  
0x0  
0x0  
When asserted, allows YUV 10-bit DTs through DVP when  
mode_100m is also asserted (YUV 10-bit DTs are 0x19, 0x1d, and  
0x1f).  
2
DVP_DT_YUV_EN  
R/W  
1
0
DVP_FV_IN  
DVP_LV_INV  
R/W  
R/W  
0x0  
0x0  
Invert Frame Valid Polarity.  
Invert Line Valid Polarity.  
7.7.18 DVP_DT  
7-29. DVP_DT (Address 0x11)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:6  
RESERVED  
R/W  
0x0  
Reserved.  
When DVP_DT_MATCH_EN is asserted in the DVP_CFG register,  
the DVP block will allow packets with this DT through regardless of  
the mode_75m or mode_100m setting. The DT value must be a Long  
DT value (either bit 5 or 4 must be set) for a match to occur.  
DVP_DT_MATCH_VA  
L
5:0  
R/W  
0x0  
7.7.19 RESERVED Register  
7-30. RESERVED (Address 0x12)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:0  
RESERVED  
R/W  
0x00 Reserved.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7.7.20 Force BIST Error  
7-31. FORCE_BIST_ERR (Address 0x13)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
FORCE_ERR_CNT allows forcing a number of forward channel parity  
errors based on the value in FORCE_FC_CNT. When in BIST mode, the  
parity errors will be generated automatically upon entering BIST mode.  
7
FORCE_FC_ERR  
SC  
0x0  
When in normal operation this bit must be set to one to inject the parity  
errors.  
0: Force Disabled  
1: Force Enabled  
Force Error Count. Set this value to the desired number of forced parity  
errors.  
6:0  
FORCE_FC_CNT  
R/W  
0x00  
7.7.21 Remote BIST Control  
7-32. REMOTE_BIST_CTRL (Address 0x14)  
BIT  
7:4  
3
FIELD  
TYPE  
DEFAULT DESCRIPTION  
Set to force FC error based on the FORCE_ERR_CNT.  
0: Force Disabled  
FORCE_ERR_CNT R/W  
0x0  
0x0  
1: Force Enabled  
LOCAL_BIST_EN  
BIST_CLOCK  
R/W  
R/W  
Force TSER953 to Enter BIST Mode.  
BIST clock source selection.  
00: External/System clock  
01: 50 MHz internal clock  
1X: 25 MHz internal clock  
2:1  
0
0x0  
0x0  
REMOTE_BIST_EN R/W  
DVP-Compatible Remote BIST Enable Register.  
7.7.22 Sensor Voltage Gain  
7-33. SENSOR_VGAIN (Address 0x15)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7
RESERVED  
R/W  
0x0  
Reserved.  
Voltage Sensor Gain Setting. VOLT_GAIN = (128 / REG_VALUE).  
0x40 = Gain of 2  
0x20 = Gain of 4  
0x10 = Gain of 8  
6:0  
VOLT_GAIN  
R/W  
0x20  
7.7.23 RESERVED Register  
7-34. RESERVED (Address 0x16)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:0  
RESERVED  
R/W  
0x18 Reserved.  
7.7.24 Sensor Control 0  
7-35. SENSOR_CTRL0 (Address 0x17)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:4  
RESERVED  
R/W  
0x3  
0x3  
Reserved.  
Temperature and Voltage Sensor Enable.  
00: Disabled  
11: Enabled  
3:2  
1:0  
SENSOR_ENABLE R/W  
Enable GPIO 0/1 for input Voltage Sensor 0/1 measurement.  
00: No voltage sensing  
01: GPIO0 Voltage Sensing  
SENSE_V_GPIO  
R/W  
0x0  
10: GPIO1 Voltage Sensing  
11: GPIO0 and GPIO1 Voltage Sensing  
Copyright © 2023 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7.7.25 Sensor Control 1  
7-36. SENSOR_CTRL1 (Address 0x18)  
BIT  
7
FIELD  
TYPE  
DEFAULT DESCRIPTION  
SENSE_GAIN_EN  
RESERVED  
R/W  
0x1  
Enable Gain Setting of the Sensor.  
Reserved.  
6:0  
R/W  
0x00  
7.7.26 Voltage Sensor 0 Thresholds  
7-37. SENSOR_V0_THRESH (Address 0x19)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7
RESERVED  
R/W  
0x0  
0x6  
0x0  
0x2  
Reserved.  
GPIO0/V0 sensor upper limit. When the GPIO0 is configured as a voltage  
sensor, and the voltage measured is above the SENSE_V0_HI, it triggers  
the V0_SENSOR_HI alarm in the SENSOR_STATUS register. The max  
reading can be read from VOLTAGE_SENSOR_V0_MAX.  
6:4  
3
SENSE_V0_HI  
RESERVED  
R/W  
R/W  
R/W  
Reserved.  
GPIO0/V0 sensor lower limit. When the GPIO0 is configured as a voltage  
sensor, and the voltage measured is below the SENSE_V0_LO, it triggers  
the V0_SENSOR_LOW alarm in the SENSOR_STATUS register. The min  
reading can be read from VOLTAGE_SENSOR_V0_MIN.  
2:0  
SENSE_V0_LO  
7.7.27 Voltage Sensor 1 Thresholds  
7-38. SENSOR_V1_THRESH (Address 0x1A)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7
RESERVED  
R/W  
0x0  
Reserved.  
GPIO1/V1 sensor upper limit. When the GPIO1 is configured as a voltage  
sensor, and the voltage measured is above the SENSE_V1_HI, it triggers  
the V1_SENSOR_HI alarm in the SENSOR_STATUS register. The max  
reading can be read from VOLTAGE_SENSOR_V1_MAX.  
6:4  
3
SENSE_V1_HI  
RESERVED  
R/W  
R/W  
R/W  
0x6  
0x0  
0x2  
Reserved.  
GPIO1/V1 sensor lower limit. When the GPIO1 is configured as a voltage  
sensor, and the voltage measured is below the SENSE_V1_LO, it triggers  
the V1_SENSOR_LOW alarm in the SENSOR_STATUS register. The min  
reading can be read from VOLTAGE_SENSOR_V1_MIN.  
2:0  
SENSE_V1_LO  
7.7.28 Temperature Sensor Thresholds  
7-39. SENSOR_T_THRESH (Address 0x1B)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7
RESERVED  
R/W  
0x0  
0x6  
0x0  
0x2  
Reserved.  
Temp sensor upper threshold. When the Temp sensor is enabled, and the  
temperature measured above the SENSE_T_HI limit, it triggers the  
T_SENSOR_HI alarm in SENSOR_STATUS.  
6:4  
3
SENSE_T_HI  
RESERVED  
SENSE_T_LO  
R/W  
R/W  
R/W  
Reserved.  
Temp sensor lower threshold. When the Temp sensor is enabled, and the  
temperature measured below the SENSE_T_LO limit, it triggers the  
T_SENSOR_LOW alarm in SENSOR_STATUS.  
2:0  
7.7.29 CSI-2 Alarm Enable  
7-40. ALARM_CSI_EN (Address 0x1C)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:6  
RESERVED  
R/W  
0x0  
Reserved.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
 
 
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7-40. ALARM_CSI_EN (Address 0x1C) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI-2 No Frame Valid Alarm Enable.  
1: Enabled  
5
CSI_NO_FV_EN  
R/W  
0x1  
0: Disabled  
DPHY_SYNC_ERR Alarm Enable.  
1: Enabled  
0: Disabled  
DPHY_SYNC_ERR_  
EN  
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
0x1  
0x1  
0x1  
0x1  
0x1  
DPHY_CTRL_ERR Alarm Enable.  
1: Enabled  
0: Disabled  
DPHY_CTRL_ERR_  
EN  
CSI_ECC2 Alarm Enable.  
1: Enabled  
0: Disabled  
CSI_ECC_2_EN  
CSI-2 Checksum Error Alarm Enable.  
1: Enabled  
0: Disabled  
CSI_CHKSUM_ERR  
_EN  
CSI-2 Length Error Alarm Enable.  
1: Enabled  
0: Disabled  
CSI_LENGTH_ERR  
_EN  
7.7.30 Alarm Sense Enable  
7-41. ALARM_SENSE_EN (Address 0x1D)  
BIT  
7:6  
5
FIELD  
TYPE  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
DEFAULT  
DESCRIPTION  
RESERVED  
T_OVER  
0x0  
Reserved.  
0x0  
Enable Temp Sensor over the high limit alarm.  
Enable Temp Sensor under the low limit alarm.  
Enable Voltage1 Sensor over the high limit alarm.  
Enable Voltage1 Sensor under the low limit alarm.  
Enable Voltage0 Sensor over the high limit alarm.  
Enable Voltage0 Sensor under the low limit alarm.  
4
T_UNDER  
V1_OVER  
V1_UNDER  
V0_OVER  
V0_UNDER  
0x0  
3
0x0  
2
0x0  
1
0x0  
0
0x0  
7.7.31 Back Channel Alarm Enable  
7-42. ALARM_BC_EN (Address 0x1E)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:2  
RESERVED  
CRC_ERR_EN  
R/W  
0x0  
Reserved.  
1
0
R/W  
0x0  
0x0  
Enable CRC_ERR alarm.  
LINK_DETECT_EN R/W  
Enable LINK_DETECT alarm.  
7.7.32 RESERVED Register  
7-43. RESERVED (Address 0x1F)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:0  
RESERVED  
R/W  
0x00 Reserved.  
7.7.33 CSI-2 Polarity Select  
The CSI-2 Polarity Select register allows for changing P/N input polarity for each data lane.  
7-44. CSI_POL_SEL (Address 0x20)  
BIT  
7:5  
4
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
RESERVED  
R
0x0  
Reserved.  
POLARITY_CLK0 R/W  
0x0  
CSI-2 CLK lane 0 Polarity.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS696  
40  
Submit Document Feedback  
Product Folder Links: TSER953  
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7-44. CSI_POL_SEL (Address 0x20) (continued)  
BIT  
3
FIELD  
TYPE  
R/W  
R/W  
R/W  
R/W  
DEFAULT  
DESCRIPTION  
POLARITY_D3  
POLARITY_D2  
POLARITY_D1  
POLARITY_D0  
0x0  
CSI-2 Data lane 3 Polarity.  
CSI-2 Data lane 2 Polarity.  
CSI-2 Data lane 1 Polarity.  
CSI-2 Data lane 0 Polarity.  
2
0x0  
1
0x0  
0
0x0  
7.7.34 CSI-2 LP Mode Polarity  
The CSI-2 LP Mode Polarity register allows for changing polarity for all clocks and data lanes in Low power  
mode.  
7-45. CSI_LP_POLARITY (Address 0x21)  
BIT  
7:5  
4
FIELD  
TYPE  
R/W  
R/W  
R/W  
DEFAULT  
DESCRIPTION  
RESERVED  
POL_LP_CLK0  
POL_LP_DATA  
0x0  
Reserved.  
0x0  
LP CSI-2 Clock lane Polarity.  
LP CSI-2 Data lane Polarity.  
3:0  
0x0  
7.7.35 CSI-2 High-Speed RX Enable  
The CSI-2 High Speed RX Enable register is intended for system debugging and should be set to 0x00 for  
normal operation.  
7-46. CSI_EN_HSRX (Address 0x22)  
BIT  
7
FIELD  
TYPE  
R
DEFAULT  
DESCRIPTION  
RESERVED  
RESERVED  
0x0  
Reserved.  
6:0  
R/W  
0x00  
Reserved.  
7.7.36 CSI-2 Low Power Enable  
The CSI-2 Low Power Enable register is intended for system debugging.  
7-47. CSI_EN_LPRX (Address 0x23)  
BIT  
7
FIELD  
TYPE  
R
DEFAULT  
DESCRIPTION  
RESERVED  
RESERVED  
0x0  
Reserved.  
6:0  
R/W  
0x00  
Reserved.  
7.7.37 CSI-2 Termination Enable  
The CSI-2 Termination Enable register is intended for system debugging.  
7-48. CSI_EN_RXTERM (Address 0x24)  
BIT  
7:4  
3
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Reserved.  
Reserved.  
Reserved.  
Reserved.  
Reserved.  
RESERVED  
R/W  
0x0  
EN_RXTERM_D3 R/W  
EN_RXTERM_D2 R/W  
EN_RXTERM_D1 R/W  
EN_RXTERM_D0 R/W  
0x0  
2
0x0  
1
0x0  
0
0x0  
7.7.38 RESERVED Register  
7-49. RESERVED (Address 0x25)  
BIT  
7
FIELD  
TYPE  
DEFAULT DESCRIPTION  
RESERVED  
RESERVED  
R
0x0  
0x0  
Reserved.  
Reserved.  
6:4  
R/W  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7-49. RESERVED (Address 0x25) (continued)  
BIT  
3
FIELD  
TYPE  
DEFAULT DESCRIPTION  
RESERVED  
RESERVED  
R
0x0  
0x2  
Reserved.  
Reserved.  
2:0  
R/W  
7.7.39 RESERVED Register  
7-50. RESERVED (Address 0x26)  
BIT  
7
FIELD  
TYPE  
DEFAULT DESCRIPTION  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R
0x0  
0x0  
0x0  
0x0  
Reserved.  
Reserved.  
Reserved.  
Reserved.  
6:4  
3
R/W  
R
2:0  
R/W  
7.7.40 RESERVED Register  
7-51. RESERVED (Address 0x27)  
BIT  
7:3  
2:0  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
RESERVED  
RESERVED  
R
0x00  
0x0  
Reserved.  
Reserved.  
R/W  
7.7.41 RESERVED Register  
7-52. RESERVED (Address 0x28)  
BIT  
7
FIELD  
TYPE  
DEFAULT DESCRIPTION  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R
0x0  
0x0  
0x0  
0x7  
Reserved.  
Reserved.  
Reserved.  
Reserved.  
6:4  
3
R/W  
R
2:0  
R/W  
7.7.42 RESERVED Register  
7-53. RESERVED (Address 0x29)  
BIT  
7
FIELD  
TYPE  
DEFAULT DESCRIPTION  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R
0x0  
0x3  
0x0  
0x3  
Reserved.  
Reserved.  
Reserved.  
Reserved.  
6:4  
3
R/W  
R
2:0  
R/W  
7.7.43 RESERVED Register  
7-54. RESERVED (Address 0x2A)  
BIT  
7
FIELD  
TYPE  
DEFAULT DESCRIPTION  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R
0x0  
0x0  
0x0  
0x1  
Reserved.  
Reserved.  
Reserved.  
Reserved.  
6:4  
3
R/W  
R
2:0  
R/W  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS696  
42  
Submit Document Feedback  
Product Folder Links: TSER953  
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7.7.44 RESERVED Register  
7-55. RESERVED (Address 0x2B-0x2D)  
BIT  
7
FIELD  
TYPE  
DEFAULT DESCRIPTION  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R
0x0  
0x0  
0x0  
0x0  
Reserved.  
Reserved.  
Reserved.  
Reserved.  
6:4  
3
R
2:0  
7.7.45 RESERVED Register  
7-56. RESERVED (Address 0x2E-0x30)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:0  
RESERVED  
R/W  
0x00 Reserved.  
7.7.46 CSI-2 Packet Header Control  
7-57. CSI_PKT_HDR_TINIT_CTRL (Address 0x31)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
PKT_HDR_SEL_  
VC  
For interleaved VC packet select the VC ID to display the packet header.  
This is effective only if bit4 is set high (PKT_HDR_VCI_ENABLE).  
7:6  
R/W  
0x0  
1: Displays the corrected CSI-2 packet header (in case of error) sent to  
the receiver  
0: Displays the received CSI-2 packet header from imager  
PKT_HDR_  
CORRECTED  
5
R/W  
0x1  
Enable the CSI-2 packet header selection based on VC for interleaved  
mode. For interleaved VC packet set this bit to record the packet headers  
for each VC. For regular data packet ignore this bit.  
PKT_HDR_VCI_E  
NABLE  
4
3
R/W  
R/W  
0x0  
0x0  
RESERVED  
Reserved.  
CSI-2 Initial Time after power up. Any LP control data are ignored during  
this time for all CSI-2 lanes.  
000 = 100 µs  
2:0  
TINIT_TIME  
R/W  
0x0  
001 = 200 µs  
010 = 300 µs  
111 = 800 µs  
and so forth.  
7.7.47 Back Channel Configuration  
7-58. BCC_CONFIG (Address 0x32)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
I2C Pass-Through All Transactions.  
0: Disabled  
1: Enabled  
I2C_PASS_  
THROUGH_ALL  
7
R/W  
0x0  
I2C Pass-Through to Deserializer if decode matches.  
0: Pass-Through Disabled  
1: Pass-Through Enabled  
I2C_PASS_  
THROUGH  
6
5
R/W  
0x0  
0x0  
Automatically Acknowledge all I2C writes independent of the forward  
channel lock state or status of the remote Acknowledge.  
1: Enable  
0: Disable  
AUTO_ACK_ALL R/W  
4
3
RESERVED  
R/W  
R/W  
0x0  
0x1  
Reserved.  
RX_PARITY_  
CHECKER_  
ENABLE  
Parity Checker Enable.  
0: Disable  
1: Enable  
2
1
RESERVED  
RESERVED  
R/W  
R/W  
0x0  
0x0  
Reserved.  
Reserved.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7-58. BCC_CONFIG (Address 0x32) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
0
RESERVED  
R/W  
0x1  
Reserved.  
7.7.48 Datapath Control 1  
7-59. DATAPATH_CTL1 (Address 0x33)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:3  
RESERVED  
R/W  
0x00  
Reserved.  
DCA CRC Enable.  
If set to a 1, the Forward Channel sends a CRC as part of the DCA  
sequence. The DCA CRC protects the first 8 bytes of the DCA sequence.  
The CRC is sent as the 9th byte.  
2
DCA_CRC_EN  
FC_GPIO_EN  
R/W  
R/W  
0x1  
0x0  
Forward Channel GPIO Enable.  
Configures the number of enabled forward channel GPIOs.  
00: GPIOs disabled  
1:0  
01: One GPIO  
10: Two GPIOs  
11: Four GPIOs  
7.7.49 RESERVED Register  
7-60. RESERVED (Address 0x34)  
BIT  
7:4  
3
FIELD  
TYPE  
DEFAULT DESCRIPTION  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R/W  
R/W  
R/W  
R/W  
0x0  
0x0  
0x0  
0x0  
Reserved.  
Reserved.  
Reserved.  
Reserved.  
2
1:0  
7.7.50 Remote Partner Capabilities 1  
7-61. REMOTE_PAR_CAP1 (Address 0x35)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Freeze Partner Capabilities.  
FREEZE_DES_  
CAP  
Prevent auto-loading of the Partner Capabilities by the Bidirectional  
Control Channel. The Capabilities are frozen at the values written in  
registers 0x1E and 0x1F.  
7
R/W  
0x0  
6
RESERVED  
R/W  
0x0  
Reserved.  
Link BIST Enable.  
This bit indicates the remote partner is requesting BIST operation over the  
V3Link interface.  
5
4
BIST_EN  
R/W  
R/W  
0x0  
0x0  
This field is automatically configured by the Bidirectional Control Channel  
once back channel link has been detected. Software may overwrite this  
value, but must also set the FREEZE_DES_CAP bit to prevent overwriting  
by the Bidirectional Control Channel.  
Remote Partner Multi-Port capable.  
0 : Remote partner is a single-port deserializer device  
1 : Remote partner is a multi-port deserializer device  
This field is automatically configured by the Bidirectional Control Channel  
once back channel link has been detected. Software may overwrite this  
value, but must also set the FREEZE_DES_CAP bit to prevent overwriting  
by the Bidirectional Control Channel.  
MPORT  
Copyright © 2023 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
TSER953  
www.ti.com.cn  
BIT  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7-61. REMOTE_PAR_CAP1 (Address 0x35) (continued)  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Remote Partner port number.  
When connected to a multi-port device, this field indicates the port  
number to which the Serializer is connected.  
3:0  
PORT_NUM  
R/W  
0x0  
This field is automatically configured by the Bidirectional Control Channel  
once back channel link has been detected. Software may overwrite this  
value, but must also set the FREEZE_DES_CAP bit to prevent overwriting  
by the Bidirectional Control Channel.  
7.7.51 RESERVED Register  
7-62. RESERVED (Address 0x36)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:0  
RESERVED  
R/W  
0x00 Reserved.  
7.7.52 Partner Deserializer ID  
7-63. DES_ID (Address 0x37)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Remote Deserializer ID.  
This field is normally loaded automatically from the remote Deserializer.  
7:1  
DES_ID  
R/W  
0x3D  
Freeze Deserializer Device ID.  
Prevent auto-loading of the Deserializer Device ID from the back channel.  
The ID is frozen at the value written.  
FREEZE_  
DEVICE_ID  
0
R/W  
0x0  
7.7.53 RESERVED Register  
7-64. RESERVED (Address 0x38)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:0  
RESERVED  
R/W  
0x00 Reserved.  
7.7.54 Target 0 ID  
7-65. TARGET_ID_0 (Address 0x39)  
BIT  
7:1  
0
FIELD  
TYPE  
R/W  
R
DEFAULT  
DESCRIPTION  
7-bit Remote Target Device ID 0.  
Configures the physical I2C address of the remote I2C Target device  
attached to the remote Deserializer. If an I2C transaction is addressed to  
the Target Alias ID0, the transaction is remapped to this address before  
passing the transaction across the Bidirectional Control Channel to the  
Deserializer.  
TARGET_ID_0  
RESERVED  
0x00  
0x0  
Reserved.  
7.7.55 Target 1 ID  
7-66. TARGET_ID_1 (Address 0x3A)  
BIT  
7:1  
0
FIELD  
TYPE  
R/W  
R
DEFAULT  
DESCRIPTION  
7-bit Remote Target Device ID 1.  
Configures the physical I2C address of the remote I2C Target device  
attached to the remote Deserializer. If an I2C transaction is addressed to  
the Target Alias ID1, the transaction is remapped to this address before  
passing the transaction across the Bidirectional Control Channel to the  
Deserializer.  
TARGET_ID_1  
RESERVED  
0x00  
0x0  
Reserved.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7.7.56 Target 2 ID  
7-67. TARGET_ID_2 (Address 0x3B)  
BIT  
7:1  
0
FIELD  
TYPE  
R/W  
R
DEFAULT  
DESCRIPTION  
7-bit Remote Target Device ID 2.  
Configures the physical I2C address of the remote I2C Target device  
attached to the remote Deserializer. If an I2C transaction is addressed to  
the Target Alias ID2, the transaction is remapped to this address before  
passing the transaction across the Bidirectional Control Channel to the  
Deserializer.  
TARGET_ID_2  
RESERVED  
0x00  
0x0  
Reserved.  
7.7.57 Target 3 ID  
7-68. TARGET_ID_3 (Address 0x3C)  
BIT  
7:1  
0
FIELD  
TYPE  
R/W  
R
DEFAULT  
DESCRIPTION  
7-bit Remote Target Device ID 3.  
Configures the physical I2C address of the remote I2C Target device  
attached to the remote Deserializer. If an I2C transaction is addressed to  
the Target Alias ID3, the transaction is remapped to this address before  
passing the transaction across the Bidirectional Control Channel to the  
Deserializer.  
TARGET_ID_3  
RESERVED  
0x00  
0x0  
Reserved.  
7.7.58 Target 4 ID  
7-69. TARGET_ID_4 (Address 0x3D)  
DEFAULT DESCRIPTION  
BIT  
7:1  
0
FIELD  
TYPE  
R/W  
R
7-bit Remote Target Device ID 4.  
Configures the physical I2C address of the remote I2C Target device  
TARGET_ID_4  
RESERVED  
0x00  
0x0  
attached to the remote Deserializer. If an I2C transaction is addressed to the  
Target Alias ID4, the transaction is remapped to this address before passing  
the transaction across the Bidirectional Control Channel to the Deserializer.  
Reserved.  
7.7.59 Target 5 ID  
7-70. TARGET_ID_5 (Address 0x3E)  
DEFAULT DESCRIPTION  
BIT  
7:1  
0
FIELD  
TYPE  
R/W  
R
7-bit Remote Target Device ID 5.  
Configures the physical I2C address of the remote I2C Target device  
TARGET_ID_5  
RESERVED  
0x00  
0x0  
attached to the remote Deserializer. If an I2C transaction is addressed to the  
Target Alias ID5, the transaction is remapped to this address before passing  
the transaction across the Bidirectional Control Channel to the Deserializer.  
Reserved.  
7.7.60 Target 6 ID  
7-71. TARGET_ID_6 (Address 0x3F)  
BIT  
7:1  
0
FIELD  
TYPE  
R/W  
R
DEFAULT  
DESCRIPTION  
7-bit Remote Target Device ID 6.  
Configures the physical I2C address of the remote I2C Target device  
attached to the remote Deserializer. If an I2C transaction is addressed to the  
Target Alias ID6, the transaction is remapped to this address before passing  
the transaction across the Bidirectional Control Channel to the Deserializer.  
TARGET_ID_6  
RESERVED  
0x00  
0x0  
Reserved.  
Copyright © 2023 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7.7.61 Target 7 ID  
7-72. TARGET_ID_7 (Address 0x40)  
BIT  
7:1  
0
FIELD  
TYPE  
R/W  
R
DEFAULT DESCRIPTION  
7-bit Remote Target Device ID 7.  
Configures the physical I2C address of the remote I2C Target device  
attached to the remote Deserializer. If an I2C transaction is addressed to the  
Target Alias ID7, the transaction is remapped to this address before passing  
the transaction across the Bidirectional Control Channel to the Deserializer.  
TARGET_ID_7  
RESERVED  
0x00  
0x0  
Reserved.  
7.7.62 Target 0 Alias  
7-73. TARGET_ID_ALIAS_0 (Address 0x41)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7-bit Remote Target Device Alias ID 0.  
Configures the decoder for detecting transactions designated for an I2C  
Target device attached to the remote Deserializer. The transaction is  
remapped to the address specified in the Target ID0 register. A value of 0 in  
this field disables access to the remote I2C Target.  
TARGET_ID_  
ALIAS_0  
7:1  
R/W  
R/W  
0x00  
0x0  
Automatically Acknowledge all I2C writes to the remote Target 0 independent  
of the forward channel lock state or status of the remote Deserializer  
Acknowledge.  
1: Enable  
TARGET_AUTO_  
ACK_0  
0
0: Disable  
This is intended for debugging only and not recommended for normal  
operation.  
7.7.63 Target 1 Alias  
7-74. TARGET_ID_ALIAS_1 (Address 0x42)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7-bit Remote Target Device Alias ID 1.  
Configures the decoder for detecting transactions designated for an I2C  
Target device attached to the remote Deserializer. The transaction is  
remapped to the address specified in the Target ID1 register. A value of 0 in  
this field disables access to the remote I2C Target.  
TARGET_ID_ALIA  
S_1  
7:1  
R/W  
R/W  
0x00  
0x0  
Automatically Acknowledge all I2C writes to the remote Target 1 independent  
of the forward channel lock state or status of the remote Deserializer  
Acknowledge.  
1: Enable  
TARGET_AUTO_  
ACK_1  
0
0: Disable  
This is intended for debugging only and not recommended for normal  
operation.  
7.7.64 Target 2 Alias  
7-75. TARGET_ID_ALIAS_2 (Address 0x43)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7-bit Remote Target Device Alias ID 2.  
Configures the decoder for detecting transactions designated for an I2C  
Target device attached to the remote Deserializer. The transaction is  
remapped to the address specified in the Target ID2 register. A value of 0 in  
this field disables access to the remote I2C Target.  
TARGET_ID_ALIA  
S_2  
7:1  
R/W  
0x00  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7-75. TARGET_ID_ALIAS_2 (Address 0x43) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
Automatically Acknowledge all I2C writes to the remote Target 2 independent  
of the forward channel lock state or status of the remote Deserializer  
Acknowledge.  
1: Enable  
0: Disable  
TARGET_AUTO_  
ACK_2  
0
R/W  
0x0  
This is intended for debugging only and not recommended for normal  
operation.  
7.7.65 Target 3 Alias  
7-76. TARGET_ID_ALIAS_3 (Address 0x44)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7-bit Remote Target Device Alias ID 3.  
Configures the decoder for detecting transactions designated for an I2C  
Target device attached to the remote Deserializer. The transaction is  
remapped to the address specified in the Target ID3 register. A value of 0 in  
this field disables access to the remote I2C Target.  
TARGET_ID_ALIA  
S_3  
7:1  
R/W  
R/W  
0x00  
0x0  
Automatically Acknowledge all I2C writes to the remote Target 3 independent  
of the forward channel lock state or status of the remote Deserializer  
Acknowledge.  
1: Enable  
TARGET_AUTO_  
ACK_3  
0
0: Disable  
This is intended for debugging only and not recommended for normal  
operation.  
7.7.66 Target 4 Alias  
7-77. TARGET_ID_ALIAS_4 (Address 0x45)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7-bit Remote Target Device Alias ID 4.  
Configures the decoder for detecting transactions designated for an I2C  
Target device attached to the remote Deserializer. The transaction is  
remapped to the address specified in the Target ID4 register. A value of 0 in  
this field disables access to the remote I2C Target.  
TARGET_ID_ALIA  
S_4  
7:1  
R/W  
R/W  
0x00  
0x0  
Automatically Acknowledge all I2C writes to the remote Target 4 independent  
of the forward channel lock state or status of the remote Deserializer  
Acknowledge.  
1: Enable  
TARGET_AUTO_  
ACK_4  
0
0: Disable  
This is intended for debugging only and not recommended for normal  
operation.  
7.7.67 Target 5 Alias  
7-78. TARGET_ID_ALIAS_5 (Address 0x46)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7-bit Remote Target Device Alias ID 5.  
Configures the decoder for detecting transactions designated for an I2C  
Target device attached to the remote Deserializer. The transaction is  
remapped to the address specified in the Target ID5 register. A value of 0 in  
this field disables access to the remote I2C Target.  
TARGET_ID_ALIA  
S_5  
7:1  
R/W  
R/W  
0x00  
0x0  
Automatically Acknowledge all I2C writes to the remote Target 5 independent  
of the forward channel lock state or status of the remote Deserializer  
Acknowledge.  
1: Enable  
TARGET_AUTO_  
ACK_5  
0
0: Disable  
This is intended for debugging only and not recommended for normal  
operation.  
Copyright © 2023 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7.7.68 Target 6 Alias  
7-79. TARGET_ID_ALIAS_6 (Address 0x47)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7-bit Remote Target Device Alias ID 6.  
Configures the decoder for detecting transactions designated for an I2C  
Target device attached to the remote Deserializer. The transaction is  
remapped to the address specified in the Target ID6 register. A value of 0 in  
this field disables access to the remote I2C Target.  
TARGET_ID_ALIA  
S_6  
7:1  
R/W  
0x00  
0x0  
Automatically Acknowledge all I2C writes to the remote Target 6 independent  
of the forward channel lock state or status of the remote Deserializer  
Acknowledge.  
1: Enable  
TARGET_AUTO_  
ACK_6  
0
R/W  
0: Disable  
This is intended for debugging only and not recommended for normal  
operation.  
7.7.69 Target 7 Alias  
7-80. TARGET_ID_ALIAS_7 (Address 0x48)  
DEFAUL  
T
BIT  
FIELD  
TYPE  
DESCRIPTION  
7-bit Remote Target Device Alias ID 7.  
Configures the decoder for detecting transactions designated for an I2C Target  
device attached to the remote Deserializer. The transaction is remapped to the  
address specified in the Target ID7 register. A value of 0 in this field disables  
access to the remote I2C Target.  
TARGET_ID_ALIA  
S_7  
7:1  
R/W  
0x00  
Automatically Acknowledge all I2C writes to the remote Target 7 independent  
of the forward channel lock state or status of the remote Deserializer  
Acknowledge.  
1: Enable  
0: Disable  
TARGET_AUTO_  
ACK_7  
0
R/W  
0x0  
This is intended for debugging only and not recommended for normal  
operation.  
7.7.70 Back Channel Control  
7-81. BC_CTRL (Address 0x49)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:6  
RESERVED  
R
0x0  
Reserved.  
Clear BIST CRC error counter.  
0: Disable clear  
1: Enable Clear  
BIST_CRC_ERR_  
CLR  
5
4
3
(R/W)/SC 0x0  
R/W 0x0  
RESERVED  
Reserved.  
Clear CRC error.  
0: Disable clear  
1: Enable clear  
CRC_ERR_CLR (R/W)/SC 0x0  
LINK_DET_  
2:0  
R/W  
0x0  
TX-RX link detect timer val.  
TIMER  
7.7.71 Revision ID  
7-82. REV_MASK_ID (Address 0x50)  
BIT  
7:4  
3:0  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
REVISION_ID  
MASK_ID  
R
R
0x2  
0x0  
Revision ID.  
Mask ID.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7.7.72 Device Status  
7-83. Device STS (Address 0x51)  
DEFAULT DESCRIPTION  
BIT  
FIELD  
TYPE  
Config Checksum Passed.  
This bit is set following initialization if the Configuration data in the eFuse ROM  
had a valid checksum.  
CFG_CKSUM_  
STS  
7
R
0x0  
Power-up initialization complete.  
6
CFG_INIT_DONE  
RESERVED  
R
R
0x0  
This bit is set after Initialization is complete. Configuration from eFuse ROM  
has completed.  
5:0  
0x00  
Reserved.  
7.7.73 General Status  
7-84. GENERAL_STATUS (Address 0x52)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7
RESERVED  
R
R
R
0x0  
0x0  
0x0  
Reserved.  
RX_LOCK_  
DETECT  
Deserializer LOCK status This bit indicates the LOCK status of the  
Deserializer.  
6
5
RESERVED  
Reserved.  
Back Channel Link lost Status changed.  
This bit is set if a change in BC LINK DET lost status has been detected. This  
bit is cleared upon read of CRC ERR CLR register or HS PLL loses lock.  
LINK_LOST_  
FLAG  
4
R
0x0  
BIST Error is detected.  
3
2
BIST_CRC_ERR  
HS_PLL_LOCK  
R
R
0x0  
0x1  
The BIST_ERR_CNT register contain the number of Back Channel BIST  
errors.  
Forward Channel High speed PLL lock flag.  
Back Channel CRC error detected.  
This bit is set when the back channel errors detected when BC LINK DET is  
asserted.  
This bit is cleared upon read of CRC_ERR_CLR register.  
1
0
CRC_ERR  
LINK_DET  
R
R
0x0  
0x1  
Back Channel Link detect.  
This bit is set when BC link is valid.  
7.7.74 GPIO Pin Status  
7-85. GPIO_PIN_STS For Input State Only (Address 0x53)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:4  
RESERVED  
R
0x0  
Reserved.  
GPIO Pin Status.  
This register reads the current values on GPIO pins. GPIO pin statuses are  
only updated when the GPIO is configured as an input.  
Bit 3 reads the GPIO3 pin status.  
3:0  
GPIO_STS  
R
0x0  
Bit 2 reads the GPIO2 pin status.  
Bit 1 reads the GPIO1 pin status.  
Bit 0 reads the GPIO0 pin status.  
7.7.75 BIST Error Count  
7-86. BIST_ERR_CNT (Address 0x54)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
BIST_BC_  
ERRCNT  
7:0  
R
0x00  
CRC error count in BIST mode.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS696  
50  
Submit Document Feedback  
Product Folder Links: TSER953  
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7.7.76 CRC Error Count 1  
7-87. CRC_ERR_CNT1 (Address 0x55)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:0  
CRC_ERR_CNT1 R  
0x00  
CRC Error count (LSB).  
7.7.77 CRC Error Count 2  
7-88. CRC_ERR_CNT2 (Address 0x56)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:0  
CRC_ERR_CNT2 R  
0x00  
CRC Error count (MSB).  
7.7.78 Sensor Status  
7-89. SENSOR_STATUS (Address 0x57)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:6  
RESERVED  
R
0x0  
0x0  
Reserved.  
When set, this bit indicates that Internal Temperature Sensor is above  
SENSE_T_HI limit. This bit is cleared upon read.  
5
4
3
2
1
0
T_SENSOR_HI  
R
R
R
R
R
R
T_SENSOR_  
LOW  
When set, this bit indicates that Internal Temperature Sensor is below  
SENSE_T_LO limit. This bit is cleared upon read.  
0x0  
0x0  
0x0  
0x0  
0x0  
V1_SENSOR_  
HI  
When set, this bit indicates that GPIO1 input is above SENSE_V1_HI limit. This  
bit is cleared upon read.  
V1_SENSOR_  
LOW  
When set, this bit indicates that GPIO1 input is below SENSO_V1_LO limit.  
This bit is cleared upon read.  
V0_SENSOR_  
HI  
When set, this bit indicates that GPIO0 input is above SENSE_V0_HI limit. This  
bit will be cleared upon read.  
V0_SENSOR_  
LOW  
When set, this bit indicates that GPIO0 input is below SENSO_V0_LO limit.  
This bit will be cleared upon read.  
7.7.79 Sensor V0  
7-90. SENSOR_V0 (Address 0x58)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7
RESERVED  
R/W  
0x0  
0x0  
0x0  
0x7  
Reserved.  
VOLTAGE_  
SENSOR_V0_  
MAX  
GPIO0 Voltage sensor max reading when the GPIO0 voltage is above  
SENSE_V0_HI limit. This bit is cleared upon read. 0 indicates alarm has not  
been triggered.  
6:4  
3
RC  
RESERVED  
R/W  
RC  
Reserved.  
VOLTAGE_  
SENSOR_V0_  
MIN  
GPIO0 Voltage sensor min reading when GPIO0 voltage is below  
SENSE_V0_LO limit. This bit is cleared upon read. 7 indicates alarm has not  
been triggered.  
2:0  
7.7.80 Sensor V1  
7-91. SENSOR_V1 (Address 0x59)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7
RESERVED  
R/W  
0x0  
0x0  
0x0  
0x7  
Reserved.  
VOLTAGE_  
SENSOR_V1_  
MAX  
GPIO1 Voltage sensor max reading when the GPIO1 voltage is above  
SENSE_V1_HI limit. This bit is cleared upon read.  
0 indicates alarm has not been triggered.  
6:4  
3
RC  
RESERVED  
R/W  
RC  
Reserved.  
VOLTAGE_  
SENSOR_V1_  
MIN  
GPIO1 Voltage sensor min reading when GPIO1 voltage is below  
SENSE_V1_LO limit. This bit is cleared upon read.  
7 indicates alarm has not been triggered.  
2:0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7.7.81 Sensor T  
7-92. SENSOR_T (Address 0x5A)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7
RESERVED  
R/W  
0x0  
0x0  
0x0  
0x7  
Reserved.  
Internal Temperature sensor maximum reading when temperature is above  
SENSE_T_HI limit. This bit is cleared upon read.  
0 indicates alarm has not been triggered.  
6:4  
3
TEMP_MAX  
RESERVED  
TEMP_MIN  
RC  
R/W  
RC  
Reserved  
Internal Temperature sensor minimum reading when temperature is below  
SENSE_T_LO limit. This bit is cleared upon read.  
2:0  
7 indicates alarm has not been triggered.  
7.7.82 RESERVED Register  
7-93. RESERVED (Address 0x5B)  
BIT  
7:2  
1
FIELD  
TYPE  
DEFAULT DESCRIPTION  
RESERVED  
RESERVED  
RESERVED  
R/W  
RC  
0x00  
0x0  
Reserved.  
Reserved.  
Reserved.  
0
RC  
0x0  
7.7.83 CSI-2 Error Count  
7-94. CSI_ERR_CNT (Address 0x5C)  
DEFAULT DESCRIPTION  
BIT  
FIELD  
TYPE  
CSI-2 Error Counter Register.  
7:0  
CSI_ERR_CNT RC  
0x00  
This register counts the number of CSI-2 packets received with errors since the  
last read of the counter.  
7.7.84 CSI-2 Error Status  
7-95. CSI_ERR_STATUS (Address 0x5D)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:4  
RESERVED  
R
0x0  
0x0  
Reserved.  
LINE_LEN_  
MISMATCH  
3
R/RC  
Indicates Line length less than the received Packet header Word count.  
2
1
0
CHKSUM_ERR R/RC  
ECC_2BIT_ERR R/RC  
ECC_1BIT_ERR R/RC  
0x0  
0x0  
0x0  
Indicates a checksum error detected in the incoming data (uncorrectable).  
Indicates a 2-Bit Ecc error (uncorrectable) in the Packet header.  
Indicates a 1-Bit Ecc error detected in the Packet header.  
7.7.85 CSI-2 Errors Data Lanes 0 and 1  
7-96. CSI_ERR_DLANE01 (Address 0x5E)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7
SOT_ERROR_1  
R
0x0  
0x0  
Lane 1: Single-bit Error in SYNC Sequence - Correctable.  
SOT_SYNC_  
ERROR_1  
6
5
R
R
Lane 1: Multi-bit Error in SYNC Sequence - Uncorrectable.  
Lane 1: Control Error in HS Request Mode.  
CNTRL_ERR_  
HSRQST_1  
0x0  
4
3
RESERVED  
R
R
0x0  
0x0  
Reserved.  
SOT_ERROR_0  
Lane 0: Single-bit Error in SYNC Sequence - Correctable.  
SOT_SYNC_  
ERROR_0  
2
R
0x0  
Lane 0: Multi-bit Error in SYNC Sequence - Uncorrectable.  
Copyright © 2023 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7-96. CSI_ERR_DLANE01 (Address 0x5E) (continued)  
BIT  
1
FIELD  
TYPE  
DEFAULT DESCRIPTION  
CNTRL_ERR_  
HSRQST_0  
R
R
0x0  
0x0  
Lane 0: Control Error in HS Request Mode.  
Reserved.  
0
RESERVED  
7.7.86 CSI-2 Errors Data Lanes 2 and 3  
7-97. CSI_ERR_DLANE23 (Address 0x5F)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7
SOT_ERROR_3  
R
0x0  
0x0  
Lane 3: Single-bit Error in SYNC Sequence - Correctable.  
SOT_SYNC_  
ERROR_3  
6
5
R
R
Lane 3: Multi-bit Error in SYNC Sequence - Uncorrectable.  
Lane 3: Control Error in HS Request Mode.  
CNTRL_ERR_  
HSRQST_3  
0x0  
4
3
RESERVED  
R
R
0x0  
0x0  
Reserved.  
SOT_ERROR_2  
Lane 2: Single-bit Error in SYNC Sequence - Correctable.  
SOT_SYNC_  
ERROR_2  
2
R
0x0  
Lane 2: Multi-bit Error in SYNC Sequence - Uncorrectable.  
CNTRL_ERR_  
HSRQST_2  
1
0
R
R
0x0  
0x0  
Lane 2: Control Error in HS Request Mode.  
Reserved.  
RESERVED  
7.7.87 CSI-2 Errors Clock Lane  
7-98. CSI_ERR_CLK_LANE (Address 0x60)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:2  
RESERVED  
R
0x00  
Reserved.  
CNTRL_ERR_  
HSRQST_CK0  
1
0
R
R
0x0  
0x0  
Clk Lane: Control Error in HS Request Mode.  
Reserved.  
RESERVED  
7.7.88 CSI-2 Packet Header Data  
7-99. CSI_PKT_HDR_VC_ID (Address 0x61)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
LONG_PKT_  
VCHNL_ID  
7:6  
R
0x0  
Virtual Channel ID from CSI-2 Packet header.  
Data ID from CSI-2 Packet header.  
LONG_PKT_  
DATA_ID  
5:0  
R
0x00  
7.7.89 Packet Header Word Count 0  
7-100. PKT_HDR_WC_LSB (Address 0x62)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
LONG_PKT_  
WRD_CNT_  
LSB  
7:0  
R
0x00  
Payload count lower byte from CSI-2 Packet header.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7.7.90 Packet Header Word Count 1  
7-101. PKT_HDR_WC_MSB (Address 0x63)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
LONG_PKT_W  
RD_CNT_  
MSB  
7:0  
R
0x00 Payload count upper byte from CSI-2 Packet header.  
7.7.91 CSI-2 ECC  
7-102. CSI_ECC (Address 0x64)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
LINE_  
7
LENGTH_  
CHANGE  
R
0x0  
Indicates Line length change detected per frame.  
6
RESERVED  
CSI-2_ECC  
R
R
0x0  
Reserved.  
5:0  
0x00  
CSI-2 ECC byte from packet header.  
7.7.92 RESERVED Register  
7-103. RESERVED (Address 0x65-67)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:0  
RESERVED  
R
0x00 Reserved.  
7.7.93 RESERVED Register  
7-104. RESERVED (Address 0x68-6F)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:0  
RESERVED  
0x00 Reserved.  
7.7.94 RESERVED Register  
7-105. RESERVED (Address 0x70-0x71)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:0  
RESERVED  
R/W  
0x00 Reserved.  
7.7.95 RESERVED Register  
7-106. RESERVED (Address 0x72)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:0  
RESERVED  
R/W  
0x25 Reserved.  
7.7.96 RESERVED Register  
7-107. RESERVED (Address 0x73)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:0  
RESERVED  
R/W  
0x00 Reserved.  
7.7.97 RESERVED Register  
7-108. RESERVED (Address 0x74)  
BIT  
7:4  
3:0  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
RESERVED  
RESERVED  
0x0  
0x0  
Reserved.  
Reserved.  
R/W  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS696  
54  
Submit Document Feedback  
Product Folder Links: TSER953  
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7.7.98 RESERVED Register  
7-109. RESERVED (Address 0x75)  
BIT  
7:1  
0
FIELD  
TYPE  
DEFAULT DESCRIPTION  
RESERVED  
RESERVED  
R/W  
0x00  
0x0  
Reserved.  
Reserved.  
7.7.99 RESERVED Register  
7-110. RESERVED (Address 0x76)  
BIT  
7
FIELD  
TYPE  
DEFAULT DESCRIPTION  
RESERVED  
RESERVED  
RESERVED  
R/W  
R
0x0  
0x0  
0x0  
Reserved.  
Reserved.  
Reserved.  
6:4  
3:0  
R/W  
7.7.100 RESERVED Register  
7-111. RESERVED (Address 0x77)  
BIT  
7
FIELD  
TYPE  
DEFAULT DESCRIPTION  
RESERVED  
RESERVED  
R
0x0  
Reserved.  
Reserved.  
6:0  
R/W  
0x00  
7.7.101 RESERVED Register  
7-112. RESERVED (Address 0x78)  
BIT  
7
FIELD  
TYPE  
DEFAULT DESCRIPTION  
RESERVED  
RESERVED  
RESERVED  
R
0x0  
Reserved.  
Reserved.  
Reserved.  
6
SC  
R/W  
0x0  
5:0  
0x00  
7.7.102 RESERVED Register  
7-113. RESERVED (Address 0x79)  
BIT  
7:5  
4:0  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
RESERVED  
RESERVED  
R/W  
0x0  
Reserved.  
Reserved.  
R/RC  
0x00  
7.7.103 RESERVED Register  
7-114. RESERVED (Address 0x7A)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:0  
RESERVED  
R/W  
0x04 Reserved.  
7.7.104 RESERVED Register  
7-115. RESERVED (Address 0x7B-0x85)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:0  
RESERVED  
R/W  
0x00 Reserved.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7.7.105 RESERVED Register  
7-116. RESERVED (Address 0x86)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:0  
RESERVED  
R/W  
0x90 Reserved.  
7.7.106 RESERVED Register  
7-117. RESERVED (Address 0x87-0x88)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:0  
RESERVED  
R/W  
0x00 Reserved.  
7.7.107 RESERVED Register  
7-118. RESERVED (Address 0x89-0x8B)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:0  
RESERVED  
R
0x00 Reserved.  
7.7.108 RESERVED Register  
7-119. RESERVED (Address 0x8C-0x8F)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:0  
RESERVED  
R/W  
0x00 Reserved.  
7.7.109 RESERVED Register  
7-120. RESERVED (Address 0x90)  
BIT  
7
FIELD  
TYPE  
DEFAULT DESCRIPTION  
RESERVED  
RESERVED  
RESERVED  
0x0  
Reserved.  
Reserved.  
Reserved.  
6
R/W  
R/W  
0x0  
5:0  
0x32  
7.7.110 RESERVED Register  
7-121. RESERVED (Address 0x91)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:0  
RESERVED  
R/W  
0xE2 Reserved.  
7.7.111 RESERVED Register  
7-122. RESERVED (Address 0x92)  
BIT  
7
FIELD  
TYPE  
DEFAULT DESCRIPTION  
RESERVED  
RESERVED  
R
0x0  
Reserved.  
Reserved.  
6:0  
R/W  
0x64  
7.7.112 RESERVED Register  
7-123. RESERVED (Address 0x93)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:0  
RESERVED  
R/W  
0x01 Reserved.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS696  
56  
Submit Document Feedback  
Product Folder Links: TSER953  
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7.7.113 RESERVED Register  
7-124. RESERVED (Address 0x94-0x99)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:0  
RESERVED  
R/W  
0x00 Reserved.  
7.7.114 RESERVED Register  
7-125. RESERVED (Address 0x9A-0x9E)  
BIT  
7:6  
5:0  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
RESERVED  
RESERVED  
R
0x0  
Reserved.  
Reserved.  
R/W  
0x00  
7.7.115 RESERVED Register  
7-126. RESERVED (Address 0x9F)  
BIT  
7:5  
4:0  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
RESERVED  
RESERVED  
R
0x0  
Reserved.  
Reserved.  
R/W  
0x10  
7.7.116 RESERVED Register  
7-127. RESERVED (Address 0xA0)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:0  
RESERVED  
0x0 Reserved.  
7.7.117 RESERVED Register  
7-128. RESERVED (Address 0xA1-0xA4)  
BIT  
7:5  
4:0  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
RESERVED  
RESERVED  
R
0x0  
Reserved.  
Reserved.  
R/W  
0x00  
7.7.118 RESERVED Register  
7-129. RESERVED (Address 0xA5)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:0  
RESERVED  
R/W  
0x10 Reserved.  
7.7.119 RESERVED Register  
7-130. RESERVED (Address 0xA6)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:0  
RESERVED  
R/W  
0x42 Reserved.  
7.7.120 RESERVED Register  
7-131. RESERVED (Address 0xA7-0xA9)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:0  
RESERVED  
R/W  
0x10 Reserved.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7.7.121 RESERVED Register  
7-132. RESERVED (Address 0xAA-0xAB)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:0  
RESERVED  
R/W  
0x00 Reserved.  
7.7.122 RESERVED Register  
7-133. RESERVED (Address 0xAC-0xAF)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:0  
RESERVED  
0x00 Reserved.  
7.7.123 IND_ACC_CTL  
7-134. IND_ACC_CTL (Address 0xB0)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:5  
RESERVED  
R
0x0  
Reserved.  
Indirect Register Select:  
Selects target for register access  
000 : PATGEN  
001 : V3LINK TX Registers  
010: DIE ID Data  
4:2  
1
IA_SEL  
R/W  
0x0  
0x0  
0x0  
Indirect Access Auto Increment:  
Enables auto-increment mode. Upon completion of a read or write, the register  
address is automatically incremented by 1.  
IA_AUTO_INC R/W  
Indirect Access Read:  
Setting this allows generation of a read strobe to the selected register block upon  
setting of the IND_ACC_ADDR register. In auto-increment mode, read strobes are  
also asserted following a read of the IND_ACC_DATA register. This function is  
only required for blocks that need to pre-fetch register data.  
0
IA_READ  
R/W  
7.7.124 IND_ACC_ADDR  
7-135. IND_ACC_ADDR (Address 0xB1)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
IND_ACC_  
ADDR  
Indirect Access Register Offset:  
0x00  
7:0  
R/W  
This register contains the 8-bit register offset for the indirect access.  
7.7.125 IND_ACC_DATA  
7-136. IND_ACC_DATA (Address 0xB2)  
DEFAULT DESCRIPTION  
BIT  
FIELD  
TYPE  
Indirect Access Register Data:  
IND_ACC_  
DATA  
Writing this register causes an indirect write of the IND_ACC_DATA value to the  
selected analog block register. Reading this register returns the value of the  
selected analog block register.  
7:0  
R/W  
0x00  
7.7.126 RESERVED Register  
7-137. RESERVED (Address 0xB3-0xEF)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:0  
RESERVED  
R
0x00 Reserved.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS696  
58  
Submit Document Feedback  
Product Folder Links: TSER953  
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7.7.127 V3LINK_TX_ID0  
7-138. V3LINK_TX_ID0 (Address 0xF0)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
V3LINK_TX_  
ID0  
7:0  
R
0x5F  
V3LINK_TX_ID0: First byte ID code: _.  
7.7.128 V3LINK_TX_ID1  
7-139. V3LINK_TX_ID1 (Address 0xF1)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
V3LINK_TX_  
ID1  
7:0  
R
0x55  
V3LINK_TX_ID1: 2nd byte of ID code: U.  
7.7.129 V3LINK_TX_ID2  
7-140. V3LINK_TX_ID2 (Address 0xF2)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
V3LINK_TX_  
ID2  
7:0  
R
0x42  
V3LINK_TX_ID2: 3rd byte of ID code: B.  
7.7.130 V3LINK_TX_ID3  
7-141. V3LINK_TX_ID3 (Address 0xF3)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
V3LINK_TX_  
ID3  
7:0  
R
0x39  
V3LINK_TX_ID3: 4th byte of ID code: 9.  
7.7.131 V3LINK_TX_ID4  
7-142. V3LINK_TX_ID4 (Address 0xF4)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
V3LINK_TX_  
ID4  
7:0  
R
0x35  
V3LINK_TX_ID4: 5th byte of ID code: '5'.  
7.7.132 V3LINK_TX_ID5  
7-143. V3LINK_TX_ID5 (Address 0xF5)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
V3LINK_TX_  
ID5  
7:0  
R
0x33  
V3LINK_TX_ID5: 6th byte of ID code: '3'.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7.7.133 Indirect Access Registers  
Several functional blocks include register sets contained in the Indirect Access map (7-144); that is, Pattern  
Generator, and Analog controls. Register access is provided through an indirect access mechanism through the  
Indirect Access registers (IND_ACC_CTL, IND_ACC_ADDR, and IND_ACC_DATA). These registers are located  
at offsets 0xB0-0xB2 in the main register space.  
The indirect address mechanism involves setting the control register to select the desired block, setting the  
register offset address, and reading or writing the data register. In addition, an auto-increment function is  
provided in the control register to automatically increment the offset address following each read or write of the  
data register.  
For writes, the process is as follows:  
1. Write to the IND_ACC_CTL register to select the desired register block  
2. Write to the IND_ACC_ADDR register to set the register offset  
3. Write the data value to the IND_ACC_DATA register  
If auto-increment is set in the IND_ACC_CTL register, repeating step 3 writes additional data bytes to  
subsequent register offset locations.  
For reads, the process is as follows:  
1. Write to the IND_ACC_CTL register to select the desired register block  
2. Write to the IND_ACC_ADDR register to set the register offset  
3. Read from the IND_ACC_DATA register  
If auto-increment is set in the IND_ACC_CTL register, repeating step 3 reads additional data bytes from  
subsequent register offset locations.  
7-144. Indirect Register Map Description  
IA SELECT  
0xB0[4:2]  
ADDRESS  
RANGE  
PAGE/BLOCK  
INDIRECT REGISTERS  
Digital Page 0 Indirect Registers  
Indirect Registers: Die ID Data  
DESCRIPTION  
Pattern Gen Registers.  
000  
010  
0
2
0x01 - 0x1F  
0x00 - 0x040  
Hold 16 bytes that correspond to Die  
ID data.  
7.7.133.1 Reserved  
7-145. Reserved (Address 0x00)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
R
0x00  
Reserved.  
7.7.133.2 PGEN_CTL  
7-146. PGEN_CTL (Address 0x01)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:1  
RESERVED  
R/W  
0x0  
Reserved.  
Pattern Generator Enable.  
1: Enable Pattern Generator  
0: Disable Pattern Generator  
PGEN_  
ENABLE  
0
R/W  
0x0  
7.7.133.3 PGEN_CFG  
7-147. PGEN_CFG (Address 0x02)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Fixed Pattern Enable.  
PGEN_  
FIXED_EN  
Setting this bit enables Fixed Color Patterns.  
0 : Send Color Bar Pattern  
7
R/W  
0x0  
1 : Send Fixed Color Pattern  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS696  
60  
Submit Document Feedback  
Product Folder Links: TSER953  
 
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7-147. PGEN_CFG (Address 0x02) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
6
RESERVED  
R/W  
0x0  
Reserved.  
Number of Color Bars.  
00 : 1 Color Bar  
01 : 2 Color Bars  
10 : 4 Color Bars  
11 : 8 Color Bars  
NUM_  
CBARS  
5:4  
3:0  
R/W  
0x3  
0x3  
Block Size.  
BLOCK_SIZE R/W  
For Fixed Color Patterns, this field controls the size of the fixed color field in bytes.  
Allowed values are 1 to 15.  
7.7.133.4 PGEN_CSI_DI  
7-148. PGEN_CSI_DI (Address 0x03)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI-2 Virtual Channel Identifier.  
This field controls the value sent in the CSI-2 packet for the Virtual Channel  
Identifier.  
PGEN_CSI_V  
C
7:6  
R/W  
0x0  
CSI-2 Data Type.  
PGEN_CSI_D  
T
5:0  
R/W  
0x24  
This field controls the value sent in the CSI-2 packet for the Data Type. The default  
value (0x24) indicates RGB888.  
7.7.133.5 PGEN_LINE_SIZE1  
7-149. PGEN_LINE_SIZE1 (Address 0x04)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
PGEN_LINE_  
SIZE[15:8]  
Most significant byte of the Pattern Generator line size. This is the active line length  
in bytes. Default setting is for 1920 bytes for a 640-pixel line width.  
7:0  
R/W  
0x07  
7.7.133.6 PGEN_LINE_SIZE0  
7-150. PGEN_LINE_SIZE0 (Address 0x05)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
PGEN_LINE_  
SIZE[7:0]  
Least significant byte of the Pattern Generator line size. This is the active line length  
in bytes. Default setting is for 1920 bytes for a 640-pixel line width.  
7:0  
R/W  
0x80  
7.7.133.7 PGEN_BAR_SIZE1  
7-151. PGEN_BAR_SIZE1 (Address 0x06)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Most significant byte of the Pattern Generator color bar size. This is the active  
length in bytes for the color bars. This value is used for all except the last color bar.  
The last color bar is determined by the remaining bytes as defined by the  
PGEN_LINE_SIZE value.  
PGEN_BAR_  
SIZE[15:8]  
7:0  
R/W  
0x00  
7.7.133.8 PGEN_BAR_SIZE0  
7-152. PGEN_BAR_SIZE0 (Address 0x07)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Least significant byte of the Pattern Generator color bar size. This is the active  
length in bytes for the color bars. This value is used for all except the last color bar.  
The last color bar is determined by the remaining bytes as defined by the  
PGEN_LINE_SIZE value.  
PGEN_BAR_  
SIZE[7:0]  
7:0  
R/W  
0xF0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7.7.133.9 PGEN_ACT_LPF1  
7-153. PGEN_ACT_LPF1 (Address 0x08)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Active Lines Per Frame.  
Most significant byte of the number of active lines per frame. Default setting is for  
480 active lines per frame.  
PGEN_ACT_  
LPF[15:8]  
7:0  
R/W  
0x01  
7.7.133.10 PGEN_ACT_LPF0  
7-154. PGEN_ACT_LPF0 (Address 0x09)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Active Lines Per Frame.  
Least significant byte of the number of active lines per frame. Default setting is for  
480 active lines per frame.  
PGEN_ACT_  
LPF[7:0]  
7:0  
R/W  
0xE0  
7.7.133.11 PGEN_TOT_LPF1  
7-155. PGEN_TOT_LPF1 (Address 0x0A)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Total Lines Per Frame.  
Most significant byte of the number of total lines per frame including vertical  
blanking.  
PGEN_TOT_  
LPF[15:8]  
7:0  
R/W  
0x02  
7.7.133.12 PGEN_TOT_LPF0  
7-156. PGEN_TOT_LPF0 (Address 0x0B)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Total Lines Per Frame.  
Least significant byte of the number of total lines per frame including vertical  
blanking.  
PGEN_TOT_  
LPF[7:0]  
7:0  
R/W  
0x0D  
7.7.133.13 PGEN_LINE_PD1  
7-157. PGEN_LINE_PD1 (Address 0x0C)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Line Period.  
PGEN_LINE_  
PD[15:8]  
7:0  
R/W  
0x0C  
Most significant byte of the line period in 10-ns units. The default setting for the line  
period registers sets a line period of 31.75 microseconds.  
7.7.133.14 PGEN_LINE_PD0  
7-158. PGEN_LINE_PD0 (Address 0x0D)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Line Period.  
PGEN_LINE_  
PD[7:0]  
7:0  
R/W  
0x67  
Least significant byte of the line period in 10-ns units. The default setting for the line  
period registers sets a line period of 31.75 microseconds.  
7.7.133.15 PGEN_VBP  
7-159. PGEN_VBP (Address 0x0E)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Vertical Back Porch.  
This value provides the vertical back porch portion of the vertical blanking interval.  
This value provides the number of blank lines between the FrameStart packet and  
the first video data packet.  
7:0  
PGEN_VBP  
R/W  
0x21  
Copyright © 2023 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7.7.133.16 PGEN_VFP  
7-160. PGEN_VFP (Address 0x0F)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Vertical Front Porch.  
This value provides the vertical front porch portion of the vertical blanking interval.  
This value provides the number of blank lines between the last video line and the  
FrameEnd packet.  
7:0  
PGEN_VFP  
R/W  
0x0A  
7.7.133.17 PGEN_COLOR0  
7-161. PGEN_COLOR0 (Address 0x10)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 0.  
PGEN_  
COLOR0  
For Reference Color Bar Patterns, this register controls the byte data value sent  
during color bar 0. For Fixed Color Patterns, this register controls the first byte of the  
fixed color pattern.  
7:0  
R/W  
0xAA  
7.7.133.18 PGEN_COLOR1  
7-162. PGEN_COLOR1 (Address 0x11)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 1.  
PGEN_  
COLOR1  
For Reference Color Bar Patterns, this register controls the byte data value sent  
during color bar 1. For Fixed Color Patterns, this register controls the second byte of  
the fixed color pattern.  
7:0  
R/W  
0x33  
7.7.133.19 PGEN_COLOR2  
7-163. PGEN_COLOR2 (Address 0x12)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 2.  
PGEN_  
COLOR2  
For Reference Color Bar Patterns, this register controls the byte data value sent  
during color bar 2. For Fixed Color Patterns, this register controls the third byte of  
the fixed color pattern.  
7:0  
R/W  
0xF0  
7.7.133.20 PGEN_COLOR3  
7-164. PGEN_COLOR3 (Address 0x13)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 3.  
PGEN_  
COLOR3  
For Reference Color Bar Patterns, this register controls the byte data value sent  
during color bar 3. For Fixed Color Patterns, this register controls the fourth byte of  
the fixed color pattern.  
7:0  
R/W  
0x7F  
7.7.133.21 PGEN_COLOR4  
7-165. PGEN_COLOR4 (Address 0x14)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 4.  
PGEN_  
COLOR4  
For Reference Color Bar Patterns, this register controls the byte data value sent  
during color bar 4. For Fixed Color Patterns, this register controls the fifth byte of the  
fixed color pattern.  
7:0  
R/W  
0x55  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7.7.133.22 PGEN_COLOR5  
7-166. PGEN_COLOR5 (Address 0x15)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 5.  
PGEN_  
COLOR5  
For Reference Color Bar Patterns, this register controls the byte data value sent  
during color bar 5. For Fixed Color Patterns, this register controls the sixth byte of  
the fixed color pattern.  
7:0  
R/W  
0xCC  
7.7.133.23 PGEN_COLOR6  
7-167. PGEN_COLOR6 (Address 0x16)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 6.  
PGEN_  
COLOR6  
For Reference Color Bar Patterns, this register controls the byte data value sent  
during color bar 6. For Fixed Color Patterns, this register controls the seventh byte  
of the fixed color pattern.  
7:0  
R/W  
0x0F  
7.7.133.24 PGEN_COLOR7  
7-168. PGEN_COLOR7 (Address 0x17)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 7.  
PGEN_  
COLOR7  
For Reference Color Bar Patterns, this register controls the byte data value sent  
during color bar 7. For Fixed Color Patterns, this register controls the eighth byte of  
the fixed color pattern.  
7:0  
R/W  
0x80  
7.7.133.25 PGEN_COLOR8  
7-169. PGEN_COLOR8 (Address 0x18)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 8.  
For Fixed Color Patterns, this register controls the ninth byte of the fixed color  
pattern.  
PGEN_  
COLOR8  
7:0  
R/W  
0x00  
7.7.133.26 PGEN_COLOR9  
7-170. PGEN_COLOR9 (Address 0x19)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 9.  
For Fixed Color Patterns, this register controls the tenth byte of the fixed color  
pattern.  
PGEN_  
COLOR9  
7:0  
R/W  
0x00  
7.7.133.27 PGEN_COLOR10  
7-171. PGEN_COLOR10 (Address 0x1A)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 10.  
For Fixed Color Patterns, this register controls the eleventh byte of the fixed color  
pattern.  
PGEN_  
COLOR10  
7:0  
R/W  
0x00  
Copyright © 2023 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
7.7.133.28 PGEN_COLOR11  
7-172. PGEN_COLOR11 (Address 0x1B)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 11.  
For Fixed Color Patterns, this register controls the twelfth byte of the fixed color  
pattern.  
PGEN_  
COLOR11  
7:0  
R/W  
0x00  
7.7.133.29 PGEN_COLOR12  
7-173. PGEN_COLOR12 (Address 0x1C)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 12.  
For Fixed Color Patterns, this register controls the thirteenth byte of the fixed color  
pattern.  
PGEN_  
COLOR12  
7:0  
R/W  
0x00  
7.7.133.30 PGEN_COLOR13  
7-174. PGEN_COLOR13 (Address 0x1D)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 13.  
For Fixed Color Patterns, this register controls the fourteenth byte of the fixed color  
pattern.  
PGEN_  
COLOR13  
7:0  
R/W  
0x00  
7.7.133.31 PGEN_COLOR14  
7-175. PGEN_COLOR14 (Address 0x1E)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 14.  
For Fixed Color Patterns, this register controls the fifteenth byte of the fixed color  
pattern.  
PGEN_  
COLOR14  
7:0  
R/W  
0x00  
7.7.133.32 PGEN_COLOR15  
7-176. PGEN_COLOR15 (Address 0x1F)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 15.  
For Fixed Color Patterns, this register controls the sixteenth byte of the fixed color  
pattern.  
PGEN_  
COLOR15  
7:0  
R/W  
0x00  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The link between the TSER953 and the companion deserializer has two distinct data paths. The first path is a  
forward channel which is nominally running at up to 4.16 Gbps and is encoded such that the channel occupies a  
bandwidth from 20 MHz to 2.1 GHz. The second path is a back channel from the deserializer to the serializer  
which occupies a frequency range nominally from 10 MHz to 50 MHz.  
For these two communications links to operate properly, the circuit between the serializer and the deserializer  
must present a characteristic impedance of 50 . Deviations from this 50-characteristic will lead to signal  
reflections either at the serializer or deserializer, which will result in bit errors.  
8.1.1 Power-over-Coax  
The TSER953 is designed to support the Power-over-Coax (PoC) method of powering remote sensor systems.  
With this method, the power is delivered over the same medium (a coaxial cable) used for high-speed digital  
video data, bidirectional control, and diagnostics data transmission. This method uses passive networks or filters  
that isolate the transmission line from the loading of the DC-DC regulator circuits and their connecting power  
traces on both sides of the link as shown in 8-1.  
Sensor Module  
Control Unit  
DC-DC  
Power  
Regulators  
Source  
PoC  
PoC  
Coaxial Cable  
POWER  
CAC1  
CAC1  
V3Link  
Serializer  
V3Link  
Deserializer  
Processor  
SoC  
Image Sensor  
V3Link  
Braided  
Shield  
CAC2  
CAC2  
RTERM  
RTERM  
8-1. Power-over-Coax (PoC) System Diagram  
The PoC networks' impedance of 1 kΩ over a specific frequency band is recommended to isolate the  
transmission line from the loading of the regulator circuits. Higher PoC network impedance will contribute to  
favorable insertion loss and return loss characteristics in the high-speed channel. The lower limit of the  
frequency band is defined as ½ of the frequency of the bidirectional control channel, fBCC. The upper limit of the  
frequency band is the frequency of the forward high-speed channel, fFC. However, the main criteria that need to  
be met in the total high-speed channel, which consists of a serializer PCB, a deserializer PCB, and a cable, are  
the insertion loss and return loss limits defined in the Total Channel Requirements(1) over the entire system,  
while the system is under maximum current load and extreme temperature conditions (2)  
.
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS696  
66  
Submit Document Feedback  
Product Folder Links: TSER953  
 
 
 
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
1. Contact TI for more information on the required Channel Specifications defined for each individual V3Link device.  
2. The PoC network and any components along the high-speed trace on the PCB will contribute to the PCB loss budget. TI has  
recommendations for the loss budget allocation for each individual PCB and cable component in the overall high-speed channel, but  
the loss limits defined for the total channel in the Channel Specifications must be met.  
8-2 shows an example PoC network suitable for a "4G" V3Link consisting of TSER953 and TDES954 or  
TDES960 pair with the bidirectional channel operating at 50 Mbps (½ fBCC = 25 MHz) and the forward channel  
operating at 4.16 Gbps (fFC 2.1 GHz). Other PoC networks are possible and may be different on the serializer  
and the deserializer boards as long as the printed-circuit board channel specifications are met.  
VPoC  
R1  
4.02 kW  
L1  
C1  
C2  
10 mH  
0.1 mF  
> 10 mF  
FB3  
FB2  
FB1  
CAC1  
DOUT+  
DOUT-  
33 nF to 100 nF  
CAC2  
R2  
49.9 W  
15 nF to 47 nF  
8-2. Typical PoC Network for a "4G" V3Link  
8-1 lists essential components for this particular PoC network. Note that the impedance characteristic of the  
ferrite beads deviates with the bias current. Therefore, keeping the current going through the network below 150  
mA is recommended.  
8-1. Suggested Components for a "4G" V3Link PoC Network  
COUNT REF DES  
DESCRIPTION  
PART NUMBER  
LQH3NPN100MJR  
LQH3NPZ100MJR  
MFR  
Inductor, 10 µH, 0.288 Ωmaximum, 530 mA minimum (Isat, Itemp)  
30 MHz SRF minimum, 3 mm × 3 mm, General-Purpose  
Murata  
Murata  
Inductor, 10 µH, 0.288 Ωmaximum, 530 mA minimum (Isat, Itemp)  
30 MHz SRF minimum, 3 mm × 3 mm, AEC-Q200  
Inductor, 10 µH, 0.360 Ωmaximum, 450 mA minimum (Isat, Itemp)  
30 MHz SRF minimum, 3.2 mm × 2.5 mm, AEC-Q200  
1
L1  
NLCV32T-100K-EFD  
TYS3010100M-10  
TYS3015100M-10  
BLM18HE152SN1  
BLM18HE152SZ1  
TDK  
Laird  
Inductor, 10 µH, 0.400 Ωtypical, 550 mA minimum (Isat, Itemp)  
39 MHz SRF typical, 3 mm × 3 mm, AEC-Q200  
Inductor, 10 µH, 0.325 Ωmaximum, 725 mA minimum (Isat, Itemp)  
41 MHz SRF typical, 3 mm × 3 mm, AEC-Q200  
Laird  
Ferrite Bead, 1.5 kΩat 1 GHz, 0.5 Ωmaximum at DC  
500 mA at 85°C, 0603 SMD , General-Purpose  
Murata  
Murata  
3
FB1-FB3  
Ferrite Bead, 1.5 kΩat 1 GHz, 0.5 Ωmaximum at DC  
500 mA at 85°C, 0603 SMD , AEC-Q200  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
 
 
 
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
In addition to the selection of PoC network components, their placement and layout play a critical role as well.  
Place the smallest component, typically a ferrite bead or a chip inductor, as close to the connector as  
possible. Route the high-speed trace through one of its pads to avoid stubs.  
Use the smallest component pads as allowed by manufacturer's design rules. Add anti-pads in the inner  
planes below the component pads to minimize impedance drop.  
Consult with the connector manufacturer for optimized connector footprint. If the connector is mounted on the  
same side as the IC, minimize the impact of the through-hole connector stubs by routing the high-speed  
signal traces on the opposite side of the connector mounting side.  
Use coupled 100-Ωdifferential signal traces from the device pins to the AC-coupling caps. Use 50-Ωsingle-  
ended traces from the AC-coupling capacitors to the connector.  
Terminate the inverting signal traces close to the connectors with standard 49.9-Ωresistors.  
The suggested characteristics for single-ended PCB traces (microstrips or striplines) for serializer or deserializer  
boards are listed in 8-2. The effects of the PoC networks must be accounted for when testing the traces for  
compliance to the suggested limits.  
8-2. Suggested Characteristics for Single-Ended PCB Traces With Attached PoC Networks  
PARAMETER  
MIN  
TYP  
MAX UNIT  
Single-ended PCB trace length from the  
device pin to the connector pin  
Ltrace  
5
cm  
Single-ended PCB trace characteristic  
impedance  
Ztrace  
Zcon  
45  
40  
50  
50  
55  
60  
Ω
Ω
Connector (mounted) characteristic  
impedance  
The VPOC fluctuations on the serializer side, caused by the transient current draw of the sensor, the DC  
resistance of cables, and PoC components, must be kept to a minimum as well. Increasing the VPOC voltage and  
adding extra decoupling capacitance (> 10 µF) help reduce the amplitude and slew rate of the VPOC fluctuations.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS696  
68  
Submit Document Feedback  
Product Folder Links: TSER953  
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
8.2 Typical Applications  
TSER953  
1.8V  
VDDD_CAP  
VDDD  
VDDDRV  
VDDPLL  
10µF  
10µF  
10µF  
0.1µF  
0.1µF  
0.1µF  
0.01µF  
0.01µF  
0.01µF  
0.01µF  
1µF  
1µF  
1µF  
FB1  
FB2  
FB3  
VDDDRV_CAP  
VDDPLL_CAP  
0.01µF  
0.01µF  
0.022µF  
External Clock  
Input for Non-  
Sync Mode  
LPF1  
LPF2  
CLKIN  
CSI_CLKN  
CSI_CLKP  
CSI_D0N  
CSI_D0P  
CSI_D1N  
CSI_D1P  
CSI_D2N  
CSI_D2P  
CSI_D3N  
CSI_D3P  
0.1µF  
CSI-2  
Inputs  
C1  
C2  
Serial  
V3Link  
Interface  
DOUT+  
DOUT-  
49.9Ω  
1.8V  
Optional  
HW Control  
1.8V  
R1  
1.8V  
MODE  
R2  
R3  
CLK_OUT / IDX  
10kΩ  
>10µF  
GPIO  
R4  
SW  
Control  
PDB  
GPIO[0]  
GPIO[1]  
GPIO[2]  
GPIO[3]  
Control  
Interface  
NOTE:  
C1, C2 (Design Parameters Table)  
1.8V or  
3.3V  
4.7kΩ  
4.7kΩ  
R1, R2 (see MODE Setting Table)  
R3, R4 (see IDX Setting Table)  
I2C  
Bus  
Interface  
I2C_SCL  
I2C_SDA  
RES1  
RES0  
DAP (GND)  
FB1-FB3: Z = 1 k(@ 100 MHz)  
DCR < 500 mΩ  
Copyright © 2021, Texas Instruments Incorporated  
8-3. Typical Connection Diagram Coaxial  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
 
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
TSER953  
1.8V  
VDDD_CAP  
VDDD  
VDDDRV  
VDDPLL  
10µF  
10µF  
10µF  
0.1µF  
0.1µF  
0.1µF  
0.01µF  
0.01µF  
0.01µF  
0.01µF  
0.01µF  
1µF  
1µF  
1µF  
FB1  
FB2  
FB3  
VDDDRV_CAP  
VDDPLL_CAP  
0.01µF  
0.022µF  
External Clock  
Input for Non-  
Sync Mode  
LPF1  
LPF2  
CLKIN  
CSI_CLKN  
CSI_CLKP  
CSI_D0N  
CSI_D0P  
CSI_D1N  
CSI_D1P  
CSI_D2N  
CSI_D2P  
CSI_D3N  
CSI_D3P  
0.1µF  
CSI-2  
Inputs  
C1  
Serial  
V3Link  
Interface  
DOUT+  
DOUT-  
C2  
1.8V  
Optional  
HW Control  
1.8V  
R1  
1.8V  
MODE  
R2  
R3  
CLK_OUT / IDX  
10kΩ  
>10µF  
GPIO  
R4  
SW  
Control  
PDB  
GPIO[0]  
GPIO[1]  
GPIO[2]  
GPIO[3]  
Control  
Interface  
NOTE:  
C1, C2 (Design Parameters Table)  
1.8V or  
3.3V  
4.7kΩ  
4.7kΩ  
R1, R2 (see MODE Setting Table)  
R3, R4 (see IDX Setting Table)  
I2C  
Bus  
Interface  
I2C_SCL  
I2C_SDA  
RES1  
RES0  
DAP (GND)  
FB1-FB3: Z = 1 k(@ 100 MHz)  
DCR < 500 mΩ  
Copyright © 2021, Texas Instruments Incorporated  
8-4. Typical Connection Diagram STP  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS696  
70  
Submit Document Feedback  
Product Folder Links: TSER953  
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
8.2.1 Design Requirements  
For a typical design application, use the parameters listed in 8-3.  
8-3. Design Parameters  
DESIGN PARAMETER  
PIN(S)  
VALUE  
VDDD, VDDDRV,  
VDDPLL  
V(VDD)  
1.8 V  
AC-Coupling Capacitor for  
Synchronous Modes, Coaxial  
Connection  
DOUT+  
33nF 100 nF (50 V / X7R / 0402)  
15nF 47 nF (50 V / X7R / 0402)  
DOUT–  
AC-Coupling Capacitor for  
Synchronous Modes, STP  
Connection  
DOUT+, DOUT–  
33 100 nF (50 V / X7R / 0402)  
AC-Coupling Capacitor for Non-  
Synchronous and DVP Compatible  
Modes, Coaxial Connection  
DOUT+  
100 nF (50 V / X7R / 0402)  
47 nF (50 V / X7R / 0402)  
DOUT–  
AC-Coupling Capacitor for Non-  
Synchronous and DVP Compatible  
Modes, STP Connection  
100 nF (50 V / X7R / 0402)  
DOUT+, DOUT–  
The SER/DES only supports AC-coupled interconnects through an integrated DC-balanced decoding scheme.  
External AC-coupling capacitors must be placed in series in the V3Link signal path as shown in 8-5 and 图  
8-6. For applications using single-ended 50-Ωcoaxial cable, terminate the unused data pins (DOUT+, DOUT)  
with an AC-coupling capacitor and a 50-Ωresistor.  
D
+
OUT  
R
IN  
+
SER  
DES  
R
IN  
-
D
-
OUT  
50Q  
50Q  
8-5. AC-Coupled Connection (Coaxial)  
D
+
OUT  
R
IN  
+
SER  
DES  
R
IN  
-
D
-
OUT  
8-6. AC-Coupled Connection (STP)  
For high-speed V3Link transmissions, use the smallest available package for the AC-coupling capacitor to help  
minimize degradation of signal quality due to package parasitics.  
8.2.2 Detailed Design Procedure  
8.2 shows a typical application circuit of the TSER953. The next sections highlight recommendations for the  
critical device pins.  
8.2.2.1 CSI-2 Interface  
The CSI-2 input port on the TSER953 is compliant with the MIPI D-PHY v1.2 and CSI-2 v1.3 specifications. The  
CSI-2 interface consists of a clock and an option of one, two, or four data lanes. The clock and each of the data  
lanes are differential lines. The TSER953 CSI-2 input must be DC-coupled to a compatible CSI-2 transmitter.  
Follow the PCB layout guidelines given in 10.1.1.  
8.2.2.2 V3Link Input / Output  
The TSER953 serial data out signal operates at different data rates depending upon the mode in which the  
device is operating. In synchronous mode, where the reference clock is provided by the deserializer, the serial  
data rate is up to 4.16 Gbps.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
 
 
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
The signals at DOUT+ and DOUTmust be AC-coupled. The AC-coupling capacitor values used on DOUT+  
and DOUTdepends on the mode and cable used as shown in 8-3. When connecting to a coax cable, the  
AC-coupling capacitor on the negative terminal (DOUT) should be approximately ½ of the AC-coupling  
capacitor value on DOUT+ and be terminated to a 50-load. Make sure to follow the critical PCB layout  
guidelines given in 10.2.  
8.2.2.3 Internal Regulator Bypassing  
The TSER953 features three internal regulators that must be bypassed to GND. The VDDD_CAP,  
VDDDRV_CAP, and VDDPLL_CAP are the pins that expose the outputs of the internal regulators for bypassing.  
TI recommends that each pin has a 10-µF, 0.1-µF, and a 0.01-µF capacitor to GND. The 0.01-µF caps must be  
placed as close as practical to the bypass pins.  
8.2.2.4 Loop Filter Decoupling  
The LPF1 and LPF2 pins are for connecting filter capacitors to the internal PLL circuits. LPF1 should have a  
0.022-µF capacitor connected to the VDD_PLL pin (pin 11). The capacitor connected between LPF1 and  
VDDPLL must enclose as small of a loop as possible. LPF2 must have a 0.1-µF capacitor connecting the pin to  
GND. One of these PLLs generates the high-speed clock used in the serialization of the output, while the other  
PLL is used in the CSI-2 receive port. Noise coupled into these pins degrades the performance of the PLLs in  
the TSER953, so the caps must be placed close to the pins they are connected to, and the area of the loop  
enclosed must be minimized.  
8.2.3 Application Curve  
The falling edge of the blue trace indicates that the device should shift from LP to HS mode the rise that  
comes about one division later is when the TSER953 turns on the internal termination so the device is ready to  
receive HS data. The transitions are the CSI-2 data, and then the drop of the blue trace indicates that the  
termination has been turned off.  
8-7. CSI-2 LP to HS Mode Transition  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS696  
72  
Submit Document Feedback  
Product Folder Links: TSER953  
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
9 Power Supply Recommendations  
This device provides separate power and ground pins for different portions of the circuit. This is done to isolate  
switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not  
required. The 5 section provides guidance on which circuit blocks are connected to which power pin pairs. In  
some cases, an external filter many be used to provide clean power to sensitive circuits such as PLLs.  
9.1 Power-Up Sequencing  
The power-up sequence for the TSER953 is as follows:  
VDD18  
T0  
T2  
T1  
T3  
Hard  
PDB  
Reset  
9-1. Power Supply Sequencing  
9-1. Timing Diagram for the Power Supply Start-Up and Initialization Sequences  
PARAMETER  
MIN  
0.05  
0
TYP  
MAX  
UNIT  
NOTES  
T0  
T1  
VDD18 rise time  
ms  
at 10/90%  
VDD18 to PDB  
ms  
After VDD18 is  
stable  
T2  
T3  
PDB high time before PDB hard reset  
PDB high to low pulse width  
1
3
ms  
ms  
Hard reset  
(optional)  
T4  
PDB to I2C Ready  
2
ms  
See Initialization  
Sequence:  
Synchronous  
Clocking Mode  
9.1.1 System Initialization  
When initializing the communications link between a deserializer hub and a TSER953 serializer, the system  
timing will depend on the mode selected for generating the serializer reference clock. When synchronous  
clocking mode is selected, the serializer will relock onto the extracted back channel reference clock when  
available, so there is no need for local crystal oscillator at the sensor module. The initialization sequence follows  
the illustration given in the Initialization Sequence: Synchronous Clocking Mode.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
 
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
PoC  
Supply  
VDD18  
PDB  
T4  
MODE,  
IDX Valid  
DES Back  
Channel  
DES Lock Time  
LOCK  
953  
Config  
Sensor  
Config  
Valid  
Image  
I2C  
Remote  
Pass  
through  
DES  
config  
I2C  
Local  
CLKOUT  
DOUT+  
Sensor  
CSI-2  
9-2. Initialization Sequence: Synchronous Clocking Mode  
To allow for a quicker system bringup time, it is recommended to program the I2C watchdog timer speedup, by  
setting 0x0A = 0x12, before trying to access remote I2C target devices attached to the SER through the back  
channel from the deserializer. This will ensure a faster remote sensor access time even if the serializer I2C bus  
experiences unexpected noise during power up of the sensor module  
9.2 Power Down (PDB)  
The Serializer has a PDB input pin to ENABLE or POWER DOWN the device. This pin may be controlled by an  
external device, or through VDD where VDD = 1.71 V to 1.89 V. PDB should be brought high after all power  
supplies on the board have stabilized.  
When PDB is driven low, ensure that the pin is driven to 0 V for at least 3 ms before releasing or driving high. In  
the case where PDB is pulled up to VDD directly, a 10-kΩpullup resistor and a > 10-μF capacitor to ground are  
required.  
Toggling PDB low powers down the device and resets all control registers to default. After power up, if there are  
any errors seen, TI recommends clearing the registers to reset the errors.  
Make sure to power up the VDDDRV before or at the same time as the VDDPLL.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS696  
74  
Submit Document Feedback  
Product Folder Links: TSER953  
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
10 Layout  
10.1 Layout Guidelines  
Circuit board layout and stack-up for the V3Link devices must be designed to provide low-noise power feed to  
the device. Good layout practice also separates high-frequency or high-level inputs and outputs to minimize  
unwanted stray noise pickup, feedback, and interference. External bypassing should be low-ESR ceramic  
capacitors with high-quality dielectric. The voltage rating of the ceramic capacitors must be at least 2× the power  
supply voltage being used.  
TI recommends surface-mount capacitors due to their smaller parasitics. When using multiple capacitors per  
supply pin, place the smaller value closest to the pin. A large bulk capacitor is recommend at the point of power  
entry. This is typically in the 47-µF to 100-µF range, which smooths low-frequency switching noise. TI  
recommends connecting power and ground pins directly to the power and ground planes with bypass capacitors  
connected to the plane. TI also recommends that the user place a via on both ends of the capacitors.  
Connecting power or ground pins to an external bypass capacitor increases the inductance of the path.  
A small body size X7R chip capacitor, such as 0603 or 0402, is recommended for external bypass. The small  
body size reduces the parasitic inductance of the capacitor. The user must pay attention to the resonance  
frequency of these external bypass capacitors, usually in the range of 20 to 30 MHz. To provide effective  
bypassing, multiple capacitors are often used to achieve low impedance between the supply rails over the  
frequency of interest. At high frequency, it is also common practice to use two vias from power and ground pins  
to the planes, reducing the impedance at high frequency.  
Some devices provide separate power and ground pins for different portions of the circuit. This is done to isolate  
switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not  
required. Pin description tables typically provide guidance on which circuit blocks are connected to which power  
pin pairs (see 5 for more information). In some cases, an external filter may be used to provide clean power to  
sensitive circuits such as PLLs.  
Use at least a four-layer board with a dedicated ground plane. Place CSI-2 signals away from the single-ended  
or differential V3Link RX input traces to prevent coupling from the CSI-2 lines to the Rx input lines. A single-  
ended impedance of 50 Ω is typically recommended for coaxial interconnect, and a differential impedance of  
100 Ω is typically recommended for STP interconnect. The closely coupled lines help to ensure that coupled  
noise appears as common-mode and thus is rejected by the receivers. The tightly coupled lines also radiate  
less.  
10.1.1 CSI-2 Guidelines  
Route CSI0_D*P/N pairs with controlled 100-Ωdifferential impedance (±20%) or 50-Ωsingle-ended  
impedance (±15%).  
Keep away from other high-speed signals.  
Keep the length difference between a differential pair to 5 mils of each other.  
Make sure that length matching is near the location of mismatch.  
Separate each pair by at least 3 times the signal trace width.  
Keep the use of bends in differential traces to a minimum. When bends are used, the number of left and right  
bends must be as equal as possible, and the angle of the bend should be 135 degrees. This arrangement  
minimizes any length mismatch caused by the bends and therefore minimizes the impact that bends have on  
EMI.  
Route all differential pairs on the same layer to help match trace impedance characteristics.  
Keep the number of VIAS to a minimumTI recommends keeping the VIA count to two or fewer.  
Keep traces on layers adjacent to ground plane.  
Do NOT route differential pairs over any plane split.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
 
 
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
备注  
Adding test points can cause impedance discontinuity and therefore negatively impacts signal  
performance. If test points are used, place them in series and symmetrically. Test points must not be  
placed in a manner that causes a stub on the differential pair.  
10.2 Layout Examples  
The DS90UB953-Q1 EVM platform can be used to evaluate TSER953. The board layout for the DS90UB953-Q1  
EVM is shown in 10-1 and 10-2. All EVM layers are included in DS90UB953-Q1 EVM user's guide  
(SNLU224).  
Routing the V3Link signal traces between the DOUT pins and the connector, as well as connecting the PoC filter  
to these traces, are the most critical pieces of a successful TSER953 PCB layout. The following list provides  
essential recommendations for routing the V3Link signal traces between the driver output pins and the FAKRA  
connector, as well as connecting the PoC filter.  
The routing of the V3Link traces may be all on the top layer or partially embedded in middle layers if EMI is a  
concern.  
The AC-coupling capacitors should be on the top layer and very close to the receiver input pins to minimize  
the length of coupled differential trace pair between the pins and the capacitors.  
Route the DOUT+ trace between the AC-coupling capacitor and the FAKRA connector as a 50-Ωsingle-  
ended micro-strip with tight impedance control (±10%). Calculate the proper width of the trace for a 50-Ω  
impedance based on the PCB stack-up. Ensure that the trace can carry the PoC current for the maximum  
load presented by the remote sensor module.  
The PoC filter should be connected to the DOUT+ trace through the ferrite bead or an RF inductor. The ferrite  
bead should be touching the high-speed trace to minimize the stub length seen by the transmission line.  
Create an anti-pad or a moat under the ferrite bead pad that touches the trace. The anti-pad should be a  
plane cutout of the ground plane directly underneath the top layer without cutting out the ground reference  
under the trace. The purpose of the anti-pad is to maintain the impedance as close to 50 Ωas possible.  
When routing DOUT+ on inner layers, length matching for single-ended traces does not provide a significant  
benefit. If the user wants to route the DOUT+ on the top or bottom layer, route the DOUTtrace loosely  
coupled to the DOUT+ trace for the length similar to the DOUT+ trace length. This may help the differential  
nature of the receiver to cancel out any common-mode noise that may be present in the environment that  
may couple on to the signal traces.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS696  
76  
Submit Document Feedback  
Product Folder Links: TSER953  
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
AC-Coupling  
Capacitor on  
Top Layer  
Buried V3Link  
High-speed Trace  
on Signal Layer 1  
10-1. TSER953 Serializer DOUT+ Trace Layout  
Power-over-Coax  
Network Placed  
Close to Connector  
Coax Connector  
10-2. TSER953 Power-over-Coax Layout  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
 
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
How to design a FPD-Link III system (SNLA267)  
I2C communication over FPD-Link III with bidirectional control channel (SNLA131)  
I2C bus pullup resistor calculation (SLVA689)  
FPD-Link learning center training material  
An EMC/EMI system-design and testing methodology for FPD-Link III SerDes (SLYT719)  
Backwards compatibility modes for operation with parallel output deserializers (SNLA270)  
Power-over-Coax design guidelines (SNLA272)  
AN-1108 Channel-link PCB and interconnect design-in guidelines (SNLA008)  
DS90UB953-Q1 EVM user's guide (SNLU224)  
11.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS696  
78  
Submit Document Feedback  
Product Folder Links: TSER953  
 
 
 
 
 
 
 
TSER953  
www.ti.com.cn  
ZHCSNJ6B APRIL 2021 REVISED MARCH 2023  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: TSER953  
English Data Sheet: SNLS696  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TSER953RHBR  
TSER953RHBT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RHB  
RHB  
32  
32  
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-20 to 85  
-20 to 85  
TSER953  
TSER953  
Samples  
Samples  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Mar-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TSER953RHBR  
TSER953RHBT  
VQFN  
VQFN  
RHB  
RHB  
32  
32  
3000  
250  
330.0  
180.0  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TSER953RHBR  
TSER953RHBT  
VQFN  
VQFN  
RHB  
RHB  
32  
32  
3000  
250  
346.0  
210.0  
346.0  
185.0  
33.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RHB 32  
5 x 5, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224745/A  
www.ti.com  
PACKAGE OUTLINE  
RHB0032P  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
0.5  
0.3  
0.3  
0.2  
PIN 1 INDEX AREA  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
5.1  
4.9  
0.1 MIN  
(0.05)  
SECTION A-A  
SCALE 25.000  
SECTION A-A  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
3.7 0.1  
2X 3.5  
(0.2) TYP  
16  
9
EXPOSED  
THERMAL PAD  
8
17  
SEE TERMINAL  
DETAIL  
2X  
SYMM  
33  
A
A
3.5  
1
24  
0.3  
0.2  
32X  
28X 0.5  
25  
32  
0.1  
C A B  
SYMM  
PIN 1 ID  
(OPTIONAL)  
0.05  
0.5  
0.3  
32X  
4223198/A 08/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHB0032P  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.7)  
SYMM  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
4X  
(1.6)  
(R0.05)  
TYP  
SYMM  
33  
(1.26) TYP  
(4.8)  
28X (0.5)  
17  
8
(
0.2) TYP  
VIA  
9
16  
(1.26) TYP  
4X (1.6)  
(4.8)  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223198/A 08/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHB0032P  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.26) TYP  
9X ( 1.06)  
32  
25  
32X (0.6)  
1
33  
24  
32X (0.25)  
(R0.05) TYP  
(1.26)  
TYP  
SYMM  
(4.8)  
28X (0.5)  
8
17  
METAL  
TYP  
9
16  
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33  
74% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4223198/A 08/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TSER953RHBR

适用于高速传感器的 4.16Gbps MIPI® CSI-2 V³Link 串行器 | RHB | 32 | -20 to 85
TI

TSER953RHBT

适用于高速传感器的 4.16Gbps MIPI® CSI-2 V³Link 串行器 | RHB | 32 | -20 to 85
TI

TSES0505C

Silicon Surge Protector, 100V V(BO) Max, 30A, PLASTIC, CASE 2, 2 PIN
MICROSEMI

TSES0505CE3

Silicon Surge Protector, 100V V(BO) Max, 30A, PLASTIC, CASE 2, 2 PIN
MICROSEMI

TSES0506CE3

Silicon Surge Protector, 110V V(BO) Max, 30A,
MICROSEMI

TSES0507C

Silicon Surge Protector, 145V V(BO) Max, 30A
MICROSEMI

TSES0507CE3

Silicon Surge Protector, 145V V(BO) Max, 30A,
MICROSEMI

TSES0509C

Silicon Surge Protector, 185V V(BO) Max, 30A
MICROSEMI

TSES0509CE3

Silicon Surge Protector, 185V V(BO) Max, 30A,
MICROSEMI

TSES050C

Silicon Surge Protector, 100V V(BO) Max, 30A
MICROSEMI

TSES0510CE3

Silicon Surge Protector, 200V V(BO) Max, 30A,
MICROSEMI

TSES0511C

Silicon Surge Protector, 210V V(BO) Max, 30A
MICROSEMI