TSV914AQDRQ1 [TI]

TSV91xA-Q1 Automotive Rail-to-Rail Input/Output, 8-MHz Operational Amplifiers;
TSV914AQDRQ1
型号: TSV914AQDRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TSV91xA-Q1 Automotive Rail-to-Rail Input/Output, 8-MHz Operational Amplifiers

文件: 总37页 (文件大小:2643K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSV912A-Q1,TSV914A-Q1
SBOSA18B – JUNE 2020 – REVISED FEBRUARY 2021  
TSV91xA-Q1 Automotive Rail-to-Rail Input/Output, 8-MHz Operational Amplifiers  
1 Features  
3 Description  
Rail-to-rail input and output  
Low noise: 18 nV/√Hz at 1 kHz  
Low power consumption: 550 µA (typical)  
High-gain bandwidth: 8 MHz  
Operating supply voltage from 2.5 V to 5.5 V  
Low input bias current: 1 pA (typical)  
Low input offset voltage: 1.5 mV (maximum)  
Low offset voltage drift: ±0.5 µV/°C (typical)  
ESD internal protection: ±4-kV human-body model  
(HBM)  
The TSV91xA-Q1 family, which includes single-,  
dual-, and quad-channel operational amplifiers (op  
amps), is specifically designed for general-purpose  
automotive applications. Featuring rail-to-rail input  
and output (RRIO) swings, wide bandwidth (8 MHz),  
and low offset voltage (0.3 mV, typical), this family is  
designed for a variety of applications that require a  
good balance between speed and power  
consumption. The op amps are unity-gain stable and  
feature an ultra-low input bias current, which enables  
the family to be used in applications with high-source  
impedances. The low input bias current allows the  
devices to be used for sensor interfaces, and active  
filtering.  
Extended temperature range: –40°C to 125°C  
2 Applications  
Optimized for AEC-Q100 grade 1 applications  
Infotainment and cluster  
Passive safety  
The robust design of the TSV91xA-Q1 provides ease-  
of-use to the circuit designer. Features include a unity-  
gain stable, integrated RFI-EMI rejection filter, no  
phase reversal in overdrive condition, and high  
electrostatic discharge (ESD) protection (4-kV HBM).  
Body electronics and lighting  
HEV/EV inverter and motor control  
On-board (OBC) and wireless charger  
Powertrain current sensor  
Advanced driver assistance systems (ADAS)  
Single-supply, low-side, unidirectional current-  
sensing circuit  
Device Information  
PACKAGE  
SOT-23 (5)(2)  
PART NUMBER(1)  
BODY SIZE (NOM)  
1.60 mm × 2.90 mm  
3.91 mm × 4.90 mm  
3.00 mm × 3.00 mm  
8.65 mm × 3.91 mm  
4.40 mm × 5.00 mm  
TSV911A-Q1  
SOIC (8)  
TSV912A-Q1  
TSV914A-Q1  
VSSOP (8)  
SOIC (14)  
TSSOP (14)  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
(2) Package is preview only for TSV91xA-Q1.  
VBUS  
60  
50  
40  
30  
20  
ILOAD  
ZLOAD  
5 V  
+
TSV91x  
VOUT  
RSHUNT  
VSHUNT  
0.1  
RF  
165 kꢀ  
10  
0
Overshoot+  
Overshoot-  
RG  
0
50  
100  
150  
200  
250  
300  
3.4 kꢀ  
Capacitive Load (pF)  
C025  
Small-Signal Overshoot vs Load Capacitance  
Low-Side Motor Control  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
TSV912A-Q1, TSV914A-Q1  
SBOSA18B – JUNE 2020 – REVISED FEBRUARY 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 6  
7.1 Absolute Maximum Ratings........................................ 6  
7.2 ESD Ratings............................................................... 6  
7.3 Recommended Operating Conditions.........................6  
7.4 Thermal Information: TSV912A-Q1............................ 6  
7.5 Thermal Information: TSV914A-Q1............................ 7  
7.6 Electrical Characteristics.............................................8  
7.7 Typical Characteristics..............................................10  
8 Detailed Description......................................................16  
8.1 Overview...................................................................16  
8.2 Functional Block Diagram.........................................16  
8.3 Feature Description...................................................17  
8.4 Device Functional Modes..........................................17  
9 Application and Implementation..................................18  
9.1 Application Information............................................. 18  
9.2 Typical Application.................................................... 18  
10 Power Supply Recommendations..............................20  
10.1 Input and ESD Protection....................................... 20  
11 Layout...........................................................................21  
11.1 Layout Guidelines................................................... 21  
11.2 Layout Example...................................................... 21  
12 Device and Documentation Support..........................22  
12.1 Related Links.......................................................... 22  
12.2 Receiving Notification of Documentation Updates..22  
12.3 Support Resources................................................. 22  
12.4 Trademarks.............................................................22  
12.5 Electrostatic Discharge Caution..............................22  
12.6 Glossary..................................................................22  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 23  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision A (December 2020) to Revision B (February 2021)  
Page  
Deleted preview tag from VSSOP package in Device Information table............................................................ 1  
Updated thermal information for DGK (VSSOP) package in Thermal Information: TSV912A-Q1 table.............6  
Changes from Revision * (June 2020) to Revision A (December 2020)  
Page  
Updated the numbering format for tables, figures, and cross-references throughout the document..................1  
Deleted preview tag from TSSOP package in Device Information table............................................................ 1  
Deleted package preview note from TSV914-Q1 pinout drawing and Pin Functions table ............................... 4  
Added note 4 to differential input voltage in Absolute Maximum Ratings table..................................................6  
Added thermal information for TSSOP (14) to Thermal Information: TSV914A-Q1 table.................................. 7  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TSV912A-Q1 TSV914A-Q1  
 
TSV912A-Q1, TSV914A-Q1  
SBOSA18B – JUNE 2020 – REVISED FEBRUARY 2021  
www.ti.com  
5 Device Comparison Table  
PACKAGE LEADS  
NO. OF  
DEVICE  
CHANNELS  
DBV  
5
D
8
DGK  
PW  
TSV911A-Q1  
TSV912A-Q1  
TSV914A-Q1  
1
2
4
8
14  
14  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TSV912A-Q1 TSV914A-Q1  
 
TSV912A-Q1, TSV914A-Q1  
SBOSA18B – JUNE 2020 – REVISED FEBRUARY 2021  
www.ti.com  
6 Pin Configuration and Functions  
OUT A  
-IN A  
+IN A  
V-  
1
2
3
4
8
7
6
5
V+  
OUT B  
-IN B  
+IN B  
Figure 6-1. TSV912A-Q1 D and DGK Package  
8-Pin SOIC and VSSOP  
Top View  
Table 6-1. Pin Functions: TSV912A-Q1  
PIN  
I/O  
DESCRIPTION  
NAME  
–IN A  
+IN A  
–IN B  
+IN B  
OUT A  
OUT B  
V–  
NO.  
2
I
I
Inverting input, channel A  
Noninverting input, channel A  
Inverting input, channel B  
Noninverting input, channel B  
Output, channel A  
3
6
I
5
I
1
O
O
7
Output, channel B  
4
Negative (lowest) supply or ground (for single-supply operation)  
Positive (highest) supply  
V+  
8
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TSV912A-Q1 TSV914A-Q1  
 
TSV912A-Q1, TSV914A-Q1  
SBOSA18B – JUNE 2020 – REVISED FEBRUARY 2021  
www.ti.com  
OUT A  
-IN A  
+IN A  
V+  
1
2
3
4
5
6
7
14 OUT D  
13 -IN D  
12 +IN D  
11 V-  
A
D
+IN B  
-IN B  
OUT B  
10 +IN C  
9
8
-IN C  
B
C
OUT C  
Figure 6-2. TSV914A-Q1 D and PW Package  
14-Pin SOIC and TSSOP  
Top View  
Table 6-2. Pin Functions: TSV914A-Q1  
PIN  
I/O  
DESCRIPTION  
NAME  
–IN A  
+IN A  
–IN B  
+IN B  
–IN C  
+IN C  
–IN D  
+IN D  
OUT A  
OUT B  
OUT C  
OUT D  
V–  
NO.  
2
I
I
Inverting input, channel A  
Noninverting input, channel A  
Inverting input, channel B  
Noninverting input, channel B  
Inverting input, channel C  
Noninverting input, channel C  
Inverting input, channel D  
Noninverting input, channel D  
Output, channel A  
3
6
I
5
I
9
I
10  
13  
12  
1
I
I
I
O
O
O
O
7
Output, channel B  
8
Output, channel C  
14  
11  
4
Output, channel D  
Negative (lowest) supply or ground (for single-supply operation)  
Positive (highest) supply  
V+  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TSV912A-Q1 TSV914A-Q1  
TSV912A-Q1, TSV914A-Q1  
SBOSA18B – JUNE 2020 – REVISED FEBRUARY 2021  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature (unless otherwise noted)(1)  
MIN  
(V–) – 0.5  
–10  
MAX  
UNIT  
Supply voltage  
6
(V+) + 0.5  
(V+) – (V–) + 0.2  
10  
V
Common-mode  
Voltage(2)  
V
Signal input pins  
Differential(4)  
Current(2)  
mA  
mA  
°C  
Output short-circuit(3)  
Specified, TA  
Continuous  
–40  
125  
150  
150  
Junction, TJ  
°C  
Storage, Tstg  
–65  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input pins are diode-clamped to the power-supply rails. Current limit input signals that can swing more than 0.5 V beyond the supply  
rails to 10 mA or less.  
(3) Short-circuit to ground, one amplifier per package.  
(4) Differential input voltages greater than 0.5 V applied continuously can result in a shift to the input offset voltage above the maximum  
specification of this parameter. The magnitude of this effect increases as the ambient operating temperature rises.  
7.2 ESD Ratings  
VALUE  
±4000  
±1500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with ANSI/ESDA/JEDEC JS-001 Specification.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.5  
MAX  
5.5  
UNIT  
VS  
Supply voltage  
V
Specified temperature  
–40  
125  
°C  
7.4 Thermal Information: TSV912A-Q1  
TSV912A-Q1  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
157.6  
104.6  
99.7  
DGK (VSSOP)  
8 PINS  
198.5  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
87.2  
120.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
55.6  
23.8  
ψJB  
99.2  
118.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TSV912A-Q1 TSV914A-Q1  
 
 
 
 
 
 
 
 
 
 
 
TSV912A-Q1, TSV914A-Q1  
SBOSA18B – JUNE 2020 – REVISED FEBRUARY 2021  
www.ti.com  
7.5 Thermal Information: TSV914A-Q1  
TSV914A-Q1  
THERMAL METRIC(1)  
D (SOIC)  
14 PINS  
111.1  
67.6  
PW (TSSOP)  
14 PINS  
133.8  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
62.1  
67  
76.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
27.4  
13.2  
ψJB  
66.6  
76.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TSV912A-Q1 TSV914A-Q1  
 
 
TSV912A-Q1, TSV914A-Q1  
SBOSA18B – JUNE 2020 – REVISED FEBRUARY 2021  
www.ti.com  
7.6 Electrical Characteristics  
VS (Total Supply Voltage) = (V+) – (V–) = 2.5 V to 5.5 V at TA = 25°C, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and  
VOUT = VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
VS = 5 V  
VS = 5 V  
±0.3  
±1.5  
±3  
VOS  
Input offset voltage  
mV  
TA = –40°C to 125°C  
VS = 5 V  
TA = –40°C to 125°C  
dVOS/dT Drift  
±0.5  
µV/°C  
PSRR  
Power-supply rejection ratio  
Channel separation, DC  
INPUT VOLTAGE RANGE  
VS = 2.5 V – 5.5 V, VCM = (V–)  
At DC  
±7  
µV/V  
dB  
100  
VCM  
Common-mode voltage range  
VS = 2.5 V to 5.5 V  
(V–) – 0.1  
80  
(V+) + 0.1  
V
VS = 5.5 V  
(V–) – 0.1 V < VCM < (V+) – 1.4 V  
TA = –40°C to 125°C  
103  
VS = 5.5 V, VCM = –0.1 V to 5.6 V  
TA = –40°C to 125°C  
57  
75  
88  
70  
CMRR  
Common-mode rejection ratio  
dB  
VS = 2.5 V, (V–) – 0.1 V < VCM < (V+) – 1.4 V  
TA = –40°C to 125°C  
VS = 2.5 V, VCM = –0.1 V to 1.9 V  
TA = –40°C to 125°C  
INPUT BIAS CURRENT  
IB  
Input bias current  
Input offset current  
±5  
±5  
pA  
pA  
IOS  
NOISE  
En  
Input voltage noise (peak-to-peak)  
Input voltage noise density  
Input current noise density  
VS = 5 V, f = 0.1 Hz to 10 Hz  
VS = 5 V, f = 10 kHz  
VS = 5 V, f = 1 kHz  
f = 1 kHz  
4.77  
12  
µVPP  
en  
nV/√ Hz  
fA/√ Hz  
18  
in  
23  
INPUT CAPACITANCE  
CID  
CIC  
Differential  
2
4
pF  
pF  
Common-mode  
OPEN-LOOP GAIN  
VS = 2.5 V, (V–) + 0.04 V < VO < (V+) – 0.04 V  
RL = 10 kΩ  
100  
130  
100  
130  
VS = 5.5 V, (V–) + 0.05 V < VO < (V+) – 0.05 V  
RL = 10 kΩ  
104  
AOL  
Open-loop voltage gain  
dB  
VS = 2.5 V, (V–) + 0.06 V < VO < (V+) – 0.06 V  
RL = 2 kΩ  
VS = 5.5 V, (V–) + 0.15 V < VO < (V+) – 0.15 V  
RL = 2 kΩ  
FREQUENCY RESPONSE  
GBP  
φm  
Gain bandwidth product  
VS = 5 V, G = 1  
VS = 5 V, G = 1  
8
MHz  
°
Phase margin  
55  
VS = 5 V, G = 1  
RL = 2 kΩ  
SR  
Slew rate  
4.5  
V/µs  
CL = 100 pF  
To 0.1%, VS = 5 V, 2-V step , G = 1  
CL = 100 pF  
0.5  
1
tS  
Settling time  
µs  
µs  
To 0.01%, VS = 5 V, 2-V step , G = 1  
CL = 100 pF  
tOR  
Overload recovery time  
VS = 5 V, VIN × gain > VS  
0.2  
THD + N Total harmonic distortion + noise(1)  
VS = 5 V, VO = 1 VRMS, G = 1, f = 1 kHz  
0.0008%  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TSV912A-Q1 TSV914A-Q1  
 
TSV912A-Q1, TSV914A-Q1  
SBOSA18B – JUNE 2020 – REVISED FEBRUARY 2021  
www.ti.com  
7.6 Electrical Characteristics (continued)  
VS (Total Supply Voltage) = (V+) – (V–) = 2.5 V to 5.5 V at TA = 25°C, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and  
VOUT = VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT  
VS = 5.5 V, RL = 10 kΩ  
20  
60  
Voltage output swing from supply  
rails  
VO  
mV  
VS = 5.5 V, RL = 2 kΩ  
VS = 5 V  
ISC  
ZO  
Short-circuit current  
±50  
100  
mA  
Ω
Open-loop output impedance  
VS = 5 V, f = 10 MHz  
POWER SUPPLY  
VS = 5.5 V, IO = 0 mA  
550  
750  
IQ Quiescent current per amplifier  
µA  
VS = 5.5 V, IO = 0 mA TA = –40°C to 125°C  
1100  
(1) Third-order filter; bandwidth = 80 kHz at –3 dB.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TSV912A-Q1 TSV914A-Q1  
 
TSV912A-Q1, TSV914A-Q1  
SBOSA18B – JUNE 2020 – REVISED FEBRUARY 2021  
www.ti.com  
7.7 Typical Characteristics  
at TA = 25°C, VS = 5.5 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)  
35  
30  
25  
20  
15  
10  
5
50  
40  
30  
20  
10  
0
0
Offset Voltage Drift (µV/C)  
C001  
C002  
Offset Voltage (µV)  
TA = –40°C to 125°C  
Figure 7-2. Offset Voltage Drift Distribution  
Figure 7-1. Offset Voltage Production Distribution  
500  
400  
2500  
2000  
1500  
1000  
500  
300  
200  
100  
0
0
œ500  
œ1000  
œ1500  
œ2000  
œ2500  
œ100  
œ200  
œ300  
œ400  
œ500  
-4  
-3  
-2  
-1  
0
1
2
3
4
0
25  
50  
75  
100  
125  
150  
œ50  
œ25  
Input Common Mode Voltage (V)  
Temperature (°C)  
C005  
C003  
V+ = 2.75 V, V– = –2.75 V  
Figure 7-4. Offset Voltage vs Common-Mode Voltage  
Figure 7-3. Offset Voltage vs Temperature  
1000  
120  
100  
80  
60  
40  
20  
0
210  
180  
150  
120  
90  
Gain  
Phase  
500  
0
60  
500  
1000  
30  
-20  
100  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
Supply Voltage (V)  
C004  
C006  
VS = 2.5 V to 5.5 V  
CL = 10 pF  
Figure 7-5. Offset Voltage vs Power Supply  
Figure 7-6. Open-Loop Gain and Phase vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TSV912A-Q1 TSV914A-Q1  
 
TSV912A-Q1, TSV914A-Q1  
SBOSA18B – JUNE 2020 – REVISED FEBRUARY 2021  
www.ti.com  
7.7 Typical Characteristics (continued)  
at TA = 25°C, VS = 5.5 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)  
40  
30  
250  
200  
150  
100  
50  
IBN  
IBP  
IOS  
20  
10  
0
-10  
-20  
-30  
-40  
0
G = +1  
G = +10  
G = -1  
œ50  
0
25  
Temperature (°C)  
Figure 7-8. Input Bias Current vs Temperature  
50  
75  
100  
125  
œ50  
œ25  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
C008  
C007  
Figure 7-7. Closed-Loop Gain vs Frequency  
120  
100  
80  
60  
40  
20  
0
3
PSRR-  
PSRR+  
CMRR  
2
1
-40°C  
-40°C  
125°C  
85°C  
25°C  
0
25°C  
85°C  
œ1  
œ2  
œ3  
125°C  
10  
20  
30  
40  
50  
60  
Output Current (mA)  
C009  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
C011  
V+ = 2.75 V, V– = –2.75 V  
Figure 7-9. Output Voltage Swing vs Output Current  
Figure 7-10. CMRR and PSRR vs Frequency (Referred to Input)  
55  
10  
9
8
7
6
5
4
3
2
1
50  
45  
40  
35  
30  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
150  
œ50  
œ25  
œ50  
œ25  
Temperature (°C)  
Temperature (°C)  
C012  
C016  
VCM = (V–) – 0.1 V to  
(V+) + 0.1 V  
VCM = (V–) –0.1 V to (V  
+) –1.4 V  
VS = 5.5 V  
RL= 10 kΩ  
VS = 5.5 V  
RL= 10 kΩ  
TA= –40°C to 125°C  
TA= –40°C to 125°C  
Figure 7-11. CMRR vs Temperature  
Figure 7-12. CMRR vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TSV912A-Q1 TSV914A-Q1  
TSV912A-Q1, TSV914A-Q1  
SBOSA18B – JUNE 2020 – REVISED FEBRUARY 2021  
www.ti.com  
7.7 Typical Characteristics (continued)  
at TA = 25°C, VS = 5.5 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)  
10  
9
8
7
6
5
Time (1s/div)  
0
25  
50  
75  
100  
125  
œ50  
œ25  
Temperature (°C)  
C014  
C013  
VS = 2.5 V to 5.5 V  
VS = 2.5 V to 5.5 V  
Figure 7-14. 0.1-Hz to 10-Hz Input Voltage Noise  
Figure 7-13. PSRR vs Temperature  
120  
100  
80  
60  
40  
20  
0
-90  
-95  
-100  
-105  
-110  
-115  
-120  
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
100  
1k  
Frequency (Hz)  
10k  
C015  
C017  
VS = 5.5 V  
G = 1  
VCM = 2.5 V  
VOUT = 0.5 VRMS  
RL = 2 kΩ  
BW = 80 kHz  
Figure 7-15. Input Voltage Noise Spectral Density vs Frequency  
Figure 7-16. THD + N vs Frequency  
œ40  
œ40  
œ60  
œ60  
œ80  
œ80  
œ100  
œ100  
œ120  
œ120  
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
Output Voltage Amplitude (VRMS  
)
Output Voltage Amplitude (VRMS  
)
C018  
C019  
VS = 5.5 V  
G = 1  
VCM = 2.5 V  
RL = 2 kΩ  
f = 1 kHz  
VS = 5.5 V  
G = –1  
VCM = 2.5 V  
RL = 2 kΩ  
f = 1 kHz  
BW = 80 kHz  
BW = 80 kHz  
Figure 7-17. THD + N vs Amplitude  
Figure 7-18. THD + N vs Amplitude  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TSV912A-Q1 TSV914A-Q1  
TSV912A-Q1, TSV914A-Q1  
SBOSA18B – JUNE 2020 – REVISED FEBRUARY 2021  
www.ti.com  
7.7 Typical Characteristics (continued)  
at TA = 25°C, VS = 5.5 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)  
600  
580  
560  
540  
520  
500  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
25  
50  
75  
100  
125  
œ50  
œ25  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Temperature (°C)  
C021  
Supply Voltage (V)  
C020  
Figure 7-20. Quiescent Current vs Temperature  
Figure 7-19. Quiescent Current vs Supply Voltage  
200  
60  
50  
40  
30  
20  
160  
120  
80  
40  
0
10  
0
Overshoot+  
Overshoot-  
250  
0
50  
100  
150  
200  
300  
Capacitive Load (pF)  
C025  
10k  
100k  
Frequency (Hz)  
1M  
10M  
C024  
V+ = 2.75 V  
RL = 10 kΩ  
V– = –2.75 V  
VOUT step = 100 mVp-p  
G = 1 V/V  
Figure 7-22. Small-Signal Overshoot vs Load Capacitance  
Figure 7-21. Open-Loop Output Impedance vs Frequency  
60  
50  
40  
30  
20  
Input  
Output  
10  
0
Overshoot(+)  
Overshoot(-)  
Time (200 µs/div)  
0
50  
100  
150  
200  
250  
300  
Capacitive Load (pF)  
C026  
C036  
V+ = 2.75 V  
G = –1 V/V  
V– = –2.75 V  
VOUT step = 100 mVp-p  
RL = 10 kΩ  
V+ = 2.75 V, V– = –2.75 V  
Figure 7-24. No Phase Reversal  
Figure 7-23. Small-Signal Overshoot vs Load Capacitance  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TSV912A-Q1 TSV914A-Q1  
TSV912A-Q1, TSV914A-Q1  
SBOSA18B – JUNE 2020 – REVISED FEBRUARY 2021  
www.ti.com  
7.7 Typical Characteristics (continued)  
at TA = 25°C, VS = 5.5 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)  
Input  
Output  
INPUT  
OUTPUT  
Time (1 µs/div)  
Time (0.1µs/div)  
C028  
C030  
V+ = 2.75 V, V– = –2.75 V, G = 10 V/V  
V+ = 2.75 V, V– = –2.75 V, G = 1 V/V  
Figure 7-25. Overload Recovery  
Figure 7-26. Small-Signal Step Response  
80  
60  
40  
20  
Sinking  
0
Sourcing  
œ20  
œ40  
œ60  
œ80  
Input  
Output  
Time (1 µs/div)  
0
25  
50  
75  
100  
125  
œ50  
œ25  
Temperature (°C)  
C034  
C031  
V+ = 2.75 V  
G = 1 V/V  
V– = –2.75 V  
CL = 100 pF  
Figure 7-28. Short-Circuit Current vs Temperature  
Figure 7-27. Large-Signal Step Response  
0
140  
120  
100  
80  
-20  
-40  
-60  
60  
-80  
40  
-100  
-120  
-140  
20  
0
10M  
100M  
Frequency (Hz)  
1G  
C041  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
C038  
PRF = –10 dBm  
V+ = 2.75 V, V– = –2.75 V  
Figure 7-30. Channel Separation vs Frequency  
Figure 7-29. Electromagnetic Interference Rejection Ratio  
Referred to Noninverting Input (EMIRR+) vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TSV912A-Q1 TSV914A-Q1  
TSV912A-Q1, TSV914A-Q1  
SBOSA18B – JUNE 2020 – REVISED FEBRUARY 2021  
www.ti.com  
7.7 Typical Characteristics (continued)  
at TA = 25°C, VS = 5.5 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)  
90  
75  
60  
45  
30  
15  
0
200  
160  
120  
80  
40  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Output Voltage (V)  
Capacitive Load (pF)  
C023  
C037  
A.  
VS = 5.5 V  
VS = 5.5 V  
Figure 7-32. Open Loop Voltage Gain vs Output Voltage  
Figure 7-31. Phase Margin vs Capacitive Load  
100  
100  
75  
75  
50  
50  
25  
25  
0
0
-25  
-50  
-75  
-100  
-125  
-150  
œ25  
œ50  
œ75  
œ100  
0
0.3  
0.6  
0.9  
0
0.3  
0.6  
0.9  
1.2  
1.5  
Settling time (µs)  
Settling time (µs)  
C032  
C033  
Figure 7-33. Large Signal Settling Time (Positive)  
Figure 7-34. Large Signal Settling Time (Negative)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TSV912A-Q1 TSV914A-Q1  
TSV912A-Q1, TSV914A-Q1  
SBOSA18B – JUNE 2020 – REVISED FEBRUARY 2021  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The TSV91xA-Q1 series is a family of low-power, rail-to-rail input and output op amps. These devices operate  
from 2.5 V to 5.5 V, are unity-gain stable, and are designed for a wide range of general-purpose automotive  
applications. The input common-mode voltage range includes both rails and allows the TSV91xA-Q1 series to be  
used in virtually any single-supply application. Rail-to-rail input and output swing significantly increases dynamic  
range, especially in low-supply applications and are designed for driving sampling analog-to-digital converters  
(ADCs).  
8.2 Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TSV912A-Q1 TSV914A-Q1  
 
 
 
TSV912A-Q1, TSV914A-Q1  
SBOSA18B – JUNE 2020 – REVISED FEBRUARY 2021  
www.ti.com  
8.3 Feature Description  
8.3.1 Rail-to-Rail Input  
The input common-mode voltage range of the TSV91xA-Q1 family extends 100 mV beyond the supply rails for  
the full supply voltage range of 2.5 V to 5.5 V. This performance is achieved with a complementary input stage:  
an N-channel input differential pair in parallel with a P-channel differential pair, as shown in the Functional Block  
Diagram. The N-channel pair is active for input voltages close to the positive rail, typically (V+) – 1.4 V to 100  
mV above the positive supply, whereas the P-channel pair is active for inputs from 100 mV below the negative  
supply to approximately (V+) – 1.4 V. There is a small transition region, typically (V+) – 1.2 V to (V+) – 1 V, in  
which both pairs are on. This 200-mV transition region can vary up to 200 mV with process variation. Thus, the  
transition region (with both stages on) can range from (V+) – 1.4 V to (V+) – 1.2 V on the low end, and up to (V+)  
– 1 V to (V+) – 0.8 V on the high end. Within this transition region, PSRR, CMRR, offset voltage, offset drift, and  
THD can degrade compared to device operation outside this region.  
8.3.2 Rail-to-Rail Output  
Designed as a low-power, low-voltage operational amplifier, the TSV91xA-Q1 series delivers a robust output  
drive capability. A class AB output stage with common-source transistors achieves full rail-to-rail output swing  
capability. For resistive loads of 10 kΩ, the output swings to within 15 mV of either supply rail, regardless of the  
applied power-supply voltage. Different load conditions change the ability of the amplifier to swing close to the  
rails.  
8.3.3 Packages With an Exposed Thermal Pad  
The TSV91xA-Q1 family is available in packages such as the WSON-8 (DSG) which feature an exposed thermal  
pad. Inside the package, the die is attached to this thermal pad using an electrically conductive compound. For  
this reason, when using a package with an exposed thermal pad, the thermal pad must either be connected to  
V– or left floating. Attaching the thermal pad to a potential other then V– is not allowed, and the performance of  
the device is not assured when doing so.  
8.3.4 Overload Recovery  
Overload recovery is defined as the time required for the operational amplifier output to recover from a saturated  
state to a linear state. The output devices of the operational amplifier enter a saturation region when the output  
voltage exceeds the rated operating voltage, because of the high input voltage or the high gain. After the device  
enters the saturation region, the charge carriers in the output devices require time to return to the linear state.  
After the charge carriers return to the linear state, the device begins to slew at the specified slew rate. Therefore,  
the propagation delay (in case of an overload condition) is the sum of the overload recovery time and the slew  
time. The overload recovery time for the TSV91xA-Q1 series is approximately 200 ns.  
8.4 Device Functional Modes  
The TSV91xA-Q1 family has a single functional mode. These devices are powered on as long as the power-  
supply voltage is between 2.5 V (±1.25 V) and 5.5 V (±2.75 V).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TSV912A-Q1 TSV914A-Q1  
 
 
TSV912A-Q1, TSV914A-Q1  
SBOSA18B – JUNE 2020 – REVISED FEBRUARY 2021  
www.ti.com  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The TSV91xA-Q1 series features 8-MHz bandwidth and 4.5-V/µs slew rate with only 550 µA of supply current  
per channel, providing good AC performance at low power consumption. DC applications are well served with a  
low input noise voltage of 18 nV / √ Hz at 1 kHz, low input bias current, and a typical input offset voltage of 0.3  
mV.  
9.2 Typical Application  
Figure 9-1 shows the TSV91xA-Q1 configured in a low-side, motor-control application.  
VBUS  
ILOAD  
ZLOAD  
5 V  
+
TSV91x  
VOUT  
RSHUNT  
VSHUNT  
0.1  
RF  
165 kꢀ  
RG  
3.4 kꢀ  
Figure 9-1. TSV91xA-Q1 in a Low-Side, Motor-Control Application  
9.2.1 Design Requirements  
The design requirements for this design are:  
Load current: 0 A to 1 A  
Output voltage: 4.95 V  
Maximum shunt voltage: 100 mV  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TSV912A-Q1 TSV914A-Q1  
 
 
 
 
TSV912A-Q1, TSV914A-Q1  
SBOSA18B – JUNE 2020 – REVISED FEBRUARY 2021  
www.ti.com  
9.2.2 Detailed Design Procedure  
The transfer function of the circuit in Figure 9-1 is shown in Equation 1.  
VOUT = ILOAD ìRSHUNT ìGain  
(1)  
The load current (ILOAD) produces a voltage drop across the shunt resistor (RSHUNT). The load current is set from  
0 A to 1 A. To keep the shunt voltage below 100 mV at maximum load current, the largest shunt resistor is  
defined using Equation 2.  
VSHUNT _MAX  
100mV  
1A  
RSHUNT  
=
=
=100mW  
ILOAD_MAX  
(2)  
Using Equation 2, RSHUNT is 100 mΩ. The voltage drop produced by ILOAD and RSHUNT is amplified by the  
TSV91xA-Q1 to produce an output voltage of approximately 0 V to 4.95 V. The gain required by the TSV91xA-  
Q1 to produce the necessary output voltage is calculated using Equation 3:  
V
OUT _MAX - VOUT _MIN  
(
)
Gain =  
VIN_MAX - V  
(
)
IN_MIN  
(3)  
Using Equation 3, the required gain is calculated to be 49.5 V/V, which is set with resistors RF and RG. Equation  
4 is used to size the resistors, RF and RG, to set the gain of the TSV91xA-Q1 to 49.5 V/V.  
R
(
(
)
)
F
Gain = 1+  
R
G
(4)  
Selecting RF as 165 kΩ and RG as 3.4 kΩ provides a combination that equals roughly 49.5 V/V. Figure 9-2  
shows the measured transfer function of the circuit shown in Figure 9-1.  
9.2.3 Application Curve  
5
4
3
2
1
0
0
0.2  
0.4  
0.6  
0.8  
1
ILOAD (A)  
C219  
Figure 9-2. Low-Side, Current-Sense, Transfer Function  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TSV912A-Q1 TSV914A-Q1  
 
 
 
 
 
TSV912A-Q1, TSV914A-Q1  
SBOSA18B – JUNE 2020 – REVISED FEBRUARY 2021  
www.ti.com  
10 Power Supply Recommendations  
The TSV91xA-Q1 series is specified for operation from 2.5 V to 5.5 V (±1.25 V to ±2.75 V); many specifications  
apply from –40°C to 125°C. Typical Characteristics presents parameters that can exhibit significant variance with  
regard to operating voltage or temperature.  
CAUTION  
Supply voltages larger than 6 V can permanently damage the device; see the Absolute Maximum  
Ratings table.  
Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, see Layout Example.  
10.1 Input and ESD Protection  
The TSV91xA-Q1 series incorporates internal ESD protection circuits on all pins. For input and output pins, this  
protection consists of current-steering diodes connected between the input and power-supply pins. These ESD  
protection diodes provide in-circuit, input overdrive protection, as long as the current is limited to 10-mA, as  
stated in the Absolute Maximum Ratings table. Figure 10-1 shows how a series input resistor is added to the  
driven input to limit the input current. The added resistor contributes thermal noise at the amplifier input and the  
value must be kept to a minimum in noise-sensitive applications.  
V+  
IOVERLOAD  
10-mA maximum  
VOUT  
Device  
VIN  
5 kW  
Figure 10-1. Input Current Protection  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TSV912A-Q1 TSV914A-Q1  
 
 
 
TSV912A-Q1, TSV914A-Q1  
SBOSA18B – JUNE 2020 – REVISED FEBRUARY 2021  
www.ti.com  
11 Layout  
11.1 Layout Guidelines  
For best operational performance of the device, use good printed-circuit board (PCB) layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and of op amp  
itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources  
local to the analog circuitry.  
– Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.  
A ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise pickup. Make  
sure to physically separate digital and analog grounds, paying attention to the flow of the ground current.  
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If  
these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better as opposed  
to in parallel with the noisy trace.  
Place the external components as close to the device as possible. As shown in Figure 11-2, keeping RF and  
RG close to the inverting input minimizes parasitic capacitance on the inverting input.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce  
leakage currents from nearby traces that are at different potentials.  
Cleaning the PCB following board assembly is recommended for best performance.  
Any precision integrated circuit can experience performance shifts resulting from moisture ingress into the  
plastic package. Following any aqueous PCB cleaning process, baking the PCB assembly is recommended  
to remove moisture introduced into the device packaging during the cleaning process. A low-temperature,  
post-cleaning bake at 85°C for 30 minutes is sufficient for most circumstances.  
11.2 Layout Example  
VIN A  
VIN B  
+
+
VOUT A  
VOUT B  
RG  
RG  
RF  
RF  
Figure 11-1. Schematic Representation of Layout Example  
Place components  
close to device and to  
each other to reduce  
parasitic errors.  
OUT A  
Use low-ESR,  
ceramic bypass  
capacitor. Place as  
close to the device  
as possible.  
VS+  
GND  
OUT A  
V+  
RF  
OUT B  
GND  
-IN A  
+IN A  
Vœ  
OUT B  
-IN B  
RF  
RG  
GND  
VIN A  
RG  
+IN B  
VIN B  
Keep input traces short  
and run the input traces  
as far away from  
the supply lines  
Use low-ESR,  
ceramic bypass  
capacitor. Place as  
close to the device  
as possible.  
GND  
VSœ  
Ground (GND) plane on another layer  
as possible.  
Figure 11-2. Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TSV912A-Q1 TSV914A-Q1  
 
 
 
 
TSV912A-Q1, TSV914A-Q1  
SBOSA18B – JUNE 2020 – REVISED FEBRUARY 2021  
www.ti.com  
12 Device and Documentation Support  
12.1 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to order now.  
Table 12-1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
TSV912A-Q1  
TSV914A-Q1  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
12.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
12.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TSV912A-Q1 TSV914A-Q1  
 
 
 
 
 
 
 
TSV912A-Q1, TSV914A-Q1  
SBOSA18B – JUNE 2020 – REVISED FEBRUARY 2021  
www.ti.com  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TSV912A-Q1 TSV914A-Q1  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Apr-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TSV912AQDGKRQ1  
TSV912AQDRQ1  
TSV914AQDRQ1  
TSV914AQPWRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
SOIC  
DGK  
D
8
8
2500 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
29IT  
NIPDAU  
NIPDAU  
NIPDAU  
TS912Q  
SOIC  
D
14  
14  
TSV914AQD  
T914AQ  
TSSOP  
PW  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Apr-2021  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Apr-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TSV912AQDGKRQ1  
TSV912AQDRQ1  
TSV914AQDRQ1  
TSV914AQPWRQ1  
VSSOP  
SOIC  
DGK  
D
8
8
2500  
2500  
2500  
2000  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
16.4  
12.4  
5.3  
6.4  
6.5  
6.9  
3.4  
5.2  
9.0  
5.6  
1.4  
2.1  
2.1  
1.6  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
16.0  
12.0  
Q1  
Q1  
Q1  
Q1  
SOIC  
D
14  
14  
TSSOP  
PW  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Apr-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TSV912AQDGKRQ1  
TSV912AQDRQ1  
TSV914AQDRQ1  
TSV914AQPWRQ1  
VSSOP  
SOIC  
DGK  
D
8
8
2500  
2500  
2500  
2000  
366.0  
853.0  
853.0  
853.0  
364.0  
449.0  
449.0  
449.0  
50.0  
35.0  
35.0  
35.0  
SOIC  
D
14  
14  
TSSOP  
PW  
Pack Materials-Page 2  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

TSV914AQPWRQ1

TSV91xA-Q1 Automotive Rail-to-Rail Input/Output, 8-MHz Operational Amplifiers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TSV914ID

Rail-to-rail input/output 8MHz operational amplifiers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSV914IDT

Rail-to-rail input/output 8MHz operational amplifiers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSV914IPT

Rail-to-rail input/output 8MHz operational amplifiers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSV914IYD

Rail-to-rail input/output 8MHz operational amplifiers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSV914IYDT

Rail-to-rail input/output 8MHz operational amplifiers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSV914IYPT

Single, dual, and quad rail-to-rail input/output 8 MHz operational amplifiers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSV91X

Single, dual, and quad rail-to-rail input/output 8 MHz operational amplifiers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSV91XA-Q1

TSV91xA-Q1 Automotive Rail-to-Rail Input/Output, 8-MHz Operational Amplifiers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TSV991

Rail-to-rail input/output 20MHz GBP operational amplifiers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSV991A

宽带宽(20MHz)低偏移轨到轨输入/输出5V CMOS单路运算放大器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSV991AILT

Rail-to-rail input/output 20MHz GBP operational amplifiers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR