TUSS4470 [TI]

具有对数放大器的直接驱动超声波传感器 IC;
TUSS4470
型号: TUSS4470
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有对数放大器的直接驱动超声波传感器 IC

放大器 驱动 传感器
文件: 总50页 (文件大小:3630K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
TUSS4470 具有数放大器的变压驱动超声波感器 IC  
1 特性  
3 说明  
集成式驱动器,用于直接驱动传感器和接收器级,  
TUSS4470 是一款高度集成的直接驱动模拟前端,适  
用于工业超声波应用。传感器驱动级是内部 H 桥,可  
配置为在直接驱动模式下驱动传感器,从而在传感器上  
实现最大电压。内部 H 桥也可以配置为外部 FET 的前  
置驱动器,从而为较大的传感器提供更高的电流和电压  
驱动。  
具有用于超声波应用的模拟输出  
86dB 输入动态范围模拟前端  
一级低噪声放大器,增益可调为 1012.515  
20V/V  
– 40KHz 500KHz 的可配置带通滤波器  
宽带对数放大器  
接收信号路径包括低噪声线性放大器、带通滤波器,后  
跟对数增益放大器,可根据输入决定放大。对数放大器  
具有很高的灵敏度,可捕捉弱回波信号,并在整个反射  
回波范围内提供出色的输入动态范围。  
支持的传感器频率(由外部时钟控制)  
– 40KHz 1MHz  
前置驱动器模式:40KHz 440KHz  
适用于低功耗应用  
驱动器可以直接通过微控制器进行控制,以对突发信号  
进行完全定制,或者可以通过 SPI 并借助可定制的脉  
冲长度进行编程。TUSS4470 可以支持单个传感器发  
送和接收突发信号,或者可以设置两个传感器来拆分发  
送和接收功能。  
待机模式:1.7mA(典型值)  
睡眠模式:220µA(典型值)  
可配置软启动驱动级:  
使用内部 H 桥进行传感器激励的直接驱动  
用于使用内部 H 桥驱动外部场效应晶体管 (FET)  
以实现更高电流驱动的前置驱动器配置  
使用 IO1 IO2 引脚实现的可配置突发模式  
输出:  
– VOUT 上已解调回波包络的电压输出  
– OUT3 引脚上的输入信号过零比较器输出  
– OUT4 引脚上的可编程 VOUT 阈值交叉  
串行外设接口 (SPI),可通过微控制器 (MCU) 进行  
配置  
器件信息(1)  
器件型号  
TUSS4470  
封装  
封装尺寸(标称值)  
WQFN (20)  
4.00mm × 4.00mm  
(1) 要了解所有可用封装,请参阅数据表末尾的可订购产品附录。  
D1  
RPWR  
VIN  
>
CPWR1  
MCU  
GPIO  
OUTA  
VDRV  
IO2  
IO1  
GPIO  
GPIO  
OUT3  
OUT4  
NCS  
2 应用  
OUTB  
FLT  
CPWR2  
位置传感器  
液位变送器  
接近传感器  
SDO  
SDI  
CFLT  
SPI  
RINP  
SCLK  
VOUT  
CINP  
INP  
INN  
ADC  
CINN  
LDO  
VDD  
CVDD  
TUSS4470 应用示意图  
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问  
www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLDS251  
 
 
 
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
Table of Contents  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions ..................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information ...................................................5  
6.5 Power-Up Characteristics........................................... 5  
6.6 Transducer Drive ........................................................5  
6.7 Receiver Characteristics.............................................6  
6.8 Echo Interrupt Comparator Characteristics.................7  
6.9 Digital I/O Characteristics........................................... 7  
6.10 Switching Characteristics..........................................8  
6.11 Typical Characteristics.............................................. 8  
7 Detailed Description......................................................11  
7.1 Overview................................................................... 11  
7.2 Functional Block Diagram......................................... 11  
7.3 Feature Description...................................................11  
7.4 Device Functional Modes..........................................20  
7.5 Programming............................................................ 21  
7.6 Register Maps...........................................................23  
8 Application and Implementation..................................30  
8.1 Application Information............................................. 30  
8.2 Typical Application.................................................... 30  
9 Power Supply Recommendations................................36  
10 Layout...........................................................................37  
10.1 Layout Guidelines................................................... 37  
10.2 Layout Example...................................................... 38  
11 Device and Documentation Support..........................39  
11.1 接收文档更新通知................................................... 39  
11.2 支持资源..................................................................39  
11.3 Trademarks............................................................. 39  
11.4 Electrostatic Discharge Caution..............................39  
11.5 术语表..................................................................... 39  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 39  
4 Revision History  
注:以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (April 2018) to Revision A (May 2022)  
Page  
更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
将提到 SPI 的旧术语的所有实例更改为控制器和外设........................................................................................ 1  
Changed operating free-air temperature minimum from: –25°C to: –40°C.........................................................4  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TUSS4470  
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
OUT3  
DGND  
NCS  
1
2
3
4
5
15  
14  
13  
12  
11  
OUTA  
GND  
SGND  
INP  
Thermal  
Pad  
SCLK  
SDI  
INN  
Not to scale  
5-1. RTJ Package 20-Pin WQFN With Exposed Thermal Pad (Top View)  
PIN  
TYPE(1)  
DESCRIPTION  
NO.  
1
NAME  
OUT3  
DGND  
NCS  
O
G
I
General-purpose digital output  
Digital ground  
2
3
SPI negative chip select  
SPI CLK  
4
SCLK  
SDI  
I
5
I
SPI data input  
6
SDO  
IO1  
O
I
SPI data output  
7
General-purpose digital input  
General-purpose digital input  
Demodulated echo analog output  
Voltage regulator input  
Negative transducer receive  
Positive transducer receive  
Sensor ground (quiet)  
Ground  
8
IO2  
I
9
VOUT  
VDD  
O
P
I
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
INN  
INP  
I
SGND  
GND  
OUTA  
OUTB  
VDRV  
FLT  
G
G
O
O
P
I/O  
O
P
Transducer driver output A  
Transducer driver output B  
H-bridge driver supply voltage  
Filter components  
OUT4  
VPWR  
General-purpose digital output  
Input supply voltage  
(1) I = input, O = output, I/O = input and output, G = ground, P = power  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TUSS4470  
 
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
0.5  
MAX  
40  
UNIT  
V
VVPWR  
VVDD  
VVDRV  
VFLT  
Supply voltage range  
Voltage regulator input voltage  
H-bridge drive voltage  
5.5  
V
VVPWR + 0.3  
VVDD + 0.3  
1.3  
V
Filter component pin  
V
VINX  
INP, INN pins input voltage  
SCLK, SDI, NCS, IOx pin input voltage  
Analog output voltage  
V
VDIG_IN  
VVOUT  
VDIG_OUT  
VOUTA_B  
TA  
–0.3  
–0.3  
–0.3  
–0.3  
–40  
VVDD + 0.3  
VVDD + 0.3  
VVDD + 0.3  
VVDRV + 0.3  
105  
V
V
SDO, OUTx, IOx pin output voltage  
OUTA, OUTB pins output voltage  
Ambient temperature  
V
V
TJ  
Junction temperature  
–40  
125  
°C  
Tstg  
Storage temperature  
–40  
125  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress  
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated  
under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
VVPWR  
Supply voltage on VPWR pin  
5
36  
V
Voltage on VDRV pin, internal regulation on VDRV disabled  
(VDRV_HI_Z=1)(1)  
5
5
36  
15  
V
V
VVDRV  
VDRV voltage Pre driver mode (PRE_DRIVER_MODE=1), internal  
regulation on VDRV disabled (VDRV_HI_Z=1)(1)  
VVDIG_IO  
VVDD  
Digital I/O pins  
–0.1  
3.1  
150  
150  
7
VVDD  
5.5  
V
V
Regulated voltage Input  
IVPWR_INDIR  
IVPWR_STDBY  
IVDD_INDIR  
IVDD_STDBY  
IVDD_SLEEP  
TA  
Current consumption at VPWR pin during ranging  
Current consumption at VPWR in standby mode  
Current consumption at VDD pin during ranging  
Current consumption at VDD in standby mode  
Current consumption in sleep mode  
Operating free-air temperature  
240  
220  
11.5  
1.5  
340  
340  
13  
µA  
µA  
mA  
mA  
µA  
°C  
°C  
1.2  
2.5  
350  
105  
125  
–40  
–40  
TJ  
Operating junction temperature  
(1) Always VVPWR > VVDRV + 0.3 V to prevent reverse current from VDRV pin to VPWR pin  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TUSS4470  
 
 
 
 
 
 
 
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
6.4 Thermal Information  
TUSS4470  
THERMAL METRIC(1)  
RTJ (WQFN)  
20 PINS  
36.3  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
29.4  
14.7  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
ΨJB  
14.7  
RθJC(bot)  
4.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Power-Up Characteristics  
over operating free-air temperature range, VVPWR, VVDRV and VVDD recommended voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Time to power  
up when SPI  
communication is  
possible  
tPWR_ON  
10  
ms  
VDRV_VOLTAGE_LEVEL = 0x0; VVPWR > VVDRV + 100 mV  
VDRV_VOLTAGE_LEVEL = 0x4; VVPWR > VVDRV + 100 mV  
VDRV_VOLTAGE_LEVEL = 0x7; VVPWR > VVDRV + 100 mV  
VDRV_VOLTAGE_LEVEL = 0x8; VVPWR > VVDRV + 100 mV  
VDRV_VOLTAGE_LEVEL = 0xC; VVPWR > VVDRV + 100 mV  
VDRV_VOLTAGE_LEVEL = 0xD; VVPWR > VVDRV + 100 mV  
VDRV_VOLTAGE_LEVEL = 0xE; VVPWR > VVDRV + 100 mV  
VDRV_VOLTAGE_LEVEL = 0xF; VVPWR > VVDRV + 100 mV  
VDRV_CURRENT_LEVEL = 0x0; VVPWR > VVDRV + 1 V  
VDRV_CURRENT_LEVEL = 0x1; VVPWR > VVDRV + 1 V  
4.5  
8.1  
5
9
5.3  
9.9  
11.5  
12.09  
15.81  
16.74  
17.67  
19.0  
8.5  
12  
13  
17  
18  
19  
20  
10  
20  
12.6  
13.91  
18.9  
19.26  
20.33  
21.4  
11.5  
23  
Regulated voltage  
on VDRV pin(1)  
VVDRV  
V
VDRV capacitor  
charging current  
IVDRV  
mA  
17  
(1) Other VDRV voltage levels possible.  
6.6 Transducer Drive  
over operating free-air temperature range, VVPWR, VVDRV and VVDD recommended voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RHS_FET High-side MOSFET on-resistance  
RLS_FET Low-side MOSFET on-resistance  
TA =+105°C  
30  
Ω
TA =+105°C  
20  
Ω
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TUSS4470  
 
 
 
 
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
6.7 Receiver Characteristics  
over operating free-air temperature range, VVPWR, VVDRV and VVDD recommended voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
LNA_GAIN = 0x00; fDRV_CLK = 58 KHz  
LNA_GAIN = 0x01; fDRV_CLK = 58 KHz  
LNA_GAIN = 0x10; fDRV_CLK = 58 KHz  
LNA_GAIN = 0x11; fDRV_CLK = 58 KHz  
MIN  
13.7  
9.4  
TYP  
MAX  
16.8  
12  
UNIT  
GLNA  
GLNA  
GLNA  
GLNA  
15  
Low-noise  
amplifier fixed  
gain  
10  
V/V  
17.6  
11.6  
20  
21.8  
14.2  
12.5  
Minimum  
DRVIN_MIN  
DRVIN_MAX  
2.4  
48  
µVrms  
mVrms  
receive input(2)  
LOGAMP_DIS_FIRST=0x0;LOGAMP_DIS_LAST=0x0  
LNA_GAIN=0x00; ERRLOG < ± 3dB; fDRV_CLK < 500KHz  
Maximum  
receive input(2)  
VOUT_SCALE_SEL = 0x0; fDRV_CLK = 58 KHz  
VOUT_SCALE_SEL = 0x1; fDRV_CLK = 58 KHz  
25  
38  
29.7  
45.1  
33  
46  
Slope of analog  
front end(4)  
SLAFE  
mV/dB  
LOGAMP_DIS_FIRST = 0x0; LOGAMP_DIS_LAST = 0x0  
ERRLOG < ± 3 dB; fDRV_CLK < 500 KHz  
82  
74  
59  
92  
86  
70  
Receiver path  
dynamic range  
(minimum to  
LOGAMP_DIS_FIRST = 0x0; LOGAMP_DIS_LAST = 0x1  
ERRLOG < ± 3 dB; fDRV_CLK < 500 KHz  
maximum input)  
(2)  
LOGAMP_DIS_FIRST = 0x1; LOGAMP_DIS_LAST=0x1  
ERRLOG < ± 3dB; fDRV_CLK < 500 KHz  
DRAFE  
dB  
Receiver path  
dynamic  
Range (noise  
floor to  
LOGAMP_DIS_FIRST = 0x0; LOGAMP_DIS_LAST = 0x0  
ERRLOG < ± 3 dB; fDRV_CLK < 500 KHz  
74  
84  
maximum input)  
(3)  
Logamp  
bandwidth  
BWLOG  
Information only  
40  
-108  
-94  
1000  
-97  
KHz  
dBV  
LOGAMP_DIS_FIRST=0x0; LOGAMP_DIS_LAST=0x0;  
fDRV_CLK = 40 KHz  
Intercept point LOGAMP_DIS_FIRST = 0x0; LOGAMP_DIS_LAST=0x1;  
in dBV  
INTLOG  
-86  
fDRV_CLK = 40 KHz  
LOGAMP_DIS_FIRST = 0x1; LOGAMP_DIS_LAST=0x1;  
fDRV_CLK = 40 KHz  
-80  
-70  
Log  
ERRLOG  
conformance  
error  
Information only  
-3  
3
dB  
Configurable  
range of center BPF_BYPASS = 0x0; BPF_FC_TRIM = 0x0;  
fBPF  
40  
3
500  
5.2  
KHz  
frequency of  
BPF  
set by different values of BPF_HPF_FREQ  
Q of bandpass  
filter  
QBPF  
BPF_BYPASS = 0x0; BPF_Q_SEL = 0x0(1)  
4
Internal resistor  
on FLT pin to  
ground  
RLPF  
6.25  
KΩ  
V
VVDD = 3.3 V; fDRV_CLK = 40 KHz; VOUT_SCALE_SEL = 0x0  
LOGAMP_DIS_FIRST = 0x0; LOGAMP_DIS_LAST = 0x0  
0.3  
0.45  
Output pedestal  
level(2)  
VO_PDSTL  
VVDD = 5.0 V; fDRV_CLK = 40 KHz; VOUT_SCALE_SEL = 0x1  
LOGAMP_DIS_FIRST = 0x0;LOGAMP_DIS_LAST = 0x0  
0.45  
0.675  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TUSS4470  
 
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
over operating free-air temperature range, VVPWR, VVDRV and VVDD recommended voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VVDD=3.3 V; fDRV_CLK = 40 KHz; CFLT = 15  
nF; VOUT_SCALE_SEL = 0x0  
50  
200  
LOGAMP_DIS_FIRST = 0x0; LOGAMP_DIS_LAST=0x0  
Output peak-to-  
peak noise  
VN_pk_pk  
mVpp  
VVDD=5.0 V; fDRV_CLK = 40 KHz; CFLT = 15  
nF; VOUT_SCALE_SEL = 0x1  
75  
300  
LOGAMP_DIS_FIRST = 0x0; LOGAMP_DIS_LAST = 0x0  
(1) Other choices of Q possible.  
(2) Measured with effectively very large CFLT. Actual minimum signal detectable will depend on VN_pk_pk. Minimum and maximum input  
levels are defined by ERRLOG  
.
(3) Measured with different CFLT values according to 方程式 3. Noise floor is set by VN_PK_PK in addition to VO_PDSTL  
.
(4) Slope measured with factory trim at fDRV_CLK = 58 KHz. Slope can be adjusted with LOGAMP_SLOPE_ADJ bits for different fDRV_CLK  
settings.  
6.8 Echo Interrupt Comparator Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOUT_SCALE_SEL = 0x0  
ECHO_INT_THR_SEL = 0x0  
ECHO_INT_THR_SEL = 0x5  
ECHO_INT_THR_SEL = 0xA  
ECHO_INT_THR_SEL = 0xF  
0.37  
0.56  
0.75  
0.94  
7
0.4  
0.6  
0.8  
1
0.43  
0.64  
0.85  
1.06  
68  
Echo interrupt comparator  
threshold(1)  
VECMP_THR_0  
V
VECMP_HYS_0 Echo interrupt comparator hysteresis  
mV  
VOUT_SCALE_SEL = 0x1  
ECHO_INT_THR_SEL = 0x0  
ECHO_INT_THR_SEL = 0x5  
ECHO_INT_THR_SEL = 0xA  
ECHO_INT_THR_SEL = 0xF  
0.56  
0.84  
1.13  
1.41  
0.6  
0.9  
1.2  
1.5  
0.64  
0.96  
1.27  
1.59  
Echo interrupt comparator  
VE_CMP_THR_1  
V
threshold(1)  
Echo interrupt output threshold level  
VECMP_HYS_1  
hysteresis  
7
68  
mV  
(1) Other thresholds possible.  
6.9 Digital I/O Characteristics  
over operating free-air temperature range, VVPWR, VVDRV and VVDD recommended voltage range (unless otherwise noted)  
PARAMETER  
Digital input high-level  
Digital input low-level  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
VVDD  
VVDD  
mV  
V
VIH_DIGIO  
VIL_DIGIO  
0.7  
NCS, SDI, SCLK and IOx pins  
0.3  
VHYS_DIGIO Digital input hysteresis  
VOH_DIGIO Digital output high-level(1)  
100  
SDO, OUTx pins; IDIGIO_OUT = – 1 mA  
SDO, OUTx pins; IDIGIO_OUT = 1 mA  
SDO pin. Information Only  
VVDD – 0.1  
VOL_DIGIO  
VO_CAP  
Digital output low-level(1)  
0.1  
10  
V
Maximum output load capacitance  
pF  
RPU_DIGIO Digital input pullup resistance to VDD  
NCS, IO1, IO2 pins  
80 100  
80 100  
130  
kΩ  
Digital Input pulldown resistance to  
RPD_DIGIO  
GND  
SCLK, SDI pins  
130  
kΩ  
(1) No short-circuit protection on output pins. Damage may occur for currents higher than specified.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TUSS4470  
 
 
 
 
 
 
 
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
6.10 Switching Characteristics  
over operating free-air temperature range, VVPWR, VVDRV and VVDD recommended voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Frequency of drive clock at IO1 and IO2  
pin ; depends on the VDRV voltage  
Used as burst frequency;  
PRE_DRIVER_MODE = 0x0  
40  
1000  
KHz  
fDRV_CLK  
Used as burst frequency;  
PRE_DRIVER_MODE = 0x1; Load cap  
on OUTA/OUTB = 2nF  
Frequency of drive clock at IO1 and IO2  
pin  
40  
440  
500  
KHz  
KHz  
SPIRATE SPI bit rate  
6.11 Typical Characteristics  
3
4.5  
40 KHz  
40 KHz  
256 KHz  
500 KHz  
750 KHz  
1MHz  
4
3.5  
3
256 KHz  
500 KHz  
750 KHz  
1MHz  
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
5E-7  
1E-5  
1E-4 1E-3  
VinRMS (V)  
1E-2  
1E-1  
5E-7  
VDD:5.0V  
1E-5  
1E-4 1E-3  
VinRMS (V)  
1E-2  
1E-1  
VDD:3.3V  
Temp:25èC  
LNA_GAIN=0x0; VOUT_SCALE_SEL=0x0  
LOGAMP_DIS_FIRST=0x0; LOGAMP_DIS_LAST=0x0  
Temp:25èC  
LNA_GAIN=0x0; VOUT_SCALE_SEL=0x1  
LOGAMP_DIS_FIRST=0x0; LOGAMP_DIS_LAST=0x0  
6-1. Receive Signal Path Transfer Function for VDD = 3.3 V  
6-2. Receive Signal Path Transfer Function for VDD = 5 V  
3
3
-40èC  
LNA_GAIN  
25èC  
0x01  
0x11  
0x00  
0x10  
2.5  
2
2.5  
2
125èC  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
5E-7  
1E-5  
1E-4  
VinRMS (V)  
1E-3  
1E-2  
1E-1  
5E-7  
1E-5  
1E-4  
VinRMS (V)  
1E-3  
1E-2  
1E-1  
VDD:3.3V  
VDD:3.3V; Temp:25èC  
Fc:256KHz  
VOUT_SCALE_SEL=0x0  
LOGAMP_DIS_FIRST=0x0; LOGAMP_DIS_LAST=0x0  
Fc:256KHz  
LNA_GAIN=0x0; VOUT_SCALE_SEL=0x0  
LOGAMP_DIS_FIRST=0x0; LOGAMP_DIS_LAST=0x0  
6-3. Receive Signal Path Transfer Function Across  
6-4. Receive Signal Path Transfer Function Across LNA Gain  
Temperature  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TUSS4470  
 
 
 
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
3
10  
5
DEV_CTRL_2  
0x00  
0x40  
0xC0  
2.5  
2
3dB  
0
-3dB  
1.5  
1
-5  
-40.00èC, 40KHz  
-40.00èC, 256KHz  
-40.00èC, 500KHz  
25.00èC, 40KHz  
25.00èC, 256KHz  
25.00èC, 500KHz  
125.00èC, 40KHz  
125.00èC, 256KHz  
125.00èC, 500KHz  
-10  
0.5  
0
-15  
1E-6  
5E-7  
VDD:3.3V  
Fc:256KHz  
1E-5  
1E-4 1E-3  
VinRMS (V)  
1E-2  
1E-1  
1E-5  
1E-4  
1E-3  
1E-2  
1E-1  
VinRMS (V)  
LNA_GAIN=0x0  
LOGAMP_DIS_FIRST=0x0; LOGAMP_DIS_LAST=0x0  
Temp:25èC  
6-6. Receive Signal Path Log Conformance Error With All  
6-5. Receive Signal Path Transfer Function for Various  
Stages Enabled  
Logamp Stages Disabled  
10  
7.5  
5
10  
7.5  
5
2.5  
2.5  
1dB  
1dB  
0
-2.5  
-5  
0
-2.5  
-5  
-40.00èC, 40KHz  
-40.00èC, 256KHz  
-40.00èC, 500KHz  
25.00èC, 40KHz  
25.00èC, 256KHz  
25.00èC, 500KHz  
125.00èC, 40KHz  
125.00èC, 256KHz  
125.00èC, 500KHz  
-40.00èC, 40KHz  
-40.00èC, 256KHz  
-40.00èC, 500KHz  
25.00èC, 40KHz  
25.00èC, 256KHz  
25.00èC, 500KHz  
125.00èC, 40KHz  
125.00èC, 256KHz  
125.00èC, 500KHz  
-7.5  
-10  
-7.5  
-10  
-12.5  
-15  
-12.5  
-15  
1E-6  
1E-5  
1E-4  
1E-3  
1E-2  
1E-1  
1E-5  
1E-4  
1E-3  
VinRMS (V)  
1E-2  
1E-1  
VinRMS (V)  
LNA_GAIN=0x0  
LOGAMP_DIS_FIRST=0x0; LOGAMP_DIS_LAST=0x1  
LNA_GAIN=0x0  
LOGAMP_DIS_FIRST=0x1; LOGAMP_DIS_LAST=0x1  
6-7. Receive Signal Path Log Conformance Error With Last  
6-8. Receive Signal Path Log Conformance Error With First  
Stage Disabled  
and Last Stage Disabled  
2.15  
6E+5  
5E+5  
BPF_HPF_FREQ  
2.1  
2.05  
2
-40èC  
0x00  
0x04  
0x08  
0x0C  
0x10  
0x14  
0x18  
0x1C  
0x20  
0x24  
0x28  
0x2C  
0x2F  
4E+5  
25èC  
125èC  
3E+5  
1.95  
1.9  
2E+5  
1.85  
1.8  
1.75  
1.7  
1E+5  
7E+4  
5E+4  
1.65  
1.6  
1.55  
4E+4  
3E+4  
5E+4 7E+4 1E+5  
2E+5 3E+5  
5E+5 7E+5  
0x00 0x06 0x0C 0x12 0x18 0x1E 0x24 0x2A 0x30  
BPF_HPF_FREQ Register Value  
LNA_GAIN=0x0;  
Vin Frequency (Hz)  
VDD:3.3V  
Temp:25èC  
LNA_GAIN=0x0; VOUT_SCALE_SEL=0x0  
LOGAMP_DIS_FIRST=0x0; LOGAMP_DIS_LAST=0x0  
LOGAMP_DIS_FIRST=0x0; LOGAMP_DIS_LAST=0x0  
6-10. Receive Signal Path Bandpass Filter frequency for  
Various Register Settings  
6-9. Receive Signal Path Bandpass Filter Transfer Function  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TUSS4470  
 
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
5E+4  
9.25E+5  
9E+5  
1.6E+5  
1.4E+5  
1.2E+5  
1E+5  
8E+4  
6E+4  
4E+4  
2E+4  
0
4.8E+4  
BPF_HPF_FREQ Value  
0x00  
0x2F  
-40èC, 3.3V  
-40èC, 5.0V  
25èC, 3.3V  
25èC, 5.0V  
125èC, 3.3V  
125èC, 5.0V  
4.6E+4  
8.75E+5  
8.5E+5  
8.25E+5  
8E+5  
4.4E+4  
4.2E+4  
4E+4  
3.8E+4  
3.6E+4  
3.4E+4  
3.2E+4  
3E+4  
7.75E+5  
7.5E+5  
7.25E+5  
7E+5  
6.75E+5  
6.5E+5  
6.25E+5  
6E+5  
2.8E+4  
2.6E+4  
2.4E+4  
2.2E+4  
2E+4  
5.75E+5  
5.5E+5  
0x10 0x0E 0x0C 0x0A 0x08 0x06 0x04 0x02 0x00  
BPF_FC_TRIM Register Value  
VDD=3.3V  
Temp=25èC  
LNA_GAIN=0x0; VOUT_SCALE_SEL=0x0  
LOGAMP_DIS_FIRST=0x0; LOGAMP_DIS_LAST=0x0  
5E+4  
1.5E+5 2.5E+5 3.5E+5 4.5E+5 5.5E+5 6.5E+5  
Bandpass Filter Center Frequency (Hz)  
LNA_GAIN=0x0  
BPF_Q_SEL=0x0  
LOGAMP_DIS_FIRST=0x0; LOGAMP_DIS_LAST=0x0  
6-11. Receive Signal Path Bandpass Filter Center Frequency  
Trim  
6-12. Receive Signal Path Bandpass Filter Bandwidth for  
Various Center Frequency Settings  
3
3
LOGAMP_INT_ADJ  
0x00  
0x03  
LOGAMP_SLOPE_ADJ  
0x0F  
0x0C  
0x07  
0x01  
0x03  
0x04  
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
5E-7  
1E-5  
1E-4 1E-3  
VinRMS (V)  
1E-2  
1E-1  
5E-7  
1E-5  
1E-4 1E-3  
VinRMS (V)  
1E-2  
1E-1  
VDD:3.3V; Temp:25èC  
Fc:256KHz  
VDD:3.3V; Temp:25èC  
Fc:256KHz  
VOUT_SCALE_SEL=0x0  
LOGAMP_DIS_FIRST=0x0; LOGAMP_DIS_LAST=0x0  
VOUT_SCALE_SEL=0x0  
LOGAMP_DIS_FIRST=0x0; LOGAMP_DIS_LAST=0x0  
6-13. Receive Signal Path Transfer Function for Various  
6-14. Receive Signal Path Transfer Function for Various  
Slope Adjustments  
Intercept Adjustments  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TUSS4470  
 
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TUSS4470 is a highly integrated driver and receiver IC designed especially for ultrasonic transducers  
operating between the range of 40 KHz to 1 MHz. The TUSS4470 integrates an H-bridge to drive the transducer  
directly. This is useful in applications where the receive transducer sensitivity is high and large driving voltage  
is not required to create sufficient sound pressure level and where short distance measurements are needed.  
The driver stage has flexible and configurable controls set through the SPI interface or through digital input  
pins that can be driven by an external MCU. The receive stage consists of a logarithmic amplifier receive  
chain. The logamp enables the TUSS4470 to have a wide dynamic input range. This enables applications  
where objects with different physical properties must be detected with the same sensor. A key advantage of the  
TUSS4470 is that it integrates a bandpass filter that can be tuned to the center frequency of the transducer.  
A demodulated analog output representing the receive echo, the zero crossing of the input signal, and a  
simple threshold crossing indicator enable a variety of end applications from complex object detection to simple  
presence detection.  
7.2 Functional Block Diagram  
VDRV  
VPWR  
VDD  
Control Logic  
INTERFACE  
NCS  
SCLK  
SDO  
SDI  
OUTA  
OUTB  
IO1  
IO2  
PULSE GENERATOR  
Burst Pulses  
DGND  
GND  
Output Driver  
Echo INT  
Threshold  
Comp  
Buffer  
OUT4  
Analog front-end  
receiver  
VOUT  
OUT3  
Zero Crossing  
INP  
INN  
Log  
Amp &  
Demod  
Low Pass  
Filter  
Band Pass  
filter  
LNA  
FLT  
SGND  
7.3 Feature Description  
7.3.1 Excitation Power Supply (VDRV)  
The TUSS4470 device includes a current source which charges a capacitor connected to the VDRV pin. The  
VDRV pin serves as the power supply for the integrated H-Bridge driver circuit The voltage on the VDRV pin  
(VVDRV) is controlled by an internal voltage monitor which can be configured by the VDRV_VOLTAGE_LEVEL  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TUSS4470  
 
 
 
 
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
bits. The current source is switched off after VDRV pin voltage crosses the configured VVDRV value. The  
charging current (IVDRV) can be configured using VDRV_CURRENT_LEVEL bits.  
In applications where VPWR can vary over a wide range, this allows the transducer drive voltage to be fixed for  
every burst for a deterministic sound pressure level created by the transducer. This is possible only when the  
minimum supply voltage on the VPWR pin is greater than the configured value of VVDRV  
.
The VDRV regulation is disabled at device power up indicated by VDRV_HI_Z bit being set. To enable VDRV  
this bit must be cleared. This feature enables applications where the the H-Bridge driver supply is connected to  
an external power supply source through the VDRV pin.  
备注  
When VDRV pin is supplied from an external power supply, it must be ensured that all times  
including during power up, VVPWR > VVDRV + 0.3 V to prevent any reverse current from VDRV pin  
to VPWR pin. Alternatively a reverse current prevention diode can be used on VPWR pin as shown  
in 8-1 (D1).  
Very fast ramp-up rate on VPWR pin should be avoided to prevent damage to the device. If fast  
ramp rates are possible, a series resistor between power supply and VPWR pin as shown in 8-1  
(RPWR) is recommended.  
After a burst is completed and during the long receive time (listen mode), the capacitor on VDRV pin will  
discharge causing the charging current to turn on intermittently. This can inject switching noise which can be  
picked by the analog front end as a spurious echo. To eliminate this noise, the DIS_VDRV_REG_LSTN bit can  
be set. This disables charging of VDRV automatically after the burst is done. The VDRV charging current can be  
turned on again by setting the VDRV_TRIGGER bit. Setting this bit may create a spurious echo which can be  
ignored by the echo processing in the MCU. The VDRV_READY bit in DEV_STAT register can be monitored to  
know when the required voltage level has been reached and the device is ready to generate a new burst. The  
VDRV_TRIGGER bit must be un-set through SPI just before the start of burst and will have to be set again for  
next charging cycle. If the VDRV_TRIGGER bit is not un-set before next burst cycle, the VDRV charging current  
will not be automatically disabled after the burst even when DIS_VDRV_REG_LSTN is set. This functionality is  
ignored when the VDRV_HI_Z bit is set.  
7.3.2 Burst Generation  
TUSS4470 has multiple modes to excite the transducer through OUTA and OUTB pins. For each of the modes,  
the desired frequency of burst is supplied through an external clock on the IOx pins. This enables the user  
to supply a highly precise clock calibrated to the center frequency of transducer to enable the highest sound  
pressure level generation. These modes can be selected by the IO_MODE bits in the DEV_CTRL_3 register.  
The burst mode is enabled first, then the start of burst (OUTA/OUTB changing states) happens at the next falling  
edge of IO1 or IO2, depending on the mode selected. These modes are described below.  
IO_MODE = 0: In this mode, the external clock for the transducer is applied at the IO2 pin and the burst  
mode is enabled by setting the CMD_TRIGGER in the TOF_CONFIG register through SPI, as shown in 图  
7-1. The device then expects a clock at IO2 pin to generate pulses on the OUTA/OUTB pins. The start of  
burst happens from the first falling edge of IO2. The number of pulses are counted by counting falling edge to  
next falling edge transitions on IO2 once the start of burst is triggered. The end of burst sequence is signaled  
when the number of pulses defined in BURST_PULSE are sent, or when the CMD_TRIGGER = 0 is set  
through SPI, whichever occurs earlier. TI recommends that IO2 is held high before burst enable to count the  
number of pulses correctly. After the start of burst, the state of OUTA and OUTB pins are determined by IO1  
and IO2 pins. A transition of CMD_TRIGGER from high to low to high again is required to initiate a new burst  
sequence.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TUSS4470  
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
Start of  
Burst  
End of Burst  
Burst Enable  
Burst Disable  
CMD_TRIGGER = 1  
CMD_TRIGGER = 0  
CMD_TRIGGER = 0  
IO2  
#1  
#2  
#3  
#4  
BURST_PULSE=0x04  
7-1. IO_MODE 0 Description  
IO_MODE = 1: In this mode, the external clock for the transducer is applied at the IO2 pin and the burst  
mode is enabled when IO1 pin transitions low (see 7-2). The device then expects a clock at IO2 pin to  
generate pulses on the OUTA/OUTB pins. The start of burst happens from the first falling edge of IO2. The  
number of pulses are counted by counting falling edge to next falling edge transitions on IO2 once the start of  
burst is triggered. End of burst sequence is signaled when the number of pulses defined in BURST_PULSE  
are sent or IO1 transitions high, whichever occurs earlier. TI recommends that IO2 is held high before start  
of burst to count the number of pulse correctly. After the start of burst, the state of OUTA and OUTB pins are  
determined by IO1 and IO2 pins. A transition of IO1 from low to high to low again is required to initiate a new  
burst sequence.  
Start of  
End of Burst  
Burst Enable  
Burst  
Burst Disable  
IO1  
IO2  
#1  
#2  
#3  
#4  
BURST_PULSE=0x04  
7-2. IO_MODE 1 Description  
IO_MODE = 2: In this mode both IO1 and IO2 are used to control OUTA and OUTB. The burst enable is  
triggered when either IO1 or IO2 transitions from high to low. Start of burst (OUTA and OUTB changing  
state) happens only at the next falling edge of IO1. 7-3 shows the case where a high-to-low transition on  
IO2 is used to enable the burst. A burst is emulated when IO1 and IO2 are toggled in a non-overlapping  
sequence. After the start of burst, the state of OUTA and OUTB pins are determined by IO1 and IO2 pins.  
During a burst, if there is a condition where both IO1 and IO2 are high for more than half period of the  
internal clock fINT_CLK (caused by differential delays due to PCB parasitics or MCU code), an end of burst  
and burst mode disable will be triggered. Any falling edge just after this condition will be ignored to toggle  
OUTA and OUTB as it would be considered as a new burst enable signal. A systematic condition of overlap  
can cause a continuous end of burst trigger such that OUTA and OUTB do not toggle even though IO1 and  
IO2 are toggling. TI recommends no overlap or minimum non-overlap between the IO1 and IO2 signals when  
measured at the pins. BURST_PULSE has no effect in this mode.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TUSS4470  
 
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
End of Burst  
&
Start of  
Burst  
Non Overlap  
Burst Enable  
Burst Disable  
. . . . . . .  
IO1  
IO2  
7-3. IO_MODE 2 Description  
IO_MODE = 3: In this mode, burst enable and start of burst are both triggered by the falling edge of IO2. TI  
recommends that IO2 pin is kept pulled up to VDD for this mode. The device then expects a clock at IO2  
pin to generate pulses on the OUTA/OUTB pins (see 7-4). The number of pulses are counted by counting  
falling edge to next falling edge transitions on IO2 once the start of burst is triggered. End of burst sequence  
is signaled when the number of pulses defined in BURST_PULSE are sent. After end of burst, a blank-out  
timer interval defined by the DRV_PLS_FLT_DT register is started to prevent triggering of a new start of burst  
in the event if the IO2 pin is still toggling. After the start of burst, the state of OUTA and OUTB pins are  
determined by IO1 and IO2 pins.  
Start of Burst  
&
End of Burst  
&
Burst Enable  
Burst Disable  
IO2  
#1  
#2  
#3  
#4  
BURST_PULSE=0x04  
Blank Out Time  
7-4. IO_MODE 3 Description  
备注  
For IO_MODE 0 and 1, by setting BURST_PULSE = 0, the device will generate continuous  
burst pulses on OUTA and OUTB until the end of burst is signaled through SPI or the IO1 pin,  
respectively. Continuous bursting is not available for IO_MODE=3.  
A higher noise floor at the VOUT pin is expected in continuous mode where one transducer is used  
to transmit burst signals and another transducer is used to receive, as the switching noise of the  
digital IO pins can couple into the highly sensitive analog front end for the receive channel. This  
also applies to the single transducer use case where a continuous clock is applied on IO2 pin when  
the device is in indirect or listening mode.  
The range for frequency of switching for the output drivers is given by fDRV_CLK parameter in the  
Switching Characteristics table.  
When the device is not in direct sensing or bursting mode, the device is always in indirect sensing  
or listening mode.  
7.3.2.1 Burst Generation Diagnostics  
In IO_MODE 0, 1 and 3, a pulse number diagnostic is active after start of burst (not when the burst is enabled) to  
monitor if the correct number of pulses (as set in BURST_PULSE) were generated before the end of burst was  
signaled through SPI or the IO1 pin. A fault, if detected, is then reported through the PULSE_NUM_FLT bit.  
The pulse duration after start of burst (not when the burst is enabled) is monitored to detect a stuck condition,  
which will keep the FETs on OUTA or OUTB turned on. This can happen because of loss of external clock  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TUSS4470  
 
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
or the driving signal on IO1 and IO2 pins being stuck in one state. The device expects to see a toggle on  
IOx pins (based on IO_MODE) within the time period as defined in the DRV_PLS_FLT_DT register. If this  
diagnostic triggers, it will force an end of burst. The fault is reported by setting the DRV_PULSE_FLT bit. If a  
DRV_PULSE_FLT is set in IO_MODE 0, 1 and 3—and the programmed number of pulses were not sent before  
end of burst—the PULSE_NUM_FLT will also be set.  
备注  
The DRV_PULSE_FLT bit is cleared when a new start of burst is triggered, when  
DRV_PLS_FLT_DT = 0x7 is set, or if the device is put into Standby or Sleep mode.  
The PULSE_NUM_FLT bit is cleared when a new start of burst is triggered, or if the device is put  
into Standby or Sleep mode.  
7.3.3 Direct Transducer Drive  
7-5 shows the internal structure for driving an ultrasonic transducer connected directly to the device output  
using an H-bridge output stage. This configuration drives 2 × VVDRV as the peak-to-peak voltage across the  
transducer. The voltage on VDRV pin can be set as described in the Excitation Power Supply (VDRV) section.  
IO2  
VPWR  
VDRV  
IVDRV  
+
œ
VVDRV  
OUTA  
Burst and Gate  
Drive Control  
OUTB  
7-5. Direct Drive Configuration Using Internal FETs  
7-5 shows the most common application case for the TUSS4470 device, in which the output driver pulses  
the two half-bridges out-of-phase. It is also possible to use the driver in half-bridge mode by setting the  
HALF_BRG_MODE bit. In this mode, only VVDRV is applied across the transducer. This mode is useful for  
transducers where one side of the membrane must be always grounded.  
The device can also be configured as a pre-driver to drive external FETs or BJTs to drive higher current and  
voltage into the primary side of the transformer, as shown in 7-6, by setting the PRE_DRIVER_MODE bit. The  
high-side and low-side devices are used to drive the external low-side drivers. The VDRV voltage level can be  
configured to ensure that the OUTA and OUTB voltages do not violate the VGS or VBE specification for external  
the FET or BJT, respectively. In the configuration shown in 7-6, it is possible to use a voltage (VBOOST)  
which is higher than the supply of the system for generating higher voltage across the transducer.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TUSS4470  
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
Refer to Application and Implementation for an application diagram and information on how the polarity and state  
of OUTA and OUTB pins are defined with respect to IO1 and IO2 pin states and other register settings.  
IO1/IO2  
VPWR  
IVDRV  
VBOOST  
VDRV  
+
œ
VVDRV  
OUTA  
OUTB  
Burst and Gate  
Drive Control  
7-6. Center-Tap Transformer Drive Using External FETs  
7.3.4 Analog Front End  
OUT3  
OUT4  
HYS RANGE: ZC_CMP_HYST  
Thr: ECHO_INT_THR_SEL  
F. RANGE: BPF_HPF_FREQ  
Q: 4; GAIN: 0.9 V/V  
COMPARATOR  
COMPARATOR  
INP  
GAIN: LNA_GAIN  
DYN. RANGE: DRLOG  
GAIN: LOGAMP_SLOPE_ADJ  
BPF  
VOUT  
INN  
F. RANGE: BPF_HPF_FREQ  
GAIN: 1V/V  
LNA  
LOGAMP  
BUFFER  
FLT  
HPF  
KX: LOGAMP_INT_ADJ  
Intercept Correction  
7-7. TUSS4470 Analog Front-End Block Diagram  
7-7 shows the analog front-end block diagram that can receive and condition the signals from the transducer  
during listen mode. The received echo is first amplified with a fixed linear low-noise amplifier, followed by either a  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TUSS4470  
 
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
bandpass filter or a high-pass filter to remove noise out of the expected signal band. After filtering the signal, the  
signal is fed into a logarithmic amplifier. The output of the logarithmic amplifier is then buffered to the VOUT pin.  
In 7-7, every block has the register name associated with it that can be used to configure the signal path. The  
final equation for the signal path is given by 方程式 2:  
)
.0# ® )$2( ® 8  
8176 = )8176 ® 5..1) ® 20log10  
l
+0p  
+06.1) ® -:  
(1)  
where  
GVOUT is set by the LOGAMP_SLOPE_ADJ bits.  
SLLOG is slope of logarithmic amplifier as specified in the Receiver Characteristics table.  
GLNA is set by the LNA_GAIN bits.  
GBPF is typically 0.9V/V.  
VIN is the input VINP  
INTLOG is logarithmic amplifier intercept specified in the Receiver Characteristics table.  
KX is the log intercept adjustment set by the LOGAMP_INT_ADJ bits.  
The bandpass filter is critical for reducing noise to allow utilization of the complete dynamic range of the  
logarithmic amplifier. The center frequency of the bandpass filter can be configured to be close the transducer  
frequency which is set by the BPF_HPF_FREQ bits. 7-1 shows the nominal values for the BPF center  
frequency corresponding to the BPF_HPF_FREQ register value. The TUSS4470 supports a wide range of  
frequencies, therefore a factory trim is used to remove process variation for a particular pre-determined  
frequency. It is possible that all other frequencies listed in 7-1 do not correspond exactly to value of  
BPF_HPF_FREQ in a factory trim. The user can vary the value of the BPF_HPF_FREQ register around the  
desired center frequency while actively bursting and observing the VOUT signal. The value with maximum  
voltage at VOUT pin will the desired setting for the BPF_HPF_FREQ register.  
7-1. Bandpass Filter Center Frequency Configuration  
BPF_HPF_FREQ (HEX)  
(BPF_FC_TRIM_FRC = 0)  
BPF_Fc (KHz)  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
40.64  
44.05  
45.6  
48.86  
50.58  
52.96  
56.75  
60.11  
62.95  
66.68  
71.44  
74.81  
79.24  
82.03  
86.89  
92.04  
97.49  
103.27  
109.4  
114.54  
121.33  
128.52  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TUSS4470  
 
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
7-1. Bandpass Filter Center Frequency Configuration (continued)  
BPF_HPF_FREQ (HEX)  
(BPF_FC_TRIM_FRC = 0)  
BPF_Fc (KHz)  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
134.58  
142.55  
151.01  
159.94  
167.48  
177.41  
185.77  
196.78  
206.05  
218.26  
228.54  
244.89  
256.43  
271.63  
284.43  
301.28  
319.13  
338.14  
353.97  
374.95  
397.16  
408.17  
420.7  
455.63  
472.03  
500  
The factory trim can be overridden by setting the BPF_FC_TRIM_FRC bit first and varying the BPF_FC_TRIM  
bit after. This is useful in two ways:  
If the factory trimmed bandpass filter center frequency is higher than the desired value for BPF_HPF_FREQ  
= 0x00, or lower than desired value for BPF_HPF_FREQ = 0x2F, then BPF_FC_TRIM can be used to  
recover the range.  
This setting can also be used to extend the frequency range of the bandpass filter center frequency.  
The BPF_FC_TRIM acts like an offset on top of the BPF_HPF_FREQ setting. 7-2 shows the nominal value of  
center frequency when this offset is added to the minimum and maximum BPF_HPF_FREQ code. 6-11 shows  
the measured data. For BPF_HPF_FREQ values greater than 0x08 and less than 0x27, varying BPF_FC_TRIM  
keeping BPF_HPF_FREQ fixed is the same as setting BPF_FC_TRIM = 0x00 and varying BPF_HPF_FREQ to  
find the optimum setting.  
7-2. Bandpass Filter Center Frequency Range Extension  
BPF_HPF_FREQ (hex) + BPF_FC_TRIM (hex)  
BPF_Fc (KHz)  
(BPF_FC_TRIM_FRC = 1)  
0x00 + 0x8  
0x00 + 0x9  
0x00 + 0xA  
0x00 + 0xB  
0x00 + 0xC  
27.48  
29.44  
30.83  
31.19  
32.65  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TUSS4470  
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
7-2. Bandpass Filter Center Frequency Range Extension (continued)  
BPF_HPF_FREQ (hex) + BPF_FC_TRIM (hex)  
(BPF_FC_TRIM_FRC = 1)  
BPF_Fc (KHz)  
0x00 + 0xD  
0x00 + 0xE  
0x00 + 0xF  
0x2F + 0x1  
0x2F + 0x2  
0x2F + 0x3  
0x2F + 0x4  
0x2F + 0x5  
0x2F + 0x6  
0x2F + 0x7  
34.19  
35.8  
38.81  
523.56  
554.59  
587.45  
622.23  
651.58  
690.19  
731.09  
备注  
The Q factor of the filter is specified in the Receiver Characteristics table, and can be selected by  
the BPF_Q_SEL bits.  
The bandpass filter can also be converted into a high-pass filter by setting the BPF_BYPASS bit  
for transducer frequencies in the range above what is shown in 7-1. The corner frequency for  
high-pass filter is also controlled by the BPF_HPF_FREQ bits.  
BPF_Q_SEL and BPF_FC_TRIM have no effect when BPF_BYPASS = 1.  
The logamp provides compression for large signal inputs and amplifies linearly small signal inputs. Logamp  
simplifies system design to detect varying strengths of echoes that happens because of difference in reflectivity  
of different types of objects and objects at different distances. It automatically adjusts its gain based on the input  
signal level. The logamp also demodulates the incoming signal.  
The logamp consists of multiple gain stages and range extension stages that are combined to give a logarithmic  
response. The current consumption of the device can be reduced by turning off the either the first stage, the last  
stage of the logamp, or both, by setting the LOGAMP_DIS_FIRST and LOGAMP_DIS_LAST bits. Disabling the  
stages will reduce the input dynamic range on the lower side of the range (see 6-4). The pedestal noise floor  
will be lower because the gain stages are disabled, but the minimum detectable signal value becomes higher  
due to the reduced dynamic range. Depending on the received input signal strength, stages can be disabled to  
get optimum object detection. For very small inputs, all stages should be enabled to get maximum input dynamic  
range even though the noise floor is higher. 6-6, 6-7, and 6-8 show the effect on the log conformance  
error when all stages are enabled, when the last stage is disabled, and when both first and last stages are  
disabled. When stages are disabled, a lower error is obtained with a lower noise floor, but the input dynamic  
range is reduced.  
At the output of the logamp, the user can apply an adjustment to the intercept of the logamp curve. This is  
denoted by the KX factor in 方程式 1. The intercept adjustment is controlled by the LOGAMP_INT_ADJ bits. 表  
7-3 shows the nominal values of KX factor corresponding to register values, and 6-14 shows its effect on the  
transfer function.  
7-3. Logamp Intercept Adjustment  
LOGAMP_INT_ADJ  
KX  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
1
1.155  
1.334  
1.54  
1.778  
2.054  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TUSS4470  
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
7-3. Logamp Intercept Adjustment (continued)  
LOGAMP_INT_ADJ  
KX  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
2.371  
2.738  
1
0.931  
0.866  
0.806  
0.75  
0.698  
0.649  
0.604  
The output of the logamp is filtered using a low-pass filter to remove the high-frequency components and provide  
a sufficient peak hold time for the demodulated envelope signal. The cut-off frequency of the low-pass filter is  
set by the internal impedance of the FLT pin and the value of an external capacitor connected to the pin. As this  
filter capacitance (CFLT) suppresses the high frequency fluctuations, it also slows down the response time of the  
logamp. Higher CFLT capacitance will result in lower peak-to-peak voltage variations at VOUT, and slower rise  
and fall times for the VOUT voltage to reach its maximum value for a given input signal. A nominal value can be  
calculated using 方程式 3, and must be optimized depending on the application.  
The output of the low-pass filter is buffered to the VOUT pin using an internal buffer. The buffer is designed  
to support an ADC input of a MCU. It is possible to change output dynamic range of the VOUT buffer  
using the VOUT_SCALE_SEL bit. Once the range is set, the gain of the VOUT buffer can be set by the  
LOGAMP_SLOPE_ADJ bits. The slope variation of the receiver analog front end is show in 6-13.  
Echo interrupt signal is available on the OUT4 pin that goes high when the signal on the VOUT pin crosses a  
threshold as defined by the ECHO_INT_THR_SEL bits. As long as the VOUT signal is higher than this threshold,  
the echo interrupt signal is held high. The signal goes low asynchronously when the VOUT signal drops below  
the programmed threshold. This signal can be used to interrupt a MCU when an object has been detected. The  
threshold value is also dependent on the setting of the VOUT_SCALE_SEL bit.  
A zero-crossing signal is output at the OUT3 pin which can be used to validate the frequency of the received  
echo signal to provide robustness against interference from other signals. This zero-crossing signal is derived  
from the raw amplified input signal from a particular stage as it is being demodulated in the logamp block.  
This function is disabled at device power up. but can be enabled by setting the ZC_CMP_EN bit. When  
enabled, the ZC_CMP_STG_SEL bits are used to select which logamp gain stage is used to generate the zero  
crossing signal while the ZC_CMP_HYST bits control the hysteresis of the zero-crossing comparator. The stage  
selection to see the OUT3 pin toggling depends on the strength of signal received by the logamp and has to  
be configured depending on the application. For large amplitude of input signal, a lower stage of the logamp  
should be selected, whereas for lower amplitude signal, a higher stage should be selected. To avoid switching  
noise generated by the toggling of the zero-crossing comparator when the ZC_EN_ECHO_INT bit is set, the  
zero-crossing output will be only enabled while the echo interrupt signal is high.  
7.4 Device Functional Modes  
The device has four functional modes:  
Sleep  
Mode  
Ultra-low current consumption sleep mode  
In this mode, all major blocks of the device are disabled, including VDRV regulation. The  
SPI interface is still active. This transition into and out of this mode is done using the  
SLEEP_MODE_EN register bit. Upon issuing a command to exit this mode, the device transitions  
to other modes only when the VDRV pin reaches the programmed regulation voltage.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TUSS4470  
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
Standby  
Mode  
Low current standby mode  
In this state, the VDRV regulation is active, but other analog blocks are shut down to reduce  
quiescent current consumption. The STDBY_MODE_EN bit is used to enter and exit this mode  
through SPI. The device can transition very quickly from this state to one of the active states for  
bursting and listening.  
Listen  
Mode  
Default mode of the device  
This is the default mode of the device when it is not in Sleep mode or Standby mode. In this mode,  
there is no activity on the transmitter block and the device is actively listening for any ultrasonic  
signals.  
Burst  
Mode  
Mode in which the device is enabled to start a burst to drive the transducer  
In this mode, the transmitter blocks are active and enabled to drive the transducer depending on  
when the start of burst occurs. The receiving path is also active at the same time listening for  
signals at the input. This mode is entered when a burst enable event occurs and exited when an  
end of burst occurs as described in Burst Generation section.  
7-8 shows an example of the transitions between the different modes of the device for IO_MODE = 0, where  
the burst is activated through a SPI command and end of burst occurs as the number of programmed pulses are  
sent.  
CMD_TRIGGER  
STDBY_MODE_EN  
SLEEP_MODE_EN  
DEVICE  
MODES  
BURST  
LISTEN  
LISTEN  
BURST  
SLEEP  
STANDBY  
Burst Enable  
Burst Disable  
64ms max  
Burst Enable  
VDRV in Regulation  
7-8. Device Modes Timing Diagram  
备注  
The transition to standby or active mode (listen or burst) from power-up or sleep mode is done only  
once the VDRV voltage crosses the programmed VDRV_VOLTAGE_LEVEL bit, or is higher 64 ms,  
whichever occurs earlier.  
In the case when VDRV is disabled, the device immediately transitions from power or sleep mode  
to standby and active modes.  
7.5 Programming  
The primary communication between the IC and the external MCU is through an SPI bus that provides full-  
duplex communications in a controller-peripheral configuration. The external MCU is always a SPI controller that  
sends command requests on the SDI pin and receives device responses on the SDO pin. The device is always  
a SPI peripheral device that receives command requests and sends responses to the external MCU over the  
SDO line. The following lists the characteristics of the SPI:  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TUSS4470  
 
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
The SPI is a 4-pin interface.  
The frame size is 16 bits and is assigned as follows:  
Controller-to-peripheral (MCU to  
TUSS4470 over the SDI line)  
1 RW bit, 6 bits for the register address, 1 ODD parity bit for entire  
SPI frame, 8 bits for data  
Peripheral-to-controller (TUSS4470 1 bit for Controller Parity error reporting during previous frame  
to MCU over the SDO line)  
reception, 6 bits for the status, 1 bit for ODD parity for entire SPI  
frame, 8 bits for data  
SPI commands and data are shifted with the MSB first and the LSB last.  
The SDO line is sampled on the falling edge of the SCLK pin.  
The SDI line is shifted out on the rising edge of the SCLK pin.  
The SPI communication begins with the NCS falling edge and ends with the NCS rising edge. The NCS  
high-level maintains the SPI peripheral-interface in the RESET state. The SDO output is in the tri-state condition.  
The SPI does not support back-to-back SPI frame operation. After each SPI transfer the NCS pin must go from  
low to high before the next SPI transfer can begin.  
7-9 shows an overview of a complete 16-bit SPI frame.  
15  
MSB  
10  
9
8
7
6
5
4
3
2
1
0
14  
13  
12  
11  
NCS  
SCLK  
SDI  
ADDR  
3
ADDR  
2
ADDR  
1
ADDR  
0
C
PRTY  
DATA  
6
DATA  
3
DATA  
2
DATA  
0
ADDR  
5
ADDR  
4
DATA  
7
DATA  
5
DATA  
4
DATA  
1
R / W  
SDO  
STAT  
2
P
PRTY  
DATA  
6
DATA  
3
DATA  
2
DATA  
0
STAT  
5
STAT  
3
STAT  
1
STAT  
0
DATA  
7
DATA  
5
DATA  
4
DATA  
1
PRTY  
ERR  
STAT  
4
Controller/Peripheral SPI Frame Parity  
Bit  
Register Address Bits  
Read/Write Bit  
Controller/Peripheral Data Bits  
Peripheral Status Bits  
7-9. 16-Bit SPI Frame  
7-10 shows a SPI transfer sequence between the controller and the peripheral TUSS4470 device. When the  
controller is writing a SPI frame, the parity error bit indicates if there was a parity error for the previous frame.  
When the controller is transmitting the data for the SPI write, the peripheral echoes back register address that  
was sent just before in the command.  
SDI  
C
PRTY  
Register Address  
DATA  
W
CONTROLLER WRITE  
SPI FRAME  
Peripheral Echo Data  
SDO  
P
PRTY  
PRTY  
ERR  
Status Bits  
W
Register Address  
0
SDI  
C
PRTY  
Register Address  
0x00  
DATA  
R
CONTROLLER READ  
SPI FRAME  
SDO  
P
PRTY  
PRTY  
ERR  
Status Bits  
7-10. SPI Transfer Sequence  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TUSS4470  
 
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
The status bits are defined in 7-4:  
7-4. SPI Interface Status Bits Description  
STATUS BIT  
DESCRIPTION  
Set when VDRV power regulator has reached the programmed voltage level. This is also  
indicated by VDRV_READY bit.  
STAT 5 - VDRV_READY  
Set if the burst sequence was terminated before completing the pulse number selected. This  
is also indicated by PULSE_NUM_FLT bit.  
STAT 4- PULSE_NUM_FLT  
STAT 3 - DRV_PULSE_FLT  
STAT 2 - EE_CRC_FLT  
Set if there is a "stuck" fault detected during pulsing in a burst sequence. This is also  
indicated by DRV_PULSE_FLT  
Set if there is a CRC Error when loading internal EEPROM memory. This is also indicated by  
EE_CRC_FLT bit.  
Device State:  
00 - LISTEN  
01 - BURST  
10 - STANDBY  
11 - SLEEP  
STAT <1:0> - DEV_STATE  
7.6 Register Maps  
This section lists the REG_USER registers that are part of the volatile memory that can be configured by the  
MCU at power up or any time during the operation of the device. For register bits that are marked reserved, their  
reset value should not be changed.  
7.6.1 REG_USER Registers  
7-5 lists the REG_USER registers. All register offset addresses not listed in 7-5 should be considered as  
reserved locations and the register contents should not be modified.  
7-5. REG_USER Registers  
Address  
0x10  
0x11  
Acronym  
Register Name  
Section  
Go  
BPF_CONFIG_1  
BPF_CONFIG_2  
DEV_CTRL_1  
DEV_CTRL_2  
DEV_CTRL_3  
VDRV_CTRL  
ECHO_INT_CONFIG  
ZC_CONFIG  
BURST_PULSE  
TOF_CONFIG  
DEV_STAT  
Bandpass filter settings  
Bandpass filter settings  
Log-amp configuration  
Log-amp configuration  
Device Configuration  
VDRV Regulator Control  
Echo Interrupt Control  
Zero Crossing configuration  
Burst pulse configuration  
Time of Flight Config  
Fault status bits  
Go  
0x12  
0x13  
0x14  
0x16  
0x17  
0x18  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
DEVICE_ID  
Device ID  
Go  
REV_ID  
Revision ID  
Go  
Complex bit access types are encoded to fit into small table cells. 7-6 shows the codes that are used for  
access types in this section.  
7-6. REG_USER Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TUSS4470  
 
 
 
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
7-6. REG_USER Access Type Codes (continued)  
Access Type  
Code  
Description  
-n  
Value after reset or the default  
value  
7.6.1.1 BPF_CONFIG_1 Register (Address = 0x10) [reset = 0x0]  
BPF_CONFIG_1 is shown in 7-7.  
Return to the Summary Table.  
7-7. BPF_CONFIG_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BPF_FC_TRIM_FRC  
R/W  
0x0  
Override factor settings for Bandpass filter trim and control via  
BPF_FC_TRIM register. Valid only when BPF_BYPASS = 0  
0x0 = Factory trim  
0x1 = Override Factory trim  
6
BPF_BYPASS  
R/W  
R/W  
0x0  
0x0  
Select between Bandpass filter or high pass filter  
0x0 = BPF Enabled  
0x1 = HPF Enabled (BPF Bypass)  
5:0  
BPF_HPF_FREQ  
If BPF_BYPASS = 0:  
Band pass filter center frequency. See "Bandpass filter center  
frequency configuration" table  
If BPF_BYPASS = 1:  
High pass filter corner frequency  
0x00 - 0x0F - 200kHz  
0x10 - 0x1F - 400kHz  
0x20 - 0x2F - 50kHz  
0x30 - 0x3F - 100kHz  
7.6.1.2 BPF_CONFIG_2 Register (Address = 0x11) [reset = 0x0]  
BPF_CONFIG_2 is shown in 7-8.  
Return to the Summary Table.  
7-8. BPF_CONFIG_2 Register Field Descriptions  
Bit  
7:6  
5:4  
Field  
Type  
Reset  
Description  
RESERVED  
BPF_Q_SEL  
R
0x0  
Reserved  
R/W  
0x0  
Bandpass filter Q factor. Valid only when BPF_BYPASS = 0  
0x0 = 4  
0x1 = 5  
0x2 = 2  
0x3 = 3  
3:0  
BPF_FC_TRIM  
R/W  
0x0  
Offset BPF_HPF_FREQ when BPF_FC_TRIM_FRC = 1:  
BPF_HPF_FREQ = BPF_HPF_FREQ + BPF_FC_TRIM  
See "Bandpass filter center frequency range extension" table.  
7.6.1.3 DEV_CTRL_1 Register (Address = 0x12) [reset = 0x0]  
DEV_CTRL_1 is shown in 7-9.  
Return to the Summary Table.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TUSS4470  
 
 
 
 
 
 
 
 
 
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
7-9. DEV_CTRL_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LOGAMP_FRC  
R/W  
0x0  
Override for factory settings for LOGAMP_SLOPE_ADJ and  
LOGAMP_INT_ADJ  
6:4  
LOGAMP_SLOPE_ADJ  
R/W  
0x0  
Slope or gain adjustment at the final output on VOUT pin. Slope  
adjustment depends on the setting of VOUT_SCALE_SEL.  
0x0 = 3.0× VOUT_SCALE_SEL+4.56×VOUT_SCALE_SEL V/V  
0x1 = 3.1× VOUT_SCALE_SEL+4.71×VOUT_SCALE_SEL V/V  
0x2 = 3.2× VOUT_SCALE_SEL+4.86×VOUT_SCALE_SEL V/V  
0x3 = 3.3× VOUT_SCALE_SEL+5.01×VOUT_SCALE_SEL V/V  
0x4 = 2.6× VOUT_SCALE_SEL+3.94×VOUT_SCALE_SEL V/V  
0x5 = 2.7× VOUT_SCALE_SEL+ 4.10×VOUT_SCALE_SEL V/V  
0x6 = 2.8× VOUT_SCALE_SEL+4.25×VOUT_SCALE_SEL V/V  
0x7 = 2.9× VOUT_SCALE_SEL+4.4×VOUT_SCALE_SEL V/V  
3:0  
LOGAMP_INT_ADJ  
R/W  
0x0  
Logamp Intercept adjustment. See "Logamp intercept adjustment"  
table in specification for values.  
7.6.1.4 DEV_CTRL_2 Register (Address = 0x13) [reset = 0x0]  
DEV_CTRL_2 is shown in 7-10.  
Return to the Summary Table.  
7-10. DEV_CTRL_2 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
LOGAMP_DIS_FIRST  
LOGAMP_DIS_LAST  
RESERVED  
R/W  
0x0  
Disable first logamp stage to reduce quiescent current  
Disable last logamp stage quiescent current  
Reserved  
6
R/W  
R
0x0  
0x0  
0x0  
3
2
VOUT_SCALE_SEL  
R/W  
Select VOUT scaling  
0x0 = Select Vout gain to map output to 3.3 V  
0x1 = Select Vout gain to map output to 5.0 V  
1:0  
LNA_GAIN  
R/W  
0x0  
Adjust LNA Gain in V/V  
0x0 = 15 V/V  
0x1 = 10 V/V  
0x2 = 20 V/V  
0x3 = 12.5 V/V  
7.6.1.5 DEV_CTRL_3 Register (Address = 0x14) [reset = 0x0]  
DEV_CTRL_3 is shown in 7-11.  
Return to the Summary Table.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TUSS4470  
 
 
 
 
 
 
 
 
 
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
7-11. DEV_CTRL_3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
4:2  
DRV_PLS_FLT_DT  
R/W  
0x0  
Driver Pulse Fault Deglitch Time.  
In IO_MODE = 0 or IO_MODE = 1, DRV_PULSE_FLT will be set if  
start of burst is triggered and IO2 pin has not toggled for greater than  
deglitch Time.  
In IO_MODE = 2, DRV_PULSE_FLT will be set if start of burst is  
triggered and if IO1 or IO2 do not toggle a period longer than the  
deglitch time except when both pins are high.  
0x0 = 64 µs  
0x1 = 48 µs  
0x2 = 32 µs  
0x3 = 24 µs  
0x4 = 16 µs  
0x5 = 8 µs  
0x6 = 4 µs  
0x7 = Check Disabled  
1:0  
IO_MODE  
R/W  
0x0  
Configuration for low voltage IO pins.  
0x0 = IOMODE 0  
0x1 = IOMODE 1  
0x2 = IOMODE 2  
0x3 = IOMODE 3  
7.6.1.6 VDRV_CTRL Register (Address = 0x16) [reset = 0x20]  
VDRV_CTRL is shown in 7-12.  
Return to the Summary Table.  
7-12. VDRV_CTRL Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
R
0x0  
Reserved  
6
DIS_VDRV_REG_LSTN  
R/W  
0x0  
0x1  
Automatically disable VDRV charging in listen mode every time after  
burst mode is exited given VDRV_TRIGGER =0x0.  
0x0 = Do not automatically disable VDRV charging  
0x1 = Automatically disable VDRV charging  
5
VDRV_HI_Z  
R/W  
Turn off current source between VPWR and VRDV and disable  
VDRV regulation.  
0x0 = VDRV not Hi-Z  
0x1 = VDRV in Hi-Z mode  
4
VDRV_CURRENT_LEVEL R/W  
VDRV_VOLTAGE_LEVEL R/W  
0x0  
0x0  
Pull up current at VDRV pin  
0x0 = 10 mA  
0x1 = 20 mA  
3:0  
Regulated Voltage at VDRV pin Value is calculated as :  
VDRV = VDRV_VOLTAGE_LEVEL + 5 [V]  
7.6.1.7 ECHO_INT_CONFIG Register (Address = 0x17) [reset = 0x7]  
ECHO_INT_CONFIG is shown in 7-13.  
Return to the Summary Table.  
7-13. ECHO_INT_CONFIG Register Field Descriptions  
Bit  
7:5  
4
Field  
Type  
Reset  
0x0  
0x0  
Description  
Reserved  
Enable echo interrupt comparator output  
RESERVED  
ECHO_INT_CMP_EN  
R
R/W  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TUSS4470  
 
 
 
 
 
 
 
 
 
 
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
7-13. ECHO_INT_CONFIG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3:0  
ECHO_INT_THR_SEL  
R/W  
0x7  
Threshold level to issue interrupt on OUT4 pin. Applied to Low pass  
filter output.  
If VOUT_SCALE_SEL=0x0 :  
Threshold = 0.04 x ECHO_INT_THR_SEL + 0.4 [V]  
If VOUT_SCALE_SEL=0x1:  
Threshold = 0.06 x ECHO_INT_THR_SEL + 0.6 [V]  
7.6.1.8 ZC_CONFIG Register (Address = 0x18) [reset = 0x14]  
ZC_CONFIG is shown in 7-14.  
Return to the Summary Table.  
7-14. ZC_CONFIG Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
ZC_CMP_EN  
ZC_EN_ECHO_INT  
ZC_CMP_IN_SEL  
0x0  
Enable Zero Cross Comparator for Frequency detection  
When set, provides ZC information only when object is detected  
6
0x0  
5
0x0  
Zero Comparator Input Select  
0x0 = INP - VCM  
0x1 = INP - INN  
4:3  
2:0  
ZC_CMP_STG_SEL  
ZC_CMP_HYST  
R/W  
R/W  
0x2  
0x4  
Zero Cross Comparator Stage Select  
Zero Cross Comparator Hysteresis Selection  
0x0 = 30 mV  
0x1 = 80 mV  
0x2 = 130 mV  
0x3 = 180 mV  
0x4 = 230 mV  
0x5 = 280 mV  
0x6 = 330 mV  
0x7 = 380 mV  
7.6.1.9 BURST_PULSE Register (Address = 0x1A) [reset = 0x0]  
BURST_PULSE is shown in 7-15.  
Return to the Summary Table.  
7-15. BURST_PULSE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
HALF_BRG_MODE  
R/W  
0x0  
Use output driver in half-bridge mode.  
When enabled, drive both high-side FET together and low-side FETs  
together.  
0x0 = Disable half-bridge mode  
0x1 = Enable half bridge mode  
6
PRE_DRIVER_MODE  
BURST_PULSE  
R/W  
R/W  
0x0  
0x0  
Pre-driver mode to drive external FETs  
0x0 = Disable pre-driver mode  
0x1 = Enable pre-driver mode  
5:0  
Number of burst pulses. REG_VALUE=0x00 enables continuous  
burst mode  
7.6.1.10 TOF_CONFIG Register (Address = 0x1B) [reset = 0x0]  
TOF_CONFIG is shown in 7-16.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TUSS4470  
 
 
 
 
 
 
 
 
 
 
 
 
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
Return to the Summary Table.  
7-16. TOF_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SLEEP_MODE_EN  
R/W  
0x0  
For entering or exiting sleep mode  
0x0 = Wake up or exit Sleep Mode  
0x1 = Enter sleep mode  
6
STDBY_MODE_EN  
R/W  
0x0  
For entering or exiting standby mode  
0x0 = Exit Standby Mode  
0x1 = Enter Standby mode  
5:2  
1
RESERVED  
R
0x0  
0x0  
Reserved  
VDRV_TRIGGER  
R/W  
Control charging of VDRV pin when DIS_VDRV_REG_LSTN = 1.  
This has no effect when VDRV_HI_Z=0x1.  
0x0 = Disable IVDRV  
0x1 = Enable IVDRV  
0
CMD_TRIGGER  
R/W  
0x0  
For IO_MODE=0x0, control enabling of burst mode. Ignored for other  
IO_MODE values.  
0x0 = Disable burst mode  
0x1 = Enable burst mode  
7.6.1.11 DEV_STAT Register (Address = 0x1C) [reset = 0x0]  
DEV_STAT is shown in 7-17.  
Return to the Summary Table.  
7-17. DEV_STAT Register Field Descriptions  
Bit  
7:4  
3
Field  
Type  
Reset  
Description  
RESERVED  
VDRV_READY  
R
0x0  
Reserved  
R
0x0  
VDRV pin voltage status  
0x0 = VDRV is below configured voltage  
0x1 = VDRV is equal or above configured voltage  
2
1
0
PULSE_NUM_FLT  
DRV_PULSE_FLT  
EE_CRC_FLT  
R
R
R
0x0  
0x0  
0x0  
The Driver has not received the number of pulses defined by  
BURST_PULSE  
The Driver has been stuck in a single state in burst mode for a period  
longer than delgitch time set by DRV_PLS_FLT_DT  
CRC error for internal memory  
7.6.1.12 DEVICE_ID Register (Address = 0x1D) [reset = X]  
DEVICE_ID is shown in 7-18.  
Return to the Summary Table.  
7-18. DEVICE_ID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
DEVICE_ID  
R
X
Device ID: 0xB9  
7.6.1.13 REV_ID Register (Address = 0x1E) [reset = 0x2]  
REV_ID is shown in 7-19.  
Return to the Summary Table.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TUSS4470  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
7-19. REV_ID Register Field Descriptions  
Bit  
Field  
REV_ID  
Type  
Reset  
Description  
7:0  
R
0x2  
Revision ID  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TUSS4470  
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属于 TI 器件规格的范围,TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。  
8.1 Application Information  
The TUSS4470 device must be paired with an external ultrasonic transducer. The TUSS4470 device drives  
the transducer to generate an ultrasonic echo and applies logarithmic gain scaling to the received echo signal  
in the analog front end. The transducer should be chosen based on the resonant frequency, input voltage  
requirements, sensitivity, beam pattern, and decay time. The TUSS4470 device is flexible enough to meet most  
transducer requirements by adjusting the driving frequency, driving current limit, and center frequency of the  
band-pass filter. The only available interface to configure the device registers is SPI. During the burst-and-listen  
cycles, an external ADC or analog receiver should be used to capture the echo envelope from the VOUT pin to  
compute time of flight (ToF), distance, amplitude, and/or width of the return echo.  
8.2 Typical Application  
D1  
RPWR  
VIN  
>
CPWR1  
MCU  
GPIO  
OUTA  
VDRV  
IO2  
IO1  
GPIO  
GPIO  
OUT3  
OUT4  
NCS  
OUTB  
FLT  
CPWR2  
SDO  
SDI  
CFLT  
SPI  
RINP  
SCLK  
VOUT  
CINP  
INP  
INN  
ADC  
CINN  
LDO  
VDD  
CVDD  
8-1. TUSS4470 Application Diagram  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TUSS4470  
 
 
 
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
8-1. Recommended Component Values for Typical Applications  
DESIGNATOR  
VALUE  
COMMENT  
Optional (to limit fast voltage transient on VPWR pin during power  
up)  
RPWR  
10 Ω  
R(INP)  
CPWR1  
CPWR2  
CVDD  
CINP  
200Ω (1/4 Watt)  
50V, 100nF  
40V, 2µF  
Optional higher value for EMI/ESD robustness  
>5V, 10nF  
40V, 330pF  
Use equation below to estimate value of CINN depending on the burst  
frequency  
1
CINN  
>5V, CINN  
%
+00  
=
B
2 ® è ® 150 ® l &48_%.-p  
4
(2)  
Use equation below to estimate value of CFLT depending on the burst  
frequency . Value has to be optimized for application depending on  
noise and response time requirements.  
CFLT  
5V, CFLT  
25  
%
(.6  
=
2 ® è ® k6250 ® B&48_%.-o  
(3)  
D1  
1N4001 or equivalent  
Optional for reverse supply and reverse current protection.  
Example devices for low-frequency range:  
Closed top: 40 kHz: PUI Audio UTR-1440K-TT-R  
Open top: muRata MA40H1S-R, SensComp 40LPT16, Kobitone  
255-400PT160-ROX  
XDCR (transducer)  
Example devices for high-frequency range:  
Closed top: 300 kHz: Murata MA300D1-1  
8.2.1 Transducer Drive Configuration Options  
For different transducer drive configurations, the TUSS4470 supports multiple configurations to accommodate  
specific system needs as shown in 8-2. The typical application diagram in 8-1 is considered as "Case 1".  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TUSS4470  
 
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
HALF_BRG_MODE = 0  
HALF_BRG_MODE = 1  
VPWR  
VDRV  
VPWR  
VDRV  
OUTA  
OUTB  
OUTA  
OUTB  
1
2
VPWR/VEXT  
VPWR/VEXT  
VPWR  
VPWR  
VDRV  
OUTA  
VDRV  
OUTA  
OUTB  
OUTB  
4
3
8-2. TUSS4470 Transducer Drive Options  
The behavior of the internal FETs in the TUSS4470 device is different for each configuration in 8-2. 8-2  
and 8-3 shows the relationship between the IOx pins and the state of the OUTA and OUTB pins for different  
register settings.  
8-2. OUTA / OUTB Pin Behavior for Different Drive Configurations in IO MODE 2  
IO MODE 2  
PRE_DRI  
VER_MO  
DE  
START OF  
BURST  
HALF_BRG_M  
ODE  
IO1  
IO2  
OUTA  
OUTB  
APPLICATION CASE  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
GND  
GND  
VVDRV  
Hi-Z  
GND  
VVDRV  
GND  
GND  
Hi-Z  
YES  
CASE 1  
NO  
Hi-Z  
YES  
NO  
VVDRV  
GND  
Hi-Z  
VVDRV  
GND  
Hi-Z  
CASE 2  
CASE 3  
CASE 4  
GND  
GND  
VVDRV  
GND  
GND  
VVDRV  
GND  
GND  
GND  
VVDRV  
GND  
GND  
GND  
VVDRV  
GND  
GND  
YES  
NO  
YES  
NO  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TUSS4470  
 
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
8-3. OUTA / OUTB Pin Behavior for Different Drive Configurations in IO MODE 0, IO MODE 1 and IO  
MODE 3  
IO MODE 0, IO MODE 1, IO MODE 3  
CMD_TRIG  
PRE_DRI  
VER_MO  
DE  
IO1  
(IO MODE  
1)  
START OF  
BURST  
HALF_BRG_M  
ODE  
GER  
(IO MODE  
0)  
IO2  
OUTA  
OUTB  
APPLICATION CASE  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
NO  
Hi-Z  
GND  
CASE 1  
GND  
VVDRV  
GND  
YES  
NO  
VVDRV  
Hi-Z  
Hi-Z  
CASE 2  
CASE 3  
CASE 4  
GND  
GND  
YES  
NO  
VVDRV  
VVDRV  
GND  
GND  
GND  
VVDRV  
GND  
YES  
NO  
VVDRV  
GND  
GND  
GND  
GND  
YES  
VVDRV  
VVDRV  
8.2.1.1 Design Requirements  
For this design example, use the parameters listed in 8-4 as the input and operating parameters. All other  
device settings can be assumed to be factory default.  
8-4. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
EXAMPLE VALUE  
5 to 36 V  
Input voltage recommended  
Transducer driving voltage  
Transducer frequency  
5 V or 20 V  
5 VAC or 20 VAC  
40 kHz or 400 kHz  
16  
Transducer pulse count  
8.2.1.2 Detailed Design Procedure  
To begin the design process, determine the following:  
Transducer  
– Transducer driving voltage  
– Transducer resonant frequency  
– Transducer pulse count maximum  
8.2.1.2.1 Transducer Driving Voltage  
When a voltage is applied to piezoelectric ceramics, mechanical distortion is generated according to the voltage  
and frequency. The mechanical distortion is measured in units of sound pressure level (SPL) to indicate the  
volume of sound, and can be derived from a free-field microphone voltage measurement using 方程式 4.  
V
«
÷
(MIC)  
3.4 mV  
SPL (db) = 20 ì log  
PO  
(4)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TUSS4470  
 
 
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
where  
V(MIC) is the measured sensor sound pressure (mVRMS).  
PO is a referenced sound pressure of 20 μPa.  
The SPL does not increase indefinitely with the driving voltage. After a particular driving voltage, the amount  
of SPL that a transducer can generate becomes saturated. A transducer is given a maximum driving voltage  
specification to indicate when the maximum SPL is generated. Driving the transducer beyond the maximum  
driving voltage makes the ultrasonic module less power-efficient and can damage or decrease the life  
expectancy of the transducer.  
8.2.1.2.2 Transducer Driving Frequency  
The strength of ultrasonic waves propagated into the air attenuate proportionally with distance. This attenuation  
is caused by diffusion, diffraction, and absorption loss as the ultrasonic energy transmits through the medium of  
air. As shown in 8-3, the higher the frequency of the ultrasonic wave, the larger the attenuation rate and the  
shorter the distance the wave reaches.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
200 kHz  
80 kHz  
40 kHz  
-80  
-90  
20 kHz  
-100  
0.1  
1
Distance (m)  
10  
D008  
8-3. Attenuation Characteristics of Sound Pressure by Distance  
An ultrasonic transducer has a fixed resonant center frequency with a typical tolerance of ±2%. The lower  
frequency range of 30 kHz to 100 kHz is the default operating range for common long range applications for a  
step resolution of 1 cm and typical range of 30 cm to 5 m. The upper frequency range of 100 kHz to 1000 kHz is  
reserved for high-precision applications with a step resolution of 1 mm and a typical range of 5 cm to 1 m.  
8.2.1.2.3 Transducer Pulse Count  
The pulse count determines how many alternating periods are applied to the transducer by the complementary  
low-side drivers and determines the total width of the ultrasonic ping that was transmitted. The larger the width  
of the transmitted ping, the larger the width of the returned echo signature of the reflected surface and the more  
resolution available to set a stable threshold. A disadvantage of a large pulse count is a large ringing-decay  
period, which limits how detectable objects are at short distances.  
Select a pulse count based on the minimum object distance requirement. If short-distance object detection is not  
a priority, a high pulse count is not a concern. Certain transducers can be driven continuously while others have  
a limit to the maximum driving-pulse count. Refer to the specification for the selected transducer to determine if  
the pulse count must be limited.  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TUSS4470  
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
8.2.1.3 Application Curves  
8-4 and 8-5 show the typical ranging performance of a 40-kHz, closed-top transducer under nominal  
operating conditions as indicated in 8-4. The targeted object is a PVC pole measuring 1000 mm in  
height and 75 mm in diameter. Notable device settings: LNA_GAIN = 0x0; VOUT_SCALE_SEL = 0x0;  
LOGAMP_DIS_FIRST = 0x0; LOGAMP_DIS_LAST = 0x1.  
3
2.5  
2
3
2.5  
2
1m  
2m  
3m  
4m  
1m  
2m  
3m  
4m  
5m  
6m  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
6
12  
18  
Time (ms)  
24  
30  
36  
0
6
12  
18  
Time (ms)  
24  
30  
36  
8-4. TUSS4470 40 kHz Ranging at 5-V Driver  
8-5. TUSS4470 40 kHz Ranging at 20-V Driver  
With Last Log-Amp Stage Disabled  
With Last Log-Amp Stage Disabled  
8-6 and 8-7 show the typical ranging performance of a 400-kHz, closed-top transducer under nominal  
operating conditions as indicated in 8-4. The targeted object is an aluminum pole measuring 100 mm  
in height and 10 mm in diameter. Notable device settings: LNA_GAIN = 0x0; VOUT_SCALE_SEL = 0x0;  
LOGAMP_DIS_FIRST = 0x0; LOGAMP_DIS_LAST = 0x0.  
3
2.5  
2
3
2.5  
2
50mm  
50mm  
100mm  
200mm  
300mm  
400mm  
100mm  
200mm  
300mm  
400mm  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
0.5  
1
1.5  
Time (ms)  
2
2.5  
3
0
0.5  
1
1.5  
Time (ms)  
2
2.5  
3
8-6. TUSS4470 400 kHz Ranging at 5-V Drive  
8-7. TUSS4470 400 kHz Ranging at 20-V Driver  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TUSS4470  
 
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
9 Power Supply Recommendations  
The TUSS4470 device is designed to operate from two independent supplies, a driver supply and a regulated  
supply.  
The driver input voltage supply (VPWR) range can operate from 5 V to 36 V. In applications where the  
TUSS4470 device may be exposed to battery transients and reverse battery currents, use external component-  
safeguards, such as component D1 or parallel TVS diodes, to help protect the device. If the input supply is  
placed more than a few inches from the TUSS4470 device, additional bulk capacitance may be required in  
addition to the ceramic bypass capacitors near the VPWR pin. In the event both the VDRV and pre-driver modes  
is enabled, limit the VPWR voltage to the maximum rated voltage of the externally driven transistor’s gate-source  
or base-emitter rating. The electrolytic capacitor at the VDRV pin is intended to act as a fast discharge capacitor  
during the bursting stage of the TUSS4470 device. The H-bridge high-side voltage can be supplied with an  
independent voltage at the VDRV pin to isolate the driver from VPWR, but must remain within the specified  
maximum voltage rating of the VDRV, OUTA, and OUTB outputs. If the H-bridge high-side voltage is to be  
supplied by an independent source, VDRV should be disabled.  
The regulated supply (VDD) is used as the supply reference for the analog front end, filtering, and analog  
output blocks, so this supply should be stable for maximum performance. TI recommends using an LDO or other  
regulated external power source with bypass capacitor placed closely to the VDD pin. As VDD becomes less  
stable, the noise floor of the VOUT signal will increase, and result in a loss of long range object detection as a  
consequence.  
To prevent damage to the device, always avoid hot-plugging or providing instantaneous power at the VPWR  
and VDRV pins at start-up, unless these pins are properly protected with an RC filter or TVS diode to minimize  
transient effects. VPWR must always be equal to or greater than the value present at VDRV.  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TUSS4470  
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
A minimum of two layers is required to accomplish a small-form factor ultrasonic module design. The layers  
should be separated by analog and digital signals. The pin map of the device is routed such that the power  
and digital signals are on the opposing side of the analog driver and receiver pins. Consider the following best  
practices for TUSS4470 device layout in order of descending priority:  
Separating the grounding types is important to reduce noise at the AFE input of the TUSS4470. In particular,  
the transducer sensor ground, supporting driver, and return-path circuitry should have a separate ground  
before being connected to the main ground. Separating the sensor and main grounds through a ferrite bead  
is best practice, but not require. A copper-trace or 0-Ω short is also acceptable when bridging grounds.  
The analog return path pins, INP and INN, are most susceptible to noise and therefore should be routed as  
short and directly to the transducer as possible. Ensure the INN capacitor is close to the pin to reduce the  
length of the ground wire.  
The analog output pin trace should be routed as short and directly to an external ADC or microcontroller input  
to avoid signal-to-noise losses due to parasitic-effects or noise coupling onto the trace from external radiating  
aggressors.  
In applications where protection from an ESD strike on the case of the transducer is important, ground routing  
of the capacitor on the INN pin should be separate from the device ground and connected directly with the  
shortest possible trace to the connector ground.  
The analog drive pins can be high-current, high-voltage, or both and therefore the design limitation of the  
OUTA and OUTB pins is based on the copper trace profile. The driver pins are recommended to be as short  
and direct as possible when driving a transducer with a high-voltage.  
The decoupling capacitors for the VDD and VPWR pins should be placed as close to the pins as possible.  
Any digital communication should be routed away from the analog receiver pins. TXD, RXD, SCLK, NCS,  
IO1, IO2, OUT3, and OUT4 pins should be routed on the opposite side of the PCB, away from of the analog  
signals.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TUSS4470  
 
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
10.2 Layout Example  
Charging Capacitor  
Legend  
Copper Trace - Top  
2
F
Power  
Copper Trace - Bottom  
Via  
+  
To Controller  
OUT3 1  
15 OUTA  
14 GND  
13 SGND  
12 INP  
To Controller  
DGND 2  
NCS 3  
SCLK 4  
SDI 5  
Thermal Pad  
To Controller  
To Controller  
To Controller  
11 INN  
Transducer  
To Controller  
To/From Controller  
To/From Controller  
To ADC  
From LDO  
10-1. TUSS4470 Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TUSS4470  
 
TUSS4470  
ZHCSKL2A – DECEMBER 2019 – REVISED MAY 2022  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册,即可每周接收产品信息更  
改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者按原样提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI  
《使用条款》。  
11.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TUSS4470  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Dec-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TUSS4470TRTJR  
TUSS4470TRTJT  
ACTIVE  
ACTIVE  
QFN  
QFN  
RTJ  
RTJ  
20  
20  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-25 to 105  
-25 to 105  
USS4470  
USS4470  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Dec-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Dec-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TUSS4470TRTJR  
TUSS4470TRTJT  
QFN  
QFN  
RTJ  
RTJ  
20  
20  
3000  
250  
330.0  
180.0  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Dec-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TUSS4470TRTJR  
TUSS4470TRTJT  
QFN  
QFN  
RTJ  
RTJ  
20  
20  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RTJ 20  
4 x 4, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224842/A  
www.ti.com  
DATA BOOK  
PACKAGE OUTLINE  
LEADFRAME EXAMPLE  
4222370  
DRAFTSMAN:  
DATE:  
DATE:  
DATE:  
DATE:  
DATE:  
DATE:  
DATE:  
H. DENG  
09/12/2016  
09/12/2016  
09/12/2016  
DESIGNER:  
CHECKER:  
ENGINEER:  
APPROVED:  
RELEASED:  
CODE IDENTITY  
NUMBER  
H. DENG  
01295  
SEMICONDUCTOR OPERATIONS  
V. PAKU & T. LEQUANG  
T. TANG  
ePOD, RTJ0020D / WQFN,  
20 PIN, 0.5 MM PITCH  
09/12/2016  
10/06/2016  
10/24/2016  
E. REY & D. CHIN  
WDM  
SCALE  
SIZE  
REV  
PAGE  
OF  
TEMPLATE INFO:  
4219125  
A
15X  
04/07/2016  
A
EDGE# 4218519  
PACKAGE OUTLINE  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
RTJ0020D  
A
4.1  
3.9  
B
PIN 1 INDEX AREA  
4.1  
3.9  
DIM A  
OPT 1  
(0.1)  
OPT 2  
(0.2)  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
16X 0.5  
(A) TYP  
6
10  
EXPOSED  
THERMAL PAD  
5
11  
SYMM  
ꢀꢁꢂ“ꢃꢁꢄ  
4X 2  
21  
15  
1
0.5  
0.3  
20X  
PIN 1 ID  
(OPTIONAL)  
20  
16  
SYMM  
0.29  
0.19  
0.1  
20X  
C A B  
C
0.05  
4219125 / A 10/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
WQFN - 0.8 mm max height  
RTJ0020D  
PLASTIC QUAD FLATPACK - NO LEAD  
2.7)  
SYMM  
20  
16  
20X (0.6)  
1
20X (0.24)  
15  
(1.1)  
TYP  
21  
SYMM  
(3.8)  
(0.5)  
TYP  
ꢅ‘ꢃꢁꢀꢆꢇ7<3  
VIA  
5
11  
(R0.05)  
TYP  
6
10  
(3.8)  
LAND PATTERN EXAMPLE  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219125 / A 10/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their  
locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
WQFN - 0.8 mm max height  
RTJ0020D  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
(0.69)  
TYP  
20  
16  
20X (0.6)  
1
20X (0.24)  
15  
(0.69)  
TYP  
SYMM  
(3.8)  
(0.5)  
TYP  
5
11  
(R0.05)  
TYP  
21  
6
10  
4X ( 1.19)  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
78% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4219125 / A 10/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
R E V I S I O N S  
REV  
A
DESCRIPTION  
ECR  
DATE  
ENGINEER / DRAFTSMAN  
T. TANG / H. DENG  
RELEASE NEW DRAWING  
2160736  
10/24/2016  
SCALE  
SIZE  
REV  
PAGE  
4219125  
5 OF 5  
A
NTS  
A
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TUSS4470TRTJR

具有对数放大器的直接驱动超声波传感器 IC | RTJ | 20 | -25 to 105

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUSS4470TRTJT

具有对数放大器的直接驱动超声波传感器 IC | RTJ | 20 | -25 to 105

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUW10J100E

RES 100 OHM 10W 5% AXIAL

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
OHMITE

TUW10J150E

RES 150 OHM 10W 5% AXIAL

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
OHMITE

TUW10J1R0E

RES 1 OHM 10W 5% AXIAL

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
OHMITE

TUW10J20RE

RES 20 OHM 10W 5% AXIAL

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
OHMITE

TUW10J2R0E

RES 2 OHM 10W 5% AXIAL

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
OHMITE

TUW10J2R7E

RES 2.7 OHM 10W 5% AXIAL

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
OHMITE

TUW10J390E

RES 390 OHM 10W 5% AXIAL

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
OHMITE

TUW10J3R0E

RES 3 OHM 10W 5% AXIAL

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
OHMITE

TUW10J3R9E

RES 3.9 OHM 10W 5% AXIAL

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
OHMITE

TUW10J470E

RES 470 OHM 10W 5% AXIAL

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
OHMITE