TVB1440RGZR [TI]

具有均衡功能的 4 通道电视转接驱动器 | RGZ | 48 | 0 to 85;
TVB1440RGZR
型号: TVB1440RGZR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有均衡功能的 4 通道电视转接驱动器 | RGZ | 48 | 0 to 85

驱动 电视 驱动器
文件: 总31页 (文件大小:3094K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TVB1440  
ZHCSD29A NOVEMBER 2014REVISED NOVEMBER 2014  
TVB1440 具有均衡功能的 4 通道视频转接驱动器  
ECCN3E991  
1 特性  
3 说明  
1
兼容电视聚合视频信号发送设备  
TVB1440 是一款针对电视应用的 4 通道转接驱动器信  
号调节器,能够实现 TV 芯片组与 TCON 板之间的信  
号完整性。 I2C 控制可在较宽范围内灵活配置器件以实  
现最优信号调节,从而使视频输出设备与接收设备之间  
的视频数据链路具备高保真性。 TVB1440 具备出色的  
去抖能力,可延长视频输出设备与接收设备之间的距  
离。  
兼容 FPD-Link II 接口  
适合于数字电视芯片组和 TCON 板  
四通道转接驱动器,支持 600Mbps 5Gbps 范围  
内的数据速率  
采用 3.3V 1.1V 电源,可实现低功耗运行  
4 通道操作下的运行功耗为 175mW  
2mW 关断功耗  
该器件可通过 I2C 对接收均衡功能进行多种可选控  
制,以补偿其输入端走线或电缆的严重损耗,从而提升  
输出信号的视觉效果。 每个通道中的发送器有 4 种预  
加强级别设置和 4 种输出电压摆幅级别设置,可使从  
TVB1440 发送到下游接收器的视频信号达到最佳效  
果。  
高度可配置的输入均衡功能,有 8 种控制设置  
0dB 15dB  
4 种预加强控制设置  
036 9dB  
4 种输出电压摆幅控制设置  
350500700 1000mV  
通过 I2C 控制来配置器件以实现最佳性能  
TVB1440 针对功耗要求较高的应用进行了优化。  
TVB1440 不仅运行功耗较低,而且在数据链路输入端  
配有一个活动检测电路,当不存在有效输入信号时会切  
换至低功耗输出禁用模式。 可以根据需要禁用此活动  
检测电路。 该器件还具有一个关断模式,可使功耗降  
2mW。  
扩展温度范围为 -40℃ 至 85°C  
2kV 人体模型 (HBM) 500V 充电器件模型  
(CDM) 静电放电 (ESD) 保护  
48 引脚四方扁平无引线 (QFN) 封装 (7mm x 7mm)  
2 应用  
器件信息(1)  
数字电视  
器件型号  
TVB1440  
封装  
VQFN (48)  
封装尺寸(标称值)  
摄像机  
7.00mm x 7.00mm  
吞吐量要求较高的视频接口  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
4 简化电路原理图  
Driver  
Driver  
EQ  
CH0  
CH1  
TVB1440  
TVB1440  
TVB1440  
TVB1440  
TVB1440  
TVB1440  
TVB1440  
TVB1440  
EQ  
EQ  
EQ  
TCON  
TVB1440  
SoC  
Driver  
CH2  
CH3  
I2C  
Driver  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLASE51  
 
 
 
 
ECCN3E991  
TVB1440  
ZHCSD29A NOVEMBER 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
目录  
8.3 Feature Description................................................... 9  
8.4 Device Functional Modes.......................................... 9  
8.5 Programming............................................................. 9  
8.6 Register Maps......................................................... 13  
Application and Implementation ........................ 14  
9.1 Application Information............................................ 14  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
简化电路原理图........................................................ 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 Handling Ratings ...................................................... 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics........................................... 5  
7.6 Timing Requirements ............................................... 5  
7.7 Switching Characteristics.......................................... 6  
7.8 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 8  
8.1 Overview ................................................................... 8  
8.2 Functional Block Diagram ......................................... 8  
9
10 Power Supply Recommendations ..................... 19  
10.1 Power-Up Sequence............................................. 19  
10.2 Power-Down Sequence ........................................ 19  
11 Layout................................................................... 20  
11.1 Layout Guidelines ................................................. 20  
12 器件和文档支持 ..................................................... 22  
12.1 ....................................................................... 22  
12.2 静电放电警告......................................................... 22  
12.3 Export Control Notice............................................ 22  
12.4 术语表 ................................................................... 22  
13 机械封装和可订购信息 .......................................... 22  
8
5 修订历史记录  
Changes from Original (November 2014) to Revision A  
Page  
Changed text in the Package Specific section From: "The TVB1440 package has a 5.6 mm x 5.6 mm thermal pad."  
To: "The TVB1440 package has a 4.1 mm x 4.1 mm thermal pad.".................................................................................... 21  
2
Copyright © 2014, Texas Instruments Incorporated  
 
ECCN3E991  
TVB1440  
www.ti.com.cn  
ZHCSD29A NOVEMBER 2014REVISED NOVEMBER 2014  
6 Pin Configuration and Functions  
VQFN 0.5 mm Pitch  
RGZ 48 Pin  
Top View  
36 35 34 33 32 31 30 29 28 27  
37  
26 25  
24  
VDD  
IN0p  
IN0n  
NC  
GND  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
23  
22  
OUT0p  
OUT0n  
VDD  
21  
20  
19  
18  
17  
16  
IN1p  
IN1n  
OUT1p  
OUT1n  
GND  
VDD  
IN2p  
IN2n  
OUT2p  
OUT2n  
VDD  
15  
14  
13  
NC  
IN3p  
IN3n  
OUT3p  
OUT3n  
11  
1
2
3
4
5
6
7
8
9
10  
12  
Pin Functions  
PIN  
NO.  
DESCRIPTION  
SIGNAL  
I/O  
DATA LANES PINS  
IN0p, IN0n  
IN1p, IN1n  
IN2p, IN2n  
IN3p, IN3n  
OUT0p, OUT0n  
OUT1p, OUT1n  
OUT2p, OUT2n  
OUT3p, OUT3n  
CONTROL PINS  
ADDR  
38, 39  
41, 42  
44, 45  
47, 48  
23, 22  
20, 19  
17, 16  
14, 13  
Lane 0 Differential Input  
Lane 1 Differential Input  
Lane 2 Differential Input  
Lane 3 Differential Input  
Lane 0 Differential Output  
Lane 1 Differential Output  
Lane 2 Differential Output  
Lane 3 Differential Output  
Input  
(100Ω diff)  
Output  
(100Ω diff)  
I2C Target Address Select.  
3
26  
3-level Input  
I
EN  
Device Enable. This input incorporates internal pullup of 200 kΩ.  
NC  
7, 40, 46  
No Connect. These terminals may be left un-connected, or connect to GND.  
Active Low Device Reset. This is 1.1V input. This input includes a 150kΩ resistor to the VDDD core  
supply. An external capacitor to GND is recommended on the RSTN input to provide a power-up delay.  
This signal is used to place the TVB1440 into Shutdown mode for the lowest power consumption. When  
the RSTN input is asserted, all outputs are high-impedance, and inputs are ignored; all I2C registers are  
reset to their default values. At power up, the RSTN input must not be de-asserted until the VCC and VDD  
supplies have reached at least the minimum recommended supply voltage level.  
RSTN  
35  
I
RSVD1  
RSVD2  
RSVD3  
RSVD4  
10  
11  
27  
28  
I
I
I
I
Reserved pins. Please connect the pin to GND through 1K resistor.  
Reserved pins. Please connect the pin to VCC through 1K resistor.  
Reserved pins. Please connect the pin to VCC through 1K resistor.  
Reserved pins. Please connect the pin to GND through 1K resistor.  
SCL_CTL  
SDA_CTL  
4
5
Bidirectional I2C interface to configure TVB1440. This interface is active independent of EN input but  
inactive when RSTN is low.  
I/O  
8, 9, 29, 30,  
33, 34  
TEST1-6  
Test Outputs. Do not connect.  
Copyright © 2014, Texas Instruments Incorporated  
3
ECCN3E991  
TVB1440  
ZHCSD29A NOVEMBER 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
NO.  
DESCRIPTION  
SIGNAL  
I/O  
SUPPLY AND GROUND PINS  
18, 24, 31,  
GND  
PAD  
Ground. Reference GND connections include the device package exposed thermal pad.  
2, 6, 12, 15,  
VDD  
VCC  
21, 25, 32,  
37, 43  
Low voltage supply for analog and digital core. Nominally 1.1V  
3.3V Supply  
1, 36  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
4
UNIT  
VCC  
Supply voltage  
VDD  
V
1.3  
1.3  
1.3  
4
HS Link I/O (OUTx, INx) Differential Voltage  
Voltage range  
RSTN  
V
SCL_CTL, SDA_CTL, ADDR, EN  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 Handling Ratings  
MIN  
-65  
MAX  
150  
UNIT  
TSTG  
Storage temperature range  
Human body model (HBM)(1)  
Charged-device model (CDM)(2)  
·C  
Electrostatic  
discharge  
–2000  
–500  
2000  
500  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3
TYP  
MAX UNIT  
VCC  
VDD  
VIH  
Supply Voltage, IO  
3.6  
1.26  
3.6  
V
V
Supply Voltage, CORE  
1
High-level input voltage for ADDR, EN  
Low-level input voltage for ADDR, EN  
High-level input voltage for RSTN (typical hysteresis of 80mV)  
Low-level input voltage for RSTN (typical hysteresis of 80mV)  
Operating free-air temperature  
1.9  
0
V
VIL  
0.8  
V
VIH,RSTN  
VIL,RSTN  
TA  
0.75  
0.3  
V
V
0
85  
°C  
kHz  
fscl  
I2C CK frequency at SCL_CTL (standard I2C mode(1)  
)
100  
(1) The local interface through SCL_CTL and SDA_CTL should follow standard mode I2C specifications  
4
Copyright © 2014, Texas Instruments Incorporated  
ECCN3E991  
TVB1440  
www.ti.com.cn  
ZHCSD29A NOVEMBER 2014REVISED NOVEMBER 2014  
7.4 Thermal Information  
TVB1440  
UNIT  
THERMAL METRIC(1)  
RGZ (48 Pin)  
RθJA  
Junction-to-ambient thermal resistance  
35.1  
21.5  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
11.7  
°C/W  
1.2  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
11.9  
6.7  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
7.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Supply current 4 lanes operation(1)  
Shutdown supply current(1)  
MIN  
TYP  
130  
1.5  
35  
MAX  
230  
3
UNIT  
mA  
ICC  
ISTDN  
IOD  
mA  
Squelch (output disable) supply current  
50  
mA  
VOD0  
VOD1  
VOD2  
VOD3  
PE0  
238  
357  
484  
700  
340  
510  
690  
1000  
0
442  
663  
897  
1300  
Output differential voltage swing  
Output pre-emphasis  
mVpp  
dB  
PE1  
3
PE2  
6
PE3  
9
ROUT  
I(TXSHORT)  
V(SQUELCH)  
Driver output impedance  
50  
Ω
Output pins short circuit current limit  
Squelch threshold voltage for input signals (default)  
50  
mA  
80  
mVpp  
(1) Values are VDD supply measurements; VCC supply measurements are 5 mA (typical) and 8 mA (max), with zero current in shutdown  
mode.  
7.6 Timing Requirements  
MIN  
TYP  
MAX  
UNIT  
tramp1  
tramp2  
tramp3  
Time VDD must stable before VCC is applied  
10  
µS  
Time RSTN must remain asserted until VCC/VDD voltage has reached minimum  
recommended operation  
100  
400  
µS  
Time device will be available for operation after a valid reset  
mS  
Copyright © 2014, Texas Instruments Incorporated  
5
ECCN3E991  
TVB1440  
ZHCSD29A NOVEMBER 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
7.7 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
ps  
tPD  
tsk1  
tsk2  
Propagation delay time  
300  
Intra-pair output skew (Figure 1)  
Inter-pair output skew (Figure 1)  
20  
ps  
100  
ps  
Total peak-to-peak residual jitter  
Δtjit  
15  
ps  
VOD0; PE0; EQ = 8dB; clean source; minimum input and output cabling; PRBS7 data  
pattern.  
Squelch entry time  
Time from a loss of valid input signal to ML output off  
tsq_enter  
tsq_exit  
10  
120  
1
µS  
µS  
Squelch exit time  
Time from valid input signal available while in squelch mode to ML outputs on  
Figure 1. Output Skew Definitions  
6
Copyright © 2014, Texas Instruments Incorporated  
 
ECCN3E991  
TVB1440  
www.ti.com.cn  
ZHCSD29A NOVEMBER 2014REVISED NOVEMBER 2014  
7.8 Typical Characteristics  
12  
10  
8
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
6
4
2
0
-2  
-4  
-6  
6 dB Setting  
10 dB Setting  
15 dB Setting  
10M  
100M  
Frequency (Hz)  
1G  
10G  
0
20  
40  
60  
80  
100  
120  
Total Input Jitter (ps) (pk-pk)  
D001  
D002  
Figure 2. Typical EQ Gain Curves (simulations)  
Figure 3. Jitter Performance with Optimal EQ Settings  
Figure 4. 3.75-Gbps Input With 20 Inch Trace  
Figure 5. 3.75-Gbps Output with 20 Inch Input Trace and  
8-dB EQ Setting  
Figure 6. 5-Gbps Input with 20 Inches Trace  
Figure 7. 5-Gbps Output with 20 Inch Input Trace and  
13-dB EQ Setting  
Copyright © 2014, Texas Instruments Incorporated  
7
ECCN3E991  
TVB1440  
ZHCSD29A NOVEMBER 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
TVB1440 is a 4 channel HS re-driver signal conditioner for TV applications. I2C control provides the wide ranges  
of flexibility to configure the device for optimal signal conditioning so that video data link between a source and  
sink can achieve high fidelity. TVB1440 allows larger distance between a Chipset and TCON boards through its  
excellent jitter cleaning capability.  
The TVB1440 is optimized for power conscience applications. Apart from its low active power, TVB1440 contains  
activity detection circuitry on the data link input that transitions to a low-power output disable mode in the  
absence of a valid input signal. This activity detect circuit can be disabled if desired. The device also has a  
shutdown mode when exercised results in 2 mW.  
The TVB1440 receiver and driver provide input and output common mode voltage bias. It is required that both  
receive and transmit end of the device is ac coupled in application use cases. Suggested value for the ac  
coupling capacitors is 75-200 nF.  
8.2 Functional Block Diagram  
VDD  
ADDR  
ADDR  
RRST=150k  
RESET  
VCC  
VDD  
GND  
RSTN  
EN  
EN  
REN=200k  
VCC  
VIterm  
VBIAS  
50  
50  
50  
50  
50  
50  
50  
50  
IN0p  
IN0n  
OUT0p  
OUT0n  
Driver  
EQ  
EQ  
VIterm  
VBIAS  
IN1p  
IN1n  
OUT1p  
OUT1n  
Driver  
VIterm  
VBIAS  
50  
50  
50  
50  
50  
50  
50  
IN2p  
IN2n  
OUT2p  
OUT2n  
Driver  
Driver  
EQ  
EQ  
VIterm  
VBIAS  
50  
IN3p  
IN3n  
OUT3p  
OUT3n  
ADDR  
EQ_CTL  
I2 C  
Target  
SCL_CTL  
SDA_CTL  
PE_CTL  
CTRL  
VOD_CTL  
EN  
8
Copyright © 2014, Texas Instruments Incorporated  
ECCN3E991  
TVB1440  
www.ti.com.cn  
ZHCSD29A NOVEMBER 2014REVISED NOVEMBER 2014  
8.3 Feature Description  
8.3.1 Equalization  
TVB1440 provides flexible continuous time linear equalization (CTLE) to compensate for large trace or cable loss  
at its input resulting improved eye at the output signals. It has selectable control for receive equalization  
accessible through I2C.  
8.3.2 Configurable Output  
Transmitter in each channel has 4 levels of pre-emphasis and 4 levels of output voltage swing settings which  
enable optimum video signal performance from the TVB1440 to downstream receiver.  
8.3.3 Squelch  
TVB1440 has active Squelch feature that allows automatic shutdown of output drivers when it does not have  
valid input signal. The feature can be disabled through I2C if not desired.  
8.4 Device Functional Modes  
8.4.1 Active Mode  
Normal operation mode. The data lanes of TVB1440 work normally.  
8.4.2 Shutdown Mode  
Device is in lowest power mode. This mode is invoked by de-asserting RSTN or EN low.  
8.4.3 Squelch Mode  
The device does not have valid input signal. Output drivers are turned off.  
8.5 Programming  
8.5.1 Local I2C Interface  
It is required to use the TVB1440’s local I2C interface to configure the TVB1440’s receivers (IN[3:0]P/N) and  
transmitters (OUT[3:0]P/N). The TVB1440’s internal registers are accessed through the SCL_CTL pin and  
SDA_CTL pin. The 7-bit I2C slave address of the TVB1440 is determined by the ADDR pin.  
Table 1. TVB1440 I2C Slave Address Options  
ADDR  
7-BIT I2C SLAVE ADDRESS  
READ SLAVE ADDRESS  
WRITE SLAVE ADDRESS  
Low (VIL)  
VCC/2 (VIM)  
High (VIH)  
7’b0101100  
‘h59  
‘h5B  
‘h5D  
‘h58  
‘h5A  
‘h5C  
7’b0101101  
7’b0101110  
Before adjusting the TVB1440’s registers, a writing a zero to bit 2 of address 04h is required to enable the  
receiver and transmitter adjustments.  
Copyright © 2014, Texas Instruments Incorporated  
9
ECCN3E991  
TVB1440  
ZHCSD29A NOVEMBER 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
8.5.2 Receiver (IN[3:0]P/N) Adjustments  
8.5.2.1 Equalization Level  
It is recommended to use the TVB1440 local I2C interface to configure the TVB1440 receiver equalization level.  
Software should then enable equalization control by writing a one to EQ_I2C_ENABLE bit (bit 7 at address 05h).  
After EQ_I2C_ENABLE is set, then software can program the equalization for each lane (IN[3:0]) to the  
appropriate value. Refer to Table 2 for details on equalization settings for each lane.  
Table 2. TVB1440 Equalization Levels  
Address  
Bits(s) Description  
Access  
Receiver and transmitter adjustment.  
04h  
2
2:0  
7
0 – configure receiver and transmitter using I2C (required)  
1 – reserved (default)  
RW  
EQ_LEVEL_LANE0. This field selects the EQ gain level for Lane 0 (IN0P/N).  
000 – 0 dB  
001 – 2 dB (3.75Gbps); 2.5 dB (5Gbps)  
010 – 3.5 dB (3.75Gbps); 5 dB (5Gbps)  
011 – 5 dB (3.75Gbps); 6 dB (5Gbps)  
100 – 6.5 dB (3.75Gbps); 8 dB (5Gbps)  
101 – 8 dB (3.75Gbps); 11 dB (5Gbps)  
110 – 9.5 dB (3.75Gbps); 13 dB (5Gbps)  
111 – 12 dB (3.75Gbps); 15 dB (5Gbps)  
05h  
05h  
RW  
RW  
EQ_I2C_ENABLE. This field allows EQ control through I2C  
0 – reserved (default)  
1 – EQ level is set by I2C (required)  
EQ_LEVEL_LANE1. This field selects the EQ gain level for Lane 1 (IN1P/N. Bit definition identical to  
that of EQ_LEVEL_LANE0.  
07h  
09h  
0Bh  
2:0  
2:0  
2:0  
RW  
RW  
RW  
EQ_LEVEL_LANE2. This field selects the EQ gain level for Lane 2 (IN2P/N). Bit definition identical  
to that of EQ_LEVEL_LANE0.  
EQ_LEVEL_LANE3. This field selects the EQ gain level for Lane 3 (IN3P/N. Bit definition identical to  
that of EQ_LEVEL_LANE0.  
8.5.2.2 Squelch Level  
The TVB1440 squelch level defaults to 80mVpp. If it is necessary to adjust the squelch level, it can be done by  
changing the SQUELCH_SENSITIVITY register located in the TVB1440’s Local I2C register space.  
Table 3. Squelch Sensitivity Levels  
Address  
Bits(s) Description  
Access  
SQUELCH_SENSITIVITY. Main link squelch sensitivity is selected by this field, and determines the  
transitions to and from the Output Disable mode.  
00 – Main Link IN0P/N squelch detection threshold is set to 40mVpp.  
01 – Main Link IN0P/N squelch detection threshold is set to 80mVpp. (Default)  
10 – Main Link IN0P/N squelch detection threshold is set to 160mVpp.  
11 – Main Link IN0P/N squelch detection threshold is set to 250mVpp.  
5:4  
3
RW  
03h  
SQUELCH_ENABLE.  
0 – Main Link IN0P/N squelch detection is enabled (default)  
1 – Main Link IN0P/N squelch detection is disabled.  
RW  
10  
Copyright © 2014, Texas Instruments Incorporated  
 
ECCN3E991  
TVB1440  
www.ti.com.cn  
ZHCSD29A NOVEMBER 2014REVISED NOVEMBER 2014  
8.5.3 Main Link Output [OUT[3:0]P/N] Adjustments  
The TVB1440 Main link outputs (OUT[3:0]) must be set in link address space by following specified I2C access  
method.  
8.5.3.1 LINK Address Space  
Access to and from the TVB1440 LINK address space is indirectly addressable through the local I2C registers as  
illustrated in the Figure 8.  
TVB1440's Local I2C  
Address Space  
TVB1440's Link  
Address Space  
1Ch  
1Dh  
1Eh  
1Fh  
LINK_ADDR_HIGH  
LINK_ADDR_MID  
LINK_ADDR_LOW  
LINK_DATA  
Local I2C  
Acceses  
20-bit LINK Register  
Data Read/Write  
Figure 8. Accessing TVB1440 LINK Registers  
The configuration of these registers can be performed through the local I2C interface, where three registers (from  
1Ch to 1Eh) are used as the address to the LINK register and another one (1Fh) as a data to be read/written.  
Copyright © 2014, Texas Instruments Incorporated  
11  
 
ECCN3E991  
TVB1440  
ZHCSD29A NOVEMBER 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
8.5.4 Example Script  
The script below is for a Total Phase Aardvark I2C controller. Details on the Total Phase Aardvark I2C controller  
can be obtained from the Total Phase website. This example is for a 5.0 Gbps data rate with 4 active lanes.  
space  
<aardvark>  
<configure i2c="1" spi="1" gpio="0" tpower="1" pullups="0"/>  
<i2c_bitrate khz="100"/>  
space  
======Program the device=====  
<i2c_write addr="0x2D" count="1" radix="16">04 00</i2c_write> />  
space  
======Program Link Bandwidth Settings to 5Gbps======LINK 00100h=====  
<i2c_write addr="0x2D" count="1" radix="16">1C 00</i2c_write> />  
<i2c_write addr="0x2D" count="1" radix="16">1D 01</i2c_write> />  
<i2c_write addr="0x2D" count="1" radix="16">1E 00</i2c_write> />  
<i2c_write addr="0x2D" count="1" radix="16">1F 14</i2c_write> />  
space  
space  
======Program Num of Lanes to 4.s======LINK 00101h=====  
<i2c_write addr="0x2D" count="1" radix="16">1C 00</i2c_write> />  
<i2c_write addr="0x2D" count="1" radix="16">1D 01</i2c_write> />  
<i2c_write addr="0x2D" count="1" radix="16">1E 01</i2c_write> />  
<i2c_write addr="0x2D" count="1" radix="16">1F 04</i2c_write> />  
space  
======Program VOD L1 and Pre-Emphasis L0 for Lane 0======LINK 00103h=====  
<i2c_write addr="0x2D" count="1" radix="16">1C 00</i2c_write> />  
<i2c_write addr="0x2D" count="1" radix="16">1D 01</i2c_write> />  
<i2c_write addr="0x2D" count="1" radix="16">1E 03</i2c_write> />  
<i2c_write addr="0x2D" count="1" radix="16">1F 01</i2c_write> />  
space  
======Program VOD L1 and Pre-Emphasis L0 for Lane 1======LINK 00104h=====  
<i2c_write addr="0x2D" count="1" radix="16">1C 00</i2c_write> />  
<i2c_write addr="0x2D" count="1" radix="16">1D 01</i2c_write> />  
<i2c_write addr="0x2D" count="1" radix="16">1E 04</i2c_write> />  
<i2c_write addr="0x2D" count="1" radix="16">1F 01</i2c_write> />  
space  
======Program VOD L1 and Pre-Emphasis L0 for Lane 2======LINK 00105h=====  
<i2c_write addr="0x2D" count="1" radix="16">1C 00</i2c_write> />  
<i2c_write addr="0x2D" count="1" radix="16">1D 01</i2c_write> />  
<i2c_write addr="0x2D" count="1" radix="16">1E 05</i2c_write> />  
<i2c_write addr="0x2D" count="1" radix="16">1F 01</i2c_write> />  
space  
======Program VOD L1 and Pre-Emphasis L0 for Lane 3======LINK 00106h=====  
<i2c_write addr="0x2D" count="1" radix="16">1C 00</i2c_write> />  
<i2c_write addr="0x2D" count="1" radix="16">1D 01</i2c_write> />  
<i2c_write addr="0x2D" count="1" radix="16">1E 06</i2c_write> />  
<i2c_write addr="0x2D" count="1" radix="16">1F 01</i2c_write> />  
space  
======Set Power Mode to Normal======LINK 00600h=====  
<i2c_write addr="0x2D" count="1" radix="16">1C 00</i2c_write> />  
<i2c_write addr="0x2D" count="1" radix="16">1D 06</i2c_write> />  
<i2c_write addr="0x2D" count="1" radix="16">1E 00</i2c_write> />  
<i2c_write addr="0x2D" count="1" radix="16">1F 01</i2c_write> />  
space  
=====May want to adjust Squelch Level===  
<i2c_write addr="0x2D" count="1" radix="16">03 10</i2c_write> />  
space  
=====Enable EQ===  
<i2c_write addr="0x2D" count="1" radix="16">05 80</i2c_write> />  
space  
=====Set EQ level to 11dB(5Gbps) for lane 0===  
<i2c_write addr="0x2D" count="1" radix="16">05 85</i2c_write> />  
space  
=====Set EQ level to 11dB(5Gbps) for lane 1===  
<i2c_write addr="0x2D" count="1" radix="16">07 05</i2c_write> />  
space  
=====Set EQ level to 11dB(5Gbps) for lane 2===  
<i2c_write addr="0x2D" count="1" radix="16">09 05</i2c_write> />  
space  
=====Set EQ level to 11dB(5Gbps) for lane 3===  
<i2c_write addr="0x2D" count="1" radix="16">0B 05</i2c_write> />  
</aardvark>  
12  
Copyright © 2014, Texas Instruments Incorporated  
ECCN3E991  
TVB1440  
www.ti.com.cn  
ZHCSD29A NOVEMBER 2014REVISED NOVEMBER 2014  
8.6 Register Maps  
Table 4. TVB1440 LINK Registers  
LINK Address  
NAME  
Value Written  
06h  
0Ah  
14h  
00h  
01h  
02h  
04h  
00h  
08h  
10h  
18h  
01h  
09h  
11h  
02h  
0Ah  
03h  
00h  
08h  
10h  
18h  
01h  
09h  
11h  
02h  
0Ah  
03h  
00h  
08h  
10h  
18h  
01h  
09h  
11h  
02h  
0Ah  
03h  
00h  
08h  
10h  
18h  
01h  
09h  
11h  
02h  
0Ah  
03h  
01h  
02h  
Value Read  
00h  
01h  
02h  
00h  
01h  
03h  
0Fh  
00h  
04h  
08h  
0Ch  
01h  
05h  
09h  
02h  
06h  
03h  
00h  
04h  
08h  
0Ch  
01h  
05h  
09h  
02h  
06h  
03h  
00h  
04h  
08h  
0Ch  
01h  
05h  
09h  
02h  
06h  
03h  
00h  
04h  
08h  
0Ch  
01h  
05h  
09h  
02h  
06h  
03h  
00h  
01h  
Description  
<1.6Gbps per lane  
00100h  
LINK_BW_SET  
1.6-2.7Gbps per lane  
2.7-5.0Gbps per lane  
All Lanes disabled  
One lane enabled (OUT0).  
00101h  
LANE_COUNT_SET  
Two lanes enabled (OUT[1:0]).  
Four lanes enabled (OUT[3:0]).  
VOD Level 0 and Pre-emphasis Level 0 for OUT0.  
VOD Level 0 and Pre-emphasis Level 1 for OUT0.  
VOD Level 0 and Pre-emphasis Level 2 for OUT0.  
VOD Level 0 and Pre-emphasis Level 3 for OUT0.  
VOD Level 1 and Pre-emphasis Level 0 for OUT0.  
VOD Level 1 and Pre-emphasis Level 1 for OUT0.  
VOD Level 1 and Pre-emphasis Level 2 for OUT0.  
VOD Level 2 and Pre-emphasis Level 0 for OUT0.  
VOD Level 2 and Pre-emphasis Level 1 for OUT0.  
VOD Level 3 and Pre-emphasis Level 0 for OUT0  
VOD Level 0 and Pre-emphasis Level 0 for OUT1.  
VOD Level 0 and Pre-emphasis Level 1 for OUT1.  
VOD Level 0 and Pre-emphasis Level 2 for OUT1.  
VOD Level 0 and Pre-emphasis Level 3 for OUT1.  
VOD Level 1 and Pre-emphasis Level 0 for OUT1.  
VOD Level 1 and Pre-emphasis Level 1 for OUT1.  
VOD Level 1 and Pre-emphasis Level 2 for OUT1.  
VOD Level 2 and Pre-emphasis Level 0 for OUT1.  
VOD Level 2 and Pre-emphasis Level 1 for OUT1.  
VOD Level 3 and Pre-emphasis Level 0 for OUT1  
VOD Level 0 and Pre-emphasis Level 0 for OUT2.  
VOD Level 0 and Pre-emphasis Level 1 for OUT2.  
VOD Level 0 and Pre-emphasis Level 2 for OUT2.  
VOD Level 0 and Pre-emphasis Level 3 for OUT2.  
VOD Level 1 and Pre-emphasis Level 0 for OUT2.  
VOD Level 1 and Pre-emphasis Level 1 for OUT2.  
VOD Level 1 and Pre-emphasis Level 2 for OUT2.  
VOD Level 2 and Pre-emphasis Level 0 for OUT2.  
VOD Level 2 and Pre-emphasis Level 1 for OUT2.  
VOD Level 3 and Pre-emphasis Level 0 for OUT2  
VOD Level 0 and Pre-emphasis Level 0 for OUT3.  
VOD Level 0 and Pre-emphasis Level 1 for OUT3.  
VOD Level 0 and Pre-emphasis Level 2 for OUT3.  
VOD Level 0 and Pre-emphasis Level 3 for OUT3.  
VOD Level 1 and Pre-emphasis Level 0 for OUT3.  
VOD Level 1 and Pre-emphasis Level 1 for OUT3.  
VOD Level 1 and Pre-emphasis Level 2 for OUT3.  
VOD Level 2 and Pre-emphasis Level 0 for OUT3.  
VOD Level 2 and Pre-emphasis Level 1 for OUT3.  
VOD Level 3 and Pre-emphasis Level 0 for OUT3  
Normal Mode  
00103h  
00104h  
00105h  
LANE0_SET  
LANE1_SET  
LANE2_SET  
00106h  
LANE3_SET  
00600h  
SET_POWER  
Power-Down mode.  
Copyright © 2014, Texas Instruments Incorporated  
13  
ECCN3E991  
TVB1440  
ZHCSD29A NOVEMBER 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
TVB1440 is a signal conditioner especially suited for equalizing channel loss due to traces and flexible cable  
between digital TV chipset and TCON receiver.  
9.1.1 Typical Application  
The device can be helpful improving eye diagram by placing it either end of the flexible cable in digital TV chipset  
or TCON board or at the both. Figure 9 shows a typical application for TV interface.  
TVB  
1440  
TVB  
1440  
TVB  
1440  
TVB  
1440  
FPC Cable  
TVB  
1440  
TVB  
1440  
TVB  
1440  
TVB  
1440  
Figure 9. Typical Application of TVB1440 in 4K2K Digital TV Interface  
9.1.1.1 Design Requirements  
Table 5. Design Parameters  
PARAMETER  
VDD Supply  
VCC Supply  
VALUE  
1.1 V  
3.3 V  
TV Max Resolution Requirement  
Pixel Clock (MHz)  
Horizontal Active (pixels)  
Vertical Active  
1194  
3840  
2160  
Color bit Depth (6bpc, 8bpc, 10bpc)  
Refresh Rate  
10 (30 bpp)  
120 Hz  
B
Panel Configuration (A or B)  
Channel Requirements  
Input Channel Insertion Loss  
Output Channel Insertion Loss  
Up to 12 dB at 3.75 Gbps  
Up to 12 dB at 3.75 Gbps  
TVB1440 Settings  
Number of Lanes (1, 2, or 4)  
Link Rate (Gbps)  
4
3.75  
RX EQ Setting (dB)  
6.5 dB  
TX VOD Setting (Level 0, 1, 2, or 3)  
TX Pre-Emphasis Setting (Level 0, 1, 2, or 3)  
Level 3 (1000 mVpp)  
Level 0 (0 dB)  
14  
Copyright © 2014, Texas Instruments Incorporated  
 
ECCN3E991  
TVB1440  
www.ti.com.cn  
ZHCSD29A NOVEMBER 2014REVISED NOVEMBER 2014  
9.1.1.2 Detailed Design Procedure  
9.1.1.2.1 Common 4k2k TV Panel Configuration  
A common 4k2k TV is broken into four 1920 x 1080 panels or four 960 x 2160 panels. For this particular  
implementation, panel configuration B is assumed. It is also assumed that two TVB1440 are used for each panel  
(one near SOC and one near TCON) for a total of eight TVB1440.  
Configuration A  
Configuration B  
Figure 10. Common Panel Configurations  
9.1.1.2.2 1Max Stream Rate  
The maximum stream rate can be derived from the maximum TV resolutions pixel clock and color depth. For this  
example, the maximum pixel clock is 1194 MHz. Because the TV is broken into 4 panels, the actual pixel clock  
for each panel is 298.5 MHz.  
Stream Bit Rate = PixelClock x bpp  
Stream Bit Rate = 298.5 x 30  
Stream Bit Rate = 8.955 Gbps.  
9.1.1.2.3 Encoded Stream Rate  
Most high-speed video standards are 8b10b encoded. Because of 8b10b encoding overhead, an additional 20%  
must be added to the stream bit rate. On top of the 8b10b, there are some additional overhead due to  
packetization before the 8b10b encode that also must be added to the stream bit rate. For example, a particular  
video standard may define the actual coded stream rate by the following equation.  
Encoded_Stream_Rate = #_of_Bytes_for_bpp x 8 x 1.25 x PixelClock  
Encoded_Stream_Rate = #_of_Bytes_for_bpp x 8 x 1.25 x PixelClock  
Encoded_Stream_Rate = 11.94Gbps.  
Copyright © 2014, Texas Instruments Incorporated  
15  
ECCN3E991  
TVB1440  
ZHCSD29A NOVEMBER 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
9.1.1.2.4 TVB1440 Configuration  
The TVB1440 must be configured by the SOC using I2C. Because of the limited number of I2C address available  
on the TVB1440, an I2C switch needs to be incorporated in order to configure each of the TVB1440. Figure 11  
shows an example implement using the Texas Instruments TCA9546A 4-channel I2C switch.  
TVB1440  
TVB1440  
I2C Address 0x58/59  
I2C Address 0x5C/5D  
I2C_BUS1  
I2C_BUS2  
TVB1440  
I2C Address 0x58/59  
TVB1440  
I2C Address 0x5C/5D  
SCL  
SDA  
SOC  
I2C Switch  
(TCA9546A)  
TVB1440  
TVB1440  
I2C Address 0x58/59  
I2C Address 0x5C/5D  
I2C_BUS3  
I2C_BUS4  
TVB1440  
I2C Address 0x58/59  
TVB1440  
I2C Address 0x5C/5D  
TCA9546A I2C address options:  
7'b1110XYZ where X = A2, Y= A1, Z = A0  
Figure 11. Example I2C Switch Implementation  
9.1.1.2.5 Receiver Equalization Setting  
The TVB1440 has a receiver equalizer that is adjustable from 0dB to 15 dB at 5 Gbps. The common approach to  
determine the proper equalizer setting is to measure the insertion loss of the channel at the input of the TVB1440  
at the Nyquist frequency of the data rate (1.875 GHz for 3.75 Gbps and 2.5 GHz for 5 Gbps). For example, if the  
input channel is 20 inches of trace with 4 mil width over FR4, the insertion loss at 3.75 Gbps would be -7.3 dB  
and at 5 Gbps would be -9.1 dB. The register EQ_LEVEL_LANEx, where X = 0, 1, 2, or 3 should be  
programmed to 3’b100 for a 3.75 Gbps data rate and should be programmed to 3’b101. The actual setting may  
need to be adjusted based on the additional channel parasitics from package, vias, and connectors.  
0
m1  
-5  
m2  
-10  
-15  
-20  
-25  
-30  
-35  
0
1
2
3
4
5
6
Frequency (GHz)  
7
8
9
10  
m1 frequency = 1.876 GHz  
m2 frequency = 2.500 GHz  
IL = –7.346  
IL = –9.185  
Figure 12. Insertion Loss of 20 Inch FR4 Trace With 4-mil Width  
16  
Copyright © 2014, Texas Instruments Incorporated  
 
ECCN3E991  
TVB1440  
www.ti.com.cn  
ZHCSD29A NOVEMBER 2014REVISED NOVEMBER 2014  
9.1.1.2.6 Transmitter Settings  
The TVB1440’s transmitter controls have four settings for voltage swing and four settings for pre-emphasis. The  
best transmitter setting to use is a function of the output channel insertion loss and the inputs eye requirement of  
the device at end of the channel. For the case in which a TVB1440 is at the end of the channel, the output  
channel’s insertion loss should not be greater than the receiver equalization of the TVB1440.  
To specify the largest eye opening at the end of the channel, the best voltage swing setting should be either level  
2 or level 3. It is also recommended to use either a pre-emphasis level of 0 dB or 3dB. The pre-emphasis setting  
can be thought of as a way to reduce the amount receiver equalizer required by the device at end channel. For  
example, a 3.5dB setting could allow for the receive equalization setting for the TVB1440 to be reduced from  
12dB to 10dB. If necessary, these settings can be adjusted up or down in order to improve the eye opening at  
the end of the channel.  
9.1.1.2.7 RESET  
The TVB1440 RSTN input gives control over the device reset and to place the device into shut-down mode.  
When RSTN is low, all registers are reset to their default values, which means all HS Link ports are disable.  
When the RSTN pin is released back to high, the device comes out of the shut-down mode. To turn on the HS  
Link, it is necessary to provision the device registers through the local I2C_CTL interface.  
It is critical to transition the RSTN input from a low to a high level after both VCC and VDD supply voltages have  
reached the minimum recommended operating voltage. This is achieved by a control signal to the RSTN input, or  
by an external capacitor connected between RSTN and GND. To insure that the TVB1440 is properly reset, the  
RSTN pin must be de-asserted for at least 100 μs before being asserted.  
The RSTN input includes a 150k resistor from the input to the VDD supply. An external capacitor connected  
between RSTN and GND allows delaying the RSTN signal during power up. When implementing the external  
capacitor the size of the external capacitor depends on the power up ramp of the VCC and VDD supplies; a  
slower ramp-up results in a larger value external capacitor. Approximately 200 nF capacitor is a reasonable first  
estimate for the size of the external capacitor for most applications.  
Both RSTN implementations are shown in Figure 13.  
VDD  
GPO  
RSTN  
RSTN  
C
150K  
C
TVB1440  
controller  
TVB1440  
Figure 13. (a) Reset Implementation Using a Capacitor, (b) Microprocessor Drives the Pin  
Figure 14 shows a typical schematic implementation either in TV chipset or TCONS receiver board.  
Copyright © 2014, Texas Instruments Incorporated  
17  
 
ECCN3E991  
TVB1440  
ZHCSD29A NOVEMBER 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
VCC_3P3V  
VCC_3P3V  
VCC_3P3V  
R3  
VDD_1P1V  
R1  
1K  
r0402 r0402  
5% 5%  
R2  
1K  
10K (DNI)  
r0402  
5%  
TVB1440_RSTN  
TVB1440_EN  
RSTN must be  
held low until  
VCC and VDD are  
active and  
C1  
0.2uF  
U1  
stable.  
TVB1440RGZ  
24  
GND  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
VDD  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
OUT0P  
OUT0N  
IN0P  
IN0N  
IN0P  
IN0N  
NC2  
IN1P  
IN1N  
VDD  
IN2P  
IN2N  
NC3  
IN3P  
IN3N  
TP  
OUT0P  
VDD_1P1V  
C3  
OUT0N  
VDD  
C2  
C4  
C5  
C6  
C7  
C8  
OUT1P  
OUT1N  
IN1P  
IN1N  
OUT1P  
OUT1N  
GND  
0.1uF 0.1uF 0.1uF 10uF 0.1uF 0.01uF 0.01uF  
OUT2P  
OUT2N  
IN2P  
IN2N  
OUT2P  
OUT2N  
VDD  
VCC_3P3V  
OUT3P  
OUT3N  
IN3P  
IN3N  
OUT3P  
OUT3N  
C9  
C10  
C11  
10uF  
0.1uF  
0.1uF  
ADDR  
SCL_CTL  
SDA_CTL  
R5  
1K  
r0402  
5%  
R4  
1K  
VCC_3P3V  
r0402  
C12  
1uF  
5%  
Figure 14. Schematic Implementation of TVB1440  
18  
Copyright © 2014, Texas Instruments Incorporated  
ECCN3E991  
TVB1440  
www.ti.com.cn  
ZHCSD29A NOVEMBER 2014REVISED NOVEMBER 2014  
10 Power Supply Recommendations  
The following power-up and power-down sequences describe how the RSTN signal is applied to the TVB1440.  
10.1 Power-Up Sequence  
1. Apply VDD then VCC (recommended both less than 10-ms ramp time). VDD must be asserted first and  
stable for greater than 10 μs before VCC is applied.  
2. RSTN must remain asserted until VCC/VDD voltage has reached minimum recommended operation for more  
than 100 μs.  
3. De-assert RSTN (Note: This RSTN is a 1.1V interface and is internally connected to VDD through a 150-kΩ  
resistor).  
4. Device will be available for operation approximately 400 ms after a valid reset.  
VCC  
VDD  
VCC/VDD  
T > 10 µs  
RSTN  
T > 100 µs  
Device  
Available  
T > 400 ms  
Figure 15. Power-up Sequence  
10.2 Power-Down Sequence  
There is no power-down sequence required.  
Copyright © 2014, Texas Instruments Incorporated  
19  
ECCN3E991  
TVB1440  
ZHCSD29A NOVEMBER 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
11.1.1 Differential Pairs  
This section describes the layout recommendations for all the TVB1440 differential pairs: IN[3:0] and OUT[3:0].  
Must be designed with a differential impedance of 100 Ω ± 10% or 50-Ω single-ended impedance.  
In order to minimize cross talk, it is recommended to keep high speed signals away from each other. Each  
pair should be separated by at least 5 times the signal trace width.  
Route all differential pairs on the same layer adjacent to a solid ground plane.  
Do not route differential pairs over any plane split.  
Adding test points causes impedance discontinuity and; therefore, negative impacts signal performance. If  
test points are used, they should be placed in series and symmetrically. They must not be placed in a manner  
that causes stub on the differential pair.  
Avoid 90 degree turns in trace. The use of bends in differential traces should be kept to a minimum. When  
bends are used, the number of left and right bends should be as equal as possible and the angle of the bend  
should be 135 degrees. This minimizes any length mismatch causes by the bends; and therefore,  
minimizes the impact bends have on EMI.  
Minimize the trace lengths of the differential pair traces. Longer trace lengths require very careful routing to  
assure proper signal integrity.  
Keep intra-pair skew to a minimum in order to minimize EMI. There should be less than 5 mils difference  
between a differential pair signal and its complement.  
Minimize the use of vias in the differential pair paths as much as possible. If this is not practical, make sure  
that the same via type and placement are used for both signals in a pair. It is recommended to keep the vias  
count to 2 or less.  
11.1.2 Layout Example  
Figure 16. TBV1440 Layout  
20  
Copyright © 2014, Texas Instruments Incorporated  
ECCN3E991  
TVB1440  
www.ti.com.cn  
ZHCSD29A NOVEMBER 2014REVISED NOVEMBER 2014  
Layout Guidelines (continued)  
11.1.3 Placement  
A 100-nF should be placed as close as possible on each VDD and VCC power pin.  
The 100-nF capacitors on the IN[3:0] and OUT[3:0] nets should be placed close to the connector.  
The ESD and EMI protection devices (if used) should also be placed as possible to the connector.  
11.1.4 Package Specific  
The TVB1440 package as a 0.5 mm pin pitch  
The TVB1440 package has a 4.1 mm x 4.1 mm thermal pad. This thermal pad must be connected to ground  
through a system of vias.  
All vias under device, except for those connected to thermal pad, should be solder masked to avoid any  
potential issues with thermal pad layouts.  
11.1.5 Ground  
It is recommended that only one board plane be used in the design. This provides the best image plane for  
signal traces running above the plane. The thermal pad of the TVB1440 should be connected to this plane  
through a system of vias.  
版权 © 2014, Texas Instruments Incorporated  
21  
ECCN3E991  
TVB1440  
ZHCSD29A NOVEMBER 2014REVISED NOVEMBER 2014  
www.ti.com.cn  
12 器件和文档支持  
12.1 商标  
All trademarks are the property of their respective owners.  
12.2 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.3 Export Control Notice  
Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as  
defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled  
product restricted by other applicable national regulations, received from disclosing party under nondisclosure  
obligations (if any), or any direct product of such technology, to any destination to which such export or re-export  
is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S.  
Department of Commerce and other competent Government authorities to the extent required by those laws.  
12.4 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
13 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
22  
版权 © 2014, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2014, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TVB1440RGZR  
ACTIVE  
VQFN  
RGZ  
48  
2500 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
0 to 85  
TVB1440  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Dec-2014  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TVB1440RGZR  
VQFN  
RGZ  
48  
2500  
330.0  
16.4  
7.3  
7.3  
1.1  
12.0  
16.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Dec-2014  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN RGZ 48  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 38.0  
TVB1440RGZR  
2500  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGZ 48  
7 x 7, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUADFLAT PACK- NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224671/A  
www.ti.com  
PACKAGE OUTLINE  
RGZ0048B  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
7.15  
6.85  
A
B
PIN 1 INDEX AREA  
7.15  
6.85  
1 MAX  
C
SEATING PLANE  
0.05  
0.00  
0.08 C  
2X 5.5  
4.1 0.1  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
13  
24  
44X 0.5  
12  
25  
49  
SYMM  
2X  
5.5  
0.30  
0.18  
36  
48X  
1
0.1  
0.05  
C B A  
48  
37  
SYMM  
PIN 1 ID  
(OPTIONAL)  
0.5  
0.3  
48X  
4218795/B 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGZ0048B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
4.1)  
(1.115) TYP  
(0.685)  
TYP  
37  
48  
48X (0.6)  
1
36  
48X (0.24)  
(1.115)  
TYP  
44X (0.5)  
(0.685)  
TYP  
SYMM  
49  
(
0.2) TYP  
VIA  
(6.8)  
(R0.05)  
TYP  
12  
25  
13  
24  
SYMM  
(6.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:12X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218795/B 02/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGZ0048B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.37)  
TYP  
37  
48  
48X (0.6)  
1
36  
48X (0.24)  
44X (0.5)  
(1.37)  
TYP  
SYMM  
49  
(R0.05) TYP  
(6.8)  
9X  
METAL  
TYP  
(
1.17)  
12  
25  
13  
24  
SYMM  
(6.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 49  
73% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:12X  
4218795/B 02/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TVB170NSA-L

SiBar Thyristor Surge Protectors
TE

TVB170NSB-L

SiBar Thyristor Surge Protectors
TE

TVB170NSC-L

SiBar Thyristor Surge Protectors
TE

TVB170RSC-L

SiBar Thyristor Surge Protectors
TE

TVB170SA

PolySwitch SiBar Thyristor Surge Protectors
TE

TVB170SA-L

SiBar Thyristor Surge Protectors
TE

TVB170SA_04

Thyristor Surge Protectors
TE

TVB170SC

PolySwitch SiBar Thyristor Surge Protectors
TE

TVB170SC-L

Thyristor Surge Protectors
TE

TVB170SC_04

Thyristor Surge Protectors
TE

TVB180NSA-L

SiBar Thyristor Surge Protectors
TE

TVB180NSB-L

SiBar Thyristor Surge Protectors
TE