TVP5146_12 [TI]

NTSC/PAL/SECAM 4x10-Bit Digital Video Decoder With Macrovision Detection, YPbPr/RGB Inputs, 5-Line Comb Filter, and SCART Support; NTSC / PAL / SECAM 4×10位数字视频解码器, Macrovisionï英镑ª检测,频YPbPr / RGB输入, 5线梳状滤波器和SCART支持
TVP5146_12
型号: TVP5146_12
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

NTSC/PAL/SECAM 4x10-Bit Digital Video Decoder With Macrovision Detection, YPbPr/RGB Inputs, 5-Line Comb Filter, and SCART Support
NTSC / PAL / SECAM 4×10位数字视频解码器, Macrovisionï英镑ª检测,频YPbPr / RGB输入, 5线梳状滤波器和SCART支持

解码器
文件: 总109页 (文件大小:1805K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TVP5146  
NTSC/PAL/SECAM 4x10-Bit Digital Video Decoder With  
MacrovisionDetection, YPbPr/RGB Inputs,  
5-Line Comb Filter, and SCART Support  
Data Manual  
August 2007  
Digital Audio Video  
SLES084C  
Contents  
Section  
Title  
Page  
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1
2
3
3
3
4
5
6
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
Detailed Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Related Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Terminal Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
9
2.1  
Analog Processing and A/D Converters . . . . . . . . . . . . . . . . . . . . . . . .  
9
2.1.1  
2.1.2  
2.1.3  
2.1.4  
Video Input Switch Control . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Analog Input Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Automatic Gain Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Analog-to-Digital Converters (ADCs) . . . . . . . . . . . . . . . . . .  
9
10  
10  
10  
10  
11  
11  
15  
16  
17  
17  
17  
18  
19  
19  
24  
24  
25  
25  
25  
27  
27  
28  
29  
29  
30  
30  
35  
35  
36  
36  
2.2  
Digital Video Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.2.1  
2.2.2  
2.2.3  
2.2.4  
2.2.5  
2Decimation Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Composite Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Luminance Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Component Video Processor . . . . . . . . . . . . . . . . . . . . . . . . .  
Color Space Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.3  
2.4  
2.5  
Clock Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Real-Time Control (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Output Formatter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.5.1  
2.5.2  
2.5.3  
Fast Switches for SCART . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Separate Syncs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Embedded Syncs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.6  
2.7  
I2C Host Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.6.1  
2.6.2  
2.6.3  
2.6.4  
Reset and I2C Bus Address Selection . . . . . . . . . . . . . . . . .  
I2C Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
VBUS Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I2C Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
VBI Data Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.7.1  
2.7.2  
Reset and Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Adjusting External Syncs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
VBI FIFO and Ancillary Data in Video Stream . . . . . . . . . . .  
VBI Raw Data Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.8  
2.9  
2.10 Internal Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11 Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.1  
2.11.2  
2.11.3  
Input Select Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
AFE Gain Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Video Standard Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
iii  
2.11.4  
2.11.5  
2.11.6  
2.11.7  
2.11.8  
2.11.9  
Operation Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Autoswitch Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Color Killer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Luminance Processing Control 1 Register . . . . . . . . . . . . . .  
Luminance Processing Control 2 Register . . . . . . . . . . . . . .  
Luminance Processing Control 3 Register . . . . . . . . . . . . . .  
37  
37  
38  
38  
39  
39  
39  
40  
40  
40  
41  
41  
41  
42  
43  
43  
43  
44  
44  
44  
45  
45  
45  
45  
46  
46  
46  
47  
47  
47  
48  
48  
49  
49  
50  
51  
52  
52  
53  
54  
54  
55  
55  
56  
2.11.10 Luminance Brightness Register . . . . . . . . . . . . . . . . . . . . . . .  
2.11.11 Luminance Contrast Register . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.12 Chrominance Saturation Register . . . . . . . . . . . . . . . . . . . . .  
2.11.13 Chroma Hue Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.14 Chrominance Processing Control 1 Register . . . . . . . . . . .  
2.11.15 Chrominance Processing Control 2 Register . . . . . . . . . . .  
2.11.16 Component Pr Saturation Register . . . . . . . . . . . . . . . . . . . .  
2.11.17 Component Y Contrast Register . . . . . . . . . . . . . . . . . . . . . .  
2.11.18 Component Pb Saturation Register . . . . . . . . . . . . . . . . . . .  
2.11.19 Component Y Brightness Register . . . . . . . . . . . . . . . . . . . .  
2.11.20 AVID Start Pixel Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.21 AVID Stop Pixel Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.22 HSYNC Start Pixel Register . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.23 HSYNC Stop Pixel Register . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.24 VSYNC Start Line Register . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.25 VSYNC Stop Line Register . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.26 VBLK Start Line Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.27 VBLK Stop Line Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.28 Fast-Switch Control Register . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.29 Fast-Switch SCART Delay Register . . . . . . . . . . . . . . . . . . .  
2.11.30 SCART Delay Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.31 CTI Delay Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.32 CTI Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.33 RTC Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.34 Sync Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.35 Output Formatter 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.36 Output Formatter 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.37 Output Formatter 3 Register . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.38 Output Formatter 4 Register . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.39 Output Formatter 5 Register . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.40 Output Formatter 6 Register . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.41 Clear Lost Lock Detect Register . . . . . . . . . . . . . . . . . . . . . .  
2.11.42 Status 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.43 Status 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.44 AGC Gain Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.45 Video Standard Status Register . . . . . . . . . . . . . . . . . . . . . .  
2.11.46 GPIO Input 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.47 GPIO Input 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
iv  
2.11.48 Vertical Line Count Register . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.49 AFE Coarse Gain for CH 1 Register . . . . . . . . . . . . . . . . . . .  
2.11.50 AFE Coarse Gain for CH 2 Register . . . . . . . . . . . . . . . . . . .  
2.11.51 AFE Coarse Gain for CH 3 Register . . . . . . . . . . . . . . . . . . .  
2.11.52 AFE Coarse Gain for CH 4 Register . . . . . . . . . . . . . . . . . . .  
2.11.53 AFE Fine Gain for Pb_B Register . . . . . . . . . . . . . . . . . . . . .  
2.11.54 AFE Fine Gain for Y_G_Chroma Register . . . . . . . . . . . . . .  
2.11.55 AFE Fine Gain for R_Pr Register . . . . . . . . . . . . . . . . . . . . .  
2.11.56 AFE Fine Gain for CVBS_Luma Register . . . . . . . . . . . . . .  
2.11.57 ROM Version Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.58 AGC White Peak Processing Register . . . . . . . . . . . . . . . . .  
2.11.59 AGC Increment Speed Register . . . . . . . . . . . . . . . . . . . . . .  
2.11.60 AGC Increment Delay Register . . . . . . . . . . . . . . . . . . . . . . .  
2.11.61 Chip ID MSB Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.62 Chip ID LSB Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.63 VDP TTX Filter And Mask Registers . . . . . . . . . . . . . . . . . . .  
2.11.64 VDP TTX Filter Control Register . . . . . . . . . . . . . . . . . . . . . .  
2.11.65 VDP FIFO Word Count Register . . . . . . . . . . . . . . . . . . . . . .  
2.11.66 VDP FIFO Interrupt Threshold Register . . . . . . . . . . . . . . . .  
2.11.67 VDP FIFO Reset Register . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.68 VDP FIFO Output Control Register . . . . . . . . . . . . . . . . . . . .  
2.11.69 VDP Line Number Interrupt Register . . . . . . . . . . . . . . . . . .  
2.11.70 VDP Pixel Alignment Register . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.71 VDP Line Start Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.72 VDP Line Stop Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.73 VDP Global Line Mode Register . . . . . . . . . . . . . . . . . . . . . .  
2.11.74 VDP Full Field Enable Register . . . . . . . . . . . . . . . . . . . . . . .  
2.11.75 VDP Full Field Mode Register . . . . . . . . . . . . . . . . . . . . . . . .  
56  
57  
57  
58  
58  
59  
59  
60  
60  
60  
61  
62  
63  
63  
63  
64  
65  
66  
67  
67  
67  
67  
68  
68  
68  
68  
69  
69  
2.11.76 VBUS Data Access With No VBUS Address Increment  
Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
69  
2.11.77 VBUS Data Access With VBUS Address Increment  
Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
69  
70  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
79  
2.11.78 FIFO Read Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.79 VBUS Address Access Register . . . . . . . . . . . . . . . . . . . . . .  
2.11.80 Interrupt Raw Status 0 Register . . . . . . . . . . . . . . . . . . . . . . .  
2.11.81 Interrupt Raw Status 1 Register . . . . . . . . . . . . . . . . . . . . . . .  
2.11.82 Interrupt Status 0 Register . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.83 Interrupt Status 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.84 Interrupt Mask 0 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.85 Interrupt Mask 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.86 Interrupt Clear 0 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.11.87 Interrupt Clear 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.12 VBUS Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.12.1  
VDP Closed Caption Data Register . . . . . . . . . . . . . . . . . . .  
v
2.12.2  
2.12.3  
2.12.4  
2.12.5  
2.12.6  
2.12.7  
2.12.8  
2.12.9  
VDP WSS Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
VDP VITC Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
VDP V-Chip TV Rating Block 1 Register . . . . . . . . . . . . . . .  
VDP V-Chip TV Rating Block 2 Register . . . . . . . . . . . . . . .  
VDP V-Chip TV Rating Block 3 Register . . . . . . . . . . . . . . .  
VDP V-Chip MPAA Rating Data Register . . . . . . . . . . . . . . .  
VDP General Line Mode and Line Address Register . . . . .  
VDP VPS/Gemstar Data Register . . . . . . . . . . . . . . . . . . . . .  
79  
80  
80  
80  
81  
81  
82  
83  
83  
84  
85  
85  
85  
85  
86  
86  
86  
87  
89  
89  
89  
89  
90  
90  
90  
91  
91  
91  
93  
93  
94  
2.12.10 VDP FIFO Read Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.12.11 Interrupt Configuration Register . . . . . . . . . . . . . . . . . . . . . . .  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3
4
3.1  
3.2  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.2.1  
Crystal Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.3  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.3.1  
3.3.2  
3.3.3  
DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .  
Analog Processing and A/D Converters . . . . . . . . . . . . . . . .  
Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Example Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.1  
4.2  
4.3  
Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.1.1  
4.1.2  
Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.2.1  
4.2.2  
Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.3.1  
4.3.2  
Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Recommended Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Recommended Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Recommended Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5.1  
5.2  
Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Designing With PowerPAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
vi  
List of Illustrations  
Figure  
1−1  
1−2  
2−1  
2−2  
2−3  
2−4  
2−5  
Title  
Page  
4
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Terminal Assignments Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Analog Processors and A/D Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Digital Video Processor Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Composite and S-Video Processor Block Diagram . . . . . . . . . . . . . . . . . .  
Color Low-Pass Filter Frequency Response . . . . . . . . . . . . . . . . . . . . . . . .  
5
9
11  
12  
13  
Color Low-Pass Filter With Filter Frequency Response, NTSC Square  
Pixel Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
13  
13  
13  
14  
14  
14  
2−6  
2−7  
2−8  
2−9  
Color Low-Pass Filter With Filter Characteristics,  
NTSC/PAL ITU-R BT.601 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Color Low-Pass Filter With Filter Characteristics, PAL Square Pixel  
Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Chroma Trap Filter Frequency Response, NTSC Square Pixel  
Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Chroma Trap Filter Frequency Response, NTSC ITU-R BT.601  
Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2−10 Chroma Trap Filter Frequency Response, PAL ITU-R BT.601  
Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2−11 Chroma Trap Filter Frequency Response, PAL Square Pixel  
Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
14  
15  
15  
15  
16  
16  
17  
17  
18  
20  
21  
22  
23  
24  
26  
29  
66  
87  
2−12 Luminance Edge-Enhancer Peaking Block Diagram . . . . . . . . . . . . . . . . .  
2−13 Peaking Filter Response, NTSC Square Pixel Sampling . . . . . . . . . . . . .  
2−14 Peaking Filter Response, NTSC/PAL ITU-R BT.601 Sampling . . . . . . . .  
2−15 Peaking Filter Response, PAL Square Pixel Sampling . . . . . . . . . . . . . . .  
2−16 Y Component Gain, Offset, Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2−17 CbCr Component Gain, Offset, Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2−18 Reference Clock Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2−19 RTC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2−20 Vertical Synchronization Signals for 525-Line System . . . . . . . . . . . . . . . .  
2−21 Vertical Synchronization Signals for 625-Line System . . . . . . . . . . . . . . . .  
2−22 Horizontal Synchronization Signals for 10-Bit 4:2:2 Mode . . . . . . . . . . . .  
2−23 Horizontal Synchronization Signals for 20-Bit 4:2:2 Mode . . . . . . . . . . . .  
2−24 VSYNC Position With Respect to HSYNC . . . . . . . . . . . . . . . . . . . . . . . . . .  
2−25 VBUS Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2−26 Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2−27 Teletext Filter Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3−1  
Clocks, Video Data, and Sync Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
vii  
3−2  
5−1  
I2C Host Port Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
88  
93  
List of Tables  
Table  
Title  
Page  
1−1  
2−1  
2−2  
2−3  
2−4  
2−5  
2−6  
2−7  
2−8  
2−9  
Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Output Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Summary of Line Frequencies, Data Rates, and Pixel/Line Counts . . . .  
EAV and SAV Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I2C Host Interface Terminal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I2C Address Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Supported VBI Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Ancillary Data Format and Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
VBI Raw Data Output Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Reset Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6
18  
19  
24  
25  
25  
27  
28  
29  
29  
31  
34  
35  
2−10 Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2−11 VBUS Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2−12 Analog Channel and Video Mode Selection . . . . . . . . . . . . . . . . . . . . . . . .  
viii  
1
Introduction  
The TVP5146 device is a high quality, single-chip digital video decoder that digitizes and  
decodes all popular baseband analog video formats into digital component video. The TVP5146  
decoder supports the analog-to-digital (A/D) conversion of component RGB and YPbPr signals,  
as well as the A/D conversion and decoding of NTSC, PAL, and SECAM composite and S-video  
into component YCbCr. This decoder includes four 10-bit 30-MSPS A/D converters (ADCs).  
Preceding each ADC in the device, the corresponding analog channel contains an analog circuit  
that clamps the input to a reference voltage and applies a programmable gain and offset. A total  
of 10 video input terminals can be configured to a combination of RGB, YPbPr, CVBS, or  
S-video video inputs.  
Component, composite, or S-video signals are sampled at 2× the square-pixel or ITU-R BT.601  
clock frequency, line-locked, and are then decimated to the 1× pixel rate. CVBS decoding  
utilizes five-line adaptive comb filtering for both the luma and chroma data paths to reduce both  
cross-luma and cross-chroma artifacts. A chroma trap filter is also available. On CVBS and  
S-video inputs, the user can control video characteristics such as contrast, brightness,  
saturation, and hue via an I2C host port interface. Furthermore, luma peaking (sharpness) with  
programmable gain is included, as well as a patented chroma transient improvement (CTI)  
circuit.  
A built-in color space converter is applied to decoded component RGB data.  
The following output formats can be selected: 20-bit 4:2:2 YCbCr or 10-bit 4:2:2 YCbCr.  
The TVP5146 decoder generates synchronization, blanking, field, active video window,  
horizontal and vertical syncs, clock, genlock (for downstream video encoder synchronization),  
host CPU interrupt and programmable logic I/O signals, in addition to digital video outputs.  
The TVP5146 decoder includes methods for advanced vertical blanking interval (VBI) data  
retrieval. The VBI data processor (VDP) slices, parses, and performs error checking on teletext,  
closed caption (CC), and other VBI data. A built-in FIFO stores up to 11 lines of teletext data,  
and with proper host port synchronization, full-screen teletext retrieval is possible. The TVP5146  
decoder can pass through the output formatter 2× the sampled raw luma data for host-based  
VBI processing.  
The decoder provides the option for concurrent processing of pixel-locked CVBS and  
RGB/YPbPr input formats.  
The main blocks of the TVP5146 decoder include:  
Robust sync detection for weak and noisy signals as well as VCR trick modes  
Y/C separation by 2-D, 5-line, adaptive comb or chroma trap filter  
Fast-switch input for pixel-by-pixel switching between CVBS and YPbPr/RGB component video inputs  
(SCART support)  
Four 10-bit, 30-MSPS A/D converters with analog preprocessors [clamp and automatic gain control  
(AGC)]  
Luminance processor  
Chrominance processor  
Macrovision is a trademark of Macrovision Corporation.  
Gemstar is a trademark of Gemstar-TV Guide International.  
PowerPAD is a trademark of Texas Instruments.  
Other trademarks are the property of their respective owners.  
1
SLES084C − August 2007  
TVP5146  
Component processor  
Clock/timing processor and power-down control  
Software-controlled power-saving standby mode  
Output formatter  
2
I C host port interface  
VBI data processor  
Macrovision copy protection detection circuit (Type 1, 2, 3, and separate color stripe detection)  
3.3-V tolerant digital I/O ports  
1.1 Detailed Functionality  
Four 30-MSPS, 10-bit A/D channels with programmable gain control  
Supports NTSC (J, M, 4.43), PAL (B, D, G, H, I, M, N, Nc, 60), SECAM (B, D, G, K, K1, L), CVBS, and  
S-video  
Supports analog component SD YPbPr/RGB video formats with embedded sync  
10 analog video input terminals for multisource connection  
User-programmable video output formats  
10-bit ITU-R BT.656 4:2:2 YCbCr with embedded syncs  
10-bit 4:2:2 YCbCr with separate syncs  
20-bit 4:2:2 YCbCr with separate syncs  
2× sampled raw VBI data in active video during a vertical blanking period  
Sliced VBI data during a vertical blanking period or active video period (full field mode)  
HSYNC/VSYNC outputs with programmable position, polarity, and width, and FID (field ID) output  
Component video processing  
Gain (contrast) and offset (brightness) adjustments  
Automatic component video detection (525/625)  
Color space conversion from RGB to YCbCr  
Composite and S-video processing  
Adaptive 2-D, 5-line, adaptive comb filter for composite video inputs; chroma trap available  
Automatic video standard detection (NTSC/PAL/SECAM) and switching  
Luma-peaking with programmable gain  
Patented CTI circuit  
Patented architecture for locking to weak, noisy, or unstable signals  
Single 14.31818-MHz reference crystal for all standards (ITU-R.BT601 and square pixel)  
Line-locked internal pixel sampling clock generation with horizontal- and vertical-lock signal outputs  
Genlock output [real-time control (RTC] format) for downstream video encoder synchronization  
Certified Macrovisioncopy protection detection  
2
TVP5146  
SLES084C − August 2007  
VBI data processor  
Teletext (NABTS, WST)  
CC and extended data service (EDS)  
Wide screen signaling (WSS)  
Copy generation management system (CGMS)  
Video program system (VPS/PDC)  
Vertical interval time code (VITC)  
Gemstar1×/2× electronic program guide compatible mode  
Register readback of CC, WSS (CGMS), VPS/PDC, VITC, and Gemstar 1×/2× sliced data  
2
I C host port interface  
Reduced power consumption: 1.8-V digital core, 3.3-V for digital I/O, and 1.8-V analog core with  
power-save and power-down modes  
80-terminal TQFP PowerPADpackage  
1.2 Applications  
Digital TV  
LCD TV/monitors  
DVD-R  
PVR  
PC video cards  
Video capture/video editing  
Video conferencing  
1.3 Related Products  
TVP5150A/TVP5150AM1 Ultralow Power NTSC/PAL/SECAM Video Decoder With Robust Sync  
Detector, (SLES098)  
1.4 Ordering Information  
PACKAGED DEVICES  
80-TERMINAL PLASTIC FLAT-PACK PowerPAD  
TVP5146PFP  
T
A
TM  
0°C to 70°C  
3
SLES084C − August 2007  
TVP5146  
1.5 Functional Block Diagram  
VBI  
Data  
Slicer  
Copy  
Protection  
Detector  
CVBS/Y/G  
Analog Front End  
VI_1_A  
CVBS/  
Pb/B/C  
Composite and S-Video Processor  
Y/C  
VI_1_B  
VI_1_C  
ADC1  
ADC2  
ADC3  
ADC4  
Luma  
CVBS/Y  
C
Y
Separation  
Processing  
YCbCr  
5-line  
Adaptive  
Comb  
VI_2_A  
Y[9:0]  
C[9:0]  
FSS  
C
Chroma  
Processing  
CVBS/  
Y/G  
VI_2_B  
VI_2_C  
Output  
Formatter  
M
U
X
VI_3_A  
VI_3_B  
VI_3_C  
Component  
Processor  
CVBS/  
Pr/R/C  
Y/G  
Pb/B  
Pr/R  
YCbCr  
Color  
Gain/Offset  
Space  
Conversion  
CVBS/Y  
VI_4_A  
GPIO  
Sampling  
Clock  
Timing Processor  
With Sync Detector  
Host  
Interface  
Figure 1−1. Functional Block Diagram  
4
TVP5146  
SLES084C − August 2007  
1.6 Terminal Assignments  
PFP PACKAGE  
(TOP VIEW)  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
60  
VI_1_B  
VI_1_C  
C_6/GPIO  
C_7/GPIO  
C_8/GPIO  
C_9/GPIO  
DGND  
DVDD  
Y_0  
Y_1  
Y_2  
Y_3  
Y_4  
IOGND  
IOVDD  
Y_5  
Y_6  
Y_7  
Y_8  
Y_9  
DGND  
DVDD  
1
2
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
CH1_A33GND  
CH1_A33VDD  
CH2_A33VDD  
CH2_A33GND  
VI_2_A  
3
4
5
6
7
VI_2_B  
VI_2_C  
8
9
CH2_A18GND  
CH2_A18VDD  
A18VDD_REF  
A18GND_REF  
CH3_A18VDD  
CH3_A18GND  
VI_3_A  
VI_3_B  
VI_3_C  
CH3_A33GND  
CH3_A33VDD  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
Figure 1−2. Terminal Assignments Diagram  
5
SLES084C − August 2007  
TVP5146  
1.7 Terminal Functions  
Table 1−1. Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
Analog Video  
VI_1_A  
NUMBER  
80  
1
VI_1_x: Analog video input for CVBS/Pb/B/C  
VI_1_B  
VI_2_x: Analog video input for CVBS/Y/G  
VI_3_x: Analog video input for CVBS/Pr/R/C  
VI_4_A: Analog video input for CVBS/Y  
VI_1_C  
2
VI_2_A  
7
VI_2_B  
8
I
Up to 10 composite, 4 S-video, and 2 composite or 3 component video inputs (or a combination thereof)  
can be supported.  
VI_2_C  
9
VI_3_A  
16  
17  
18  
23  
The inputs must be ac-coupled. The recommended coupling capacitor is 0.1 µF.  
VI_3_B  
2
The possible input configurations are listed in the input select register at I C subaddress 00h (see Section  
2.11.1).  
VI_3_C  
VI_4_A  
Clock Signals  
DATACLK  
40  
74  
75  
O
I
Line-locked data output clock  
External clock reference input. It can be connected to an external oscillator with a 1.8-V compatible clock  
signal or to a 14.31818-MHz crystal oscillator.  
XTAL1  
XTAL2  
O
External clock reference output. Not connected if XTAL1 is driven by an external single-ended oscillator.  
Digital Video  
57, 58,  
59, 60,  
63, 64,  
65, 66,  
69, 70  
Digital video output of CbCr, C_9 is MSB and C_0 is LSB. Unused outputs can be left unconnected. Also,  
these terminals can be programmable general-purpose I/O.  
C_[9:0]/  
GPIO  
O
O
For the 8-bit mode, the two LSBs are ignored.  
C1 needs a pulldown resistor (see Figure 5−1).  
43, 44,  
45, 46,  
47, 50,  
51, 52,  
53, 54  
Digital video output of Y/YCbCr, Y_9 is MSB and Y_0 is LSB.  
Y_[9:0]  
For the 8-bit mode, the two LSBs are ignored. Unused outputs can be left unconnected.  
Miscellaneous Signals  
Fast-switch (blanking) input. Switching signal between the synchronous component video (YPbPr/RGB)  
and the composite video input.  
FSS/GPIO  
35  
I/O  
Programmable general-purpose I/O  
Genlock control output (GLCO)  
GLCO/I2CA  
INTREQ  
37  
30  
I/O  
O
2
During reset, this terminal is an input used to program the I C address LSB.  
Interrupt request  
Power-down input:  
1 = Power down  
0 = Normal mode  
PWDN  
33  
34  
I
I
RESETB  
Reset input, active low  
6
TVP5146  
SLES084C − August 2007  
 
Table 1−1. Terminal Functions (Continued)  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NUMBER  
Host Interface  
SCL  
2
28  
29  
I
I C clock input  
2
SDA  
I/O I C data bus  
Power Supplies  
AGND  
26  
13  
12  
I
I
I
Analog ground. Connect to analog ground.  
A18GND_REF  
A18VDD_REF  
Analog 1.8-V return  
Analog power for reference 1.8 V  
CH1_A18GND  
CH2_A18GND  
CH3_A18GND  
CH4_A18GND  
79  
10  
15  
24  
I
I
I
I
Analog 1.8-V return  
CH1_A18VDD  
CH2_A18VDD  
CH3_A18VDD  
CH4_A18VDD  
78  
11  
14  
25  
Analog power. Connect to 1.8 V.  
Analog 3.3-V return  
CH1_A33GND  
CH2_A33GND  
CH3_A33GND  
CH4_A33GND  
3
6
19  
22  
CH1_A33VDD  
CH2_A33VDD  
CH3_A33VDD  
CH4_A33VDD  
4
5
20  
21  
Analog power. Connect to 3.3 V.  
27, 32, 42,  
56, 68  
DGND  
DVDD  
I
I
Digital return  
31, 41, 55,  
67  
Digital power. Connect to 1.8 V.  
IOGND  
39, 49, 62  
38, 48, 61  
77  
I
I
I
I
Digital power return  
IOVDD  
Digital power. Connect to 3.3 V or less for reduced noise.  
Analog power return  
PLL_A18GND  
PLL_A18VDD  
Sync Signals  
76  
Analog power. Connect to 1.8 V.  
Horizontal sync output or digital composite sync output  
Programmable general-purpose I/O  
HS/CS/GPIO  
VS/VBLK/GPIO  
FID/GPIO  
72  
73  
71  
36  
I/O  
I/O  
I/O  
I/O  
Vertical sync output (for modes with dedicated VSYNC) or VBLK output  
Programmable general-purpose I/O  
Odd/even field indicator output. This terminal needs a pulldown resistor (see Figure 5−1).  
Programmable general-purpose I/O  
Active video indicator output  
Programmable general-purpose I/O  
AVID/GPIO  
7
SLES084C − August 2007  
TVP5146  
8
TVP5146  
SLES084C − August 2007  
2
Functional Description  
2.1 Analog Processing and A/D Converters  
Figure 2−1 shows a functional diagram of the analog processors and ADCs. This block provides  
the analog interface to all video inputs. It accepts up to 10 inputs and performs source selection,  
video clamping, video amplification, A/D conversion, and gain and offset adjustments to center  
the digitized video signal.  
TVP5146 Analog Front End  
VI_1_A  
CH1 A/D  
M
U
X
10-Bit  
ADC  
Clamp  
Clamp  
Clamp  
Clamp  
PGA  
PGA  
PGA  
PGA  
VI_1_B  
VI_1_C  
VI_2_A  
VI_2_B  
VI_2_C  
CH2 A/D  
M
U
X
10-Bit  
ADC  
Line-Locked  
Sampling Clock  
VI_3_A  
VI_3_B  
CH3 A/D  
M
U
X
10-Bit  
ADC  
VI_3_C  
CH4 A/D  
10-Bit  
ADC  
VI_4_A  
Figure 2−1. Analog Processors and A/D Converters  
2.1.1 Video Input Switch Control  
The TVP5146 decoder has 4 analog channels that accept up to 10 video inputs. The user can  
configure the internal analog video switches via the I2C interface. The 10 analog video inputs  
can be used for different input configurations, some of which are:  
Up to 10 selectable individual composite video inputs  
Up to four selectable S-video inputs  
Up to three selectable analog YPbPr/RGB video inputs and one CVBS input  
Up to two selectable analog YPbPr/RGB video inputs, two S-video inputs, and two CVBS inputs  
The input selection is performed by the input select register at I2C subaddress 00h (see Section  
2.11.1).  
9
SLES084C − August 2007  
TVP5146  
 
2.1.2 Analog Input Clamping  
An internal clamping circuit restores the ac-coupled video signal to a fixed dc level. The  
clamping circuit provides line-by-line restoration of the video sync level to a fixed dc reference  
voltage. The selection between bottom and mid clamp is performed automatically by the  
TVP5146 decoder.  
2.1.3 Automatic Gain Control  
The TVP5146 decoder uses four programmable gain amplifiers (PGAs), one per channel. The  
PGA can scale a signal with a voltage-input compliance of 0.5-VPP to 2-VPP to a full-scale 10-bit  
A/D output code range. A 4-bit code sets the coarse gain with individual adjustment per channel.  
Minimum gain corresponds to a code 0x0 (2-VPP full-scale input, –6-dB gain) while maximum  
gain corresponds to code 0xF (0.5 VPP full scale, +6-dB gain). The TVP5146 decoder also has  
12-bit fine gain controls for each channel and applies independently to coarse gain controls. For  
composite video, the input video signal amplitude can vary significantly from the nominal level of  
1 VPP. The TVP5146 decoder can adjust its PGA setting automatically: an AGC can be enabled  
and can adjust the signal amplitude such that the maximum range of the ADC is reached without  
clipping. Some nonstandard video signals contain peak white levels that saturate the ADC. In  
these cases, the AGC automatically cuts back gain to avoid clipping. If the AGC is on, then the  
TVP5146 decoder can read the gain currently being used.  
The TVP5146 AGC comprises the front-end AGC before Y/C separation and the back-end AGC  
after Y/C separation. The back-end AGC restores the optimum system gain whenever an  
amplitude reference such as the composite peak (which is only relevant before Y/C separation)  
forces the front-end AGC to set the gain too low. The front-end and back-end AGC algorithms  
can use up to four amplitude references: sync height, color burst amplitude, composite peak,  
and luma peak.  
The specific amplitude references being used by the front-end and back-end AGC algorithms  
can be independently controlled using the AGC white peak processing register located at  
subaddress 74h. The TVP5146 gain increment speed and gain increment delay can be  
controlled using the AGC increment speed register located at subaddress 78h and the AGC  
increment delay register located at subaddress 79h, respectively.  
2.1.4 Analog-to-Digital Converters (ADCs)  
All ADCs have a resolution of 10 bits and can operate up to 30 MSPS. All A/D channels receive  
an identical clock from the on-chip phase-locked loop (PLL) at a frequency between 24 MHz and  
30 MHz. All ADC reference voltages are generated internally.  
2.2 Digital Video Processing  
Figure 2−2 is a block diagram of the TVP5146 digital video decoder processor. This processor  
receives digitized video signals from the ADCs and performs composite processing for CVBS  
and S-video inputs, YCbCr signal enhancements for CVBS and S-video inputs, and YPbPr/RGB  
processing for component video inputs. It also generates horizontal and vertical syncs and other  
output control signals such as genlock for CVBS and S-video inputs. Additionally, it can provide  
field identification, horizontal and vertical lock, vertical blanking, and active video window  
indication signals. The digital data output can be programmed to two formats: 20-bit 4:2:2 with  
external syncs or 10-bit 4:2:2 with embedded/separate syncs. The circuit detects pseudosync  
pulses, AGC pulses, and color striping in Macrovision-encoded copy-protected material.  
Information present in the VBI interval can be retrieved and either inserted in the ITU-R BT.656  
output as ancillary data or stored in internal FIFO and/or registers for retrieval via the host port  
interface.  
10  
TVP5146  
SLES084C − August 2007  
Copy  
Protection  
Detector  
VBI Data  
Processor  
Slice VBI Data  
Y[9:0]  
C[9:0]  
Output  
Formatter  
2ꢀ  
CH1 A/D  
Decimation  
CVBS/Y/G  
FSS  
CVBS/Y  
C
Composite  
Processor  
YCbCr  
YCbCr  
2ꢀ  
CH2 A/D  
CH3 A/D  
CH4 A/D  
Decimation  
2ꢀ  
Y/G  
Decimation  
Component  
Processor  
Pb/B  
Pr/R  
2ꢀ  
Decimation  
XTAL1  
FID  
XTAL2  
RESETB  
PWDN  
VS/VBLK  
HS/CS  
GLCO  
AVID  
SCL  
SDA  
Timing  
Processor  
Host  
Interface  
DATACLK  
Figure 2−2. Digital Video Processor Block Diagram  
2.2.1 2y Decimation Filter  
All input signals are oversampled by a factor of 2 (27 MHz). The A/D outputs first pass through  
decimation filters that reduce the data rate to 1× the pixel rate. The decimation filter is a  
half-band filter. Oversampling and decimation filtering can effectively increase the overall  
signal-to-noise ratio by 3 dB.  
2.2.2 Composite Processor  
Figure 2−3 is a block diagram of the TVP5146 digital composite video processing circuit. This  
circuit receives a digitized composite or S-video signal from the ADCs and performs Y/C  
separation (bypassed for S-video input), chroma demodulation for PAL/NTSC and SECAM, and  
YUV signal enhancements.  
The 10-bit composite video is multiplied by the subcarrier signals in the quadrature demodulator  
to generate color difference signals U and V. The U and V signals are then sent to low-pass  
filters to achieve the desired bandwidth. An adaptive 5-line comb filter separates UV from Y  
based on the unique property of color phase shifts from line to line. The chroma is remodulated  
through a quadrature modulator and subtracted from line-delayed composite video to generate  
luma. This form of Y/C separation is completely complementary, thus there is no loss of  
information. However, in some applications, it is desirable to limit the U/V bandwidth to avoid  
crosstalk. In that case, notch filters can be turned on. To accommodate some viewing  
preferences, a peaking filter is also available in the luma path. Contrast, brightness, sharpness,  
hue, and saturation controls are programmable through the host port.  
11  
SLES084C − August 2007  
TVP5146  
Y
Peaking  
Delay  
CVBS/Y  
Line  
Delay  
Y
NTSC/PAL  
Remodulation  
SECAM Luma  
Contrast  
Brightness  
Saturation  
Adjust  
Cb  
Cr  
Notch  
Filter  
SECAM  
Color  
Demodulation  
CVBS  
Notch  
Filter  
Color LPF  
U
2  
Burst  
Accumulator  
(U)  
5-Line  
Adaptive  
Comb  
Filter  
Burst  
Accumulator  
(V)  
Notch  
U
Delay  
Delay  
Filter  
Notch  
Filter  
V
Color LPF  
2  
V
NTSC/PAL  
Demodulation  
CVBS/C  
Figure 2−3. Composite and S-Video Processor Block Diagram  
12  
TVP5146  
SLES084C − August 2007  
2.2.2.1 Color Low-Pass Filter  
High filter bandwidth preserves sharp color transitions and produces crisp color boundaries.  
However, for video sources that have asymmetrical U and V side bands, it is desirable to limit  
the filter bandwidth to avoid UV crosstalk. The color low-pass filter bandwidth is programmable  
to enable one of the three notch filters. Figure 2−4 through Figure 2−7 represent the frequency  
responses of the wideband color low-pass filters.  
10  
0
10  
0
Filter 2  
–3 dB @ 767 kHz  
PAL SQP –3 dB  
@ 1.55 MHz  
Filter 0  
–3 dB @ 1.29 MHz  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
Filter 3  
–3 dB @ 504 kHz  
Filter 1  
–3 dB  
@ 936 kHz  
ITU-R BT.601 –3 dB  
@ 1.42 MHz  
NTSC SQP –3 dB  
@ 1.29 MHz  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
f – Frequency – MHz  
f – Frequency – MHz  
Figure 2−5. Color Low-Pass Filter With Filter  
Frequency Response, NTSC Square Pixel  
Sampling  
Figure 2−4. Color Low-Pass Filter Frequency  
Response  
10  
10  
Filter 2  
Filter 2  
–3 dB @ 844 kHz  
–3 dB @ 922 kHz  
0
0
Filter 0  
–3 dB @ 1.55 MHz  
Filter 0  
–3 dB @ 1.41 MHz  
−10  
−10  
Filter 3  
–3 dB  
@ 605 kHz  
Filter 3  
–3 dB @ 554 kHz  
−20  
−30  
−40  
−50  
−60  
−70  
−20  
Filter 1  
–3 dB  
@ 1.03 MHz  
Filter 1  
–3 dB  
−30  
@ 1.13 MHz  
−40  
−50  
−60  
−70  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
f – Frequency – MHz  
f – Frequency – MHz  
Figure 2−7. Color Low-Pass Filter With Filter  
Characteristics, PAL Square Pixel Sampling  
Figure 2−6. Color Low-Pass Filter With Filter  
Characteristics, NTSC/PAL ITU-R BT.601  
Sampling  
13  
SLES084C − August 2007  
TVP5146  
 
2.2.2.2 Y/C Separation  
Y/C separation can be done using adaptive 5-line (5-H delay) comb filters or a chroma trap filter.  
The comb filter can be selectively bypassed in the luma or chroma path. If the comb filter is  
bypassed in the luma path, then chroma trap filters are used which are shown in Figure 2−8  
through Figure 2−11. TI’s patented adaptive comb filter algorithm reduces artifacts such as  
hanging dots at color boundaries. It detects and properly handles false colors in high frequency  
luminance images, such as a multiburst pattern or circle pattern. Adaptive comb filtering is the  
recommended mode of operation.  
10  
5
10  
5
Notch 3 Filter  
Notch 2 Filter  
0
0
−5  
−5  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
Notch 1 Filter  
Notch 2 Filter  
Notch 3 Filter  
Notch 1 Filter  
No Notch Filter  
No Notch Filter  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
f – Frequency – MHz  
f – Frequency – MHz  
Figure 2−8. Chroma Trap Filter Frequency  
Response, NTSC Square Pixel Sampling  
Figure 2−9. Chroma Trap Filter Frequency  
Response, NTSC ITU-R BT.601 Sampling  
10  
5
10  
Notch 3 Filter  
Notch 3 Filter  
5
0
0
−5  
−5  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
Notch 1 Filter  
Notch 2 Filter  
Notch 1 Filter  
Notch 2 Filter  
No Notch Filter  
No Notch Filter  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
f – Frequency – MHz  
f – Frequency – MHz  
Figure 2−10. Chroma Trap Filter Frequency  
Response, PAL ITU-R BT.601 Sampling  
Figure 2−11. Chroma Trap Filter Frequency  
Response, PAL Square Pixel Sampling  
14  
TVP5146  
SLES084C − August 2007  
 
2.2.3 Luminance Processing  
The digitized composite video signal passes through either a luminance comb filter or a chroma  
trap filter, either of which removes chrominance information from the composite signal to  
generate a luminance signal. The luminance signal is then fed into the input of a peaking circuit.  
Figure 2−12 illustrates the basic functions of the luminance data path. In the case of S-video, the  
luminance signal bypasses the comb filter or chroma trap filter and is fed directly to the circuit.  
High-frequency components of the luminance signal are enhanced by a peaking filter  
(sharpness). Figure 2−13, Figure 2−14, and Figure 2−15 show the characteristics of the peaking  
filter at four different gain settings that are programmable via the host port.  
Gain  
Peak  
Detector  
Bandpass  
Filter  
Peaking  
Filter  
x
IN  
Delay  
+
OUT  
Figure 2−12. Luminance Edge-Enhancer Peaking Block Diagram  
7
6
7
Peak at  
Peak at  
f = 2.64 MHz  
f = 2.40 MHz  
6
Gain = 2  
Gain = 2  
5
5
4
Gain = 1  
Gain = 1  
4
3
3
Gain = 0.5  
Gain = 0.5  
2
2
1
1
0
0
Gain = 0  
Gain = 0  
−1  
−1  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
f – Frequency – MHz  
f – Frequency – MHz  
Figure 2−13. Peaking Filter Response, NTSC  
Square Pixel Sampling  
Figure 2−14. Peaking Filter Response,  
NTSC/PAL ITU-R BT.601 Sampling  
15  
SLES084C − August 2007  
TVP5146  
 
7
6
Peak at  
f = 2.89 MHz  
Gain = 2  
5
Gain = 1  
4
3
Gain = 0.5  
2
1
0
Gain = 0  
−1  
0
1
2
3
4
5
6
7
f – Frequency – MHz  
Figure 2−15. Peaking Filter Response, PAL Square Pixel Sampling  
2.2.3.1 Color Transient Improvement  
Color transient improvement (CTI) enhances horizontal color transients by delay modulation for  
both color difference signals. The operation must be performed only on YCbCr-formatted data.  
The color difference signal transition points are maintained, but the edges are enhanced for  
signals which have bandwidth-limited color components (for example, CVBS and S-video).  
2.2.4 Component Video Processor  
The component video processing block supports a user-selectable contrast, brightness, and  
saturation adjustment in YCbCr output formats. For YCbCr output formats, gain and offset  
values are applied to the luma data path in order to map the pixel values to the correct output  
range (for 10-bit Ymin = 64 and Ymax = 940), and to provide a means of adjusting contrast and  
brightness. For Y, digital contrast (gain) and brightness (offset) factors can vary from 0 to 255.  
The contrast control adjusts the amplitude range of the Y output centered at the midpoint of the  
output code range. The limit block limits the output to the ITU-R BT.601 range (Ymin to Ymax) or  
an extended range, depending on a user setting.  
Offset  
x
+
Limit  
Y
Y
Gain  
Figure 2−16. Y Component Gain, Offset, Limit  
16  
TVP5146  
SLES084C − August 2007  
For CbCr components, a saturation (gain) factor is applied to the CbCr inputs in order to map  
them to the CbCr output code range and provide saturation control. Similarly, the limit block can  
limit CbCr outputs to a valid range:  
Cb,Cr  
= 64 / Cb,Cr  
= 960  
min  
max  
x
Limit  
CbCr  
CbCr  
Gain  
Figure 2−17. CbCr Component Gain, Offset, Limit  
2.2.5 Color Space Conversion  
The formulas for RGB to YCbCr conversion are given as:  
Y = 0.299 × R + 0.587 × G + 0.114 × B  
Cb = –0.172 × R – 0.339 × G + 0.511 × B + 512  
Cr = 0.511 × R – 0.428 × G – 0.083 × B + 512  
2.3 Clock Circuits  
An internal line-locked PLL generates the system and pixel clocks. A 14.31818-MHz clock is  
required to drive the PLL. This can be input to the TVP5146 decoder at the 1.8-V level on  
terminal 74 (XTAL1), or a crystal of 14.31818-MHz fundamental resonant frequency can be  
connected across terminals 74 and 75 (XTAL2). If a parallel resonant circuit is used as shown in  
Figure 2−18, then the external capacitors must have the following relationship:  
C
L1  
= C = 2C – C  
,
L2  
L
STRAY  
where CSTRAY is the terminal capacitance with respect to ground. Figure 2−18 shows the  
reference clock configurations. The TVP5146 decoder generates the DATACLK signal used for  
clocking data.  
TVP5146  
TVP5146  
14.31818-MHz  
Crystal  
C
C
L1  
L2  
74  
75  
74  
75  
14.31818-MHz  
Clock  
XTAL1  
XTAL1  
XTAL2  
XTAL2  
Figure 2−18. Reference Clock Configurations  
2.4 Real-Time Control (RTC)  
Although the TVP5146 decoder is a line-locked system, the color burst information is used to  
determine accurately the color subcarrier frequency and phase. This ensures proper operation  
with nonstandard video signals that do not follow exactly the required frequency multiple  
between color subcarrier frequency and video line frequency. The frequency control word of the  
internal color subcarrier PLL and the subcarrier reset bit are transmitted via terminal 37 (GLCO)  
for optional use in an end system (for example, by a video encoder). The frequency control word  
is a 23-bit binary number.  
17  
SLES084C − August 2007  
TVP5146  
 
The instantaneous frequency of the color subcarrier can be calculated from the following  
equation:  
Fctrl  
223  
FPLL  
+
  Fsclk  
where FPLL is the frequency of the subcarrier PLL, Fctrl is the 23-bit PLL frequency control word,  
and Fsclk is two times the pixel frequency. Figure 2−19 shows the detailed timing diagram.  
Valid  
Invalid  
Sample  
Sample  
Reserved  
M
S
B
L
S
B
RTC  
S
R
22  
0
128 CLK  
18 CLK  
1 CLK  
45 CLK  
23-Bit Fsc PLL Increment  
3 CLK  
Start  
Bit  
NOTE: RTC Reset bit (R) is active low, Sequence bit (S) PAL:1 = (R-Y) line normal, 0 = (R-Y) line inverted, NTSC: 1 = no change  
Figure 2−19. RTC Timing  
2.5 Output Formatter  
The output formatter sets how the data is formatted for output on the TVP5146 output buses.  
Table 2−1 shows the available output modes.  
Table 2−1. Output Format  
TERMINAL  
NAME  
TERMINAL  
NUMBER  
20-Bit 4:2:2  
YCbCr  
10-Bit 4:2:2 YCbCr  
Y_9  
Y_8  
Y_7  
Y_6  
Y_5  
Y_4  
Y_3  
Y_2  
Y_1  
Y_0  
C_9  
C_8  
C_7  
C_6  
C_5  
C_4  
C_3  
C_2  
C_1  
C_0  
43  
44  
45  
46  
47  
50  
51  
52  
53  
54  
57  
58  
59  
60  
63  
64  
65  
66  
69  
70  
Cb9, Y9, Cr9  
Cb8, Y8, Cr8  
Cb7, Y7, Cr7  
Cb6, Y6, Cr6  
Cb5, Y5, Cr5  
Cb4, Y4, Cr4  
Cb3, Y3, Cr3  
Cb2, Y2, Cr2  
Cb1, Y1, Cr1  
Cb0, Y0, Cr0  
Y9  
Y8  
Y7  
Y6  
Y5  
Y4  
Y3  
Y2  
Y1  
Y0  
Cb9, Cr9  
Cb8, Cr8  
Cb7, Cr7  
Cb6, Cr6  
Cb5, Cr5  
Cb4, Cr4  
Cb3, Cr3  
Cb2, Cr2  
Cb1, Cr1  
Cb0, Cr0  
18  
TVP5146  
SLES084C − August 2007  
 
Table 2−2. Summary of Line Frequencies, Data Rates, and Pixel/Line Counts  
PIXEL  
FREQUENCY  
(MHz)  
COLOR  
SUBCARRIER  
FREQUENCY (MHz)  
PIXELS PER  
LINE  
ACTIVE PIXELS  
PER LINE  
LINES PER  
FRAME  
HORIZONTAL  
LINE RATE (kHz)  
STANDARDS  
601 sampling  
NTSC-J, M  
NTSC-4.43  
PAL-M  
858  
858  
858  
858  
864  
864  
864  
720  
720  
720  
720  
720  
720  
720  
525  
525  
525  
525  
625  
625  
625  
13.5  
13.5  
13.5  
13.5  
13.5  
13.5  
13.5  
3.579545  
4.43361875  
3.57561149  
4.43361875  
4.43361875  
4.43361875  
3.58205625  
15.73426  
15.73426  
15.73426  
15.73426  
15.625  
PAL-60  
PAL-B, D, G, H, I  
PAL-N  
15.625  
PAL-Nc  
15.625  
Dr = 4.406250  
Db = 4.250000  
SECAM  
864  
720  
625  
13.5  
15.625  
Square sampling  
NTSC-J, M  
NTSC-4.43  
PAL-M  
780  
780  
780  
780  
944  
944  
944  
640  
640  
640  
640  
768  
768  
768  
525  
525  
525  
525  
625  
625  
625  
12.2727  
12.2727  
12.2727  
12.2727  
14.75  
3.579545  
4.43361875  
3.57561149  
4.43361875  
4.43361875  
4.43361875  
3.58205625  
15.73426  
15.73426  
15.73426  
15.73426  
15.625  
PAL-60  
PAL-B, D, G, H, I  
PAL-N  
14.75  
15.625  
PAL-Nc  
14.75  
15.625  
Dr = 4.406250  
Db = 4.250000  
SECAM  
944  
768  
625  
14.75  
15.625  
2.5.1 Fast Switches for SCART  
The TVP5146 decoder supports the SCART interface used in European audio/video end  
equipment to carry composite video, S-video, and RGB video on the same cable. In the event  
that composite video and RGB video are present simultaneously on the video terminals  
assigned to a SCART interface, the TVP5146 decoder assumes they are pixel synchronous to  
each other. The timing for both composite video and RGB video is obtained from the composite  
source, and its derived clock is used to sample RGB video as well. The fast-switch input terminal  
allows switching between these two input video sources on a pixel-by-pixel basis. The fast  
switch is a hard switch; there is no alpha blending between both sources.  
2.5.2 Separate Syncs  
VS, HS, and VBLK are independently software programmable to a 1× pixel count. This allows  
any possible alignment to the internal pixel count and line count. The default settings for 525-line  
and 625-line video outputs are given as examples below. FID changes at the same transient  
time when the trailing edge of vertical sync occurs. The polarity of FID is programmable by an  
I2C interface.  
19  
SLES084C − August 2007  
TVP5146  
525-Line  
525  
1
2
3
4
5
6
7
8
9
10  
11  
21  
22  
First Field Video  
HS  
VS  
VS Start  
VS Stop  
CS  
FID  
VBLK  
VBLK Start  
VBLK Stop  
262 263 264 265 266 267 268 269 270 271 272 273  
284 285  
Second Field Video  
HS  
VS  
VS Start  
VS Stop  
CS  
FID  
VBLK  
VBLK Start  
NOTE: Line numbering conforms to ITU-R BT.470  
VBLK Stop  
Figure 2−20. Vertical Synchronization Signals for 525-Line System  
20  
TVP5146  
SLES084C − August 2007  
625-Line  
622 623 624 625  
1
2
3
4
5
6
7
8
23  
24  
25  
First Field Video  
HS  
VS  
VS Start  
VS Stop  
CS  
FID  
VBLK  
VBLK Start  
VBLK Stop  
310 311 312 313 314 315 316 317 318 319 320 321  
336 337 338  
Second Field Video  
HS  
VS  
VS Start  
VS Stop  
CS  
FID  
VBLK  
VBLK Start  
NOTE: Line numbering conforms to ITU-R BT.470  
VBLK Stop  
Figure 2−21. Vertical Synchronization Signals for 625-Line System  
21  
SLES084C − August 2007  
TVP5146  
0
DATACLK  
Y[9:0]  
EAV EAV EAV EAV  
SAV SAV SAV SAV  
Cb  
Y
Cr  
Y
Horizontal Blanking  
HS Start HS Stop  
Cb0 Y0 Cr0 Y1  
1
2
3
4
1
2
3
4
HS  
A
C
B
D
AVID  
AVID Stop  
AVID Start  
DATACLK = 2  Pixel Clock  
Mode  
NTSC 601  
PAL 601  
A
B
C
D
106 128  
112 128  
42  
48  
44  
80  
276  
288  
280  
352  
NTSC Sqp 108 128  
PAL Sqp 144 128  
NOTE: ITU-R BT.656 10-bit 4:2:2 timing with 2× pixel clock reference  
Figure 2−22. Horizontal Synchronization Signals for 10-Bit 4:2:2 Mode  
22  
TVP5146  
SLES084C − August 2007  
0
DATACLK  
Y[9:0]  
Y
Y
Y
Y
Horizontal Blanking  
Y0 Y1 Y2 Y3  
CbCr[9:0]  
Cb Cr Cb Cr  
Horizontal Blanking  
HS Start HS Stop  
Cb0 Cr0 Cb1 Cr1  
HS  
A
C
B
D
2
AVID  
AVID Stop  
NOTE: AVID rising edge occurs 2 clock cycles early.  
AVID Start  
DATACLK = 1  Pixel Clock  
Mode  
A
B
C
D
NTSC 601  
PAL 601  
53  
56  
54  
72  
64  
64  
64  
64  
19  
22  
20  
38  
136  
142  
138  
174  
NTSC Sqp  
PAL Sqp  
NOTE: 20-bit 4:2:2 timing with 1× pixel clock reference  
Figure 2−23. Horizontal Synchronization Signals for 20-Bit 4:2:2 Mode  
23  
SLES084C − August 2007  
TVP5146  
HS  
VS  
First Field  
B/2  
B/2  
HS  
VS  
H/2 + B/2  
H/2 + B/2  
Second Field  
10-Bit (PCLK = 2  Pixel Clock)  
20-Bit (PCLK = 1  Pixel Clock)  
Mode  
B/2  
64  
64  
64  
64  
H/2  
858  
864  
780  
944  
B/2  
32  
32  
32  
32  
H/2  
429  
432  
390  
472  
NTSC 601  
PAL 601  
NTSC Sqp  
PAL Sqp  
Figure 2−24. VSYNC Position With Respect to HSYNC  
2.5.3 Embedded Syncs  
Standards with embedded syncs insert the SAV and EAV codes into the data stream on the  
rising and falling edges of AVID. These codes contain the V and F bits which also define vertical  
timing. Table 2−3 gives the format of the SAV and EAV codes.  
H equals 1 always indicates EAV. H equals 0 always indicates SAV. The alignment of V and F to  
the line and field counter varies depending on the standard.  
The P bits are protection bits:  
P3 = V xor H; P2 = F xor H; P1 = F xor V; P0 = F xor V xor H  
Table 2−3. EAV and SAV Sequence  
D9 (MSB)  
D8  
1
D7  
1
D6  
1
D5  
1
D4  
1
D3  
1
D2  
1
D1  
1
D0  
1
Preamble  
Preamble  
Preamble  
Status word  
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
V
H
P3  
P2  
P1  
P0  
0
0
2.6 I2C Host Interface  
Communication with the TVP5146 decoder is via an I2C host interface. The I2C standard  
consists of two signals, the serial input/output data (SDA) line and the serial input clock line  
(SCL), which carry information between the devices connected to the bus. A third signal (I2CA)  
is used for slave address selection. Although an I2C system can be multimastered, the TVP5146  
decoder functions as a slave device only.  
24  
TVP5146  
SLES084C − August 2007  
 
Because SDA and SCL are kept open-drain at a logic-high output level or when the bus is not  
driven, the user must connect SDA and SCL to a positive supply voltage via a pullup resistor on  
the board. The slave-address select signal, terminal 37 (I2CA), enables the use of two TVP5146  
decoders tied to the same I2C bus by controlling the least significant bit of the I2C device  
address.  
2
Table 2−4. I C Host Interface Terminal Description  
SIGNAL  
TYPE  
DESCRIPTION  
Slave address selection  
Input clock line  
2
I CA  
SCL  
SDA  
I
I
I/O  
Input/output data line  
2.6.1 Reset and I2C Bus Address Selection  
The TVP5146 decoder can respond to two possible chip addresses. The address selection is  
made at reset by an externally supplied level on the I2CA terminal. The TVP5146 decoder  
samples the level of terminal 37 at power up or at the trailing edge of RESETB and configures  
the I2C bus address bit A0. The I2CA terminal has an internal pulldown resistor to pull the  
terminal low to set a zero.  
2
Table 2−5. I C Address Selection  
2
A6  
1
A5  
0
A4  
1
A3  
1
A2  
1
A1  
0
A0 (I CA)  
R/W  
1/0  
HEX  
B9/B8  
BB/BA  
0 (default)  
1
0
1
1
1
0
1
1/0  
2
If terminal 37 is strapped to DVDD via a 2.2-kresistor, I C device address A0 is set to 1.  
2.6.2 I2C Operation  
S
1011 1000  
ACK  
Subaddress  
ACK  
Send data  
ACK  
P
Data transfers occur using the following illustrated formats.  
Read from I2C control registers  
S
1011 1000  
ACK  
Subaddress  
ACK  
S
1011 1001  
ACK  
Receive data  
NAK  
P
2
S = I C bus start condition  
2
P = I C bus stop condition  
ACK = Acknowledge generated by the slave  
NAK = Acknowledge generated by the master, for multiple-byte read master with ACK for each byte except  
last byte  
Subaddrress = Subaddress byte  
Data = Data byte, if more than one byte of data is transmitted (read and write), the subaddress pointer is  
automatically incremented.  
2
2
I C bus address = Example showing that I CA is in default mode. Write (B8h), read (B9h)  
2.6.3 VBUS Access  
The TVP5146 decoder has additional internal registers accessible through an indirect access to  
an internal 24-bit address wide VBUS. Figure 2−25 shows the VBUS registers access.  
25  
SLES084C − August 2007  
TVP5146  
2
I C Registers  
VBUS Registers  
00h  
00 0000h  
HOST  
Processor  
2
80 051Ch  
80 0520h  
80 052Ch  
80 0600h  
I C  
CC  
WSS  
VITC  
E0h  
VBUS  
Data  
Line  
Mode  
E1h  
E8h  
VBUS[23:0]  
80 0700h  
90 1904h  
VPS  
VBUS  
Address  
FIFO  
EAh  
FFh  
FF FFFFh  
VBUS Write  
Single Byte  
S
B8 ACK E8 ACK VA0 ACK VA1 ACK VA2 ACK  
P
P
S
B8 ACK E0 ACK Send Data ACK  
P
Multiple Bytes  
S
B8 ACK E8 ACK VA0 ACK VA1 ACK VA2 ACK  
S
B8 ACK E1 ACK Send Data ACK • • • Send Data ACK  
P
VBUS Read  
Single Byte  
S
B8 ACK E8 ACK VA0 ACK VA1 ACK VA2 ACK  
P
S
B8 ACK E0 ACK  
S
B9 ACK Read Data NAK P  
Multiple Bytes  
S
B8 ACK E8 ACK VA0 ACK VA1 ACK VA2 ACK  
P
S
B8 ACK E1 ACK  
S
B9 ACK Read Data ACK • • • Read Data NAK  
P
2
NOTE: Examples use default I C address.  
ACK = Acknowledge generated by the slave  
NAK = No Acknowledge generated by the master  
Figure 2−25. VBUS Access  
26  
TVP5146  
SLES084C − August 2007  
2.6.4 I2C Timing Requirements  
The TVP5146 decoder requires delays in the I2C accesses to accommodate the internal  
processor timing. In accordance with I2C specifications, the TVP5146 decoder holds the I2C  
clock line (SCL) low to indicate the wait period to the I2C master. If the I2C master is not  
designed to check for the I2C clock line held-low condition, then the maximum delays must  
always be inserted where required. These delays are of variable length; maximum delays are  
indicated in the following diagram:  
Normal register  
S
1011 1000  
ACK  
Subaddress  
ACK  
Send data  
ACK  
Wait 64 µs  
P
2.7 VBI Data Processor  
The TVP5146 VBI data processor (VDP) slices various data services like teletext (WST,  
NABTS), closed caption (CC), wide screen signaling (WSS), program delivery control (PDC),  
vertical interval time code (VITC), video program system (VPS), copy generation management  
system (CGMS) data, and electronic program guide (Gemstar) 1x/2x. Table 2−6 shows the  
supported VBI system.  
These services are acquired by programming the VDP to enable the reception of one or more  
VBI data standard(s) in the VBI. The VDP can be programmed on a line-per-line basis to enable  
simultaneous reception of different VBI formats, one per line. The results are stored in a FIFO  
and/or registers. Because of its high data bandwidth, the teletext results are stored in FIFO only.  
The TVP5146 decoder provides fully decoded V-CHIP data to the dedicated registers at  
subaddresses 800540h–800543h (see Sections 2.12.4 through 2.12.7).  
Table 2−6. Supported VBI Systems  
VBI SYSTEM  
Teletext WST A  
STANDARD  
SECAM  
PAL  
LINE NUMBER  
6–23 (Fields 1 and 2)  
6–22 (Fields 1 and 2)  
10–21 (Fields 1 and 2)  
10–21 (Fields 1 and 2)  
22 (Fields 1 and 2)  
21 (Fields 1 and 2)  
23 (Fields 1 and 2)  
20 (Fields 1 and 2)  
6–22  
NUMBER OF BYTES  
38  
Teletext WST B  
Teletext NABTS C  
Teletext NABTS D  
Closed caption  
Closed caption  
WSS  
43  
NTSC  
NTSC-J  
PAL  
34  
35  
2
NTSC  
PAL  
2
14 bits  
WSS-CGMS  
VITC  
NTSC  
PAL  
20 bits  
9
VITC  
NTSC  
PAL  
10–20  
9
VPS (PDC)  
V-CHIP (decoded)  
Gemstar 1×  
Gemstar 2×  
User  
16  
13  
NTSC  
NTSC  
NTSC  
Any  
21 (Field 2)  
2
2
5 with frame byte  
Programmable  
Programmable  
27  
SLES084C − August 2007  
TVP5146  
 
2.7.1 VBI FIFO and Ancillary Data in Video Stream  
Sliced VBI data can be output as ancillary data in the video stream in ITU-R BT.656 mode. VBI  
data is output on the Y[9:2] terminals during the horizontal blanking period. Table 2−7 shows the  
header format and sequence of the ancillary data inserted into the video stream. This format is  
also used to store any VBI data into the FIFO. The size of the FIFO is 512 bytes. Therefore, the  
FIFO can store up to 11 lines of teletext data with the NTSC NABTS standard.  
Table 2−7. Ancillary Data Format and Sequence  
BYTE  
NO.  
D7  
(MSB)  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
(LSB)  
DESCRIPTION  
0
1
2
3
4
5
6
7
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Ancillary data preamble  
1
1
1
1
1
1
1
1
NEP  
NEP  
NEP  
EP  
EP  
EP  
0
1
0
DID2  
F2  
N2  
DID1  
F1  
N1  
DID0  
F0  
N0  
Data ID (DID)  
F5  
N5  
F4  
N4  
F3  
N3  
Secondary data ID (SDID)  
Number of 32-bit data (NN)  
Internal data ID0 (IDID0)  
Video line # [7:0]  
0
0
0
Data  
error  
Match  
#1  
Match  
#2  
Video line # [9:8] Internal data ID1 (IDID1)  
st  
8
9
1. Data  
Data byte  
Data byte  
Data byte  
Data byte  
:
1
word  
word  
2. Data  
3. Data  
4. Data  
:
10  
11  
:
th  
m. Data  
CS[7:0]  
Data byte  
Check sum  
N
4N+7  
0
0
0
0
0
0
0
0
Fill byte  
EP:  
Even parity for D0–D5  
NEP: Negated even parity  
DID:  
91h: Sliced data of VBI lines of first field  
53h: Sliced data of line 24 to end of first field  
55h: Sliced data of VBI lines of second field  
97h: Sliced data of line 24 to end of second field  
SDID:  
This field holds the data format taken from the line mode register bits [2:0] of the  
corresponding line.  
NN:  
Number of Dwords beginning with byte 8 through 4N+7. Note this value is the number  
of Dwords where  
each Dword is 4 bytes.  
IDID0:  
IDID1:  
Transaction video line number [7:0]  
Bit 0/1 = Transaction video line number [9:8]  
Bit 2 = Match 2 flag  
Bit 3 = Match 1 flag  
Bit 4 = 1 if an error was detected in the EDC block. 0 if no error was detected.  
CS:  
Sum of D0–D7 of first data through last data byte.  
Fill byte: Fill bytes make a multiple of 4 bytes from byte 0 to last fill byte. For teletext modes,  
byte 8 is the sync pattern  
byte. Byte 9 is the first data byte.  
28  
TVP5146  
SLES084C − August 2007  
 
2.7.2 VBI Raw Data Output  
The TVP5146 decoder can output raw A/D video data at twice the sampling rate for external VBI  
slicing. This is transmitted as an ancillary data block, although somewhat differently from the  
way the sliced VBI data is transmitted in the FIFO format as described in Section 2.7.1. The  
samples are transmitted during the active portion of the line. VBI raw data uses ITU-R BT.656  
format having only luma data. The chroma samples are replaced by luma samples. The  
TVP5146 decoder inserts a four-byte preamble 000h 3FFh 3FFh 180h before data start. There  
are no checksum bytes and fill bytes in this mode.  
Table 2−8. VBI Raw Data Output Format  
BYTE  
NO.  
D9  
(MSB)  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
(LSB)  
DESCRIPTION  
0
1
0
1
1
0
0
1
1
1
0
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
VBI raw data preamble  
2
3
4
1. Data  
2. Data  
:
5
2× pixel rate luma data  
:
(i.e., NTSC 601: n = 1707)  
n–1  
n
n–5. Data  
n–4. Data  
2.8 Reset and Initialization  
Reset is initiated at power up or any time terminal 34 (RESETB) is brought low. Table 2−9  
describes the status of the TVP5146 terminals during and immediately after reset.  
Table 2−9. Reset Sequence  
SIGNAL NAME  
DURING RESET  
Input  
RESET COMPLETED  
Y[9:0], C[9:0], DATACLK  
High-impedance  
RESETB, PWDN, SDA, SCL, FSS,  
AVID, GLCO, HS, VS, FID  
Input  
Input  
INTREQ  
Input  
Output  
DATACLK  
Output  
High-impedance  
TI recommends the following power-up sequence.  
Power (1.8 V)  
100 ms  
Power (3.3 V)  
3 ms (min)  
Normal Operation  
RESETB  
(Terminal 34)  
Reset  
1 ms (min)  
SDA  
(Terminal 29)  
2
Invalid I C Cycle  
Valid  
NOTE: All times shown are minimum values. Maximum time between 1.8 V and 3.3 V should be no longer than 1 second.  
Figure 2−26. Reset Timing  
29  
SLES084C − August 2007  
TVP5146  
 
The TVP5146 requires that terminal 69 (C_1/GPIO) be held LOW. If using the 20-/16-bit mode  
or using this terminal as GPIO, then this terminal must be pulled low through a 2.2-kpulldown  
resistor (see Figure 5−1). If unused, this terminal can be shorted to ground. (Note: If using the  
20-/16-bit mode and only using the 16 MSBs, it is possible to short terminal 69 to GND, but the  
current for IOVDD will increase by 2 or 3 mA.)  
After reset, the user must write the following I2C commands to the TVP5146:  
2
2
STEP  
I C SUBADDRESS  
I C DATA  
1
2
0xE8  
0xE9  
0xEA  
0xE0  
0xE8  
0xE9  
0xEA  
0xE0  
0xE0  
0x03  
0x03  
0x02  
0x00  
0x80  
0x01  
0x60  
0x00  
0xB0  
0x01  
0x00  
0x01  
0x00  
3
4
5
6
7
8
9
10  
11  
Afterward, the user programs the device as usual.  
2.9 Adjusting External Syncs  
The proper sequence to program the following external syncs is:  
To set NTSC, PAL-M, NTSC 443, PAL60 (525-line modes):  
Set the video standard to NTSC (register 02h)  
Set HSYNC, VSYNC, VBLK, and AVID external syncs (registers 16h through 24h)  
To set PAL, PAL-N, SECAM (625-line modes):  
Set the video standard to PAL (register 02h)  
Set HSYNC, VSYNC, VBLK, and AVID external syncs (registers 16h through 24h)  
For autoswitch, set the video standard to autoswitch (register 02h)  
2.10 Internal Control Registers  
The TVP5146 decoder is initialized and controlled by a set of internal registers that define the  
operating parameters of the entire decoder. Communication between the external controller and  
the TVP5146 decoder is through a standard I2C host port interface, as described earlier.  
Table 2−10 shows the summary of these registers. Detailed programming information for each  
register is described in the following sections. Additional registers are accessible through an  
indirect procedure involving access to an internal 24-bit address wide VBUS. Table 2−11 shows  
the summary of the VBUS registers.  
NOTE: Do not write to reserved registers. Reserved bits in any defined register must be written  
with 0s, unless otherwise noted.  
30  
TVP5146  
SLES084C − August 2007  
Table 2−10. Register Summary  
2
REGISTER NAME  
I C SUBADDRESS  
00h  
DEFAULT  
00h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Input select  
AFE gain control  
01h  
0Fh  
00h  
Video standard  
02h  
Operation mode  
03h  
00h  
Autoswitch mask  
04h  
23h  
Color killer  
05h  
10h  
Luminance processing control 1  
Luminance processing control 2  
Luminance processing control 3  
Luminance brightness  
Luminance contrast  
Chrominance saturation  
Chroma hue  
06h  
00h  
07h  
00h  
08h  
02h  
09h  
80h  
0Ah  
80h  
0Bh  
80h  
0Ch  
00h  
Chrominance processing control 1  
Chrominance processing control 2  
Reserved  
0Dh  
00h  
0Eh  
0Eh  
0Fh  
Component Pr saturation  
Component Y contrast  
Component Pb saturation  
Reserved  
10h  
80h  
80h  
80h  
R/W  
R/W  
R/W  
11h  
12h  
13h  
Component Y brightness  
Reserved  
14h  
80h  
R/W  
15h  
AVID start pixel  
16h–17h  
18h–19h  
1Ah–1Bh  
1Ch–1Dh  
1Eh–1Fh  
20h–21h  
22h–23h  
24h–25h  
055h  
325h  
000h  
040h  
004h  
007h  
001h  
015h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
AVID stop pixel  
HSYNC start pixel  
HSYNC stop pixel  
VSYNC start line  
VSYNC stop line  
VBLK start line  
VBLK stop line  
NOTE: R = Read only  
W = Write only  
R/W = Read and write  
Reserved register addresses must not be written to.  
31  
SLES084C − August 2007  
TVP5146  
 
Table 2−10. Registers Summary (Continued)  
2
REGISTER NAME  
I C SUBADDRESS  
26h–27h  
28h  
DEFAULT  
R/W  
R/W  
R/W  
Reserved  
Fast-switch control  
Reserved  
CCh  
00h  
29h  
Fast-switch SCART delay  
Reserved  
2Ah  
2Bh  
SCART delay  
2Ch  
00h  
00h  
00h  
R/W  
R/W  
R/W  
CTI delay  
2Dh  
CTI control  
2Eh  
Reserved  
2Fh–30h  
31h  
RTC  
05h  
00h  
40h  
00h  
FFh  
FFh  
FFh  
FFh  
00h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Sync control  
32h  
Output formatter 1  
Output formatter 2  
Output formatter 3  
Output formatter 4  
Output formatter 5  
Output formatter 6  
Clear lost lock detect  
Status 1  
33h  
34h  
35h  
36h  
37h  
38h  
39h  
3Ah  
Status 2  
3Bh  
R
AGC gain status  
Reserved  
3Ch–3Dh  
3Eh  
R
Video standard status  
GPIO input 1  
3Fh  
R
40h  
R
GPIO input 2  
41h  
R
Vertical line count  
Reserved  
42h–43h  
44h–45h  
46h  
R
R
AFE coarse gain for CH1  
AFE coarse gain for CH2  
AFE coarse gain for CH3  
AFE coarse gain for CH4  
AFE fine gain for Pb_B  
AFE fine gain for Y_G_Chroma  
AFE fine gain for Pr_R  
AFE fine gain for CVBS_Luma  
Reserved  
20h  
20h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
47h  
48h  
20h  
49h  
20h  
4Ah–4Bh  
4Ch–4Dh  
4Eh–4Fh  
50h–51h  
52h–6Fh  
70h  
900h  
900h  
900h  
900h  
ROM version  
R
Reserved  
71h–73h  
74h  
AGC white peak processing  
Reserved  
00h  
R/W  
75h–77h  
NOTE: R = Read only  
W = Write only  
R/W = Read and write  
Reserved register addresses must not be written to.  
32  
TVP5146  
SLES084C − August 2007  
Table 2−10. Registers Summary (Continued)  
2
REGISTER NAME  
I C SUBADDRESS  
78h  
DEFAULT  
R/W  
R/W  
R/W  
AGC increment speed  
AGC increment delay  
Reserved  
05h  
1Eh  
79h  
7Ah–7Fh  
80h  
Chip ID MSB  
R
R
Chip ID LSB  
81h  
Reserved  
82h–B0h  
B1h  
VDP TTX filter 1 mask 1  
VDP TTX filter 1 mask 2  
VDP TTX filter 1 mask 3  
VDP TTX filter 1 mask 4  
VDP TTX filter 1 mask 5  
VDP TTX filter 2 mask 1  
VDP TTX filter 2 mask 2  
VDP TTX filter 2 mask 3  
VDP TTX filter 2 mask 4  
VDP TTX filter 2 mask 5  
VDP TTX filter control  
VDP FIFO word count  
VDP FIFO interrupt threshold  
Reserved  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
B2h  
B3h  
B4h  
B5h  
B6h  
B7h  
B8h  
B9h  
BAh  
BBh  
BCh  
BDh  
80h  
R/W  
BEh  
VDP FIFO reset  
BFh  
00h  
00h  
R/W  
R/W  
R/W  
R/W  
VDP FIFO output control  
VDP line number interrupt  
VDP pixel alignment  
Reserved  
C0h  
C1h  
00h  
C2h–C3h  
C4h–D5h  
D6h  
01Eh  
VDP line start  
06h  
1Bh  
FFh  
00h  
FFh  
R/W  
R/W  
R/W  
R/W  
R/W  
VDP line stop  
D7h  
VDP global line mode  
VDP full field enable  
VDP full field mode  
Reserved  
D8h  
D9h  
DAh  
DBh–DFh  
E0h  
VBUS data access with no VBUS address  
increment  
00h  
00h  
R/W  
VBUS data access with VBUS address increment  
FIFO read data  
E1h  
E2h  
R/W  
R
Reserved  
E3h–E7h  
E8h–E9h  
EBh–EFh  
F0h  
VBUS address access  
Reserved  
00 0000h  
R/W  
Interrupt raw status 0  
Interrupt raw status 1  
F1h  
NOTE: R = Read only  
W = Write only  
R/W = Read and write  
Reserved register addresses must not be written to.  
33  
SLES084C − August 2007  
TVP5146  
Table 2−10. Registers Summary (Continued)  
2
REGISTER NAME  
I C SUBADDRESS  
DEFAULT  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Interrupt status 0  
Interrupt status 1  
Interrupt mask 0  
Interrupt mask 1  
Interrupt clear 0  
Interrupt clear 1  
Reserved  
F2h  
F3h  
F4h  
00h  
00h  
00h  
00h  
F5h  
F6h  
F7h  
F8h–FFh  
NOTE: R = Read only  
W = Write only  
R/W = Read and write  
Reserved register addresses must not be written to.  
Table 2−11. VBUS Register Summary  
2
REGISTER NAME  
I C SUBADDRESS  
00 0000h–80 051Bh  
80 051Ch–80 051Fh  
80 0520h–80 0526h  
80 0527h–80 052Bh  
80 052Ch–80 0534h  
80 0535h–80 053Fh  
80 0540h–80 0543h  
80 0544h–80 05FFh  
80 0600h–80 0611h  
80 0612h–80 06FFh  
80 0700h–80 070Ch  
80 070Dh–90 1903h  
90 1904h  
DEFAULT  
R/W  
Reserved  
VDP closed caption data  
VDP WSS data  
Reserved  
R
R
VDP VITC data  
Reserved  
R
R
VDP V-Chip data  
Reserved  
VDP general line mode and line address  
Reserved  
00h, FFh  
R/W  
R
VDP VPS/Gemstar data  
Reserved  
VDP FIFO read  
Reserved  
R
90 1905h–B0 005Fh  
B0 0060h  
Interrupt configuration  
Reserved  
00h  
R/W  
B0 0061h–FF FFFFh  
NOTE: Writing any value to a reserved register may cause erroneous operation of the TVP5146 decoder.  
It is recommended not to access any data to/from reserved registers.  
34  
TVP5146  
SLES084C − August 2007  
2.11 Register Definitions  
2.11.1 Input Select Register  
Subaddress  
00h  
Default  
00h  
7
6
5
4
3
2
1
0
Input select [7:0]  
Table 2−12. Analog Channel and Video Mode Selection  
INPUT SELECT [7:0]  
MODE  
INPUT(S) SELECTED  
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
6
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
1
1
1
3
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
2
0
0
0
1
1
1
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
HEX  
00  
CVBS  
VI_1_A (default)  
VI_1_B  
01  
VI_1_C  
02  
VI_2_A  
04  
VI_2_B  
05  
VI_2_C  
06  
VI_3_A  
08  
VI_3_B  
09  
VI_3_C  
0A  
0C  
44  
VI_4_A  
S-video VI_2_A(Y), VI_1_A(C)  
VI_2_B(Y), VI_1_B(C)  
VI_2_C(Y), VI_1_C(C)  
VI_2_A(Y), VI_3_A(C)  
VI_2_B(Y), VI_3_B(C)  
VI_2_C(Y), VI_3_C(C)  
VI_4_A(Y), VI_1_A(C)  
VI_4_A(Y), VI_1_B(C)  
VI_4_A(Y), VI_1_C(C)  
VI_4_A(Y), VI_3_A(C)  
VI_4_A(Y), VI_3_B(C)  
VI_4_A(Y), VI_3_C(C)  
45  
46  
54  
55  
56  
4C  
4D  
4E  
5C  
5D  
5E  
84  
RGB  
VI_1_A(B), VI_2_A(G), VI_3_A(R)  
VI_1_B(B), VI_2_B(G), VI_3_B(R)  
VI_1_C(B), VI_2_C(G), VI_3_C(R)  
VI_1_A(Pb), VI_2_A(Y), VI_3_A(Pr)  
VI_1_B(Pb), VI_2_B(Y), VI_3_B(Pr)  
VI_1_C(Pb), VI_2_C(Y), VI_3_C(Pr)  
85  
86  
YPbPr  
94  
95  
96  
SCART VI_1_A(B), VI_2_A(G), VI_3_A(R), VI_4_A(CVBS)  
VI_1_B(B), VI_2_B(G), VI_3_B(R), VI_4_A(CVBS)  
VI_1_C(B), VI_2_C(G), VI_3_C(R), VI_4_A(CVBS)  
VI_1_A(Pb), VI_2_A(Y), VI_3_A(Pr), VI_4_A(CVBS)  
VI_1_B(Pb), VI_2_B(Y), VI_3_B(Pr), VI_4_A(CVBS)  
VI_1_C(Pb), VI_2_C(Y), VI_3_C(Pr), VI_4_A(CVBS)  
CC  
CD  
CE  
DC  
DD  
DE  
Ten input terminals can be configured to support composite, S-video, and component  
YPbPr/RGB or SCART as listed in Table 2−12. Users must follow this table properly for S-video  
and component applications because only the terminal configurations listed in Table 2−12 are  
supported.  
35  
SLES084C − August 2007  
TVP5146  
 
2.11.2 AFE Gain Control Register  
Subaddress  
01h  
Default  
0Fh  
7
6
5
4
3
2
1
0
Reserved  
1
1
AGC chroma  
AGC luma  
Bit 3: 1 must be written to this bit.  
Bit 2: 1 must be written to this bit.  
AGC chroma: Controls automatic gain in the chroma/B/R/PbPr channel:  
0 = Manual (if AGC luma is set to manual, AGC chroma is forced to be in manual)  
1 = Enabled auto gain, applies a gain value acquired from the sync channel for S-video and component  
mode. When AGC luma is set, this state is valid. (default)  
AGC luma: Controls automatic gain in the embedded sync channel of CVBS, S-video,  
component video:  
0 = Manual gain, AFE coarse and fine gain frozen to the previous gain value set by a AGC when this bit is  
set  
to 0.  
1 = Enabled auto gain applies only to the embedded sync channel (default)  
These settings only affect the analog front-end (AFE). The brightness and contrast of  
component, CVBS are not affected by these settings.  
2.11.3 Video Standard Register  
Subaddress  
02h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
Video standard [2:0]  
Video standard [2:0]:  
CVBS and S-Video  
Component Video  
000 = Autoswitch mode (default) Autoswitch mode (default)  
001 = (M, J) NTSC  
010 = (B, D, G, H, I, N) PAL  
011 = (M) PAL  
Component 525  
Component 625  
Reserved  
100 = (Combination-N) PAL  
101 = NTSC 4.43  
110 = SECAM  
Reserved  
Reserved  
Reserved  
111 = PAL 60  
Reserved  
NOTE: PAL60 is not included in autoswitch mode.  
With the autoswitch code running, the user can force the decoder to operate in a particular video  
standard mode by writing the appropriate value into this register. Changing these bits causes the  
register settings to be reinitialized.  
NOTE: Sampling rate (either square pixel or ITU-R BT.601) can be set by bit 7 (sampling rate) in the output  
2
formatter 1 register at I C subaddress 33h (see Section 2.11.35).  
36  
TVP5146  
SLES084C − August 2007  
2.11.4 Operation Mode Register  
Subaddress  
03h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
Power save  
Power save:  
0 = Normal operation (default)  
1 = Power-save mode. Reduces the clock speed of the internal processor and switches off the ADCs. I C  
interface is active and all current operating settings are preserved.  
2
2.11.5 Autoswitch Mask Register  
Subaddress  
04h  
Default  
23h  
7
6
5
4
3
2
1
0
Reserved  
SECAM  
NTSC 4.43  
(Nc) PAL  
(M) PAL  
PAL  
(M, J) NTSC  
Autoswitch mode mask: Limits the video formats between which autoswitch is possible.  
SECAM:  
0 = Autoswitch does not include SECAM  
1 = Autoswitch includes SECAM (default)  
NTSC 4.43:  
0 = Autoswitch does not include NTSC 4.43 (default)  
1 = Autoswitch includes NTSC 4.43  
(Nc) PAL:  
0 = Autoswitch does not include (Nc) PAL (default)  
1 = Autoswitch includes (Nc) PAL  
(M) PAL:  
0 = Autoswitch does not include (M) PAL (default)  
1 = Autoswitch includes (M) PAL  
PAL:  
0 = Reserved  
1 = Autoswitch includes (B, D, G, H, I, N) PAL (default)  
(M, J ) NTSC:  
0 = Reserved  
1 = Autoswitch includes (M, J) NTSC (default)  
NOTE: Bits 1 and 0 must always be 1.  
37  
SLES084C − August 2007  
TVP5146  
2.11.6 Color Killer Register  
Subaddress  
05h  
Default  
10h  
7
6
5
4
3
2
1
0
Reserved  
Automatic color killer  
Color killer threshold [4:0]  
Automatic color killer:  
00 = Automatic mode (default)  
01 = Reserved  
10 = Color killer enabled, the C terminals are forced to a zero color state.  
11 = Color killer disabled  
Color killer threshold [4:0]:  
1 1111 = 31 (maximum)  
1 0000 = 16 (default)  
0 0000 = 0 (minimum)  
2.11.7 Luminance Processing Control 1 Register  
Subaddress  
06h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
Pedestal not present  
Reserved  
VBI raw  
Luminance signal delay [3:0]  
Pedestal not present:  
0 = 7.5 IRE pedestal is present on the analog video input signal (default)  
1 = Pedestal is not present on the analog video input signal  
VBI raw:  
0 = Disabled (default)  
1 = Enabled  
During the duration of the vertical blanking as defined by the VBLK start and stop line registers  
at subaddresses 22h through 25h (see Sections 2.11.26 and 2.11.27), the chroma samples are  
replaced by luma samples. This feature can be used to support VBI processing performed by an  
external device during the VBI. In order to use this bit, the output format must be 10-bit ITU-R  
BT.656 mode.  
Luminance signal delay [3:0]: Luminance signal delays with respect to the chroma signal in 1×  
pixel clock increments.  
0111 = Reserved  
0110 = 6-pixel delay  
0001 = 1-pixel delay  
0000 = 0 delay (default)  
1111 = –1-pixel delay  
1000 = –8-pixel delay  
38  
TVP5146  
SLES084C − August 2007  
 
2.11.8 Luminance Processing Control 2 Register  
Subaddress  
07h  
Default  
00h  
7
6
5
4
3
2
1
0
Luma filter select [1:0]  
Reserved  
Peaking gain (sharpness) [1:0]  
Reserved  
Luma filter selected [1:0]:  
00 = Luminance adaptive comb enabled (default on CVBS)  
01 = Luminance adaptive comb disabled (trap filter selected)  
10 = Luma comb/trap filter bypassed (default on S-video, component mode, and SECAM)  
11 = Reserved  
Peaking gain (sharpness) [1:0]:  
00 = 0 (default)  
01 = 0.5  
10 = 1  
11 = 2  
2.11.9 Luminance Processing Control 3 Register  
Subaddress  
08h  
Default  
02h  
7
6
5
4
3
2
1
0
Reserved  
Trap filter select [1:0]  
Trap filter select [1:0] selects one of the four trap filters to produce the luminance signal by  
removing the chrominance signal from the composite video signal. The stopband of the chroma  
trap filter is centered at the chroma subcarrier frequency with the stopband bandwidth controlled  
by the two control bits.  
Trap filter stopband bandwidth (MHz):  
Filter select [1:0] NTSC ITU-R BT.601  
pixel  
NTSC Square pixel PAL ITU-R BT.601 PAL  
Square  
1.3252  
0.9507  
0.8066  
0.5474  
00 =  
1.2129  
0.8701  
0.7183  
0.5010  
1.1026  
0.7910  
0.6712  
0.4554  
1.2129  
0.8701  
0.7383  
0.5010  
01 =  
10 = (default)  
11 =  
2.11.10 Luminance Brightness Register  
Subaddress  
09h  
Default  
80h  
7
6
5
4
3
2
1
0
Brightness [7:0]  
Brightness [7:0]: This register works for CVBS and S-video luminance.  
1111 1111 = 255 (bright)  
1000 0000 = 128 (default)  
0000 0000 = 0 (dark)  
39  
SLES084C − August 2007  
TVP5146  
2.11.11 Luminance Contrast Register  
Subaddress  
0Ah  
Default  
80h  
7
6
5
4
3
2
1
0
Contrast [7:0]  
Contrast [7:0]: This register works for CVBS and S-video luminance.  
1111 1111 = 255 (maximum contrast)  
1000 0000 = 128 (default)  
0000 0000 = 0 (minimum contrast)  
2.11.12 Chrominance Saturation Register  
Subaddress  
0Bh  
Default  
80h  
7
6
5
4
3
2
1
0
Saturation [7:0]  
Saturation [7:0]: This register works for CVBS and S-video chrominance.  
1111 1111 = 255 (maximum)  
1000 0000 = 128 (default)  
0000 0000 = 0 (no color)  
2.11.13 Chroma Hue Register  
Subaddress  
0Ch  
Default  
00h  
7
6
5
4
3
2
1
0
Hue [7:0]  
Hue [7:0] (does not apply to a component video): This register works for CVBS and S-video  
chrominance.  
0111 1111 = +180 degrees  
0000 0000 = 0 degrees (default)  
1000 0000 = –180 degrees  
40  
TVP5146  
SLES084C − August 2007  
2.11.14 Chrominance Processing Control 1 Register  
Subaddress  
0Dh  
Default  
00h  
7
6
5
4
3
2
1
0
Chrominance adaptive  
comb enable  
Reserved  
Color PLL reset  
Reserved  
Automatic color gain control [1:0]  
Color PLL reset:  
0 = Color subcarrier PLL not reset (default)  
1 = Color subcarrier PLL reset  
Chrominance adaptive comb enable: This bit is effective on composite video only.  
0 = Enabled (default)  
1 = Disabled  
Automatic color gain control (ACGC) [1:0]:  
00 = ACGC enabled (default)  
01 = Reserved  
10 = ACGC disabled, ACGC set to the nominal value  
11 = ACGC frozen to the previous set value  
2.11.15 Chrominance Processing Control 2 Register  
Subaddress  
0Eh  
Default  
0Eh  
7
6
5
4
3
2
1
0
Reserved  
PAL compensation  
WCF  
Chrominance filter select [1:0]  
PAL compensation:  
0 = Disabled  
1 = Enabled (default)  
WCF: Wideband chroma LPF filter  
0 = Disabled  
1 = Enabled (default)  
Chrominance filter select [1:0]:  
00 = Disabled  
01 = Notch 1  
10 = Notch 2 (default)  
11 = Notch 3  
See Figure 2−8 through Figure 2−11 for characteristics.  
2.11.16 Component Pr Saturation Register  
Subaddress  
10h  
Default  
80h  
7
6
5
4
3
2
1
0
Pr saturation [7:0]  
Pr saturation [7:0]: This register works only with YPbPr component video. For RGB video, user  
must use the AFE gain registers.  
1111 1111 = 255 (maximum)  
1000 0000 = 128 (default)  
0000 0000 = 0 (minimum)  
41  
SLES084C − August 2007  
TVP5146  
2.11.17 Component Y Contrast Register  
Subaddress  
11h  
Default  
80h  
7
6
5
4
3
2
1
0
Y contrast [7:0]  
Y contrast [7:0]: This register works only with YPbPr component video. For RGB video, user  
must use the AFE gain registers.  
1111 1111 = 255 (maximum)  
1000 0000 = 128 (default)  
0000 0000 = 0 (minimum)  
42  
TVP5146  
SLES084C − August 2007  
2.11.18 Component Pb Saturation Register  
Subaddress  
12h  
Default  
80h  
7
6
5
4
3
2
1
0
Pb saturation [7:0]  
Pb saturation [7:0]: This register works only with YPbPr component video. For RGB video, user  
must use the AFE gain registers.  
1111 1111 = 255 (maximum)  
1000 0000 =128 (default)  
0000 0000 = 0 (minimum)  
2.11.19 Component Y Brightness Register  
Subaddress  
14h  
Default  
80h  
7
6
5
4
3
2
1
0
Y brightness [7:0]  
Y brightness [7:0]: This register works only with YPbPr component video.  
1111 1111 = 255 (maximum)  
1000 0000 = 128 (default)  
0000 0000 = 0 (minimum)  
2.11.20 AVID Start Pixel Register  
Subaddress  
16h–17h  
Default  
055h  
Subaddress  
16h  
7
6
5
4
3
2
1
0
AVID start [7:0]  
AVID active  
17h  
Reserved  
Reserved  
AVID start [9:8]  
AVID active:  
0 = AVID out active in VBLK (default)  
1 = AVID out inactive in VBLK  
AVID start [9:0]: AVID start pixel number, this is a absolute pixel location from HSYNC start pixel  
0.  
NTSC 601  
85 (55h)  
NTSC Sqp  
86 (56h)  
PAL 601  
88 (58h)  
PAL Sqp  
103 (67h)  
default  
The TVP5146 decoder updates the AVID start only when the AVID start MSB byte is written to. If  
the user changes these registers, then the TVP5146 decoder retains values in different modes  
until this decoder resets. The AVID start pixel register also controls the position of the SAV code.  
43  
SLES084C − August 2007  
TVP5146  
2.11.21 AVID Stop Pixel Register  
Subaddress  
18h–19h  
Default  
325h  
Subaddress  
18h  
7
6
5
4
3
2
1
0
AVID stop [7:0]  
19h  
Reserved  
AVID stop [9:8]  
AVID stop [9:0]: AVID stop pixel number. The number of pixels of active video must be an even  
number. This is an absolute pixel location from HSYNC start pixel 0.  
NTSC 601  
805 (325h)  
NTSC Sqp  
726 (2D6h)  
PAL 601  
808 (328h)  
PAL Sqp  
696 (2B8h)  
default  
The TVP5146 decoder updates the AVID stop only when the AVID stop MSB byte is written to. If  
the user changes these registers, then the TVP5146 decoder retains values in different modes  
until this decoder resets. The AVID start pixel register also controls the position of the EAV code.  
2.11.22 HSYNC Start Pixel Register  
Subaddress  
1Ah–1Bh  
Default  
000h  
Default (000h)  
Subaddress  
7
6
5
4
3
2
1
0
1Ah  
1Bh  
HSYNC start [7:0]  
Reserved  
HSYNC start [9:8]  
HSYNC start pixel [9:0]: This is an absolute pixel location from HSYNC start pixel 0.  
The TVP5146 decoder updates the HSYNC start only when the HSYNC start MSB byte is  
written to. If the user changes these registers, then the TVP5146 decoder retains values in  
different modes until this decoder resets.  
2.11.23 HSYNC Stop Pixel Register  
Subaddress  
1Ch–1Dh  
Default  
040h  
Subaddress  
1Ch  
7
6
5
4
3
2
1
0
HSYNC stop [7:0]  
1Dh  
Reserved  
HSYNC stop [9:8]  
HSYNC stop [9:0]: This is an absolute pixel location from HSYNC start pixel 0.  
The TVP5146 decoder updates the HSYNC stop only when the HSYNC Stop MSB byte is  
written to. If the user changes these registers, then the TVP5146 decoder retains values in  
different modes until this decoder resets.  
44  
TVP5146  
SLES084C − August 2007  
2.11.24 VSYNC Start Line Register  
Subaddress  
1Eh–1Fh  
Default  
004h  
Subaddress  
1Eh  
7
6
5
4
3
2
1
0
VSYNC start [7:0]  
1Fh  
Reserved  
VSYNC start [9:8]  
VSYNC start [9:0]: This is an absolute line number. The TVP5146 decoder updates the VSYNC  
start only when the VSYNC start MSB byte is written to. If the user changes these registers, then  
the TVP5146 decoder retains values in different modes until this decoder resets.  
NTSC: default 004h,  
PAL: default 001h  
2.11.25 VSYNC Stop Line Register  
Subaddress  
20h–21h  
Default  
007h  
Subaddress  
20h  
7
6
5
4
3
2
1
0
VSYNC stop [7:0]  
21h  
Reserved  
VSYNC stop [9:8]  
VSYNC stop [9:0]: This is an absolute line number. The TVP5146 decoder updates the VSYNC  
stop only when the VSYNC stop MSB byte is written to. If the user changes these registers, the  
TVP5146 decoder retains values in different modes until this decoder resets.  
NTSC: default 007h,  
PAL: default 004h  
2.11.26 VBLK Start Line Register  
Subaddress  
22h–23h  
Default  
001h  
Subaddress  
22h  
7
6
5
4
3
2
1
0
VBLK start [7:0]  
23h  
Reserved  
VBLK start [9:8]  
VBLK start [9:0]: This is an absolute line number. The TVP5146 decoder updates the VBLK start  
line only when the VBLK start MSB byte is written to. If the user changes these registers, the  
TVP5146 decoder retains values in different modes until this decoder resets.  
NTSC: default 001h,  
PAL: default 623 (26Fh)  
2.11.27 VBLK Stop Line Register  
Subaddress  
24h–25h  
Default  
015h  
Subaddress  
24h  
7
6
5
4
3
2
1
0
VBLK stop [7:0]  
25h  
Reserved  
VBLK stop [9:8]  
VBLK stop [9:0]: This is an absolute line number. The TVP5146 decoder updates the VBLK stop  
only when the VBLK stop MSB byte is written to. If the user changes these registers, then the  
TVP5146 decoder retains values in different modes until this decoder resets.  
NTSC: default 21 (15h), PAL: default 23 (17h)  
45  
SLES084C − August 2007  
TVP5146  
2.11.28 Fast-Switch Control Register  
Subaddress  
28h  
Default  
CCh  
7
6
5
4
3
2
1
0
Mode [2:0]  
Reserved  
Reserved  
FSS edge  
Reserved  
Polarity FSS  
Mode [2:0]: Select fast-switch modes  
000 = CVBS $ SCART  
001 = Reserved  
010 = Reserved  
011 = Reserved  
100 = Reserved  
101 = Reserved  
110 = Composite only (default)  
111 = Component only  
FSS edge: FSS is sampled at the rising or falling edge of the sampling clock  
0 = Rising edge  
1 = Falling edge (default)  
Polarity FSS:  
0 = 0: YCbCr/RGB  
1 = 0: CVBS (4A)  
1: CVBS (4A) (default)  
1: YCbCr/RGB  
2.11.29 Fast-Switch SCART Delay Register  
Subaddress  
2Ah  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
FSS delay [4:0]  
FSS delay [4:0]: Adjusts the delay between the FSS and component RGB/YPbPr  
0 1111 = 15 pixel delay  
0 0001 = 1 pixel delay  
0 0000 = 0 delay (default)  
1 1111 = –1 pixel delay  
1 0000 = –16 pixel delay  
2.11.30 SCART Delay Register  
Subaddress  
2Ch  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
SCART delay [4:0]  
SCART delay [4:0]: Adjusts delay between the CVBS and component (RGB) video  
0 1111 = 15 pixel delay  
0 0001 = 1 pixel delay  
0 0000 = 0 delay (default)  
1 1111 = –1 pixel delay  
1 0000 = –16 pixel delay  
46  
TVP5146  
SLES084C − August 2007  
2.11.31 CTI Delay Register  
Subaddress  
2Dh  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
CTI delay [2:0]  
CTI delay [2:0]: Sets the delay of the Y channel with respect to Cb/Cr in the CTI block  
011 = 3 pixel delay  
001 = 1 pixel delay  
000 = 0 delay (default)  
111 = –1 pixel delay  
100 = –4 pixel delay  
2.11.32 CTI Control Register  
Subaddress  
2Eh  
Default  
00h  
7
6
5
4
3
2
1
0
CTI coring [3:0]  
CTI gain [3:0]  
CTI coring [3:0]: 4-bit CTI coring limit control value, unsigned linear control range from 0 to 60,  
step size = 4  
1111 = 60  
0001 = 4  
0000 = 0 (default)  
CTI gain [3:0]: 4-bit CTI gain control values, unsigned linear control range from 0 to 15/16, step  
size = 1/16  
1111 = 15/16  
0001 = 1/16  
0000 = 0 disabled (default)  
2.11.33 RTC Register  
Subaddress  
31h  
Default  
05h  
7
6
5
4
3
2
1
0
Reserved  
Genlock [2:0]  
Genlock [2:0]:  
000 = Reserved  
001 = Reserved  
010 = Reserved  
011 = Reserved  
100 = Reserved  
101 = RTC mode  
110 = Reserved  
111 = Reserved  
47  
SLES084C − August 2007  
TVP5146  
2.11.34 Sync Control Register  
Subaddress  
32h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
Polarity FID  
Polarity VS  
Polarity HS  
VS/VBLK  
HS/CS  
Polarity FID: determines polarity of FID terminal  
0 = First field high, second field low (default)  
1 = First field low, second field high  
Polarity VS: determines polarity of VS terminal  
0 = Active low (default)  
1 = Active high  
Polarity HS: determines polarity of HS terminal  
0 = Active low (default)  
1 = Active high  
VS/VBLK:  
0 = VS terminal outputs vertical sync (default)  
1 = VS terminal outputs vertical blank  
HS/CS:  
0 = HS terminal outputs horizontal sync (default)  
1 = HS terminal outputs composite sync  
2.11.35 Output Formatter 1 Register  
Subaddress  
33h  
Default  
40h  
7
6
5
4
3
2
1
0
Sampling rate  
YCbCr code range  
CbCr code  
Reserved  
Output format [2:0]  
Sampling rate (changing this bit causes the register settings to be reinitialized):  
0 = ITU-R BT.601 sampling rate (default)  
1 = Square pixel sampling rate  
YCbCr code range:  
0 = ITU-R BT.601 coding range (Y ranges from 64 to 940. Cb and Cr range from 64 to 960.)  
1 = Extended coding range (Y, Cb, and Cr range from 4 to 1016) (default)  
CbCr code:  
0 = Offset binary code (2s complement + 512) (default)  
1 = Straight binary code (2s complement)  
Output format [2:0]:  
000 = 10-bit 4:2:2 (2× pixel rate) with embedded syncs (ITU-R BT.656) (default)  
001 = 20-bit 4:2:2 (pixel rate) with separate syncs  
010 = Reserved  
011 = 10-bit 4:2:2 with separate syncs  
100–111= Reserved  
NOTE: 10-bit mode is also used for the raw VBI output mode when bit 4 (VBI raw) in the  
luminance processing control 1 register at subaddress 06h is set (see Section 2.11.7).  
48  
TVP5146  
SLES084C − August 2007  
 
2.11.36 Output Formatter 2 Register  
Subaddress  
34h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
Y[9:0] enable  
Reserved  
CLK polarity  
Clock enable  
Y[9:0] enable: Y[9:0] and C[9:0] output enable  
0 = Y[9:0] and C[9:0] high impedance (default)  
1 = Y [9:0] and C[9:0] active  
CLK polarity:  
0 = Data clocked out on the falling edge of DATACLK (default)  
1 = Data clocked out on the rising edge of DATACLK  
Clock enable:  
0 = DATACLK outputs are high-impedance (default).  
1 = DATACLK outputs are enabled.  
2.11.37 Output Formatter 3 Register  
Subaddress  
35h  
Default  
FFh  
7
6
5
4
3
2
1
0
FSS [1:0]  
AVID [1:0]  
GLCO [1:0]  
FID [1:0]  
FSS [1:0]: FSS terminal function select  
00 = FSS is logic 0 output.  
01 = FSS is logic 1 output.  
10 = FSS is fast-switch input for SCART support.  
11 = FSS is logic input (default).  
AVID [1:0]: AVID terminal function select  
00 = AVID is logic 0 output.  
01 = AVID is logic 1 output.  
10 = AVID is active video indicator output.  
11 = AVID is logic input (default).  
GLCO [1:0]: GLCO terminal function select  
00 = GLCO is logic 0 output.  
01 = GLCO is logic 1 output.  
10 = GCLO is genlock output.  
11 = GCLO is logic input (default).  
FID [1:0]: FID terminal function select  
00 = FID is logic 0 output.  
01 = FID is logic 1 output.  
10 = FID is FID output.  
11 = FID is logic input (default).  
49  
SLES084C − August 2007  
TVP5146  
2.11.38 Output Formatter 4 Register  
Subaddress  
36h  
Default  
FFh  
7
6
5
4
3
2
1
0
VS/VBLK [1:0]  
HS/CS [1:0]  
C_1 [1:0]  
C_0 [1:0]  
VS/VBLK [1:0]: VS terminal function select  
00 = VS is logic 0 output.  
01 = VS is logic 1 output.  
10 = VS/VBLK is vertical sync or vertical blank output corresponding to bit 1 (VS/VBLK) in the sync control  
register at subaddress 32h (see Section 2.11.34).  
11 = VS is logic input (default).  
HS/CS [1:0]: HS terminal function select  
00 = HS is logic 0 output.  
01 = HS is logic 1 output.  
10 = HS/CS is horizontal sync or composite sync output corresponding to bit 0 (HS/CS) in the sync control  
register at subaddress 32h (see Section 2.11.34).  
11 = HS is logic input (default).  
C_1 [1:0]: C_1 terminal function select  
00 = C_1 is logic 0 output.  
01 = C_1 is logic 1 output.  
10 = Reserved  
11 = C_1 is logic input (default).  
C_0 [1:0]: C_0 terminal function select  
00 = C_0 is logic 0 output.  
01 = C_0 is logic 1 output.  
10 = Reserved  
11 = C_0 is logic input (default).  
C_x functions are only available in the 10-bit output mode.  
50  
TVP5146  
SLES084C − August 2007  
2.11.39 Output Formatter 5 Register  
Subaddress  
37h  
Default  
FFh  
7
6
5
4
3
2
1
0
C_5 [1:0]  
C_4 [1:0]  
C_3 [1:0]  
C_2 [1:0]  
C_5 [1:0]: C_5 terminal function select  
00 = C_5 is logic 0 output.  
01 = C_5 is logic 1 output.  
10 = Reserved  
11 = C_5 is logic input (default).  
C_4 [1:0]: C_4 terminal function select  
00 = C_4 is logic 0 output.  
01 = C_4 is logic 1 output.  
10 = Reserved  
11 = C_4 is logic input (default).  
C_3 [1:0]: C_3 terminal function select  
00 = C_3 is logic 0 output.  
01 = C_3 is logic 1 output.  
10 = Reserved  
11 = C_3 is logic input (default)  
C_2 [1:0]: C_2 terminal function select  
00 = C_2 is logic 0 output.  
01 = C_2 is logic 1 output.  
10 = Reserved  
11 = C_2 is logic input (default).  
C_x functions are only available in the 10-bit output mode.  
51  
SLES084C − August 2007  
TVP5146  
2.11.40 Output Formatter 6 Register  
Subaddress  
38h  
Default  
FFh  
7
6
5
4
3
2
1
0
C_9 [1:0]  
C_8 [1:0]  
C_7 [1:0]  
C_6 [1:0]  
C_9 [1:0]: C_9 terminal function select  
00 = C_9 is logic 0 output.  
01 = C_9 is logic 1 output.  
10 = Reserved  
11 = C_9 is logic input (default).  
C_8 [1:0]: C_8 terminal function select  
00 = C_8 is logic 0 output.  
01 = C_8 is logic 1 output.  
10 = Reserved  
11 = C_8 is logic input (default).  
C_7 [1:0]: C_7 terminal function select  
00 = C_7 is logic 0 output.  
01 = C_7 is logic 1 output.  
10 = Reserved  
11 = C_7 is logic input (default).  
C_6 [1:0]: C_6 terminal function select  
00 = C_6 is logic 0 output.  
01 = C_6 is logic 1 output.  
10 = Reserved  
11 = C_6 is logic input (default).  
C_x functions are only available in the 10-bit output mode.  
2.11.41 Clear Lost Lock Detect Register  
Subaddress  
39h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
Clear lost lock detect  
Clear lost lock detect: Clear bit 4 (lost lock detect) in the status 1 register at subaddress 3Ah  
(see Section 2.11.42).  
0 = No effect (default)  
1 = Clears bit 4 in the status 1 register  
52  
TVP5146  
SLES084C − August 2007  
2.11.42 Status 1 Register  
Subaddress  
3Ah  
Read only  
7
6
5
4
3
2
1
0
Peak white  
detect status  
Line-alternating  
status  
Field rate  
status  
Lost lock  
detect  
Color subcarrier  
lock status  
Vertical sync  
lock status  
Horizontal sync  
lock status  
TV/VCR  
status  
Peak white detect status:  
0 = Peak white is not detected.  
1 = Peak white is detected.  
Line-alternating status:  
0 = Nonline-alternating  
1 = Line-alternating  
Field rate status:  
0 = 60 Hz  
1 = 50 Hz  
Lost lock detect:  
0 = No lost lock since this bit was cleared  
1 = Lost lock since this bit was cleared.  
Color subcarrier lock status:  
0 = Color subcarrier is not locked.  
1 = Color subcarrier is locked.  
Vertical sync lock status:  
0 = Vertical sync is not locked.  
1 = Vertical sync is locked.  
Horizontal sync lock status:  
0 = Horizontal sync is not locked.  
1 = Horizontal sync is locked.  
TV/VCR status:  
0 = TV  
1 = VCR  
53  
SLES084C − August 2007  
TVP5146  
2.11.43 Status 2 Register  
Subaddress  
3Bh  
Read only  
7
6
5
4
3
2
1
0
Reserved  
Weak signal detection  
PAL switch polarity  
Field sequence status  
Reserved  
Macrovision detection [2:0]  
Weak signal detection:  
0 = No weak signal  
1 = Weak signal mode  
PAL switch polarity of first line of odd field:  
0 = PAL switch is zero.  
1 = PAL switch is one.  
Field sequence status:  
0 = Even field  
1 = Odd field  
Macrovision detection [2:0]:  
000 = No copy protection  
001 = AGC pulses/pseudo syncs present (type 1)  
010 = 2-line colorstripe only present  
011 = AGC pulses/pseudo syncs and 2-line colorstripe present (type 2)  
100 = Reserved  
101 = Reserved  
110 = 4-line colorstripe only present  
111 = AGC pulses/pseudo syncs and 4-line colorstripe present (type 3)  
2.11.44 AGC Gain Status Register  
Subaddress  
3Ch–3Dh  
Read only  
Subaddress  
3Ch  
7
6
5
4
3
2
1
0
Fine gain [7:0]  
3Dh  
Coarse gain [3:0]  
Fine gain [11:8]  
Fine gain [11:0]: This register provides the fine gain value of sync channel. See FGAIN 1 [11:0]  
in the AFE fine gain for Pb_B register at subaddress 4Ah–4Bh (see Section 2.11.53).  
1111 1111 1111 = 1.9995  
1000 0000 0000 = 1  
0010 0000 0000 = 0.5  
Coarse gain [3:0]: This register provides the coarse gain value of sync channel. See CGAIN 1  
[3:0] in the AFE coarse gain for CH1 register at subaddress 46h (see Section 2.11.49).  
1111 = 2  
0101 = 1  
0000 = 0.5  
These AGC gain status registers are updated automatically by the TVP5146 decoder with AGC  
on. In manual gain control mode these register values are not updated by the TVP5146 decoder.  
54  
TVP5146  
SLES084C − August 2007  
2.11.45 Video Standard Status Register  
Subaddress  
3Fh  
Read only  
7
6
5
4
3
2
1
0
Autoswitch  
Reserved  
Video standard [2:0]  
Autoswitch mode:  
0 = Stand-alone (forced video standard) mode  
1 = Autoswitch mode  
Video standard [2:0]:  
CVBS and S-video  
000 = Reserved  
001 = (M, J) NTSC  
Component video  
Reserved  
Component 525  
010 = (B, D, G, H, I, N) PAL Component 625  
011 = (M) PAL Reserved  
100 = (Combination-N) PAL Reserved  
101 = NTSC 4.43  
110 = SECAM  
111 = PAL 60  
Reserved  
Reserved  
Reserved  
This register contains information about the detected video standard that the decoder is  
currently operating. When autoswitch code is running, this register must be tested to determine  
which video standard has been detected.  
2.11.46 GPIO Input 1 Register  
Subaddress  
40h  
Read only  
7
6
5
4
3
2
1
0
C_7  
C_6  
C_5  
C_4  
C_3  
C_2  
C_1  
C_0  
C_x input status:  
0 = Input is a low.  
1 = Input is a high.  
These status bits are only valid when terminals are used as inputs and their states updated at  
every line.  
55  
SLES084C − August 2007  
TVP5146  
2.11.47 GPIO Input 2 Register  
Subaddress  
41h  
Read only  
7
6
5
4
3
2
1
0
FSS  
AVID  
GLCO  
VS  
HS  
FID  
C_9  
C_8  
FSS input terminal status:  
0 = Input is a low.  
1 = Input is a high.  
AVID input terminal status:  
0 = Input is a low.  
1 = Input is a high.  
GLCO input terminal status:  
0 = Input is a low  
1 = Input is a high.  
VS input terminal status:  
0 = Input is a low.  
1 = Input is a high.  
HS input status:  
0 = Input is a low.  
1 = Input is a high.  
FID input status:  
0 = Input is a low.  
1 = Input is a high.  
C_x input status:  
0 = Input is a low.  
1 = Input is a high.  
These status bits are only valid when terminals are used as inputs and their states updated at  
every line.  
2.11.48 Vertical Line Count Register  
Subaddress  
42h–43h  
Read only  
Subaddress  
42h  
7
6
5
4
3
2
1
0
V_CNT[7:0]  
43h  
Reserved  
V_CNT[9:8]  
V_CNT[9:0] represents the detected total number of lines from the previous frame.  
56  
TVP5146  
SLES084C − August 2007  
2.11.49 AFE Coarse Gain for CH 1 Register  
Subaddress  
46h  
Default  
20h  
7
6
5
4
3
2
1
0
CGAIN 1 [3:0]  
Reserved  
CGAIN 1 [3:0]: Coarse_Gain = 0.5 + (CGAIN 1)/10, where 0 CGAIN 1 15  
This register works only in manual gain control mode. When AGC is active, writing to any value  
is ignored.  
1111 = 2  
1110 = 1.9  
1101 = 1.8  
1100 = 1.7  
1011 = 1.6  
1010 = 1.5  
1001 = 1.4  
1000 = 1.3  
0111 = 1.2  
0110 = 1.1  
0101 = 1  
0100 = 0.9  
0011 = 0.8  
0010 = 0.7 (default)  
0001 = 0.6  
0000 = 0.5  
2.11.50 AFE Coarse Gain for CH 2 Register  
Subaddress  
47h  
Default  
20h  
7
6
5
4
3
2
1
0
CGAIN 2 [3:0]  
Reserved  
CGAIN 2 [3:0]: Coarse_Gain = 0.5 + (CGAIN 2)/10, where 0 CGAIN 2 15  
This register works only in manual gain control mode. When AGC is active, writing to any value  
is ignored.  
1111 = 2  
1110 = 1.9  
1101 = 1.8  
1100 = 1.7  
1011 = 1.6  
1010 = 1.5  
1001 = 1.4  
1000 = 1.3  
0111 = 1.2  
0110 = 1.1  
0101 = 1  
0100 = 0.9  
0011 = 0.8  
0010 = 0.7 (default)  
0001 = 0.6  
0000 = 0.5  
57  
SLES084C − August 2007  
TVP5146  
2.11.51 AFE Coarse Gain for CH 3 Register  
Subaddress  
48h  
Default  
20h  
7
6
5
4
3
2
1
0
CGAIN 3 [3:0]  
Reserved  
CGAIN 3 [3:0]: Coarse_Gain = 0.5 + (CGAIN 3)/10, where 0 CGAIN 3 15  
This register works only in the manual gain control mode. When AGC is active, writing to any  
value is ignored.  
1111 = 2  
1110 = 1.9  
1101 = 1.8  
1100 = 1.7  
1011 = 1.6  
1010 = 1.5  
1001 = 1.4  
1000 = 1.3  
0111 = 1.2  
0110 = 1.1  
0101 = 1  
0100 = 0.9  
0011 = 0.8  
0010 = 0.7 (default)  
0001 = 0.6  
0000 = 0.5  
2.11.52 AFE Coarse Gain for CH 4 Register  
Subaddress  
49h  
Default  
20h  
7
6
5
4
3
2
1
0
CGAIN 4 [3:0]  
Reserved  
CGAIN 4 [3:0]: Coarse_Gain = 0.5 + (CGAIN 4)/10, where 0 CGAIN 4 15  
This register works only in the manual gain control mode. When AGC is active, writing to any  
value is ignored.  
1111 = 2  
1110 = 1.9  
1101 = 1.8  
1100 = 1.7  
1011 = 1.6  
1010 = 1.5  
1001 = 1.4  
1000 = 1.3  
0111 = 1.2  
0110 = 1.1  
0101 = 1  
0100 = 0.9  
0011 = 0.8  
0010 = 0.7 (default)  
0001 = 0.6  
0000 = 0.5  
58  
TVP5146  
SLES084C − August 2007  
2.11.53 AFE Fine Gain for Pb_B Register  
Subaddress  
4Ah–4Bh  
Default  
900h  
Subaddress  
4Ah  
7
6
5
4
3
2
1
0
FGAIN 1 [7:0]  
4Bh  
Reserved  
FGAIN 1 [11:8]  
FGAIN 1 [11:0]: This fine gain applies to component Pb/B.  
Fine_Gain = (1/2048) * FGAIN 1, where 0 FGAIN 1 4095  
This register works only in manual gain control mode. When AGC is active, writing to any value  
is ignored.  
1111 1111 1111 = 1.9995  
1100 0000 0000 = 1.5  
1001 0000 0000 = 1.125 (default)  
1000 0000 0000 = 1  
0100 0000 0000 = 0.5  
0011 1111 1111 to 0000 0000 0000 = Reserved  
2.11.54 AFE Fine Gain for Y_G_Chroma Register  
Subaddress  
4Ch–4Dh  
Default  
900h  
Subaddress  
4Ch  
7
6
5
4
3
2
1
0
FGAIN 2 [7:0]  
4Dh  
Reserved  
FGAIN 2 [11:8]  
FGAIN 2 [11:0]: This gain applies to component Y/G channel or S-video chroma.  
Fine_Gain = (1/2048) * FGAIN 2, where 0 FGAIN 2 4095  
This register works only in manual gain control mode. When AGC is active, writing to any value  
is ignored.  
1111 1111 1111 = 1.9995  
1100 0000 0000 = 1.5  
1001 0000 0000 = 1.125 (default)  
1000 0000 0000 = 1  
0100 0000 0000 = 0.5  
0011 1111 1111 to 0000 0000 0000 = Reserved  
59  
SLES084C − August 2007  
TVP5146  
2.11.55 AFE Fine Gain for R_Pr Register  
Subaddress  
4Eh–4Fh  
Default  
900h  
Subaddress  
4Eh  
7
6
5
4
3
2
1
0
FGAIN 3 [7:0]  
4Fh  
Reserved  
FGAIN 3 [11:8]  
FGAIN 3 [11:0]: This fine gain applies to component Pb/B.  
Fine_Gain = (1/2048) * FGAIN 3, where 0 FGAIN 3 4095  
This register works only in manual gain control mode. When AGC is active, writing to any value  
is ignored.  
1111 1111 1111 = 1.9995  
1100 0000 0000 = 1.5  
1001 0000 0000 = 1.125 (default)  
1000 0000 0000 = 1  
0100 0000 0000 = 0.5  
0011 1111 1111 to 0000 0000 0000 = Reserved  
2.11.56 AFE Fine Gain for CVBS_Luma Register  
Subaddress  
50h–51h  
Default  
900h  
Subaddress  
50h  
7
6
5
4
3
2
1
0
FGAIN 4 [7:0]  
51h  
Reserved  
FGAIN 4 [11:8]  
FGAIN 4 [11:0]: This fine gain applies to CVBS or S-video luma.  
Fine_Gain = (1/2048) * FGAIN 4, where 0 FGAIN 4 4095  
This register works only in manual gain control mode. When AGC is active, writing to any value  
is ignored.  
1111 1111 1111 = 1.9995  
1100 0000 0000 = 1.5  
1001 0000 0000 = 1.125 (default)  
1000 0000 0000 = 1  
0100 0000 0000 = 0.5  
0011 1111 1111 to 0000 0000 0000 = Reserved  
2.11.57 ROM Version Register  
Subaddress  
70h  
Read only  
7
6
5
4
3
2
1
0
ROM version [7:0]  
ROM Version [7:0]: ROM revision number  
60  
TVP5146  
SLES084C − August 2007  
2.11.58 AGC White Peak Processing Register  
Subaddress  
74h  
Default  
00h  
7
6
5
4
3
2
1
0
Luma peak A  
Reserved  
Color burst A  
Sync height A  
Luma peak B  
Composite peak  
Color burst B Sync height B  
Luma peak A: Use of the luma peak as a video amplitude reference for the back-end  
feed-forward type AGC algorithm.  
0 = Enabled (default)  
1 = Disabled  
Color burst A: Use of the color burst amplitude as a video amplitude reference for the back-end.  
NOTE: Not available for SECAM, component, and B/W video sources.  
0 = Enabled (default)  
1 = Disabled  
Sync height A: Use of the sync height as a video amplitude reference for the back-end  
feed-forward type AGC algorithm.  
0 = Enabled (default)  
1 = Disabled  
61  
SLES084C − August 2007  
TVP5146  
Luma peak B: Use of the luma peak as a video amplitude reference for the front-end feedback  
type AGC algorithm.  
0 = Enabled (default)  
1 = Disabled  
Composite peak: Use of the composite peak as a video amplitude reference for the front-end  
feedback type AGC algorithm.  
NOTE: Required for CVBS and SCART (with color burst) video sources.  
0 = Enabled (default)  
1 = Disabled  
Color burst B: Use of the color burst amplitude as a video amplitude reference for the front-end  
feedback type AGC algorithm.  
NOTE: Not available for SECAM, component, and B/W video sources.  
0 = Enabled (default)  
1 = Disabled  
Sync height B: Use of the sync height as a video amplitude reference for the front-end feedback  
type AGC algorithm.  
0 = Enabled (default)  
1 = Disabled  
NOTE: If all 4 bits of the lower nibble are set to logic 1 (that is, no amplitude reference selected),  
then the front-end analog and digital gains are automatically set to nominal values of 2 and  
2304, respectively.  
If all 4 bits of the upper nibble are set to logic 1 (that is, no amplitude reference selected), then  
the back-end gain is set automatically to unity.  
If the input sync height is greater than 100% and the AGC-adjusted output video amplitude  
becomes less than 100%, then the back-end scale factor attempts to increase the contrast in the  
back end to restore the video amplitude to 100%.  
2.11.59 AGC Increment Speed Register  
Subaddress  
78h  
Default  
06h  
7
6
5
4
3
2
1
0
Reserved  
AGC increment speed [3:0]  
AGC increment speed: Adjusts gain increment speed.  
111 = 7 (slowest)  
110 = 6 (default)  
L
000 = 0 (fastest)  
62  
TVP5146  
SLES084C − August 2007  
2.11.60 AGC Increment Delay Register  
Subaddress  
79h  
Default  
1Eh  
7
6
5
4
3
2
1
0
AGC increment delay [7:0]  
AGC increment delay: Number of frames to delay gain increments  
1111 1111 = 255  
L
0001 1110 = 30 (default)  
L
0000 0000 = 0  
2.11.61 Chip ID MSB Register  
Subaddress  
80h  
Read only  
7
6
5
4
3
2
1
0
Chip ID MSB [7:0]  
Chip ID MSB [7:0]: This register identifies the MSB of the device ID. Value = 51h  
2.11.62 Chip ID LSB Register  
Subaddress  
81h  
Read only  
7
6
5
4
3
2
1
0
Chip ID LSB [7:0]  
Chip ID LSB [7:0]: This register identifies the LSB of the device ID. Value = 46h  
63  
SLES084C − August 2007  
TVP5146  
2.11.63 VDP TTX Filter And Mask Registers  
Subaddress  
B1h  
B2h  
B3h  
B4h  
B5h  
B6h  
B7h  
00h  
B8h  
00h  
B9h  
00h  
BAh  
00h  
Default  
00h  
00h  
00h  
00h  
00h  
00h  
Subaddress  
B1h  
7
6
5
4
3
2
1
0
Filter 1 mask 1  
Filter 1 mask 2  
Filter 1 mask 3  
Filter 1 mask 4  
Filter 1 mask 5  
Filter 2 mask 1  
Filter 2 mask 2  
Filter 2 mask 3  
Filter 2 mask 4  
Filter 2 mask 5  
Filter 1 pattern 1  
Filter 1 pattern 2  
Filter 1 pattern 3  
Filter 1 pattern 4  
Filter 1 pattern 5  
Filter 2 pattern 1  
Filter 2 pattern 2  
Filter 2 pattern 3  
Filter 2 pattern 4  
Filter 2 pattern 5  
B2h  
B3h  
B4h  
B5h  
B6h  
B7h  
B8h  
B9h  
BAh  
For an NABTS system, the packet prefix consists of five bytes. Each byte contains 4 data bits  
(D[3:0]) interlaced with 4 Hamming protection bits (H[3:0]):  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
D3  
H3  
D2  
H2  
D1  
H1  
D0  
H0  
Only data portion D[3:0] from each byte is applied to a teletext filter function with corresponding  
pattern bits P[3:0] and mask bits M[3:0] (see Figure 2−27). The filter ignores the Hamming  
protection bits.  
For WST system (PAL or NTSC), the packet prefix consists of two bytes. The two bytes contain  
three bits of magazine number (M[2:0]) and five bits of row address (R[4:0]), interlaced with eight  
Hamming protection bits H[7:0]:  
Bit 7  
R0  
Bit 6  
H3  
Bit 5  
M2  
Bit 4  
H2  
Bit 3  
M1  
Bit 2  
H1  
Bit 1  
M0  
Bit 0  
H0  
R4  
H7  
R3  
H6  
R2  
H5  
R1  
H4  
The mask bits enable filtering using the corresponding bit in the pattern register. For example, a  
1 in the LSB of mask 1 means that the filter module must compare the LSB of nibble 1 in the  
pattern register to the first data bit on the transaction. If these match, then a true result is  
returned. A 0 in a mask bit means that the filter module must ignore that data bit of the  
transaction. If all 0s are programmed in the mask bits, then the filter matches all patterns  
returning a true result (default 00h).  
64  
TVP5146  
SLES084C − August 2007  
2.11.64 VDP TTX Filter Control Register  
Subaddress  
BBh  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
Filter logic [1:0]  
Mode  
TTX filter 2 enable  
TTX filter 1 enable  
Filter logic [1:0]: Allows different logic to be applied when combining the decision of filter 1 and  
filter 2 as follows:  
00 = NOR (default)  
01 = NAND  
10 = OR  
11 = AND  
Mode: Indicates which teletext mode is in use.  
0 = Teletext filter applies to 2 header bytes (default)  
1 = Teletext filter applies to 5 header bytes  
TTX filter 2 enable: Provides for enabling the teletext filter function within the VDP.  
0 = Disabled (default)  
1 = Enabled  
TTX filter 1 enable: Provides for enabling the teletext filter function within the VDP.  
0 = Disabled (default)  
1 = Enabled  
If the filter matches or if the filter mask is all 0s, then a true result is returned.  
65  
SLES084C − August 2007  
TVP5146  
1P1[3]  
D1[3]  
1M1[3]  
1P1[2]  
D1[2]  
1M1[2]  
1M1[1]  
1P1[1]  
D1[1]  
1P1[0]  
D1[0]  
1M1[0]  
NIBBLE 1  
D2[3:0]  
1P2[3:0]  
1M2[3:0]  
NIBBLE 2  
NIBBLE 3  
NIBBLE 4  
NIBBLE 5  
PASS 1  
D3[3:0]  
1P3[3:0]  
1M3[3:0]  
Filter 1  
Enable  
00  
01  
D4[3:0]  
1P4[3:0]  
1M4[3:0]  
PASS  
10  
11  
D5[3:0]  
1P5[3:0]  
1M5[3:0]  
2
FILTER 1  
FILTER 2  
Filter Logic  
D1..D5  
2P1..2P5  
2M1..2M5  
PASS 2  
Filter 2  
Enable  
Figure 2−27. Teletext Filter Function  
2.11.65 VDP FIFO Word Count Register  
Subaddress  
BCh  
Read only  
7
6
5
4
3
2
1
0
FIFO word count [7:0]  
FIFO word count [7:0]: This register provides the number of words in the FIFO.  
NOTE: 1 word equals 2 bytes.  
66  
TVP5146  
SLES084C − August 2007  
2.11.66 VDP FIFO Interrupt Threshold Register  
Subaddress  
BDh  
Default  
80h  
7
6
5
4
3
2
1
0
Threshold [7:0]  
Threshold [7:0]: This register is programmed to trigger an interrupt when the number of words in  
the FIFO exceeds this value.  
NOTE: 1 word equals 2 bytes.  
2.11.67 VDP FIFO Reset Register  
Subaddress  
BFh  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
FIFO reset  
FIFO reset: Writing any data to this register clears the FIFO and VDP data registers (CC, WSS,  
VITC and VPS). After clearing them, this register is automatically cleared.  
2.11.68 VDP FIFO Output Control Register  
Subaddress  
C0h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
Host access enable  
Host access enable: This register is programmed to allow the host port access to the FIFO or to  
allow all VDP data to go out the video output.  
0 = Output FIFO data to the video output Y[9:2] (default)  
1 = Allow host port access to the FIFO data  
2.11.69 VDP Line Number Interrupt Register  
Subaddress  
C1h  
Default  
00h  
7
6
5
4
3
2
1
0
Field 1 enable  
Field 2 enable  
Line number [5:0]  
Field 1 enable:  
0 = Interrupt disabled (default)  
1 = Interrupt enabled  
Field 2 enable:  
0 = Interrupt disabled (default)  
1 = Interrupt enabled  
Line number [5:0]: Interrupt line number (default 00h)  
This register is programmed to trigger an interrupt when the video line number exceeds this  
value in bits [5:0]. This interrupt must be enabled at address F4h.  
NOTE: The line number value of 0 or 1 is invalid and does not generate an interrupt.  
67  
SLES084C − August 2007  
TVP5146  
 
2.11.70 VDP Pixel Alignment Register  
Subaddress  
C2h–C3h  
Default  
01Eh  
Subaddress  
C2h  
7
6
5
4
3
2
1
0
Pixel alignment [7:0]  
C3h  
Reserved  
Pixel alignment [9:8]  
Pixel alignment [9:0]: These registers form a 10-bit horizontal pixel position from the falling edge  
of horizontal sync, where the VDP controller initiates the program from one line standard to the  
next line standard. For example, the previous line of teletext to the next line of closed caption.  
This value must be set so that the switch occurs after the previous transaction has cleared the  
delay in the VDP, but early enough to allow the new values to be programmed before the current  
settings are required.  
The default value is 0x1E and has been tested with every standard supported here. A new value  
is needed only if a custom standard is in use.  
2.11.71 VDP Line Start Register  
Subaddress  
D6h  
Default  
06h  
7
6
5
4
3
2
1
0
VDP line start [7:0]  
VDP line start [7:0]: Sets the VDP line starting address  
This register must be set properly before enabling the line mode registers. VDP processor works  
only in the VBI region set by this register and the VDP line stop register at subaddress D7h (see  
Section 2.11.72).  
2.11.72 VDP Line Stop Register  
Subaddress  
D7h  
Default  
1Bh  
7
6
5
4
3
2
1
0
VDP line stop [7:0]  
VDP line stop [7:0]: Sets the VDP stop line address  
2.11.73 VDP Global Line Mode Register  
Subaddress  
D8h  
Default  
FFh  
7
6
5
4
3
2
1
0
Global line mode [7:0]  
Global line mode [7:0]: VDP processing for multiple lines set by the VDP start line register at  
subaddress D6h and the VDP stop line register at subaddress D7h.  
Global line mode register has the same bit definition as the general line mode registers.  
General line mode has priority over the global line mode.  
68  
TVP5146  
SLES084C − August 2007  
 
2.11.74 VDP Full Field Enable Register  
Subaddress  
D9h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
Full field enable  
Full field enable:  
0 = Disabled full field mode (default)  
1 = Enabled full field mode  
This register enables the full field mode. In this mode, all lines outside the vertical blank area  
and all lines in the line mode register programmed with FFh are sliced with the definition of the  
VDP full field mode register at subaddress DAh. Values other than FFh in the line mode  
registers allow a different slice mode for that particular line.  
2.11.75 VDP Full Field Mode Register  
Subaddress  
DAh  
Default  
FFh  
7
6
5
4
3
2
1
0
Full field mode [7:0]  
Full field mode [7:0]:  
This register programs the specific VBI standard for full field mode. It can be any VBI standard.  
Individual line settings take priority over the full field register. This allows each VBI line to be  
programmed independently but have the remaining lines in full field mode. The full field mode  
register has the same bit definition as line mode registers (default FFh).  
Global line mode has priority over the full field mode.  
2.11.76 VBUS Data Access With No VBUS Address Increment Register  
Subaddress  
E0h  
Default  
00h  
7
6
5
4
3
2
1
0
VBUS data [7:0]  
VBUS data [7:0]: VBUS data register for VBUS single byte read/write transaction.  
2.11.77 VBUS Data Access With VBUS Address Increment Register  
Subaddress  
E1h  
Default  
00h  
7
6
5
4
3
2
1
0
VBUS data [7:0]  
VBUS data [7:0]: VBUS data register for VBUS multibyte read/write transaction. VBUS address  
is autoincremented after each data byte read/write.  
69  
SLES084C − August 2007  
TVP5146  
2.11.78 FIFO Read Data Register  
Subaddress  
E2h  
Read only  
7
6
5
4
3
2
1
0
FIFO read data [7:0]  
FIFO read data [7:0]: This register is provided to access VBI FIFO data through the host port. All  
forms of teletext data come directly from the FIFO, while all other forms of VBI data can be  
programmed to come from registers or from the FIFO. If the host port is to be used to read data  
from the FIFO, then bit 0 (host access enable) in the VDP FIFO output control register at  
subaddress C0h must be set to 1 (see Section 2.11.68).  
2.11.79 VBUS Address Access Register  
Subaddress  
E8h  
E9h  
EAh  
Default  
00h  
00h  
00h  
Subaddress  
E8h  
7
6
5
4
3
2
1
0
VBUS address [7:0]  
VBUS address [15:8]  
VBUS address [23:16]  
E9h  
EAh  
VBUS address [23:0]: VBUS is a 24-bit wide internal bus. The user must program in these  
registers the 24-bit address of the internal register to be accessed via host port indirect access  
mode.  
70  
TVP5146  
SLES084C − August 2007  
2.11.80 Interrupt Raw Status 0 Register  
Subaddress  
F0h  
Read only  
7
6
5
4
3
2
1
0
FIFO THRS  
TTX  
WSS  
VPS  
VITC  
CC F2  
CC F1  
Line  
FIFO THRS: FIFO threshold passed, unmasked  
0 = Not passed  
1 = Passed  
TTX: Teletext data available unmasked  
0 = Not available  
1 = Available  
WSS: WSS data available unmasked  
0 = Not available  
1 = Available  
VPS: VPS data available unmasked  
0 = Not available  
1 = Available  
VITC: VITC data available unmasked  
0 = Not available  
1 = Available  
CC F2: CC field 2 data available unmasked  
0 = Not available  
1 = Available  
CC F1: CC field 1 data available unmasked  
0 = Not available  
1 = Available  
Line: Line number interrupt unmasked  
0 = Not available  
1 = Available  
See also the interrupt raw status 1 register at subaddress F1h (see Section 2.11.81).  
The host interrupt raw status 0 and 1 registers represent the interrupt status without applying  
mask bits.  
71  
SLES084C − August 2007  
TVP5146  
2.11.81 Interrupt Raw Status 1 Register  
Subaddress  
F1h  
Read only  
7
6
5
4
3
2
1
0
Reserved  
Macrovision status changed  
Standard changed  
FIFO full  
Macrovision status changed: unmasked  
0 = Macrovision status unchanged  
1 = Macrovision status changed  
Standard changed: unmasked  
0 = Video standard unchanged  
1 = Video standard changed  
FIFO full: unmasked  
0 = FIFO not full  
1 = FIFO was full during write to FIFO  
The FIFO full error flag is set when the current line of VBI data cannot enter the FIFO. For  
example, if the FIFO has only 10 bytes left and teletext is the current VBI line, then the FIFO full  
error flag is set, but no data is written because the entire teletext line does not fit. However, if the  
next VBI line is closed caption requiring only 2 bytes of data plus the header, then this goes into  
the FIFO even if the full error flag is set.  
72  
TVP5146  
SLES084C − August 2007  
2.11.82 Interrupt Status 0 Register  
Subaddress  
F2h  
Read only  
7
6
5
4
3
2
1
0
FIFO THRS  
TTX  
WSS  
VPS  
VITC  
CC F2  
CC F1  
Line  
FIFO THRS: FIFO threshold passed, masked  
0 = Not passed  
1 = Passed  
TTX: Teletext data available masked  
0 = Not available  
1 = Available  
WSS: WSS data available masked  
0 = Not available  
1 = Available  
VPS: VPS data available masked  
0 = Not available  
1 = Available  
VITC: VITC data available masked  
0 = Not available  
1 = Available  
CC F2: CC field 2 data available masked  
0 = Not available  
1 = Available  
CC F1: CC field 1 data available masked  
0 = Not available  
1 = Available  
Line: Line number interrupt masked  
0 = Not available  
1 = Available  
See also the interrupt status 1 register at subaddress F3h (see Section 2.11.83).  
The interrupt status 0 and 1 registers represent the interrupt status after applying mask bits.  
Therefore, the status bits are the result of a logical AND between the raw status and mask bits.  
The external interrupt terminal is derived from this register as an OR function of all nonmasked  
interrupts in this register.  
Reading data from the corresponding register does not clear the status flags automatically.  
These flags are reset using the corresponding bits in interrupt clear 0 and 1 registers.  
73  
SLES084C − August 2007  
TVP5146  
2.11.83 Interrupt Status 1 Register  
Subaddress  
F3h  
Read only  
7
6
5
4
3
2
1
0
Reserved  
Macrovsion status changed  
Standard changed  
FIFO full  
Macrovision status changed: Macrovision status changed masked  
0 = Macrovision status not changed  
1 = Macrovision status changed  
Standard changed: Standard changed masked  
0 = Video standard not changed  
1 = Video standard changed  
FIFO full: Full status of FIFO masked  
0 = FIFO not full  
1 = FIFO was full during write to FIFO, see the interrupt mask 1 register at subaddress F5h for details (see  
Section 2.11.85)  
74  
TVP5146  
SLES084C − August 2007  
2.11.84 Interrupt Mask 0 Register  
Subaddress  
F4h  
Default  
00h  
7
6
5
4
3
2
1
0
FIFO THRS  
TTX  
WSS  
VPS  
VITC  
CC F2  
CC F1  
Line  
FIFO THRS: FIFO threshold passed mask  
0 = Disabled (default)  
1 = Enabled FIFO_THRES interrupt  
TTX: Teletext data available mask  
0 = Disabled (default)  
1 = Enabled TTX available interrupt  
WSS: WSS data available mask  
0 = Disabled (default)  
1 = Enabled WSS available interrupt  
VPS: VPS data available mask  
0 = Disabled (default)  
1 = Enabled VPS available interrupt  
VITC: VITC data available mask  
0 = Disabled (default)  
1 = Enabled VITC available interrupt  
CC F2: CC field 2 data available mask  
0 = Disabled (default)  
1 = Enabled CC_field 2 available interrupt  
CC F1: CC field 1 data available mask  
0 = Disabled (default)  
1 = Enabled CC_field 1 available interrupt  
Line: Line number interrupt mask  
0 = Disabled (default)  
1 = Enabled Line_INT interrupt  
See also the interrupt mask 1 register at subaddress F5h (see Section 2.11.85).  
The host interrupt mask 0 and 1 registers can be used by the external processor to mask  
unnecessary interrupt sources for the interrupt status 0 and 1 register bits, and for the external  
interrupt terminal. The external interrupt is generated from all nonmasked interrupt flags.  
75  
SLES084C − August 2007  
TVP5146  
2.11.85 Interrupt Mask 1 Register  
Subaddress  
F5h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
Macrovision status changed  
Standard changed  
FIFO full  
Macrovision status changed: Macrovision status changed mask  
0 = Macrovision status unchanged  
1 = Macrovision status changed  
Standard changed: Standard changed mask  
0 = Disabled (default)  
1 = Enabled video standard changed  
FIFO full: FIFO full mask  
0 = Disabled (default)  
1 = Enabled FIFO full interrupt  
76  
TVP5146  
SLES084C − August 2007  
2.11.86 Interrupt Clear 0 Register  
Subaddress  
F6h  
Default  
00h  
7
6
5
4
3
2
1
0
FIFO THRS  
TTX  
WSS  
VPS  
VITC  
CC F2  
CC F1  
Line  
FIFO THRS: FIFO threshold passed clear  
0 = No effect (default)  
1 = Clear bit 7 (FIFO_THRS) in the interrupt status 0 register at subaddress F2h  
TTX: Teletext data available clear  
0 = No effect (default)  
1 = Clear bit 6 (TTX available) in the interrupt status 0 register at subaddress F2h  
WSS: WSS data available clear  
0 = No effect (default)  
1 = Clear bit 5 (WSS available) in the interrupt status 0 register at subaddress F2h  
VPS: VPS data available clear  
0 = No effect (default)  
1 = Clear bit 4 (VPS available) in the interrupt status 0 register at subaddress F2h  
VITC: VITC data available clear  
0 = Disabled (default)  
1 = Clear bit 3 (VITC available) in the interrupt status 0 register at subaddress F2h  
CC F2: CC field 2 data available clear  
0 = Disabled (default)  
1 = Clear bit 2 (CC field 2 available) in the interrupt status 0 register at subaddress F2h  
CC F1: CC field 1 data available clear  
0 = Disabled (default)  
1 = Clear bit 1 (CC field 1 available) in the interrupt status 0 register at subaddress F2h  
Line: Line number interrupt clear  
0 = Disabled (default)  
1 = Clear bit 0 (line interrupt available) in the interrupt status 0 register at subaddress F2h  
See also the interrupt clear 1 register at subaddress F7h (see Section 2.11.87).  
The host interrupt clear 0 and 1 registers are used by the external processor to clear the  
interrupt status bits in the host interrupt status 0 and 1 registers. When no nonmasked interrupts  
remain set in the registers, the external interrupt terminal also becomes inactive.  
77  
SLES084C − August 2007  
TVP5146  
2.11.87 Interrupt Clear 1 Register  
Subaddress  
F7h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
Macrovision status changed  
Standard changed  
FIFO full  
Macrovision status changed: Clear Macrovision status changed flag  
0 = No effect (default)  
1 = Clear bit 2 (Macrovision status changed) in the interrupt status 1 register at subaddress F3h and the  
interrupt raw status 1 register at subaddress F1h  
Standard changed: Clear standard changed flag  
0 = No effect (default)  
1 = Clear bit 1 (video standard changed) in the interrupt status 1 register at subaddress F3h and the  
interrupt raw status 1 register at subaddress F1h  
FIFO full: Clear FIFO full flag  
0 = No effect (default)  
1 = Clear bit 0 (FIFO full flag) in the interrupt status 1 register at subaddress F3h and the interrupt raw  
status 1 register at subaddress F1h  
78  
TVP5146  
SLES084C − August 2007  
2.12 VBUS Register Definitions  
2.12.1 VDP Closed Caption Data Register  
Subaddress  
80 051Ch–80 051Fh  
Read only  
Subaddress  
80 051Ch  
80 051Dh  
80 051Eh  
80 051Fh  
7
6
5
4
3
2
1
0
Closed caption field 1 byte 1  
Closed caption field 1 byte 2  
Closed caption field 2 byte 1  
Closed caption field 2 byte 2  
These registers contain the closed caption data arranged in bytes per field.  
2.12.2 VDP WSS Data Register  
Subaddress  
80 0520h–80 0526h  
WSS NTSC (CGMS):  
Read only  
Subaddress  
80 0520h  
80 0521h  
80 0522h  
80 0523h  
80 0524h  
80 0525h  
80 0526h  
7
6
5
4
3
2
1
0
Byte  
b5  
b4  
b3  
b2  
b1  
b0  
WSS field 1 byte 1  
WSS field 1 byte 2  
WSS field 1 byte 3  
b13  
b12  
b11  
b19  
b10  
b18  
b9  
b8  
b7  
b6  
b17  
b16  
b15  
b14  
Reserved  
b5  
b4  
b3  
b9  
b2  
b8  
b1  
b7  
b0  
b6  
WSS field 2 byte 1  
WSS field 2 byte 2  
WSS field 2 byte 3  
b13  
b12  
b11  
b19  
b10  
b18  
b17  
b16  
b15  
b14  
These registers contain the wide screen signaling data for NTSC.  
Bits 0–1 represent word 0, aspect ratio.  
Bits 2–5 represent word 1, header code for word 2.  
Bits 6–13 represent word 2, copy control.  
Bits 14–19 represent word 3, CRC.  
PAL/SECAM:  
Read only  
Subaddress  
80 0520h  
80 0521h  
80 0522h  
80 0523h  
80 0524h  
80 0525h  
80 0526h  
7
6
5
4
3
2
1
0
Byte  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b9  
b0  
b8  
WSS field 1 byte 1  
WSS field 1 byte 2  
b13  
b12  
b11  
b10  
Reserved  
Reserved  
b7  
b6  
b5  
b4  
b12  
b3  
b2  
b1  
b9  
b0  
b8  
WSS field 2 byte 1  
WSS field 2 byte 2  
b13  
b11  
b10  
Reserved  
PAL/SECAM:  
Bits 0–3 represent group 1, aspect ratio.  
Bits 4–7 represent group 2, enhanced services.  
Bits 8–10 represent group 3, subtitles.  
Bits 11–13 represent group 4, others.  
79  
SLES084C − August 2007  
TVP5146  
2.12.3 VDP VITC Data Register  
Subaddress  
80 052Ch–80 0534h  
Read only  
Subaddress  
80 052Ch  
80 052Dh  
80 052Eh  
80 052Fh  
80 0530h  
80 0531h  
80 0532h  
80 0533h  
80 0534h  
7
6
5
4
3
2
1
0
VITC frame byte 1  
VITC frame byte 2  
VITC seconds byte 1  
VITC seconds byte 2  
VITC minutes byte 1  
VITC minutes byte 2  
VITC hours byte 1  
VITC hours byte 2  
VITC CRC byte  
These registers contain the VITC data.  
2.12.4 VDP V-Chip TV Rating Block 1 Register  
Subaddress  
80 0540h  
Read only  
7
6
5
4
3
2
1
0
Reserved  
14-D  
PG-D  
Reserved  
MA-L  
14-L  
PG-L  
Reserved  
TV parental guidelines rating block 1:  
14-D: When incoming video program is TV-14-D rated, then this bit is set high  
PG-D: When incoming video program is TV-PG-D rated, then this bit is set high  
MA-L: When incoming video program is TV-MA-L rated, then this bit is set high  
14-L: When incoming video program is TV-14-L rated, then this bit is set high  
PG-L: When incoming video program is TV-PG-L rated, then this bit is set high  
2.12.5 VDP V-Chip TV Rating Block 2 Register  
Subaddress  
80 0541h  
Read only  
7
6
5
4
3
2
1
0
MA-S  
14-S  
PG-S  
Reserved  
MA-V  
14-V  
PG-V  
Y7-FV  
TV parental guidelines rating block 2:  
MA-S: When incoming video program is TV-MA-S rated, then this bit is set high  
14-S: When incoming video program is TV-14-S rated, then this bit is set high  
PG-S: When incoming video program is TV-PG-S rated, then this bit is set high  
MA-V: When incoming video program is TV-MA-V rated, then this bit is set high  
14-V: When incoming video program is TV-14-V rated, then this bit is set high  
PG-V: When incoming video program is TV-PG-S rated, then this bit is set high  
Y7-FV: When incoming video program is TV-Y7-FV rated, then this bit is set high  
80  
TVP5146  
SLES084C − August 2007  
2.12.6 VDP V-Chip TV Rating Block 3 Register  
Subaddress  
80 0542h  
Read only  
7
6
5
4
3
2
1
0
None  
TV-MA  
TV-14  
TV-PG  
TV-G  
TV-Y7  
TV-Y  
None  
TV parental guidelines rating block 3:  
None: No block intended  
TV-MA: When incoming video program is TV-MA rated in TV Parental Guidelines Rating, then this bit is set  
high  
TV-14: When incoming video program is TV-14 rated in TV Parental Guidelines Rating, then this bit is set  
high  
TV-PG: When incoming video program is TV-PG rated in TV Parental Guidelines Rating, then this bit is set  
high  
TV-G: When incoming video program is TV-G rated in TV Parental Guidelines Rating, then this bit is set  
high  
TV-Y7: When incoming video program is TV-Y7 rated in TV Parental Guidelines Rating, then this bit is set  
high  
TV-Y: When incoming video program is TV-G rated in TV Parental Guidelines Rating, then this bit is set  
high  
None: No block intended  
2.12.7 VDP V-Chip MPAA Rating Data Register  
Subaddress  
80 0543h  
Read only  
7
6
5
4
3
2
1
0
Not Rated  
X
NC-17  
R
PG-13  
PG  
G
N/A  
MPAA rating block (E5h):  
Not Rated: When incoming video program is Not Rated rated in MPAA Rating, then this bit is set high  
X: When incoming video program is X rated in MPAA Rating, then this bit is set high  
NC-17: When incoming video program is NC-17 rated in MPAA Rating, then this bit is set high  
R: When incoming video program is R rated in MPAA Rating, then this bit is set high  
PG-13: When incoming video program is PG-13 rated in MPAA Rating, then this bit is set high  
PG: When incoming video program is PG rated in MPAA Rating, then this bit is set high  
G: When incoming video program is G rated in MPAA Rating, then this bit is set high  
N/A: When incoming video program is N/A rated in MPAA Rating, then this bit is set high  
81  
SLES084C − August 2007  
TVP5146  
2.12.8 VDP General Line Mode and Line Address Register  
Subaddress  
80 0600h–80 0611h  
(default line mode = FFh, address = 00h)  
Subaddress  
80 0600h  
80 0601h  
80 0602h  
80 0603h  
80 0604h  
80 0605h  
80 0606h  
80 0607h  
80 0608h  
80 0609h  
80 060Ah  
80 060Bh  
80 060Ch  
80 060Dh  
80 060Eh  
80 060Fh  
80 0610h  
80 0611h  
7
6
5
4
3
2
1
0
Line address 1  
Line mode 1  
Line address 2  
Line mode 2  
Line address 3  
Line mode 3  
Line address 4  
Line mode 4  
Line address 5  
Line mode 5  
Line address 6  
Line mode 6  
Line address 7  
Line mode 7  
Line address 8  
Line mode 8  
Line address 9  
Line mode 9  
Line address x [7:0]: Line number to be processed by a VDP set by a line mode register (default  
00h)  
Line mode x [7:0]:  
Bit 7:  
0 = Disabled filters  
1 = Enabled filters for teletext and CC (Null byte filter) (default)  
Bit 6:  
0 = Send sliced VBI data to registers only (default)  
1 = Send sliced VBI data to FIFO and registers, teletext data only goes to FIFO  
(default)  
Bit 5:  
0 = Allow VBI data with errors in the FIFO  
1 = Do not allow VBI data with errors in the FIFO (default)  
Bit 4:  
Bit 3:  
0 = Disabled error detection and correction  
1 = Enabled error detection and correction (teletext only) (default)  
0 = Field 1  
1 = Field 2 (default)  
Bits [2:0]: 000 = Teletext (WST625, Chinese teletext, NABTS 525)  
001 = CC (US, Europe, Japan, China)  
010 = WSS (525, 625)  
011 = VITC  
100 = VPS (PAL only), EPG (NTSC only)  
101 = USER 1  
110 = USER 2  
111 = Reserved (active video) (default)  
82  
TVP5146  
SLES084C − August 2007  
2.12.9 VDP VPS/Gemstar Data Register  
Subaddress  
80 0700h–80 070Ch  
VPS: Read only  
Subaddress  
80 0700h  
80 0701h  
80 0702h  
80 0703h  
80 0704h  
80 0705h  
80 0706h  
80 0707h  
80 0708h  
80 0709h  
80 070Ah  
80 070Bh  
80 070Ch  
7
6
5
4
3
2
1
0
VPS byte 1  
VPS byte 2  
VPS byte 3  
VPS byte 4  
VPS byte 5  
VPS byte 6  
VPS byte 7  
VPS byte 8  
VPS byte 9  
VPS byte 10  
VPS byte 11  
VPS byte 12  
VPS byte 13  
These registers contain the entire VPS data line except the clock run-in code or the start code.  
Gemstar: Read only  
Subaddress  
80 0700h  
80 0701h  
80 0702h  
80 0703h  
80 0704h  
80 0705h  
80 0706h  
80 0707h  
80 0708h  
80 0709h  
80 070Ah  
80 070Bh  
80 070Ch  
7
6
5
4
3
2
1
0
Gemstar frame code  
Gemstar byte 1  
Gemstar byte 2  
Gemstar byte 3  
Gemstar byte 4  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
2.12.10 VDP FIFO Read Register  
Subaddress  
90 1904h  
Read only  
7
6
5
4
3
2
1
0
FIFO data [7:0]  
FIFO data [7:0]: This register is provided to access VBI FIFO data through the host port. All  
forms of teletext data come directly from the FIFO, while all other forms of VBI data can be  
programmed to come from registers or from the FIFO. If the host port is to be used to read data  
from the FIFO, then bit 0 (host access enable) in the FIFO output control register at subaddress  
C0h must be set to 1.  
83  
SLES084C − August 2007  
TVP5146  
2.12.11 Interrupt Configuration Register  
Subaddress  
B0 0060h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
Polarity  
Reserved  
Polarity: Interrupt terminal polarity  
0 = Active high (default)  
1 = Active low  
84  
TVP5146  
SLES084C − August 2007  
3
Electrical Specifications  
3.1 Absolute Maximum Ratings†  
Supply voltage range: IOV to I/O GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to 4 V  
DD  
DV to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.2 V to 2 V  
DD  
A33VDD (see Note 1) to A18GND (see Note 2) . . . . . . . . . . . . . . . . −0.3 V to 3.6 V  
A18VDD (see Note 3) to A33GND (see Note 4) . . . . . . . . . . . . . . . . . . −0.2 V to 2 V  
Digital input voltage, V to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.5 V  
I
Digital output voltage, V to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.5 V  
O
Analog input voltage range AIN to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.2 V to 2 V  
Operating free-air temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
Storage temperature, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. CH1_A33VDD, CH2_A33VDD, CH3_A33VDD, CH4_A33VDD  
2. CH1_A33GND, CH2_A33GND, CH3_A33GND, CH4_A33GND  
3. CH1_A18VDD, CH2_A18VDD, CH3_A18VDD, CH4_A18VDD, A18VDD_REF, PLL_A18VDD  
4. CH1_A18GND, CH2_A18GND, CH3_A18GND, CH4_A18GND  
3.2 Recommended Operating Conditions  
MIN NOM  
MAX  
UNIT  
IOV  
Digital supply voltage  
3
1.65  
3
3.3  
1.8  
3.3  
1.8  
1
3.6  
1.95  
3.6  
V
V
DD  
DV  
Digital supply voltage  
DD  
AV  
AV  
Analog supply voltage  
V
DD33  
DD18  
Analog supply voltage  
1.65  
0.5  
1.95  
2
V
V
V
V
Analog input voltage (ac-coupling necessary)  
Digital input voltage high (Note 1)  
Digital input voltage low (Note 2)  
V
I(P-P)  
0.7 IOV  
V
IH  
IL  
DD  
0.3 IOV  
V
DD  
I
I
Output current, V = 2.4 V  
−4  
6
−8  
8
mA  
mA  
°C  
OH  
OL  
out  
Output current, V = 0.4 V  
out  
T
Operating free-air temperature  
0
70  
A
NOTES: 1. Exception: 0.7 AV  
2. Exception: 0.3 AV  
for XTAL1 terminal  
for XTAL1 terminal  
DD18  
DD18  
3.2.1 Crystal Specifications  
CRYSTAL SPECIFICATIONS  
MIN  
NOM  
14.31818  
MAX  
UNIT  
MHz  
ppm  
Frequency  
Frequency tolerance  
50  
85  
SLES084C − August 2007  
TVP5146  
 
3.3 Electrical Characteristics  
For minimum/maximum values: IOVDD = 3.0 V to 3.6 V, DVDD = 1.65 V to 1.95 V, AVDD33 = 3.0  
V to 3.6 V, AVDD18 = 1.65 V to 1.95 V, TA = 0°C to 70°C  
For typical values: IOVDD = 3.3 V, DVDD = 1.8 V, AVDD33 = 3.3 V, AVDD18 = 1.8 V, TA = 25°C  
3.3.1 DC Electrical Characteristics  
PARAMETER  
TEST CONDITIONS  
CVBS  
MIN  
TYP  
6
MAX  
UNIT  
I
I
I
I
3.3-V IO digital supply current  
mA  
DDIO(D)  
RGB and CVBS  
CVBS  
6
66.2  
67  
1.8-V digital supply current  
mA  
mA  
mA  
mW  
DD(D)  
RGB and CVBS  
CVBS  
16  
3.3-V analog supply current  
DD33(A)  
DD18(A)  
RGB and CVBS  
CVBS  
47.8  
79.3  
240  
334.5  
730  
100  
11  
1.8-V analog supply current  
RGB and CVBS  
CVBS  
P
TOT  
Total power dissipation (normal operation)  
RGB and CVBS  
P
P
I
Total power dissipation (power save)  
Total power dissipation (power down)  
Input leakage current  
mW  
mW  
µA  
pF  
V
SAVE  
DOWN  
10  
8
lkg  
C
Input capacitance  
By design  
i
V
OH  
V
OL  
Output voltage high  
0.8 IOV  
DD  
Output voltage low  
0.2 IOV  
V
DD  
NOTE 1: Measured with a load of 10 kin parallel to 15 pF.  
3.3.2 Analog Processing and A/D Converters  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
kΩ  
Z
Input impedance, analog video inputs  
Input capacitance, analog video inputs  
Input voltage range  
By design  
By design  
200  
i
C
10  
2
pF  
i
V
C
= 47 nF  
coupling  
0.50  
−6  
1
V
i(pp)  
G  
Gain control range  
6
dB  
DNL  
INL  
Fr  
Differential nonlinearity  
Integral nonlinearity  
AFE only  
AFE only  
0.75  
1
1.0  
2.5  
LSB  
LSB  
dB  
Frequency response  
Crosstalk  
Multiburst (60 IRE)  
1 MHz  
−0.9  
XTALK  
SNR  
GM  
NS  
−50  
dB  
Signal-to-noise ratio, all channels  
Gain match (Note 1)  
Noise spectrum  
1 MHz, 1.0 V  
54  
dB  
P-P  
Full scale, 1 MHz  
1.1% 1.5%  
Luma ramp (100 kHz to full, tilt-null)  
Modulated ramp  
−58  
0.5  
dB  
DP  
Differential phase  
°
DG  
Differential gain  
Modulated ramp  
1.5%  
NOTE 1: Component inputs only  
86  
TVP5146  
SLES084C − August 2007  
 
3.3.3 Timing  
3.3.3.1 Clocks, Video Data, Sync Timing  
TEST CONDITIONS  
(see Note 1)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Duty cycle DATACLK  
45%  
50%  
18.5  
18.5  
55%  
t
1
t
2
t
3
t
4
t
5
High time, DATACLK  
Low time, DATACLK  
Fall time, DATACLK  
Rise time, DATACLK  
Output delay time  
ns  
ns  
ns  
ns  
ns  
90% to 10%  
10% to 90%  
4
4
10  
NOTE 1: C = 15 pF  
L
t
2
t
1
V
OH  
DATACLK  
V
OL  
t
t
4
3
V
V
OH  
Y, C, AVID, VS, HS, FID  
Valid Data  
Valid Data  
OL  
t
5
Figure 3−1. Clocks, Video Data, and Sync Timing  
87  
SLES084C − August 2007  
TVP5146  
 
3.3.3.2 I2C Host Port Timing  
PARAMETER  
TEST CONDITIONS  
MIN  
1.3  
0
TYP  
MAX  
UNIT  
µs  
t
t
t
t
t
t
t
t
Bus free time between STOP and START  
1
2
3
4
5
6
7
8
Data hold time  
0.9  
µs  
Data setup time  
100  
0.6  
0.6  
0.6  
ns  
Setup time for a (repeated) START condition  
Setup time for a STOP condition  
Hold time (repeated) START condition  
Rise time VC1(SDA) and VC0(SCL) signal  
Fall time VC1(SDA) and VC0(SCL) signal  
Capacitive load for each bus line  
µs  
ns  
µs  
250  
250  
400  
400  
ns  
ns  
C
pF  
kHz  
b
2
f
I C clock frequency  
I2C  
Stop Start  
Stop  
VC1 (SDA)  
VC0 (SCL)  
Data  
t
1
t
6
t
3
t
6
t
t
5
2
t
4
t
7
t
8
Change  
Data  
2
Figure 3−2. I C Host Port Timing  
88  
TVP5146  
SLES084C − August 2007  
4
Example Register Settings  
The following example register settings are provided only as a reference. These settings, given  
the assumed input connector, video format, and output format, set up the TVP5146 decoder and  
provide video output. Example register settings for other features and the VBI data processor  
are not provided here.  
4.1 Example 1  
4.1.1 Assumptions  
Input connector:  
Video format:  
Composite (VI_1_A) (default)  
NTSC (J, M), PAL (B, G, H, I, N) or SECAM (default)  
NOTE: NTSC-443, PAL-Nc, and PAL-M are masked from the autoswitch process by default.  
See the autoswitch mask register at address 04h.  
Output format:  
10-bit ITU-R BT.656 with embedded syncs (default)  
4.1.2 Recommended Settings  
Recommended I2C writes: For the given assumptions, only one write is required. All other  
registers are set up by default.  
2
I C register address 08h = Luminance processing control 3 register  
2
I C data 00h = Optimizes the trap filter selection for NTSC and PAL  
2
I C register address 0Eh = Chrominance processing control 3 register  
2
I C data 04h = Optimizes the chrominance filter selection for NTSC and PAL  
2
I C register address 34h = Output formatter 2 register  
2
I C data 11h = Enables YCbCr output and the clock output  
NOTE: HS/CS, VS/VBLK, AVID, FID, and GLCO are logic inputs by default. See output  
formatter 3 and 4 registers at addresses 35h and 36h, respectively.  
89  
SLES084C − August 2007  
TVP5146  
4.2 Example 2  
4.2.1 Assumptions  
Input connector:  
Video format:  
S-video [VI_2_C (luma), VI_1_C (chroma)]  
NTSC (J, M, 443), PAL (B, G, H, I, M, N, Nc) and SECAM  
10-bit 4:2:2 YCbCr with discrete sync outputs  
Output format:  
4.2.2 Recommended Settings  
Recommended I2C writes: This setup requires additional writes to output the discrete sync 10-bit  
4:2:2 data, HS, and VS, and to autoswitch between all video formats mentioned above.  
2
I C register address 00h = Input select register  
2
I C data 46h = Sets luma to VI_2_C and chroma to VI_1_C  
2
I C register address 04h = Autoswitch mask register  
2
I C data 3Fh = Includes NTSC 443 and PAL (M, Nc) in the autoswitch  
2
I C register address 08h = Luminance processing control 3 register  
2
I C data 00h = Optimizes the trap filter selection for NTSC and PAL  
2
I C register address 0Eh = Chrominance processing control 2 register  
2
I C data 04h = Optimizes the chrominance filter selection for NTSC and PAL  
2
I C register address 33h = Output formatter 1 register  
2
I C data 43h = Selects the 10-bit 4:2:2 output format  
2
I C register address 34h = Output formatter 2 register  
2
I C data 11h = Enables YCbCr output and the clock output  
2
I C register address 36h = Output formatter 4 register  
2
I C data AFh = Enables HS and VS sync outputs  
90  
TVP5146  
SLES084C − August 2007  
4.3 Example 3  
4.3.1 Assumptions  
Input connector:  
Video format:  
Component [VI_1_B (Pb), VI_2_B (Y), VI_3_B (Pr)]  
NTSC (J, M, 443), PAL (B, G, H, I, M, N, Nc) and SECAM  
20-bit 4:2:2 YCbCr with discrete sync outputs  
Output format:  
4.3.2 Recommended Settings  
Recommended I2C writes: This setup requires additional writes to output the discrete sync 20-bit  
4:2:2 data, HS, and VS, and to autoswitch between all video formats mentioned above.  
2
I C register address 00h = Input select register  
2
I C data 95h = Sets Pb to VI_1_B, Y to VI_2_B, and Pr to VI_3_B  
2
I C register address 04h = Autoswitch mask register  
2
I C data 3Fh = Includes NTSC 443 and PAL (M, Nc) in the autoswitch  
2
I C register address 08h = Luminance processing control 3 register  
2
I C data 00h = Optimizes the trap filter selection for NTSC and PAL  
2
I C register address 0Eh = Chrominance processing control 2 register  
2
I C data 04h = Optimizes the chrominance filter selection for NTSC and PAL  
2
I C register address 33h = Output formatter 1 register  
2
I C data 41h = Selects the 20-bit 4:2:2 output format  
2
I C register address 34h = Output formatter 2 register  
2
I C data 11h = Enables YCbCr output and the clock output  
2
I C register address 36h = Output formatter 4 register  
2
I C data AFh = Enables HS and VS sync outputs  
91  
SLES084C − August 2007  
TVP5146  
92  
TVP5146  
SLES084C − August 2007  
5
Application Information  
5.1 Application Example  
XTAL1  
C_0  
FID  
XTAL2  
C_1  
C_2  
VS/VBLK  
HS/CS  
2.2 k  
2.2 kΩ  
14.31818 MHz  
A3.3VDD  
IOVDD3.3V  
DVDD1.8V  
C_3  
C_4  
C_5  
XTAL1  
XTAL2  
CL2  
CL1  
A1.8VDD  
0.1 µF (2)  
0.1 µF (2)  
0.1 µF (3)  
VI_1A  
VI_1B  
VI_1C  
1
60  
59  
58  
57  
56  
55  
C_6  
VI_1_B  
VI_1_C  
C_6/RED  
2
C_7/GREEN  
C_8/BLUE  
C_9/FSO  
DGND  
C_7  
C_8  
C_9  
3
4
5
6
7
8
9
CH1_A33GND  
CH1_A33VDD  
CH2_A33VDD  
CH2_A33GND  
VI_2_A  
VI_2_B  
VI_2_C  
CH2_A18GND  
75 (3)  
0.1 µF (2)  
0.1 µF (3)  
DVDD  
Y_0  
Y_1  
Y_2  
Y_3  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
VI_2A  
0.1 µF  
Y_0  
Y_1  
Y_2  
Y_3  
Y_4  
VI_2B  
VI_2C  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
75 (3)  
TVP5146PFP  
CH2_A18VDD  
A18VDD_REF  
A18GND_REF  
CH3_A18VDD  
CH3_A18GND  
VI_3_A  
Y_4  
IOGND  
IOVDD  
0.1 µF (3)  
0.1 µF  
Y_5  
Y_6  
Y_7  
Y_8  
Y_5  
Y_6  
Y_7  
Y_8  
Y_9  
VI_3A  
VI_3B  
VI_3C  
VI_3_B  
VI_3_C  
Y_9  
CH3_A33GND  
CH3_A33VDD  
DGND  
DVDD  
0.1 µF (3)  
0.1 µF  
75 (3)  
0.1 µF  
0.1 µF  
VI_4A  
2.2 k(2)  
75 Ω  
IOVDD  
0.1 µF  
0.1 µF  
DATACLK  
GLCO/I2CA  
0.1 µF  
GND  
0.1 µF  
AVID  
FSS  
RESETB  
PWDN  
10 kΩ  
I2C Address selection  
1−2 Base Addr. 0xBA  
2−3 Base Addr. 0xB8  
GLCO/I2CA  
1
3
2
INTREQ  
SDA  
10 kΩ  
SCL  
NOTE: If XTAL1 is connected to clock source, input voltage high must be 1.8 V.  
Terminals 69 and 71 must be connected to ground through pulldown resistors.  
Figure 5−1. Application Example  
93  
SLES084C − August 2007  
TVP5146  
5.2 Designing With PowerPADt Devices  
The TVP5146 device is housed in a high-performance, thermally enhanced, 80-terminal  
PowerPAD package (TI package designator: 80PFP). Use of the PowerPAD package does not  
require any special considerations except to note that the thermal pad, which is an exposed die  
pad on the bottom of the device, is a metallic thermal and electrical conductor. Therefore, if not  
implementing the PowerPAD PCB features, the use of solder masks (or other assembly  
techniques) may be required to prevent any inadvertent shorting by the exposed thermal pad of  
connection etches or vias under the package. The recommended option, however, is not to run  
any etches or signal vias under the device, but to have only a grounded thermal land as  
explained in the following paragraphs. Although the actual size of the exposed die pad may vary,  
the minimum size required for the keep-out area for the 80-terminal PFP PowerPAD package is  
8 mm × 8 mm.  
It is recommended that there be a thermal land, which is an area of solder-tinned copper,  
underneath the PowerPAD package. The thermal land varies in size, depending on the  
PowerPAD package being used, the PCB construction, and the amount of heat that needs to be  
removed. In addition, the thermal land may or may not contain numerous thermal vias  
depending on PCB construction.  
Other requirements for using thermal lands and thermal vias are detailed in the PowerPADt  
Thermally Enhanced Package technical brief, TI literature number SLMA002, available via the TI  
Web pages at URL http://www.ti.com.  
For the TVP5146 device, this thermal land must be grounded to the low-impedance ground  
plane of the device. This improves not only thermal performance but also the electrical  
grounding of the device. It is also recommended that the device ground terminal landing pads be  
connected directly to the grounded thermal land. The land size must be as large as possible  
without shorting device signal terminals. The thermal land may be soldered to the exposed  
thermal pad using standard reflow soldering techniques.  
While the thermal land may be electrically floated and configured to remove heat to an external  
heat sink, it is recommended that the thermal land be connected to the low impedance ground  
plane for the device. More information can be obtained from the TI Recommendations for PHY  
Layout applicaton report, TI literature number SLLA020.  
PowerPAD is a trademark of Texas Instruments.  
94  
TVP5146  
SLES084C − August 2007  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Oct-2010  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
TVP5146PFP  
NRND  
NRND  
HTQFP  
HTQFP  
PFP  
PFP  
80  
80  
96  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
Replaced by TVP5146M2PFP  
TVP5146PFPR  
1000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
Replaced by  
TVP5146M2PFPR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TVP5146PFPR  
HTQFP  
PFP  
80  
1000  
330.0  
24.4  
15.0  
15.0  
1.5  
20.0  
24.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTQFP PFP 80  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 45.0  
TVP5146PFPR  
1000  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All  
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time  
of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which  
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such  
components to meet such requirements.  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Medical  
Logic  
Security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

TVP5147M1

NTSC/PAL/SECAM 2x10-Bit Digital Video Decoder With Macrovision Detection, YPbPr Inputs, and 5-Line Comb Felter
TI

TVP5147M1IPFP

NTSC/PAL/SECAM 2x10-Bit Digital Video Decoder With Macrovision Detection, YPbPr Inputs, and 5-Line Comb Felter
TI

TVP5147M1IPFPR

10-bit High Quality Single-Chip Digital Video Decoder That Digitizes And Decodes NTSC/PAL/SECAM 80-HTQFP -40 to 85
TI

TVP5147M1IPFPRQ1

COLOR SIGNAL DECODER, PQFP80, PLASTIC, HTQFP-80
TI

TVP5147M1PFP

NTSC/PAL/SECAM 2x10-BIT DIGITAL VIDEO DECODER WITH MACROVISION DETECTION, YPbPr INPUTS, AND 5-LINE COMB FILTER
TI

TVP5147M1PFPG4

NTSC/PAL/SECAM 2 X 10-Bit Digital Video Decoder With Macrovision Detection, YPbPr Inputs, and 5-Line Comb Filter
TI

TVP5147M1PFPR

NTSC/PAL/SECAM 2 X 10-Bit Digital Video Decoder With Macrovision Detection, YPbPr Inputs, and 5-Line Comb Filter
TI

TVP5147M1PFPRG4

NTSC/PAL/SECAM 2 X 10-Bit Digital Video Decoder With Macrovision Detection, YPbPr Inputs, and 5-Line Comb Filter
TI

TVP5147M1PFP_07

NTSC/PAL/SECAM 2 X 10-Bit Digital Video Decoder With Macrovision Detection, YPbPr Inputs, and 5-Line Comb Filter
TI

TVP5147M1_08

NTSC/PAL/SECAM 2x10-Bit Digital Video Decoder With Macrovision Detection, YPbPr Inputs, and 5-Line Comb Felter
TI

TVP5147M1_16

11-Bit Digital Video Decoder With Macrovision YPbPr Inputs, and 5-Line Comb Filter
TI

TVP5147PFP

NTSC/PPAL SECAM 2 X 10 BIT DIGITAL VIDEO DECODER WITH MACROVISION DETECTION INPUT AND 5 LINE COMB FILTER
TI