TVP5150 [TI]

LOW POWER VIDEO DECODER WITH SCALING; 低功耗视频解码器,缩放
TVP5150
型号: TVP5150
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

LOW POWER VIDEO DECODER WITH SCALING
低功耗视频解码器,缩放

解码器
文件: 总26页 (文件大小:438K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Manual  
September 2002  
DAV Digital Video/Speaker  
SLES043  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, maskworkright, orotherTIintellectualpropertyrightrelatingtoanycombination, machine, orprocess  
in which TI products or services are used. Information published by TI regarding third–party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Mailing Address:  
Texas Instruments  
Post Office Box 655303  
Dallas, Texas 75265  
Copyright 2002, Texas Instruments Incorporated  
Contents  
Page  
Contents  
Section  
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
1.1  
1.2  
1.3  
1.4  
1.5  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Terminal Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.1  
2.2  
2.3  
2.4  
2.5  
Input Multiplexers and Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Programmable Gain Amplifier (PGA) Automatic Gain Control (AGC) . . . . . . . . . . . . . . . . . . . . 6  
Analog-to-Digital Converters (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Composite Processing Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2.5.1  
2.5.2  
2.5.3  
2.5.4  
2.5.5  
2.5.6  
Adaptive Comb Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Color Low-Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Luma Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Chroma Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Timing Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
VBI Data Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.6  
2.7  
VBI FIFO and Ancillary Data in Video Stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.6.1  
2.6.2  
Raw Video Data Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Output Formatter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Synchronization Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2.7.1  
2.7.2  
2.7.3  
2.7.4  
2.7.5  
2.7.6  
Embedded Syncs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
HLK and VLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Clock Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Phase-Locked Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Genlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
TVP5150 Genlock Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2.8  
2.9  
Scaling/Windowing Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2.8.1  
2.8.2  
2.8.3  
Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Windowing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Temporal Decimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Interfacing to the DSC24, TI DSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2.9.1  
2.9.2  
Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.1  
3.2  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.2.1  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.3.1 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Crystal Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.3  
4
5
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
iii  
September 2002  
SLES043  
List of Illustrations  
List of Illustrations  
Figure  
Title  
Page  
21 Composite Processing Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
22 Comb Filters Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
23 Chroma Trap Filter Frequency Response, NTSC Square Pixel Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
24 Chroma Trap Filter Frequency Response, 13.5-MHz Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
25 Chroma Trap Filter Frequency Response, PAL Square Pixel Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
26 Color Low-Pass Filter Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
27 Color Low-Pass Filter With Notch Filter Frequency Response, NTSC, and PAL-M Square Pixel Sampling . 9  
28 Color Low-Pass Filter With Notch Filter Characteristics, 13.5-MHz Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
29 Color Low-Pass Filter With Notch Filter Characteristics and PAL Square Pixel Sampling . . . . . . . . . . . . . . . . 9  
210 Peaking Filter Response, NTSC Square Pixel Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
211 Peaking Filter Response, NTSC/PAL ITU-R BT.601 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
212 Peaking Filter Response, PAL Square Pixel Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
213 8-Bit YCbCr 4:2:2 Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
214 525-Line Vertical Synchronization Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
215 625-Line Vertical Synchronization Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
216 Horizontal Synchronization Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
217 Reference Clock Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
218 GCLO Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
List of Tables  
Table  
Title  
Page  
11 Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
21 Data Types Supported by the VDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
22 Ancillary Data Format and Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
23 Output Formatter Supported Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
24 Format of the SAV and EAV Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
25 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
iv  
SLES043  
September 2002  
Introduction  
1
Introduction  
The TVP5150 is a highly integrated low-power video processor, with full video decoding functionality and  
scaling and audio support. The optimized architecture of the TVP5150 allows for low power consumption.  
The high quality single-chip digital video decoder on the TVP5150 converts base-band analog NTSC, PAL,  
and SECAM video into digital YUV 4:2:2 component video. Y/C composite and S-video inputs are also  
supported. Digital inputs are supported for YUV 4:2:2, which can then be digitally processed for output on the  
output YUV databus. The TVP5150 includes one 9-bit A/D converters with 2x sampling. Sampling is  
square-pixel or ITU-R BT.601 (27 MHz) and is line-locked for correct pixel alignment. The output formats can  
be 8-bit 4:2:2 or 8-bit ITU-R BT.656 with embedded syncs.  
The TVP5150 utilizes Texas Instrumentspatented technology for locking to weak, noisy, or unstable signals,  
and a chroma frequency control output is generated for synchronizing downstream video encoders.  
Complementary three-line or four-line adaptive comb filtering is available for both the luma and chroma data  
paths to reduce both cross-luma and cross-chroma artifacts; a chroma trap filter is also available.  
The TVP5150 allows scaling of the input image to various other formats. The scaling can be done in the  
horizontal and vertical directions. A windowing (cropping) function allows zooming into any desired area in  
the captured image.  
2
Video characteristics including hue, contrast, and saturation may be programmed using the I C high-speed  
bus interface. The TVP5150 generates synchronization, blanking, field, lock, and clock signals in addition to  
digital video outputs. The TVP5150 includes methods for advanced vertical blanking interval (VBI) data  
retrieval. The VBI data processor slices, parses, and performs error checking on Teletext, closed caption, and  
other data in several formats.  
The device has an internal ROM to execute programs.  
The TVP5150 detects copy protected input signals according to Macrovision standard.  
The main blocks of the TVP5150 include:  
A/D converter with analog processor  
Y/C separation  
Chrominance processor  
Luminance processor  
Scaling/windowing functionality  
Video clock/timing processor and power-down control  
Output formatter  
Host port interface  
VBI data processor  
Macrovision detection  
1.1 Features  
Accepts NTSC(M), PAL (B,D,G,H,I,M,N) , PAL60 Video Data  
Supports ITU-R BT.601 Standard, Square Pixel Sampling  
High Speed 9-bit A/D Converter  
Two Composite Inputs, One S-Video Input  
Fully Differential CMOS Analog Preprocessing Channels With Clamping and AGC for Best S/N  
Performance  
Low Power Consumption: < 150 mW  
Macrovision is a trademark of Macrovision Corporation  
1
SLES043 — September 2002  
TVP5150  
Introduction  
32-Pin TQFP Package  
Power-Down Mode  
Brightness, Contrast, Saturation, and Hue Control Through the Host Port  
Complementary 4-Line (3-H delay) Adaptive Comb Filters for Both Cross-Luminance and  
Cross-Chrominance Noise Reduction  
Patented Architecture for Locking to Weak, Noisy, or Unstable Signals  
Single 14.31818-MHz Crystal for All Standards  
Internal PLL for Line-Locked Clock and Sampling  
Programmable Output Data Rates:  
12.2727-MHz Square-Pixel (NTSC)  
14.75-MHz Square-Pixel (PAL)  
13.5 MHz ITU-R BT.601 (NTSC and PAL)  
Subcarrier Genlock Output for Synchronizing Color Subcarrier of External Encoder. Standard  
Programmable Video Output Formats:  
ITU-R BT.656, 8 bit 4:2:2 With Embedded Syncs  
8-Bit 4:2:2 With Discrete Syncs  
Macrovision Copy Protection Detection  
Advanced Programmable Video Output Formats:  
2x Oversampled Raw VBI Data During Active Video  
Sliced VBI data During Horizontal Blanking or Active Video  
Teletext (NABTS, WST) Closed-Caption Decode with FIFO  
Wide Screen Signaling , Video Program System, CGMS, and Vertical Interval Time Code  
CustomConfigurationModeAllowstheUsertoProgramtheSliceEngineforUniqueVBIDataSignals  
2
Internal Programmable Host Processor. Programmed Using I C:  
Internal ROM (Program), With Partial RAM Support  
3.3-V Tolerant Digital I/O Port  
Scaling Function:  
ProvidesHorizontalScalingintheRange:Downto1/32x. PixelBasedAdjustmentofNumberofPixels  
Per Line  
Provides Vertical Scaling in the Range: Down to 1/32x. Pixel Based Adjustment for Number of  
Lines/Field or Frame  
Scaler has an Integrated Anti-Aliasing Low-Pass Filter  
Brightness, Saturation, and Contrast Control for the Scaled Output Data  
Temporal Decimation to Allow Lower Frame Rates, Which Facilitates Compression Algorithms on Low  
BW Devices  
Power-On Reset  
1.2 Applications  
PDA  
Cell Phones  
Multimedia Applications  
MPEG4 Players  
Internet Appliances/Web Pads  
Portable Games  
2
TVP5150  
SLES043 September 2002  
Introduction  
1.3 Functional Block Diagram  
Macrovision  
Detection  
Luminance  
Processing  
AGC  
VI_1A  
M
Horizontal/  
Vertical  
Scaling  
Y/C  
Separation  
Output  
Formatter  
A/D  
U
X
VI_1B  
Chrominance  
Processing  
AGC  
YUV 656  
[7:0]  
Line  
Buffer  
VBI/Data  
Slicer  
2
I C  
Interface  
SCL  
SDATA  
ARM Host Processor  
FID  
XTAL1  
Line  
and  
Chroma  
PLLs  
PALI  
Sync  
Processor  
XTAL2  
PCLK  
GLCO  
GPCL  
RSTINB  
3
SLES043 September 2002  
TVP5150  
Introduction  
1.4 Terminal Assignments  
TQFP PACKAGE  
(TOP VIEW)  
24 23 22 21 20 19 18 17  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
HSYNC  
YOUT2  
AVID  
INTERQ/GPCL  
PDN  
YOUT3  
YOUT4  
YOUT5  
REFP  
YOUT6  
REFM  
YOUT7/I2CSEL  
IO_DVDD  
SCLK/PCLK  
CH1_AGND  
CH1_AVDD  
1
2
3
4
5
6
7
8
1.5 Terminal Functions  
Table 1–1. Terminal Functions  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
ANALOG SECTION  
AIP1A  
1
2
I
I
I
I
Analog input  
Analog input  
AIP1B  
CH1_AGND  
CH1_AVDD  
NSUB  
31  
32  
7
Analog grounds  
Analog supply. Connect to 1.8-V analog supply  
Substrate  
PLL_AGND  
PLL_AVDD  
REFM  
3
I
I
I
I
PLL ground. Connect to analog ground  
PLL supply. Connect to 1.8-V analog supply  
A/D reference ground. Connect to analog ground  
A/D reference supply. Connect to 1.8-V analog  
4
30  
29  
REFP  
DIGITAL SECTION  
AVID  
26  
I/O Active video indicator. This signal is high during the horizontal active time of the video output on the Y and  
UV terminals. AVID continues to toggle during vertical blanking intervals.  
This terminal may be placed in a high-impedance state. During reset, AVID is an input, used to program the  
behavior of Y[7:0], HSYN, VSYN, AVID, and FID immediately after the completion of reset. If AVID is pulled  
up during reset, Y[7:0], HSYN, VSYN, AVID, and FID are actively driving after reset . If AVID is pulled down  
during reset, Y[7:0], HSYN, VSYN, AVID, and FID remain in high-impedance state after reset.  
DGND  
19  
20  
23  
I
I
Digital grounds  
DVDD  
Digital supply. Connect to 1.8 V  
FID/GLCO  
I/O FID: Odd/even field indicator or vertical lock indicator. For odd/even indicator, a logic 1 indicates the odd  
field.  
GLCO: This serial output carries color PLL information. A slave device can decode the information to  
allow chroma frequency control to the TVP5150. Data is transmitted at the SCLK rate.  
HSYNC  
25  
O
Horizontal synchronization  
4
TVP5150  
SLES043 September 2002  
Detailed Description  
Table 11. Terminal Functions (Continued)  
TERMINAL  
NAME  
DIGITAL SECTION (CONTINUED)  
I/O  
DESCRIPTION  
NO.  
INTREQ/GPCL  
27  
I/O INTREQ: interrupt request.  
GPCL: General-purpose control logic. This terminal has three functions:  
1. General-purpose output. In this mode the state of GPCL is directly programmed via the host port.  
2. Vertical blank output. In this mode the GPCL terminal is used to indicate the vertical blanking interval  
of the output video. The beginning and end times of this signal are programmable via the host port  
control.  
3. Sync lock control input. In this mode when GPCL is high, the output clock frequencies and the sync  
timing are forced to nominal values.  
IO_DVDD  
PDN  
10  
28  
I
I
IO digital supply. Either 1.8 V or 3.3 V depending on requirements.  
Power-down pin. Puts device in standby mode. Preserves the value of the registers, but PLL, analog  
channel, and all the digital circuitry are shut down.  
SCAN  
8
Scan test input  
2
SCL  
21  
9
I/O I C serial clock  
SCLK/PCLK  
SDA  
O
System clock outputs with twice the frequency of the pixel clock (PCLK). Pixel clock for the data  
2
I/O I C serial data  
22  
24  
VSYNC/PALI  
O
VSYNC: vertical synchronization  
PALI: PAL line indicator or horizontal lock indicator.  
For PAL line indicator, a logic 1 indicates a noninverted line, and a logic 0 indicates an inverted line.  
XTAL1/OSC  
XTAL2  
5
6
I
Externalclockreference. TheusermayconnectXTAL1toaTTL-compatibleoscillatorortooneterminalofa  
crystal oscillator. The user may connect XTAL2 to the other terminal of the crystal oscillator or not connect  
XTAL2 at all. One single 14.31818-MHz crystal or oscillator is needed for square pixel sampling and ITU-R  
BT.601 sampling.  
*
YOUT(6:0)  
1218  
O
Output decoded ITU-R BT656 output/YUV 422 output.  
2
YOUT(7)/I2CSEL  
11  
I/O I2CSEL: Determines address for I C (sampled at startup)  
Logic 1: Address = xxH, Logic 0: Address: yyH  
YOUT7: MSB of Output decoded ITU-R BT656 output/YUV 422 output.  
2
Detailed Description  
2.1 Input Multiplexers and Buffers  
The TVP5150 has an analog input channel that can accept two CVBS video inputs, ac-coupled through 0.1-µF  
capacitors. The two analog input ports can be connected as follows.  
Two selectable composite video inputs  
One S-video input  
The internal video multiplexers can be configured via the host port. The internal nodes are grounded for zero  
channel crosstalk. The input buffers are continuous time amplifiers, which allow an input range of up to 0.75 V.  
This allows the decoder to support input ranges of 0.5 V to 1.5 V with an input attenuation of 1/2. The selection  
is done by register settings.  
2.2 Clamp  
An internal clamping circuit restores the ac-coupled video signal to a fixed dc level. The clamping circuit  
provides line-by-line restoration of the video sync level to a fixed dc reference voltage. Two modes of clamping  
are provided, coarse and fine.  
In coarse mode, the most negative portion of the input signal (typically the sync tip) is clamped to a fixed  
dc level and remains on. Typically, this level is the sync tip. This mode is used while the timing processor  
is searching for the horizontal sync.  
Fine clamp mode is enabled after the horizontal lock is achieved. This is enabled to prevent spurious level  
shifting caused by noise more negative than the sync tip on the input signal. If fine clamp mode is selected,  
clamping is only enabled during the sync period.  
5
SLES043 September 2002  
TVP5150  
Detailed Description  
When in bottom level mode fine, the sync tip of the input signal will be set to output code 0 of the ADC.  
When in mid level mode, fine clamp restores the dc level of the signal to the mid range of the ADC.  
S-video requires fine clamp mode on the chroma channel for proper operation. The clamp can be completely  
disabled using software registers.  
2.3 Programmable Gain Amplifier (PGA) Automatic Gain Control (AGC)  
The programmable gain amplifier (PGA) and the automatic gain control (AGC) work together to make sure  
that the input signal is amplified enough to ensure the proper input range for the ADC. The gain is controlled  
by a 4-bit gain code, separately controllable for the two channels. The PGA transfer function is different  
depending on the CLAMP mode. In the bottom-level mode, it is (VINPVINM) x gain 0.5, so that the output  
range is ±0.5. In the mid-level mode, it is (VINPVINM) x gain. This ensures that the signal is in the center  
of the ADC range regardless of the CLAMP mode.  
Input video signal amplitude may vary significantly from the nominal level of 1 VPP (140 IRE). An AGC adjusts  
the signal amplitude to utilize the maximum range of the A/D converter without clipping. The AGC adjusts gain  
to achieve desired sync amplitude. Some nonstandard video signals contain peak white levels that saturate  
the A/D converter. In these cases, AGC automatically cuts back gain to avoid clipping. The AGC has a range  
of 0 dB to 12 dB as shown in Figure 21.  
2.4 Analog-to-Digital Converters (ADC)  
The ADC has 9 bits of resolution and runs at a maximum speed of 30 MHz. The clock input for the ADC comes  
from the PLL. The data is aligned to the pixel clock supplied from the DLL and matched in delay.  
2.5 Composite Processing Block Diagram  
The composite processing block process NTSC/PAL/SECAM signals into the YCbCr color space. The  
following block diagram explains the basic architecture of this processing block.  
The following figure illustrates the luminance/chrominance (Y/C) separation process in the TVP5150. The  
9-bit composite video is multiplied by subcarrier signals in the quadrature modulator to generate color  
difference signals U and V. U and V are then low-pass filtered to achieve the desired bandwidth by the color  
low-pass filters described in the later section.  
An adaptive 4-line comb filter separates UV from Y based on the unique property of color phase shift from line  
to line. Chroma is remodulated through another quadrature modulator and subtracted from line-delayed  
composite video to generate luma. This form of Y/C separation is completely complementary, thus loses no  
information. However, in some applications it is desirable to limit the U/V bandwidth to avoid crosstalk. In that  
case, notch filters can be turned on. To accommodate some viewing preferences, a peaking filter is also  
available in the luma path. The Y/C separation is bypassed for S-video input. Contrast, brightness, hue, and  
saturation are programmable via the host port.  
6
TVP5150  
SLES043 September 2002  
Detailed Description  
Gain Factor  
X
Peak  
Detector  
Bandpass  
Peaking  
Delay  
+
Delay  
Line  
Delay  
Composite  
Y
Y
Quadrature  
Modulation  
Contrast  
U
Brightness  
Saturation  
Adjust  
V
Notch  
Filter  
U
V
Notch  
Filter  
U
Color LPF  
2  
Quadrature  
Demodulation  
Composite  
3- or 4-Line  
Adaptive  
Comb  
Burst  
Accumulator  
(U)  
Notch  
Filter  
Delay  
Filter  
Notch  
Filter  
V
Color LPF  
Delay  
2  
Burst  
Accumulator  
(V)  
Figure 21. Composite Processing Block Diagram  
2.5.1 Adaptive Comb Filtering  
Y/C separation may be done using adaptive 4-line or 3-line (3-H or 2-H delay), fixed 3-line, fixed 2-line comb  
filters, or a chroma trap filter as shown. Adaptive comb filtering is available for both luminance and  
chrominance. The adaptive comb filter algorithm computes the vertical and horizontal contours of color based  
on a block of 3x3 pixels.  
If there is a sharp color transition, comb filtering is applied to the two lines that have less color changes. If there  
is no color transition, 3-line comb filtering is used with a choice of filter coefficients [1/4, 1/2, 1/4] or [1/2, 0,  
1/2] programmable via the host port. Characteristics of 2-line and 3-line comb filters are also shown. The filter  
frequency plots show that both 2-line and 3-line (with filter coefficients [1/4, 1/2, 1/4]) comb filters have zeros  
at 1/2 of the horizontal line frequency to separate the interleaved Y/C spectrum in NTSC. The 3-line comb filter  
has less cross-luma and cross-chroma noise due to slightly sharper filter cutoff. The 3-line comb filter with filter  
coefficients [1/2, 0, 1/2] has two zeros at 1/4 and 3/4 of the horizontal line frequency. This should be used for  
PAL only because of its 90 degree U/V phase shifting from line to line. The comb filter can be selectively  
bypassed in the luma or chroma path. If the comb filter is bypassed in the luma path, then chroma notch filters  
are used (next section). TIs patented adaptive comb filter algorithm reduces artifacts, such as hanging dots  
at the color boundary, and detects and properly handles false colors in high-frequency luminance images such  
as a multiburst pattern or circle pattern. Adaptive comb filtering is the recommended mode of operation.  
7
SLES043 September 2002  
TVP5150  
Detailed Description  
1.0  
10  
5
Notch2 Filter  
0.8  
0.6  
0.4  
0.2  
0.0  
0
5  
10  
15  
20  
25  
30  
35  
40  
3 line (1,2,1)/4  
Notch3 Filter  
4 line (1,3,3,1)/8  
Notch1 Filter  
4 line (1,1,1,1)/4  
No Notch Filter  
0
1
2
3
4
5
0
1
2
3
4
5
6
7
f Frequency MHz  
f Frequency MHz  
Figure 23. Chroma Trap Filter Frequency  
Figure 22. Comb Filters Frequency Response  
Response, NTSC Square Pixel Sampling  
10  
10  
5
Notch3 Filter  
5
0
Notch3 Filter  
0
5  
5  
10  
10  
15  
20  
25  
30  
35  
40  
Notch1 Filter  
Notch1 Filter  
Notch2 Filter  
15  
20  
Notch2 Filter  
25  
No Notch Filter  
30  
35  
40  
No Notch Filter  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
f Frequency MHz  
f Frequency MHz  
Figure 24. Chroma Trap Filter Frequency  
Figure 25. Chroma Trap Filter Frequency  
Response, 13.5-MHz Sampling  
Response, PAL Square Pixel Sampling  
2.5.2 Color Low-Pass Filter  
In some applications, it is desirable to limit the U/V bandwidth to avoid crosstalk. This is especially true in case  
of nonstandard video signals that have asymmetrical U/V sidebands. In this case, notch filters are provided  
that limits the bandwidth of the U/V signals.  
Notch filters are needed when the comb filtering turns off due to extreme color transitions in the input image.  
The response of these notch filters is shown in Figure 26 through Figure 29. The notch filters have three  
optionsthatallowthreedifferentfrequencyresponsesbasedonthecolorfrequencycharacteristicsoftheinput  
video.  
8
TVP5150  
SLES043 September 2002  
Detailed Description  
10  
0
10  
0
Notch2 Filter 3 dB  
@ 664 kHz  
PAL SQP 3 dB  
@ 1.33 MHz  
No Notch Filter  
3 dB @ 1.11 MHz  
10  
20  
30  
40  
50  
60  
70  
10  
20  
30  
40  
50  
60  
70  
Notch3 Filter  
3 dB @ 454 kHz  
Notch1  
Filter 3 dB  
@ 798 kHz  
ITU-R BT.601 3 dB  
@ 1.22 MHz  
NTSC SQP 3 dB  
@ 1.11 MHz  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
f Frequency MHz  
f Frequency MHz  
Figure 27. Color Low-Pass Filter With Notch  
Filter Frequency Response, NTSC, and  
PAL-M Square Pixel Sampling  
Figure 26. Color Low-Pass Filter Frequency  
Response  
10  
10  
Notch2 Filter  
Notch2 Filter  
3 dB @ 730 kHz  
3 dB @ 799 kHz  
0
0
No Notch Filter  
3 dB @ 1.33 MHz  
No Notch Filter  
3 dB @ 1.22 MHz  
10  
10  
Notch3  
Filter 3 dB  
@ 545 kHz  
Notch3 Filter  
3 dB @ 499 kHz  
20  
30  
40  
50  
60  
70  
20  
Notch1  
Filter 3 dB  
@ 878 MHz  
Notch1  
30  
Filter 3 dB  
@ 959 MHz  
40  
50  
60  
70  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
f Frequency MHz  
f Frequency MHz  
Figure 29. Color Low-Pass Filter With Notch  
Filter Characteristics and PAL Square Pixel  
Sampling  
Figure 28. Color Low-Pass Filter With Notch  
Filter Characteristics, 13.5-MHz Sampling  
2.5.3 Luma Processing  
Thelumacomponentisderivedfromthecompositesignalbysubtractingtheremodulatedchromainformation.  
Alinedelayexistsinthispathtocompensateforthelinedelayintheadaptivecombfilterinthecolorprocessing  
chain. The luma information is then fed into the peaking circuit, which enhances the high frequency  
components of the signal as shown below.  
9
SLES043 September 2002  
TVP5150  
Detailed Description  
7
6
7
6
Peak at  
f = 2.40 MHz  
Peak at  
f = 2.64 MHz  
Gain = 2  
Gain = 2  
5
5
Gain = 1  
Gain = 1  
4
4
3
3
Gain = 0.5  
Gain = 0.5  
2
2
1
1
0
0
Gain = 0  
5
Gain = 0  
1  
1  
0
1
2
3
4
6
7
0
1
2
3
4
5
6
7
f Frequency MHz  
f Frequency MHz  
Figure 210. Peaking Filter Response, NTSC  
Figure 211. Peaking Filter Response,  
Square Pixel Sampling  
NTSC/PAL ITU-R BT.601 Sampling  
7
6
Peak at  
f = 2.89 MHz  
Gain = 2  
5
Gain = 1  
4
3
Gain = 0.5  
2
1
0
Gain = 0  
1  
0
1
2
3
4
5
6
7
f Frequency MHz  
Figure 212. Peaking Filter Response,  
PAL Square Pixel Sampling  
2.5.4 Chroma Processing  
For PAL/NTSC formats, the color processing begins with a quadrature demodulator extracting U and V  
components from the composite signal. The U/V signals then pass through the gain control stage for chroma  
saturation adjustment. An adaptive comb filter is applied to both U and V to eliminate cross-chrominance  
noise. Hue control is achieved with phase shift of the digitally controlled oscillator. An automatic color killer  
circuit is also included in this block. The color killer suppresses the chroma processing when the color burst  
of the video signal is weak or not present.  
10  
TVP5150  
SLES043 September 2002  
Detailed Description  
2.5.5 Timing Processor  
The timing processor is a combination of hardware and software running in the microprocessor that serves  
to control horizontal lock to the input sync pulse edge, AGC, offset adjustment in the analog front end, vertical  
sync detection, and Macrovision detection.  
The sync input is filtered by a FIR filter for noise reduction. Coarse lock detects the falling or rising edge of  
the filtered sync input by comparing pixels against a threshold. The coarse phase error is read by the  
microprocessor and used to make coarse adjustments to the horizontal DTO frequency. After coarse lock has  
moved the sync edge within the fine lock window, the fine lock is enabled to make fine adjustments to the  
horizontal DTO frequency such that the edge is centered within the window to sub pixel accuracy.  
The gain and offset of the AFE is adjusted such that the sync height and back porch levels achieve target  
values. Filtered samples of the sync tip and back porch are read and processed by the microprocessor. The  
gain that is applied to the sync input is also applied to the chroma input. Filtered samples of the chroma  
blanking level are read and processed by the microprocessor to adjust the chroma offset to set the blanking  
level to the midpoint of the ADC range.  
The vertical sync is detected at the input by comparing half line accumulated pixel values against an adaptive  
threshold. Sequential patterns of half line-accumulated results are used to detect odd and even field syncs.  
The presence of Macrovision is detected by the presence of pseudosyncs by coarse lock. A counter tracks  
the number of edges detected after the horizontal sync edge has been detected.  
2.5.6 VBI Data Processor  
The TVP5150 vertical blank interval (VBI) data processor (VDP) slices various data services like Teletext  
(WST, NABST), closed caption (CC), wide screen signaling (WSS) etc. These services are acquired by  
programming the VDP to enable a standard(s) in the VBI. The results are stored in a FIFO and/or registers.  
The Teletext results are stored in a FIFO only. Table 21 gives a summary of the types of VBI data supported  
according to the video standard. It supports both square pixel and ITU-R BT. 601 sampling for each standard.  
The 26 standard modes are currently supported. Nevertheless, the TVP5150 VDP can be used for custom  
modes. TImayprovidetheRAMcontentofcustommodeswhenthecustomeraskswithafullcustomVBIspec.  
One configuration for a standard consists of 15 bytes of data. However, addressing of the RAM has steps of  
16 bytes for a convenience.  
Table 21. Data Types Supported by the VDP  
LINE MODE REGISTER  
(D0hFBh) Bit[3:0]  
SAMPLING RATE  
(0Dh) Bit 7  
NAME  
DESCRIPTION  
0000b  
0000b  
0001b  
0001b  
0010b  
0010b  
0011b  
0011b  
0100b  
0100b  
0101b  
0101b  
0110b  
0110b  
0111b  
0111b  
X
X
0
1
0
1
0
1
0
1
0
1
0
1
0
1
X
X
Reserved  
Reserved  
WST PAL B S  
WST PAL B 6  
WST PAL C S  
WST PAL C 6  
WST, NTSC B S  
WST, NTSC B 6  
NABTS, NTSC C S  
NABTS, NTSC C 6  
TTX, NTSC D S  
TTX, NTSC D 6  
CC, PAL S  
Teletext, PAL, system B, square  
Teletext, PAL, system B, ITU-R BT 601  
Teletext, PAL, system C, square  
Teletext, PAL, system C, ITU-R BT 601  
Teletext, NTSC, system B, square  
Teletext, NTSC, system B, ITU-R BT 601  
Teletext, NTSC, system C, square  
Teletext, NTSC, system C, ITU-R BT 601  
Teletext, NTSC, system D (Japan), square  
Teletext, NTSC, system D (Japan), ITU-R BT 601  
Closed caption PAL square  
CC, PAL 6  
Closed caption PAL ITU-R BT 601  
Closed caption NTSC, square  
CC. NTSC S  
CC, NTSC 6  
Closed caption NTSC, ITU-R BT 601  
11  
SLES043 September 2002  
TVP5150  
Detailed Description  
Table 21. Data Types Supported by the VDP (Continued)  
LINE MODE REGISTER  
(D0hFBh) Bit[3:0]  
SAMPLING RATE  
NAME  
DESCRIPTION  
(0Dh) Bit 7  
1000b  
1000b  
1001b  
1001b  
1010b  
1010b  
1011b  
1011b  
1100b  
1100b  
1101b  
1110b  
1111b  
0
1
0
1
0
1
0
1
0
1
WSS, PAL S  
Wide screen signal, PAL square  
Wide screen signal, PAL ITU-R BT 601  
Wide screen signal, NTSC, square  
Wide screen signal, NTSC, ITU-R BT 601  
Vertical interval timecode, PAL square  
Vertical interval timecode PAL ITU-R BT 601  
Vertical interval timecode, NTSC, square  
Vertical interval timecode, NTSC, ITU-R BT 601  
Video program system, PAL, square  
Video program system, PAL, ITU-R BT 601  
Custom  
WSS, PAL 6  
WSS, NTSC S  
WSS, NTSC 6  
VITC, PAL S  
VITC, PAL 6  
VITC, NTSC S  
VITC, NTSC 6  
VPS, PAL S  
VPS, PAL 6  
Custom  
Custom  
Active video  
Custom  
x
Active video/full field  
At power up, the host interface is required to program the VDP-configuration RAM (VDP-CRAM) contents with  
the lookup table. This is done through port address C3h. Each read or write from to this address auto  
increments an internal counter to the next RAM location. To access the VDP-CRAM, the line mode registers  
(D0hFCh) must be programmed with FFh to avoid a conflict with the microprocessor and the VDP in both  
writing and reading. Full field mode must also be disabled.  
Available VBI lines are from line 6 to line 27 of both field 1 and field 2. Theoretically, each line can be any VBI  
mode because the VDP processes VBI data in a line by line. When changing modes, the VDP must allow the  
current transaction to complete through the delays of the VDP before switching the line mode registers  
contents. It must also complete the loading of the line mode registers before the next line starts processing.  
The switch pixel number is set through registers CBh and CCh. Output data is available either through the  
VBI-FIFO (B0h) or through dedicated registers at 90hAFh, both of which are available from the host port.  
2.6 VBI FIFO and Ancillary Data in Video Stream  
Sliced VBI data can be output as ancillary data in the video stream in ITU-R BT.656 mode. VBI data is output  
during the horizontal blanking period following the line from which the data was retrieved. The following table  
shows the header format and sequence of the ancillary data inserted into the video stream. This format is also  
used to store any VBI data into the FIFO. The size of FIFO is 512 bytes. Therefore, the FIFO can store up to  
11 lines of Teletext data with NTSC NABST standard.  
12  
TVP5150  
SLES043 September 2002  
Detailed Description  
Table 22. Ancillary Data Format and Sequence  
BYTE  
NO.  
D7  
(MSB)  
D0  
(LSB)  
D6  
D5  
D4  
D3  
D2  
D1  
DESCRIPTION  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Ancillary data preamble  
1
2
1
1
1
1
1
1
1
1
3
NEP  
NEP  
NEP  
EP  
EP  
EP  
0
1
0
DID2  
F2  
N2  
DID1  
F1  
N1  
DID0  
F0  
Data ID (DID)  
4
F5  
N5  
F4  
N4  
F3  
N3  
Secondary data ID (SDID)  
Number of 32 bit data (NN)  
Internal data ID0 (IDID0)  
5
N0  
6
Video line # [7:0]  
Data error Match #1  
1. Data  
7
0
0
0
Match #2  
Video line # [9:8] Internal data ID1 (IDID1)  
8
Data byte  
Data byte  
Data byte  
Data byte  
:
First word  
9
2. Data  
3. Data  
4. Data  
:
10  
11  
:
th  
word  
m1. Data  
m. Data  
Data byte  
Data byte  
Checksum  
Fill byte  
N
NEP  
1
EP  
0
CS[5:0]  
4(N+2)  
0
0
0
0
0
0
EP  
Even parity for D0D5  
NEP  
DID  
Not even parity  
91h sliced data of VBI lines of first field  
53h sliced data of line 24 to end of first field  
55h sliced data of VBI lines of second field  
97h sliced data of line 24 to end of second field  
SDI:  
NN  
This field holds the data format taken from the line mode register of the corresponding line.  
Number of Dwords beginning with byte 8 through 4(N+2). Note this value is the number of Dwords where each Dword is 4 bytes.  
Transaction video line number [7:0]  
IDID0  
IDID1  
Bit 0/1 Transaction video line number [9:8]  
Bit 2 Match 2 flag  
Bit 3 Match 1 flag  
Bit 4 1 if an error was detected in the EDC block. 0 if not.  
CS  
Sum of D0D7 of DID through last data byte.  
2.6.1 Raw Video Data Output  
The TVP5150 can output raw A/D video data at 2x sampling rate for external VBI slicing. This is transmitted  
as an ancillary data block, a bit differently from the way the sliced VBI data is transmitted in FIFO format, as  
described in the previous section. First, the samples are transmitted during the active portion of the line. The  
ITU-R BT.656 spec requires that a preamble code of 00h FFh FFh ZZh be transmitted where, if ZZh is anything  
other that 15h, it indicates the presence of ancillary data immediately following the preamble. Also, a preamble  
of 00h FFh FFh 15h should be inserted after the ancillary data to indicate that the remainder of the line is  
available for the insertion of further ancillary signals.  
2.6.2 Output Formatter  
The YUV digital output can be programmed as 8-bit 4:2:2 or 8-bit ITU-R BT.656 parallel interface standard.  
This circuit also detects pseudo sync pulses, AGC pulses, and color striping in copy protected material  
according to Macrovision specification and retrieves VBI information. S-video bypasses the Y/C separation  
block.  
The different formats that are supported and the corresponding sampling frequencies are listed in Table 23.  
13  
SLES043 September 2002  
TVP5150  
Detailed Description  
Table 23. Output Formatter Supported Formats  
MODES  
DATA CLOCK  
FREQUENCY  
PINS  
EMBEDDED SYNCS,  
VBI DATA, RAW DATA  
STANDARDS  
SUPPORTED  
8-bit ITU-R BT.656  
8-bit 4:2:2  
2xPCLK  
(SCLK)  
Ch(7-0) YCbCr  
Syncs optional  
VBI optional (edge prog)  
Raw data optional  
NTSC/PAL  
YUV output  
2xPCLK  
(SCLK)  
Ch(7-0) YCbCr  
Syncs optional  
VBI optional (edge prog)  
Raw data optional  
Any standard  
YUV output  
Figure 213 explains the different modes.  
NOTE:8-bit mode uses only eight MSBs of output ports.  
SCLK  
Y[9:0]  
U0  
Y0  
V0  
Y1  
U1  
Y2  
U359 Y718 V359 Y719  
UV[9:0]  
HIGH  
Numbering shown is for 13.5-MHz sampling  
Figure 213. 8-Bit YCbCr 4:2:2 Mode  
14  
TVP5150  
SLES043 September 2002  
Detailed Description  
2.7 Synchronization Signals  
Non-data stream embedded syncs are provided via the following signals:  
VSYNC (vertical sync)  
FID/VLK (field indicator or vertical lock indicator)  
GPCL/VBLK (general-purpose IO or vertical blanking indicator)  
PALI/HLK (PAL switch indicator or horizontal lock indicator)  
HSYN (horizontal sync)  
AVID (active video indicator)  
In hardware, VSYN, FID, PALI, and VBLK are software set and double buffered to an independent  
programmable SCLK pixel count. This allows any possible alignment to the internal pixel count and line count.  
The proper settings for a 525-line video output are given as an example below.  
525-Line  
525  
1
2
3
4
5
6
7
8
9
10  
11  
21  
22  
23  
Composite Video  
Odd Field  
VSYN  
FID  
VBLK  
262 263 264 265 266 267 268 269 270 271 272 273  
283 284 285  
Composite Video  
Even Field  
VSYN  
FID  
VBLK  
Note 1. Line numbering conforms to ITU-R BT.470  
FID  
Horizontal Detail  
(Default HSYN Timing)  
HSYN  
Figure 214. 525-Line Vertical Synchronization Signal  
15  
SLES043 September 2002  
TVP5150  
Detailed Description  
HSYN is start (SCLK) pixel programmable with a fixed duration of 128 SCLKs. AVID has both start and stop  
pixels programmable and can be programmed to be inactive during the VBI, which is the default mode of  
operation. Note that when using embedded syncs AVID occurs four pixels before the first active pixel, aligning  
with the SAV code.  
625-Line  
310 311 312 313 314 315 316 317 318 319 320  
334 335 336 337  
Composite Video  
Odd Field  
VSYN  
FID  
GPCL/VBLK  
622 623 624 625  
1
2
3
4
5
6
7
21  
22  
23  
24  
Composite Video  
Even Field  
VSYN  
FID  
GPCL/VBLK  
Note 1. Line numbering conforms to ITU-R BT.470  
Figure 215. 625-Line Vertical Synchronization Signal  
8-bit 4:2:2 timing with 2x pixel clock (SCLK) reference. Shown with and without embedded syncs.  
NTSC 1438 1439 1440  
601  
...  
...  
...  
1471 1472  
...  
...  
...  
1599 1600  
...  
...  
...  
1711 1712 1713 1714 1715  
0
1
8-Bit  
Cr  
Y
Cb  
Y
Cb  
80  
Y
Cb  
80  
Y
Cb  
Y
Cr  
00  
Y
Cb  
0
Y
0
ITU  
656  
Cr  
359  
Y
719  
FF  
EAV  
10  
10  
10  
FF  
00  
XX  
Cb  
0
Y
0
SAV  
HSYN  
AVID  
NOTE: The AVID rising edge occurs 4 SCLK cycles early when in the ITU-R BT.656 output mode.  
Figure 216. Horizontal Synchronization Signals  
2.7.1 Embedded Syncs  
Standards with embedded syncs insert SAV and EAV codes into the data stream on the rising and falling edge  
of AVID. These codes contain the V and F bits, which also define vertical timing. F and V are software  
programmable and change after SAV but before EAV, so that the new value always appears on EAV first.  
Table 24 gives the format of the SAV and EAV codes.  
H = 1 always indicates EAV. H = 0 always indicates SAV. The alignment of V and F to the line and field counter  
varies depending on the standard.  
16  
TVP5150  
SLES043 September 2002  
Detailed Description  
Table 24. Format of the SAV and EAV Codes  
D7  
1
D6  
D5  
1
D4  
1
D3  
1
D2  
1
D1  
1
D0  
Preamble  
Preamble  
Preamble  
Status word  
1
0
1
0
0
0
F
0
0
0
0
0
0
0
0
0
0
0
0
1
V
H
P3  
P2  
P1  
P0  
The P bits are protection bits:  
P3 = V xor H; P2 = F xor H; P1 = F xor V; P0 = F xor V xor H  
2.7.2 HLK and VLK  
HLK and VLK outputs can be selected to replace PALI and FID respectively. These signals are quasi-static.  
They only change state when out of horizontal or vertical lock.  
2.7.3 Clock Circuits  
An internal line-locked PLL generates the system and pixel clocks. Figure 217 shows a simplified clock circuit  
diagram. The digital control oscillator (DCO) generates the reference signal for the horizontal PLL. A  
14.318-MHz clock is required to drive the DCO. This may be input to TVP5150 at TTL level on the XTAL1  
terminal, or a crystal of 14.318-MHz fundamental resonant frequency may be connected across terminals  
XTAL1 and XTAL2. The next figure shows the reference clock configurations. For the example crystal circuit  
shown, (a parallel-resonant crystal with 14.328-MHz fundamental frequency), the external capacitors must  
have the following relationship:  
CL1 = CL2 = 2CL C(stray)  
Where C(stray) is the terminal capacitance with respect to ground. Note that with the crystal oscillator an  
external 4.53-kresistor is required across XTAL1 and XTAL2 terminals.  
Digitized  
Video  
Phase  
Detector  
Loop  
Filter  
Low-Pass Filter  
Sync Detector  
XTAL1  
XTAL2  
Crystal  
Clock  
Generator  
Digital  
Control  
Oscillator  
Clock  
Generation  
Circuit  
SCLK  
PCLK  
Line-Locked  
Clock  
PLL  
14.31818-MHz  
Crystal  
TVP5040  
TVP5040  
C
L1  
35  
36  
35  
36  
14.31818-MHz  
TTL Clock  
XTAL1  
XTAL2  
XTAL1  
XTAL2  
R
C
L2  
Figure 217. Reference Clock Configurations  
17  
SLES043 September 2002  
TVP5150  
Detailed Description  
2.7.4 Phase-Locked Loop  
The PLL provides the device with the necessary clocks. Clocks are provided to the ADC, for luma and chroma  
processing, audio block, and the scaling blocks.  
The self-biasing PLL minimizes jitter and processes environmental variability. It is capable of operating off a  
single crystal frequency with a high supply rejection ratio.  
2.7.5 Genlock  
A Genlock control function is provided to support a standard video encoder to synchronize its internal color  
phase DCO for a clean video line and color lock. The Genlock is compatible with the Phillips RTC and the TI  
proprietary Genlock schemes.  
2.7.6 TVP5150 Genlock Control Interface  
The frequency control word of the internal color subcarrier digital control oscillator (DCO) and the subcarrier  
phase reset bit are transmitted via the GLCO terminal. The frequency control word is a 23-bit binary number.  
The frequency of the DCO can be calculated from the following equation:  
Fctrl  
223  
Fdco +  
  Fsclk  
Where Fdco is the frequency of the DCO, Fctrl is the 23-bit DCO frequency control, and Fsclk is the frequency  
of the SCLK. The last bit (bit 0) of the DCO frequency control is always 0.  
Awriteof1tobit4ofthechrominancecontrolregisteratHOSTPORTsub-address1Ahcausesthesub-carrier  
DTO phase reset bit to be sent on the next scan line on GLCO. The active low reset bit occurs 7 SCLKs after  
the transmission of the last bit of DCO frequency control. Upon the transmission of the reset bit, the phase  
of the TVP5150 internal subcarrier DCO is reset to zero.  
This interface provides a method to signal a subcarrier DTO phase reset on the next scan line.  
A genlocking slave device can be connected to the GLCO terminal and use the information on GLCO to  
synchronize ins internal color phase DCO to achieve clean line and color lock.  
SCLK  
GLCO  
MSB  
21  
LSB  
0
22  
>128 SCLK  
23 SCLK  
7 SCLK  
23-Bit Frequency Control  
1 SCLK  
1 SCLK  
Start Bit  
Reset Bit  
Figure 218. GCLO Timing  
2.8 Scaling/Windowing Functionality  
2.8.1 Scaling  
Scaling can be done vertically and horizontally. The device is able to scale by ratios of:  
DOWNSCALE  
Vertically  
1/32x  
1/32x  
Horizontally  
18  
TVP5150  
SLES043 September 2002  
Detailed Description  
The device does not allow changing frame rates. Only the number of lines per frame or field and the number  
of pixels per line can be changed. The change takes place on a frame or field basis.  
For the horizontal scaling, an optimized 32 phase 5 tap polyphase filter is used for both chroma and luma. This  
filter acts as an anti-aliasing interpolation filter. The filter has different settings allowing it to change based on  
the scaling ratio.  
For the vertical filter a novel algorithm is developed. This algorithm allows for different settings of the length  
and filter coefficients based on the scaling ratio. This change of the settings is transparent to the user.  
The scaler allows the user to define the desired scaled image size with a resolution of 2 pixels horizontally  
and vertically. Registers are provided for the user to allow this control of the horizontal and vertical size.  
The interface to the user is the number of horizontal pixels and vertical lines that are to be used. The input  
to the scaler is from the windowing interface (explained in the next section).  
2.8.2 Windowing  
The device also supports windowing, which basically allows the user to decide the active video window within  
the original video data. The user has control over the starting (top left corner) and end point (bottom right  
corner) of the window. An external signal (AVID) is active during the time when the valid video data, based  
on the window defined, is output from the device.  
The windowing takes place before the data is scaled. The user could define the area of interest and then scale  
it to the desired resolution.  
2.8.3 Temporal Decimation  
To reduce the frame rate coming out the device, it is necessary to drop frames/fields depending on the user  
input. Normally this feature is used when the bandwidth of the backend processor is not able to handle real  
time video. In this case, the number of frames per second output by the device can be configured.  
If the backend processor handles the dropping of frames, then there is a possibility of the output being bursty.  
The TVP5150 ensures an equal distribution of frame dropping from the maximum set of frames available.  
The TVP5150 can be configured to drop frames either on a frame or field basis. The user can also configure  
the device to start at either odd or even frame boundaries, or to suppress selectively only odd or even fields.  
AVID determines whether the data is active or not. Hence, it is disabled (high) when the field/frame is dropped.  
2.9 Interfacing to the DSC24, TI DSP  
2.9.1 Audio  
When the DSC24 needs to communicate with an audio codec, the interface would just require an audio clock.  
This clock is provided by the audio interface available on the TVP5150.  
2.9.2 Video  
The DSC24has a standard interface for video signals. It accepts YUV4:2:2 16-bit component input data, along  
with the pixel clock and the horizontal and vertical syncs. Table 25 shows the pin descriptions and the  
corresponding pins on the TVP5150.  
Table 25. Pin Descriptions  
TYP5150 PIN NAME  
PCLK  
DSC24 PIN NAME  
PCLK  
I/O ON TVP4150  
DESCRIPTION  
O
O
O
O
Pixel clock for the data  
YOUT(7:0)  
YIN(7:0)  
HDIN  
ITU 656 output from TVP5150  
HSYNC  
Horizontal synchronization to the DSC24  
Vertical synchronization to the DSC24  
VSYNC  
VDIN  
The 8 MSBs of the 9-bit bus  
19  
SLES043 September 2002  
TVP5150  
Electrical Specifications  
3
Electrical Specifications  
3.1 Absolute Maximum Ratings  
Digital power supply voltage, DV  
Analog power supply voltage, AV  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to TBD V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to TBD V  
DD  
DD  
Digital input voltage, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to DV +0.3 V  
I
DD  
Operating free-air temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
Storage temperature, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Maximum total power dissipation, P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
D
Stresses beyond those listed under Absolute Maximum Ratingsmay cause permanent damage to the device. These are stress ratings only and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
3.2 Recommended Operating Conditions  
MIN NOM  
MAX  
UNIT  
DV  
Digital supply voltage  
1.8  
V
V
DD  
AV  
Analog supply voltage  
1.8  
DD  
IODV  
DD  
Digital I/O supply voltage  
Analog input voltage (ac-coupling necessary)  
Digital input voltage high  
Digital input voltage low  
1.8/3.3  
V
V
V
V
V
V
0.5  
2
1.26  
0.8  
1
V
I(PP)  
V
IH  
IL  
V
2
(I C)  
2
Input voltage high, VC0 and VC1 in I C mode  
2.3  
V
IH  
2
(I C)  
2
Input voltage low, VC0 and VC1 in I C mode  
V
IL  
I
I
Output current, V  
Output current, V  
= 2.4 V  
= 0.4 V  
4  
6
8  
mA  
mA  
°C  
OH  
out  
8
OL  
out  
T
Operating free-air temperature  
0
70  
A
3.2.1 Crystal Specifications  
CRYSTAL/CLOCK SPECIFICATIONS  
MIN  
NOM  
MAX  
UNIT  
MHz  
ppm  
Frequency  
14.31818  
Frequency tolerance  
±50  
3.3 Electrical Characteristics  
Test conditions: DV  
= 1.8 V, AV  
= 1.8 V, T = 70°C (unless otherwise specified)  
DD  
DD A  
3.3.1 DC Electrical Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
35  
MAX  
UNIT  
mA  
mA  
µA  
pF  
DI  
DD  
Digital supply current  
Analog supply current  
Input leakage current  
Input capacitance  
AI  
DD  
30  
I
TBD  
TBD  
TBD  
TBD  
lkg  
C
By design  
i
V
OH  
V
OL  
High-level output voltage  
Low-level output voltage  
V
V
NOTE: Measured with a load of 10 kin parallel to 15 pF.  
20  
TVP5150  
SLES043 September 2002  
Application Information  
4
Application Information  
S-Video  
Source  
Analog  
TV  
(VCR/DVD/VCD...)  
Tuner  
TVP5150  
Low-Power Video  
Decoder with  
Scaler  
Backend  
Video  
LCD Panel  
of  
Processor  
Handheld  
Audio  
Decoder  
Memory  
Storage  
Transmit  
21  
SLES043 September 2002  
TVP5150  
Mechanical Data  
5
Mechanical Data  
PBS (S-PQFP-G32)  
PLASTIC QUAD FLATPACK  
0,23  
0,17  
M
0,50  
24  
0,08  
17  
25  
16  
32  
9
0,13 NOM  
1
8
3,50 TYP  
Gage Plane  
5,05  
4,95  
SQ  
SQ  
0,25  
7,10  
6,90  
0,10 MIN  
0°ā7°  
0,70  
0,40  
1,05  
0,95  
Seating Plane  
0,08  
1,20 MAX  
4087735/A 11/95  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
22  
TVP5150  
SLES043 September 2002  

相关型号:

TVP5150A

ULTRALOW POWER NTSC/PAL/SECAM VIDEO DECODER WITH REBUST SYNC DETECTOR
TI

TVP5150AM1

ULTRALOW POWER NTSC/PAL/SECAM VIDEO DECODER WITH REBUST SYNC DETECTOR
TI

TVP5150AM1-EP

Ultralow-Power NTSC/PAL/SECAM Video Decoder
TI

TVP5150AM1IPBS

Ultralow-Power NTSC,PAL,SECAM Video Decoder
TI

TVP5150AM1IPBSQ1

Ultralow-Power NTSC,PAL,SECAM Video Decoder
TI

TVP5150AM1IPBSR

Ultralow-Power NTSC,PAL,SECAM Video Decoder
TI

TVP5150AM1IPBSRQ

Ultralow-Power NTSC,PAL,SECAM Video Decoder
TI

TVP5150AM1IPBSRQ1

COLOR SIGNAL DECODER, PQFP32, PLASTIC, TQFP-32
TI

TVP5150AM1IZQC

Ultralow-Power NTSC,PAL,SECAM Video Decoder
TI

TVP5150AM1IZQCR

Ultralow-Power NTSC,PAL,SECAM Video Decoder
TI

TVP5150AM1LGQCR

IC,TV/VIDEO CIRCUIT,VIDEO DECODER,BGA,48PIN,PLASTIC
TI

TVP5150AM1MPBSREP

Ultralow-Power NTSC/PAL/SECAM Video Decoder
TI