TVS0500DRVR [TI]

5V 平缓钳位浪涌保护器件 | DRV | 6 | -40 to 125;
TVS0500DRVR
型号: TVS0500DRVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

5V 平缓钳位浪涌保护器件 | DRV | 6 | -40 to 125

文件: 总22页 (文件大小:1951K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TVS0500  
ZHCSHJ8C DECEMBER 2017REVISED NOVEMBER 2019  
TVS0500 5V 平缓钳位浪涌保护器件  
1 特性  
3 说明  
1
保护特性符合针对工业信号线路的 2kV42Ω IEC  
TVS0500 可将高达 43A IEC 61000-4-5 故障电流进  
61000-4-5 浪涌测试要求  
43A8/20µs 浪涌电流下的最大钳位电压为 9.2V  
关断电压:5V  
行可靠分流,以保护系统免受高功率瞬态冲击或雷击。  
该器件为满足常见的工业信号线路 EMC 要求提供了解  
决方案,可通过 42Ω 电阻进行耦合的方式承受最高  
2kV IEC 61000-4-5 开路电压。TVS0500 使用独特的  
反馈机制确保在故障期间发挥精确的平缓钳位能力,保  
证系统接触电压低于 10V。精确的电压调节允许设计  
人员放心地选择具有较低电压容差的系统组件,不但减  
少了系统成本和复杂度,而且不损害可靠性。  
4mm2 小型封装尺寸  
125°C 时,可耐受超过 5,000 次的 35A 8/20µs  
浪涌电流的重复冲击  
强大的浪涌保护:  
IEC61000-4-5 (8/20µs)43A  
IEC61643-321 (10/1000µs)22A  
此外,TVS0500 还采用 2mm × 2mm 小型 SON 封  
装,非常适用于空间受限 应用,与业内标准的 SMA  
SMB 封装相比,尺寸减小了 70%。极低的器件泄  
露电流和电容确保最大限度地降低了对受保护线路的影  
响。为了确保在产品的整个寿命期间提供可靠保护,TI  
在高温环境下对 TVS0500 进行了 5000 次重复浪涌冲  
击测试,但器件性能未发生任何变化。  
低泄漏电流  
27°C 下为 70pA(典型值)  
85°C 下为 6.5nA(典型值)  
低电容:155pF  
集成 4 IEC 61000-4-2 ESD 保护  
2 应用  
工业传感器  
TVS0500 TI 的平缓钳位系列浪涌器件中的一款产  
PLC I/O 模块  
5V 电源线路  
电器  
品。有关该系列其他器件的更多信息,请参阅器件比较  
器件信息(1)  
医疗设备  
智能仪表  
器件型号  
TVS0500  
封装  
SON (6)  
封装尺寸(标称值)  
2.00mm × 2.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
封装比较  
8/20µs 浪涌事件的电压钳位响应  
TVS0500 Flat-Clamp  
DRV Footprint  
2mm x 2mm  
Conventional TVS  
SMB Footprint  
3.55mm x 5.3mm  
10  
20  
30  
Time (s)  
Traditional TVS  
TI Flat-Clamp  
Copyright © 2018, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSED2  
 
 
 
TVS0500  
ZHCSHJ8C DECEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
目录  
8.3 Feature Description................................................... 9  
8.4 Reliability Testing...................................................... 9  
8.5 Device Functional Modes ......................................... 9  
Application and Implementation ........................ 11  
9.1 Application Information............................................ 11  
9.2 Typical Application ................................................. 11  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings - JEDEC .............................................. 5  
7.3 ESD Ratings - IEC .................................................... 5  
7.4 Recommended Operating Conditions....................... 5  
7.5 Thermal Information.................................................. 5  
7.6 Electrical Characteristics........................................... 6  
7.7 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 9  
8.1 Overview ................................................................... 9  
8.2 Functional Block Diagram ......................................... 9  
9
10 Power Supply Recommendations ..................... 12  
11 Layout................................................................... 13  
11.1 Layout Guidelines ................................................. 13  
11.2 Layout Example .................................................... 13  
12 器件和文档支持 ..................................................... 14  
12.1 接收文档更新通知 ................................................. 14  
12.2 社区资源................................................................ 14  
12.3 ....................................................................... 14  
12.4 静电放电警告......................................................... 14  
12.5 Glossary................................................................ 14  
13 机械、封装和可订购信息....................................... 14  
8
4 修订历史记录  
Changes from Revision B (February 2018) to Revision C  
Page  
Fixed grammar error in the Reliability Testing section ........................................................................................................... 9  
Changes from Revision A (February 2018) to Revision B  
Page  
Changed DC Breakdown Current MAX from 100 to 50 in the Specifications Absolute Maximum Ratings table ................. 5  
Changed Break-down Voltage MIN from 7.6 to 7.5 and MAX from 8.2 to 8.4 in the Specifications Electrical  
Characteristics table ............................................................................................................................................................... 5  
Changes from Original (December 2017) to Revision A  
Page  
2
Copyright © 2017–2019, Texas Instruments Incorporated  
 
TVS0500  
www.ti.com.cn  
ZHCSHJ8C DECEMBER 2017REVISED NOVEMBER 2019  
5 Device Comparison Table  
Vrwm leakage  
Device  
Vrwm  
Vclamp at Ipp  
Ipp (8/20 µs)  
Package Options  
Polarity  
(nA)  
0.07  
2
TVS0500  
TVS1400  
TVS1800  
TVS2200  
TVS2700  
TVS3300  
5
9.2  
18.4  
22.8  
27.7  
32.5  
38  
43  
43  
40  
40  
40  
35  
SON  
SON  
Unidirectional  
Unidirectional  
Unidirectional  
Unidirectional  
Unidirectional  
Unidirectional  
14  
18  
22  
27  
33  
0.5  
3.2  
1.7  
19  
SON  
SON  
SON  
WCSP, SON  
Copyright © 2017–2019, Texas Instruments Incorporated  
3
TVS0500  
ZHCSHJ8C DECEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
6 Pin Configuration and Functions  
DRV Package  
6-Pin SON  
Top View  
1
6
5
4
GND  
GND  
IN  
IN  
IN  
2
3
GND  
GND  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
No.  
IN  
4, 5, 6  
I
ESD and surge protected channel  
Ground  
1, 2, 3, exposed thermal  
pad  
GND  
GND  
4
Copyright © 2017–2019, Texas Instruments Incorporated  
TVS0500  
www.ti.com.cn  
ZHCSHJ8C DECEMBER 2017REVISED NOVEMBER 2019  
7 Specifications  
7.1 Absolute Maximum Ratings  
TA = 27(unless otherwise noted)(1)  
MIN  
MAX  
43  
UNIT  
A
IEC 61000-4-5 Current (8/20 µs)  
IEC 61000-4-5 Power (8/20 µs)  
IEC 61643-321 Current (10/1000 µs)  
IEC 61643-321 Power (10/1000 µs)  
IEC 61000-4-5 Current (8/20 µs)  
IEC 61000-4-5 Power (8/20 µs)  
IEC 61643-321 Current (10/1000 µs)  
IEC 61643-321 Power (10/1000 µs)  
IEC 61000-4-4 EFT Protection  
DC Breakdown Current  
400  
20  
W
Maximum  
Surge  
A
180  
50  
W
A
80  
W
Maximum  
Forward Surge  
23  
A
60  
W
EFT  
IBR  
IF  
80  
A
50  
mA  
mA  
°C  
°C  
DC Forward Current  
500  
125  
150  
TA  
Ambient Operating Temperature  
Storage Temperature  
-40  
-65  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings - JEDEC  
VALUE  
UNIT  
Human body model (HBM), per  
±2000  
ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 ESD Ratings - IEC  
VALUE  
UNIT  
IEC 61000-4-2 contact discharge  
IEC 61000-4-2 air-gap discharge  
±24  
±30  
V(ESD)  
Electrostatic discharge  
kV  
7.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
VRWM  
Reverse Stand-off Voltage  
5
V
7.5 Thermal Information  
TVS0500  
DRV (SON)  
6 PINS  
70.4  
THERMAL METRIC(1)  
UNIT  
RqJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
°C/W  
°C/W  
°C/W  
°C/W  
RqJC(top)  
RqJB  
73.7  
40  
YJT  
2.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2017–2019, Texas Instruments Incorporated  
5
TVS0500  
ZHCSHJ8C DECEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
Thermal Information (continued)  
TVS0500  
DRV (SON)  
6 PINS  
40.3  
THERMAL METRIC(1)  
UNIT  
YJB  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
°C/W  
°C/W  
RqJC(bot)  
11  
7.6 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.07  
6.5  
38  
MAX  
UNIT  
nA  
nA  
nA  
V
Measured at VIN = VRWM, TA = 27°C  
Measured at VIN = VRWM, TA = 85°C  
Measured at VIN = VRWM, TA = 105°C  
IIN = 1 mA from GND to IO  
5.5  
220  
755  
0.65  
8.4  
ILEAK  
Leakage Current  
VF  
Forward Voltage  
0.25  
7.5  
0.5  
7.9  
VBR  
Break-down Voltage  
IIN = 1 mA from IO to GND  
V
35 A IEC 61000-4-5 Surge (8/20 µs)  
from GND to IO, 27°C  
VFCLAMP Forward Clamp Voltage  
2
8.6  
9.2  
9.2  
30  
5
8.8  
9.5  
9.5  
50  
V
24 A IEC 61000-4-5 Surge (8/20 µs)  
from IO to GND, VIN = 0 V before surge,  
27°C  
V
43 A IEC 61000-4-5 Surge (8/20 µs) from  
IO to GND, VIN = 0 V before surge, 27°C  
VCLAMP  
Clamp Voltage  
V
35 A IEC 61000-4-5 Surge (8/20 µs)  
from IO to GND, VIN = VRWM before  
surge, TA = 125°C  
V
Calculated from VCLAMP at .5*Ipp and Ipp  
surge current levels, 27°C  
RDYN  
8/20 µs surge dynamic resistance  
m  
VIN = 5 V, f = 1 MHz, 30 mVpp, IO to  
GND  
CIN  
SR  
Input pin capacitance  
Maximum Slew Rate  
155  
2.5  
pF  
0-VRWM rising edge, sweep rise time and  
measure slew rate when IPEAK = 1 mA,  
27°C  
V/µs  
0-VRWM rising edge, sweep rise time and  
measure slew rate when IPEAK = 1 mA,  
105°C  
0.7  
V/µs  
6
版权 © 2017–2019, Texas Instruments Incorporated  
TVS0500  
www.ti.com.cn  
ZHCSHJ8C DECEMBER 2017REVISED NOVEMBER 2019  
7.7 Typical Characteristics  
45  
40  
35  
30  
25  
20  
15  
10  
5
12  
11  
10  
9
48  
TVS0500 Voltage  
Surge Current  
-40°C  
Current (A)  
25°C  
105°C  
125°C  
44  
40  
36  
32  
28  
24  
20  
16  
12  
8
8
7
6
5
4
3
2
1
4
0
0
0
-5  
-1  
-4  
0
10  
20  
Time (ms)  
30  
40  
50  
0
10  
20  
30  
Time (ms)  
40  
50  
60  
D001  
D002  
1. 8/20 µs Surge Response at 43 A  
2. 8/20 µs Surge Response at 35 A Across Temperature  
400  
360  
320  
280  
240  
200  
160  
120  
80  
200  
175  
150  
125  
100  
75  
50  
25  
0 V Bias  
2.5 V Bias  
5 V Vias  
0
40  
0
-25  
-40 -20  
0
20 40 60 80 100 120 140 160 180  
Temperature (°C)  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D003  
D004  
f = 1 MHz, 30 mVpp, IO to GND  
3. Capacitance vs Temperature Across Bias  
4. Leakage Current vs Temperature at 5 V  
0.0012  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-40°C  
25°C  
105°C  
125°C  
0.0009  
0.0006  
0.0003  
0
-0.0003  
-0.0006  
-0.0009  
-0.0012  
-1  
0
1
2
3
4
Voltage (V)  
5
6
7
8
9
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D005  
D006  
5. I/V Curve Across Temperature  
6. Forward Voltage vs Temperature  
版权 © 2017–2019, Texas Instruments Incorporated  
7
TVS0500  
ZHCSHJ8C DECEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
8.3  
8.25  
8.2  
8.15  
8.1  
8.05  
8
7.95  
7.9  
7.85  
7.8  
7.75  
7.7  
7.65  
7.6  
45  
40  
35  
30  
25  
20  
15  
10  
5
7.55  
7.5  
0
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-50  
-30  
-10  
10  
30 50  
Temperature (°C)  
70  
90  
110 130  
D008  
D007  
7. Breakdown Voltage (1 mA) vs Temperature  
8. Max Surge Current (8/20 µs) vs Temperature  
100  
Leakage (-40èC)  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Leakage (25èC)  
Leakage (85èC)  
Leakage (105èC)  
Leakage (125èC)  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Slew Rate (V/ms)  
3
D009  
9. Dynamic Leakage vs Signal Slew Rate across Temperature  
8
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
TVS0500  
www.ti.com.cn  
ZHCSHJ8C DECEMBER 2017REVISED NOVEMBER 2019  
8 Detailed Description  
8.1 Overview  
The TVS0500 is a precision clamp with a low, flat clamping voltage during transient overvoltage events like surge  
and protecting the system with zero voltage overshoot.  
8.2 Functional Block Diagram  
IN  
Voltage Level  
Detection  
Power FET  
Driver  
GND  
8.3 Feature Description  
The TVS0500 is a precision clamp that handles 43 A of IEC 61000-4-5 8/20 µs surge pulse. The flat clamping  
feature helps keep the clamping voltage very low to keep the downstream circuits from being stressed. The flat  
clamping feature can also help end-equipment designers save cost by opening up the possibility to use lower-  
cost, lower voltage tolerant downstream ICs. The TVS0500 has minimal leakage under the standoff voltage of 5  
V, making it an ideal candidate for applications where low leakage and power dissipation is a necessity. IEC  
61000-4-2 and IEC 61000-4-4 ratings make it a robust protection solution for ESD and EFT events. Wide  
ambient temperature range of –40°C to +125°C a good candidate for most applications. Compact packages  
enable it to be used in small devices and save board area.  
8.4 Reliability Testing  
To ensure device reliability, the TVS0500 is characterized against 5000 repetitive pulses of 35 A IEC 61000-4-5  
8/20 µs surge pulses at 125°C. The test is performed with less than 10 seconds between each pulse at high  
temperature to simulate worst case scenarios for fault regulation. After each surge pulse, the TVS0500 clamping  
voltage, breakdown voltage, and leakage are recorded to ensure that there is no variation or performance  
degradation. By ensuring robust, reliable, high temperature protection, the TVS0500 enables fault protection in  
applications that must withstand years of continuous operation with no performance change.  
8.5 Device Functional Modes  
8.5.1 Protection Specifications  
The TVS0500 is specified according to both the IEC 61000-4-5 and IEC 61643-321 standards. This enables  
usage in systems regardless of which standard is required in relevant product standards or best matches  
measured fault conditions. The IEC 61000-4-5 standards requires protection against a pulse with a rise time of 8  
µs and a half length of 20 µs, while the IEC 61643-321 standard requires protection against a much longer pulse  
with a rise time of 10 µs and a half length of 1000 µs.  
版权 © 2017–2019, Texas Instruments Incorporated  
9
TVS0500  
ZHCSHJ8C DECEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
Device Functional Modes (接下页)  
The positive and negative surges are imposed to the TVS0500 by a combinational waveform generator (CWG)  
with a 2-Ω coupling resistor at different peak voltage levels. For powered on transient tests that need power  
supply bias, inductances are usually used to decouple the transient stress and protect the power supply. The  
TVS0500 is post tested by assuring that there is no shift in device breakdown or leakage at Vrwm  
.
In addition, the TVS0500 has been tested according to IEC 61000-4-5 to pass a ±2 kV surge test through a 42-Ω  
coupling resistor and a 0.5 µF capacitor. This test is a common test requirement for industrial signal I/O lines and  
the TVS0500 will serve an ideal protection solution for applications with that requirement.  
The TVS0500 allow integrates IEC 61000-4-2 level 4 ESD Protection and 80 A of IEC 61000-4-4 EFT Protection.  
These combine to ensure that the device can protect against most transient conditions regardless of length or  
type.  
For more information on TI's test methods for Surge, ESD, and EFT testing, reference TI's IEC 61000-4-x  
Testing Application Note  
8.5.2 Minimal Derating  
Unlike traditional diodes the TVS0500 has very little derating of max power dissipation and ensures robust  
performance up to 125°C, shown in 8. Traditional TVS diodes lose up to 50% of their current carrying  
capability when at high temperatures, so a surge pulse above 85°C ambient can cause failures that are not seen  
at room temperature. The TVS0500 prevents this and ensures that you will see the same level of protection  
regardless of temperature.  
8.5.3 Transient Performance  
During large transient swings, the TVS0500 will begin clamping the input signal to protect downstream  
conditions. While this prevents damage during fault conditions, it can cause leakage when the intended input  
signal has a fast slew rate. In order to keep power dissipation low and remove the chance of signal distortion, it  
is recommended to keep the slew rate of any input signal on the TVS0500 below 2.5 V/µs at room temperature  
and below 0.7 V/µs at 125°C shown in 9. Faster slew rates will cause the device to clamp the input signal and  
draw current through the device for a few microseconds, increasing the rise time of the signal. This will not cause  
any harm to the system or to the device, however if the fast input voltage swings occur regularly it can cause  
device overheating.  
10  
版权 © 2017–2019, Texas Instruments Incorporated  
TVS0500  
www.ti.com.cn  
ZHCSHJ8C DECEMBER 2017REVISED NOVEMBER 2019  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TVS0500 can be used to protect any power, analog, or digital signal from transient fault conditions caused  
by the environment or other electrical components.  
9.2 Typical Application  
TPS768  
Connector  
IN  
OUT  
B2  
IN  
TVS0500  
GND  
A2  
Copyright © 2018, Texas Instruments Incorporated  
10. TVS0500 Application Schematic  
9.2.1 Design Requirements  
A typical operation for the TVS0500 would be protecting a nominal 5 V input to an LDO similar to 10. In this  
example, the TVS0500 is protecting the input to a TPS768, a standard 1 A LDO with an input voltage range of  
2.7 V to 10 V. Without any input protection, if a surge event is caused by lightning, coupling, ringing, or any other  
fault condition this input voltage will rise to hundreds of volts for multiple microseconds, violating the absolute  
maximum input voltage and harming the device. An ideal surge protection diode will maximize the useable  
voltage range while still clamping at a safe level for the system, TI's Flat-Clamp technology provides the best  
protection solution.  
9.2.2 Detailed Design Procedure  
If the TVS0500 is in place to protect the device, during a surge event the voltage will rise to the breakdown of the  
diode at 7.9 V, and then the TVS0500 will turn on, shunting the surge current to ground. With the low dynamic  
resistance of the TVS0500, large amounts of surge current will have minimal impact on the clamping voltage.  
The dynamic resistance of the TVS0500 is around 30 mΩ, which means 30 A of surge current will cause a  
voltage raise of 30 A × 30 m= 0.9 V. Because the device turns on at 7.9 V, this means the LDO input will be  
exposed to a maximum of 7.9 V + 0.9 V = 8.8 V during surge pulses, well within the absolute maximum input  
voltage. This ensures robust protection of your circuit.  
The small size of the device also improves fault protection by lowering the effect of fault current coupling onto  
neighboring traces. The small form factor of the TVS0500 allows the device to be placed extremely close to the  
input connector, lowering the length of the path fault current will take through the system compared to larger  
protection solutions.  
Finally, the low leakage of the TVS0500 will have low input power losses. At 5 V, the device will see typical 70  
pA leakage for a constant power dissipation of less than 1 nW, a negligible quantity that will not effect overall  
efficiency metrics or add heating concerns.  
版权 © 2017–2019, Texas Instruments Incorporated  
11  
 
TVS0500  
ZHCSHJ8C DECEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
Typical Application (接下页)  
9.2.3 Configuration Options  
The TVS0500 can be used in either unidirectional or bidirectional configuration. 10 shows unidirectional usage  
to protect an input. By placing two TVS0500's in series with reverse orientation, bidirectional operation can be  
used, allowing a working voltage of ±5 V. TVS0500 operation in bidirectional will be similar to unidirectional  
operation, with a minor increase in breakdown voltage and clamping voltage. The TVS3300 bidirectional  
performance has been characterized in the TVS3300 Configurations Characterization. While the TVS0500 in  
bidirectional configuration has not specifically been characterized, it will have similar relative changes to the  
TVS3300 in bidirectional configuration.  
10 Power Supply Recommendations  
The TVS0500 is a clamping device so there is no need to power it. To ensure the device functions properly do  
not violate the recommended VIN voltage range (0 V to 5 V) .  
12  
版权 © 2017–2019, Texas Instruments Incorporated  
TVS0500  
www.ti.com.cn  
ZHCSHJ8C DECEMBER 2017REVISED NOVEMBER 2019  
11 Layout  
11.1 Layout Guidelines  
The optimum placement is close to the connector. EMI during an ESD event can couple from the trace being  
struck to other nearby unprotected traces, resulting in early system failures. The PCB designer must minimize  
the possibility of EMI coupling by keeping any unprotected traces away from the protected traces which are  
between the TVS and the connector.  
Route the protected traces straight.  
Eliminate any sharp corners on the protected traces between the TVS0500 and the connector by using rounded  
corners with the largest radii possible. Electric fields tend to build up on corners, increasing EMI coupling.  
11.2 Layout Example  
GND Plane  
Protected  
Input  
Connector  
Input  
GND  
11. TVS0500 Layout  
版权 © 2017–2019, Texas Instruments Incorporated  
13  
TVS0500  
ZHCSHJ8C DECEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
12 器件和文档支持  
12.1 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.2 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.3 商标  
E2E is a trademark of Texas Instruments.  
12.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
14  
版权 © 2017–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TVS0500DRVR  
ACTIVE  
WSON  
DRV  
6
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
1HRH  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Nov-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TVS0500DRVR  
WSON  
DRV  
6
3000  
180.0  
8.4  
2.3  
2.3  
1.15  
4.0  
8.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Nov-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
WSON DRV  
SPQ  
Length (mm) Width (mm) Height (mm)  
210.0 185.0 35.0  
TVS0500DRVR  
6
3000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DRV 6  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4206925/F  
PACKAGE OUTLINE  
DRV0006A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
2.1  
1.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
(0.2) TYP  
0.05  
0.00  
1
0.1  
EXPOSED  
THERMAL PAD  
3
4
6
2X  
7
1.3  
1.6 0.1  
1
4X 0.65  
0.35  
0.25  
6X  
PIN 1 ID  
(OPTIONAL)  
0.3  
0.2  
6X  
0.1  
C A  
C
B
0.05  
4222173/B 04/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRV0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
6X (0.45)  
6X (0.3)  
(1)  
1
7
6
SYMM  
(1.6)  
(1.1)  
4X (0.65)  
4
3
SYMM  
(1.95)  
(R0.05) TYP  
(
0.2) VIA  
TYP  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222173/B 04/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRV0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
7
6X (0.45)  
METAL  
1
6
6X (0.3)  
(0.45)  
SYMM  
4X (0.65)  
(0.7)  
4
3
(R0.05) TYP  
(1)  
(1.95)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD #7  
88% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:30X  
4222173/B 04/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TVS0603SMD

VARISTORS (Multilayer Ceramic Transient Voltage Suppressor Standard Capacity)
DBLECTRO

TVS06RB

MIL Series Connector, Bronze, Female; Male, Crimp Terminal, Plug
AMPHENOL

TVS06RB-11-2PA

MIL Series Connector, 2 Contact(s), Bronze, Male, Crimp Terminal, Plug,
AMPHENOL

TVS06RB-11-2PA(W88)

MIL Series Connector, 2 Contact(s), Aluminum Bronze, Male, Crimp Terminal, Plug,
AMPHENOL

TVS06RB-11-2PB(W88)

MIL Series Connector, 2 Contact(s), Aluminum Bronze, Male, Crimp Terminal, Plug,
AMPHENOL

TVS06RB-11-2PC

MIL Series Connector, 2 Contact(s), Bronze, Male, Crimp Terminal, Plug,
AMPHENOL

TVS06RB-11-2PD

MIL Series Connector, 2 Contact(s), Aluminum Bronze, Male, Crimp Terminal, Plug,
AMPHENOL

TVS06RB-11-2PE(W88)

MIL Series Connector, 2 Contact(s), Aluminum Bronze, Male, Crimp Terminal, Plug,
AMPHENOL

TVS06RB-11-2PN

MIL Series Connector, 2 Contact(s), Bronze, Male, Crimp Terminal, Plug,
AMPHENOL

TVS06RB-11-2SB(W88)

MIL Series Connector, 2 Contact(s), Aluminum Bronze, Female, Crimp Terminal, Plug,
AMPHENOL

TVS06RB-11-2SC

MIL Series Connector, 2 Contact(s), Bronze, Female, Crimp Terminal, Plug,
AMPHENOL

TVS06RB-11-2SD

MIL Series Connector, 2 Contact(s), Bronze, Female, Crimp Terminal, Plug,
AMPHENOL