TVS3301DRBR [TI]

33V 双向平缓钳位浪涌保护器件 | DRB | 8 | -40 to 125;
TVS3301DRBR
型号: TVS3301DRBR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

33V 双向平缓钳位浪涌保护器件 | DRB | 8 | -40 to 125

文件: 总22页 (文件大小:1466K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TVS3301  
ZHCSIV5B SEPTEMBER 2018 REVISED SEPTEMBER 2022  
TVS3301 33V 双向平缓钳位浪涌保护器件  
1 特性  
3 说明  
提供功能安全  
TVS3301 器件可将高达 27A IEC 61000-4-5 故障电  
流进行分流以保护系统免受高功率瞬态冲击或雷击。  
该器件可通过 42Ω 阻抗进行耦合的方式承受 1kV 的  
IEC 61000-4-5 开路电压满足常见的工业信号线路  
EMC 要求。TVS3301 使用反馈机制确保在故障期间发  
挥精确的平缓钳位能力使系统接触电压始终低于传统  
TVS 二极管。精确的电压调节允许设计人员放心地选  
择具有较低电压容差的系统组件从而能够在不影响可  
靠性的情况下降低系统成本和复杂度。TVS3301 具有  
±33V 的工作范围可在需要反向接线情形防护的系统  
中运行。  
有助于进行功能安全系统设计的文档  
• 保护特性符合针对工业信号线路1kV42ΩIEC  
61000-4-5  
浪涌测试要求  
• 双向极性可针对双极信号传输或误接线情形提供保  
27A 8/20µs  
浪涌电流下的钳位电压40V  
• 关断电压±33V  
3mm × 3mm SON 封装  
• 可耐受超5,000 25A  
8/20µs 浪涌电流的重复冲击  
• 强大的浪涌保护  
此外TVS3301 采用小型 SON 封装专为空间受限  
的应用而设计与标准 SMA SMB 封装相比其尺  
寸显著减小。低器件泄露电流和电容确保最大限度地降  
低了对受保护线路的影响。为了确保在产品的整个寿命  
期间提供可靠保护TI 125°C 的环境下TVS3301  
进行了 5000 次重复浪涌冲击测试但器件性能未发生  
任何变化。  
IEC61000-4-5 (8/20µs)27A  
IEC61643-321 (10/1000µs)3A  
• 低泄漏电流  
27°C 时的典型值2.5nA  
85°C 时的最大值450nA  
• 低电容54pF  
封装信息(1) (2)  
封装尺寸标称值)  
器件型号  
TVS3301  
封装  
• 集4 IEC 61000-4-2 ESD 保护  
SON (DRB, 8)  
3.00mm × 3.00mm  
2 应用  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
(2) 有关相关产品请参阅器件比较表。  
工业传感I/O  
PLC I/O 模块  
模拟输入  
电器  
医疗设备  
楼宇自动化  
10  
20  
30  
Time (s)  
Traditional TVS  
TI Flat-Clamp  
功能方框图  
8/20µs 浪涌事件的电压钳位响应  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSEG2  
 
 
 
 
 
TVS3301  
www.ti.com.cn  
ZHCSIV5B SEPTEMBER 2018 REVISED SEPTEMBER 2022  
Table of Contents  
9.3 Feature Description.....................................................9  
9.4 Device Functional Modes............................................9  
10 Application and Implementation................................ 11  
10.1 Application Information............................................11  
10.2 Typical Application.................................................. 11  
11 Power Supply Recommendations..............................13  
12 Layout...........................................................................13  
12.1 Layout Guidelines................................................... 13  
12.2 Layout Example...................................................... 13  
13 Device and Documentation Support..........................14  
13.1 Documentation Support.......................................... 14  
13.2 接收文档更新通知................................................... 14  
13.3 支持资源..................................................................14  
13.4 Trademarks.............................................................14  
13.5 Electrostatic Discharge Caution..............................14  
13.6 术语表..................................................................... 14  
14 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明.........................................................................3  
6 Device Comparison Table...............................................3  
7 Pin Configuration and Functions...................................4  
8 Specifications.................................................................. 5  
8.1 Absolute Maximum Ratings........................................ 5  
8.2 ESD Ratings - JEDEC................................................ 5  
8.3 ESD Ratings - IEC...................................................... 5  
8.4 Recommended Operating Conditions.........................5  
8.5 Thermal Information....................................................5  
8.6 Electrical Characteristics.............................................6  
8.7 Typical Characteristics................................................7  
9 Detailed Description........................................................9  
9.1 Overview.....................................................................9  
9.2 Functional Block Diagram...........................................9  
Information.................................................................... 14  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (December 2018) to Revision B (September 2022)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 更新了部分以添加“提供功能安全型”文本............................................................................................1  
Changes from Revision * (September 2018) to Revision A (December 2018)  
Page  
• 将“预告信息”更改为“量产数据”.................................................................................................................. 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TVS3301  
 
TVS3301  
www.ti.com.cn  
ZHCSIV5B SEPTEMBER 2018 REVISED SEPTEMBER 2022  
5 说明)  
TVS3301 TI 的平缓钳位系列浪涌器件中的一款产品。如需深入了解平缓钳位系列请参阅用于高效系统保护  
的平缓钳位浪涌保护技术白皮书。  
6 Device Comparison Table  
DEVICE  
TVS0500  
TVS0701  
TVS1400  
TVS1401  
TVS1800  
TVS1801  
TVS2200  
TVS2201  
TVS2700  
TVS2701  
Vrwm  
5
Vclamp at Ipp  
9.2 V  
Ipp (8/20 µs)  
43 A  
Leakage at Vrwm  
0.07 nA  
0.25 nA  
2 nA  
POLARITY  
Unidirectional  
Bidirectional  
Unidirectional  
Bidirectional  
Unidirectional  
Bidirectional  
Unidirectional  
Bidirectional  
Unidirectional  
Bidirectional  
Package  
DRV (SON-6)  
DRB (SON-8)  
DRV (SON-6)  
DRB (SON-8)  
DRV (SON-6)  
DRB (SON-8)  
DRV (SON-6)  
DRB (SON-8)  
DRV (SON-6)  
DRB (SON-8)  
7
11 V  
30 A  
14  
14  
18  
18  
22  
22  
27  
27  
18.6 V  
20.5 V  
22.8 V  
27.4 V  
27.7 V  
29.6 V  
32.5 V  
34 V  
43 A  
30 A  
1.1 nA  
40 A  
0.3 nA  
30 A  
0.4 nA  
40 A  
3.2 nA  
30 A  
2 nA  
40 A  
1.7 nA  
27 A  
0.8 nA  
DRV (SON-6), YZF  
(WCSP)  
TVS3300  
TVS3301  
33  
33  
38 V  
40 V  
35 A  
27 A  
19 nA  
Unidirectional  
Bidirectional  
2.5 nA  
DRB (SON-8)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TVS3301  
 
 
 
TVS3301  
www.ti.com.cn  
ZHCSIV5B SEPTEMBER 2018 REVISED SEPTEMBER 2022  
7 Pin Configuration and Functions  
7-1. DRB Package,  
8-Pin SON  
(Top View)  
7-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
DRB  
IN  
1, 2, 3, 4  
5, 6, 7, 8  
IN  
GND  
NC  
Surge protected channel  
Ground  
GND  
FLOAT  
Exposed Thermal Pad  
Exposed thermal pad must be floating.  
(1) IN = input, GND = ground, NC = no connection.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TVS3301  
 
 
TVS3301  
www.ti.com.cn  
ZHCSIV5B SEPTEMBER 2018 REVISED SEPTEMBER 2022  
8 Specifications  
8.1 Absolute Maximum Ratings  
TA = 27°C (unless otherwise noted)(1)  
MIN  
MAX  
±27  
1100  
±3  
UNIT  
A
IEC 61000-4-5 Current (8/20 µs)  
IEC 61000-4-5 Power (8/20 µs)  
Maximum Surge  
W
IEC 61643-321 Current (10/1000 µs)  
A
IEC 61643-321 Power (10/1000 µs)  
120  
±80  
20  
W
EFT  
IBR  
IEC 61000-4-4 EFT Protection  
DC Current  
A
mA  
°C  
°C  
TA  
Ambient Operating Temperature  
Storage Temperature  
125  
150  
40  
65  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
8.2 ESD Ratings - JEDEC  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
8.3 ESD Ratings - IEC  
VALUE  
UNIT  
IEC 61000-4-2 contact discharge  
IEC 61000-4-2 air-gap discharge  
±8  
V(ESD)  
Electrostatic discharge  
kV  
±15  
8.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
VRWM  
Reverse Stand-Off Voltage  
±33  
V
8.5 Thermal Information  
TVS3301  
THERMAL METRIC(1)  
DRB (SON)  
8 PINS  
52.0  
UNIT  
RqJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RqJC(top)  
RqJB  
56.1  
24.9  
YJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.1  
YJB  
24.8  
RqJC(bot)  
9.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TVS3301  
 
 
 
 
 
 
 
 
 
 
TVS3301  
www.ti.com.cn  
ZHCSIV5B SEPTEMBER 2018 REVISED SEPTEMBER 2022  
8.6 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
nA  
Measured at VIN = ±VRWM, TA = 27°C  
Measured at VIN = ±VRWM, TA = 85°C  
IIN = ±1 mA  
2.5  
110  
450  
ILEAK  
VBR  
Leakage Current  
Break-down Voltage  
Clamp Voltage  
34.4  
37.5  
40  
V
±Ipp IEC 61000-4-5 Surge (8/20 µs), VIN  
0 V before surge, TA = 27°C  
=
42.5  
43.2  
VCLAMP  
V
21 A IEC 61000-4-5 Surge (8/20 µs), VIN  
=±VRWM before surge, TA = 125°C  
Calculated from VCLAMP at .5*IPP and IPP  
surge current, TA = 25°C  
RDYN  
CIN  
8/20 µs surge dynamic resistance  
Input pin capacitance  
35  
54  
mΩ  
VIN = VRWM, f = 1 MHz, 30 mVpp, IO to  
GND  
pF  
0-±VRWM rising edge, sweep rise time and  
measure slew rate when IPEAK = 1 mA, TA  
= 27°C  
2.5  
1.0  
SR  
Maximum Slew Rate  
V/µs  
0-±VRWM rising edge, sweep rise time and  
measure slew rate when IPEAK = 1 mA, TA  
= 85°C  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TVS3301  
 
TVS3301  
www.ti.com.cn  
ZHCSIV5B SEPTEMBER 2018 REVISED SEPTEMBER 2022  
8.7 Typical Characteristics  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
42  
41.5  
41  
Voltage  
Current  
40.5  
40  
39.5  
39  
38.5  
38  
0
-5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
0
10  
20  
30  
40  
50  
Time (ms)  
60  
70  
80  
90 100  
VCLA  
TVS3  
.
.
8-2. 8/20-µs Surge Clamping Response at 21 A  
8-1. 8/20-µs Surge Response at 27 A  
120  
160  
115  
110  
105  
100  
95  
140  
120  
100  
80  
90  
85  
60  
80  
75  
40  
70  
20  
65  
60  
0
55  
50  
-20  
0
5
10  
15  
20  
25  
30  
35  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
VIN (V)  
Temperature (èC)  
TVS3  
TVS3  
f = 1 MHz, 30 mVpp, IO to GND  
8-3. Capacitance vs Voltage Bias  
.
8-4. Leakage Current vs Temperature at 33 V  
40  
39.5  
39  
30  
24  
18  
12  
6
38.5  
38  
37.5  
37  
36.5  
36  
35.5  
35  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
Temperature (èC)  
TVS3  
Dera  
.
.
8-5. Breakdown Voltage (1 mA) vs Temperature  
8-6. Maximum Surge Current (8/20 µs) vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TVS3301  
 
 
TVS3301  
www.ti.com.cn  
ZHCSIV5B SEPTEMBER 2018 REVISED SEPTEMBER 2022  
8.7 Typical Characteristics (continued)  
8
-40èC  
25èC  
7.5  
7
6.5  
6
5.5  
5
85èC  
105èC  
125èC  
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0
0.5  
1
1.5  
Slew Rate (V/ms)  
2
2.5  
3
D009  
.
8-7. Dynamic Leakage vs Signal Slew Rate Across Temperature  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TVS3301  
 
TVS3301  
www.ti.com.cn  
ZHCSIV5B SEPTEMBER 2018 REVISED SEPTEMBER 2022  
9 Detailed Description  
9.1 Overview  
The TVS3301 is a bidirectional precision clamp with two integrated FETs driven by a feedback loop to tightly  
regulate the input voltage during an overvoltage event. This feedback loop leads to a very low dynamic  
resistance, giving a flat clamping voltage during transient overvoltage events like a surge.  
9.2 Functional Block Diagram  
9.3 Feature Description  
The TVS3301 is a precision clamp that handles 27 A of IEC 61000-4-5 8/20-µs surge pulse. The flat clamping  
feature helps keep the clamping voltage very low to keep the downstream circuits from being stressed. The flat  
clamping feature can also help end-equipment designers save cost by opening up the possibility to use lower-  
cost, lower voltage tolerant downstream ICs. This device provides a bidirectional operating range, with a  
symmetrical VRWM of ±33 V designed for applications that have bipolar input signals or that must withstand  
reverse wiring conditions. The TVS3301 has minimal leakage at VRWM, designed for applications where low  
leakage and power dissipation is a necessity. Built-in IEC 61000-4-2 and IEC 61000-4-4 ratings make it a robust  
protection solution for ESD and EFT events and the TVS3301 wide ambient temperature range of 40°C to  
+125°C enables usage in harsh industrial environments.  
9.4 Device Functional Modes  
9.4.1 Protection Specifications  
The TVS3301 is specified according to both the IEC 61000-4-5 and IEC 61643-321 standards. This enables  
usage in systems regardless of which standard is required by relevant product standards or best matches  
measured fault conditions. The IEC 61000-4-5 standard requires protection against a pulse with a rise time of 8  
µs and a half-length of 20 µs, while the IEC 61643-321 standard requires protection against a much longer pulse  
with a rise time of 10 µs and a half-length of 1000 µs.  
The positive and negative surges are imposed to the TVS3301 by a combination wave generator (CWG) with a  
2-Ω coupling resistor at different peak voltage levels. For powered-on transient tests that need power supply  
bias, inductances are used to decouple the transient stress and protect the power supply. The TVS3301 is post-  
tested by assuring that there is no shift in device breakdown or leakage at VRWM  
.
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TVS3301  
 
 
 
 
 
TVS3301  
www.ti.com.cn  
ZHCSIV5B SEPTEMBER 2018 REVISED SEPTEMBER 2022  
In addition, the TVS3301 has been tested according to IEC 61000-4-5 to pass a ±1-kV surge test through a 42-  
Ω coupling resistor and a 0.5-µF capacitor. This test is a common test requirement for industrial signal I/O lines  
and the TVS3301 precision clamp can be used in applications that have that requirement.  
The TVS3301 integrates IEC 61000-4-2 level 4 ESD Protection and 80 A of IEC 61000-4-4 EFT Protection.  
These combine to ensure that the device can protect against most common transient test requirements.  
For more information on TI's test methods for Surge, ESD, and EFT testing, refer to the IEC 61000-4-x Tests for  
TI's Protection Devices application report.  
9.4.2 Reliability Testing  
To ensure device reliability, the TVS3301 is characterized against 5000 repetitive pulses of 25-A IEC 61000-4-5  
8/20-µs surge pulses at 125°C. The test is performed with less than 10 seconds between each pulse at high  
temperature to simulate worst-case scenarios for fault regulation. After each surge pulse, the TVS3301 clamping  
voltage, breakdown voltage, and leakage are recorded to ensure that there is no variation or performance  
degradation. By ensuring robust, reliable, high temperature protection, the TVS3301 enables fault protection in  
applications that must withstand years of continuous operation with no performance change.  
9.4.3 Minimal Derating  
Unlike traditional diodes, the TVS3301 has very little derating of maximum power dissipation and ensures robust  
performance up to 125°C, shown in 8-6. Traditional TVS diodes lose up to 50% of their current carrying  
capability when at high temperatures, so a surge pulse above 85°C ambient can cause failures that are not seen  
at room temperature. The TVS3301 prevents this so the designer can see the surge protection regardless of  
temperature. Because of this, Flat-Clamp devices can provide robust protection against surge pulses that occur  
at high ambient temperatures, as shown in TI's TVS Surge Protection in High-Temperature Environments  
application report.  
9.4.4 Bidirectional Operation  
The TVS3301 is a bidirectional TVS with a symmetrical operating region. This allows for operation with positive  
and negative voltages, rather than just positive voltages like the unidirectional TVS3300. This allows for single  
chip protection for applications where the signal is expected to operate below 0 V or where there is a need to  
withstand a large common-mode voltage. In addition, there is a system requirement to be able to withstand  
reverse wiring conditions, in many cases where a high voltage signal is accidentally applied to the system  
ground and a ground is accidentally applied to the input terminal. This causes a large reverse voltage on the  
TVS diode that the device must be able to withstand. The TVS3301 is designed to not break down or see  
failures under reverse wiring conditions for applications that must withstand these miswiring issues.  
备注  
If the applied signal is not expected to go below 0 V, a unidirectional device will clamp much lower in  
the reverse direction and should be used. In this case, the recommended device would be the  
TVS3300.  
9.4.5 Transient Performance  
During large transient swings, the TVS3301 will begin clamping the input signal to protect downstream  
conditions. While this prevents damage during fault conditions, it can cause leakage when the intended input  
signal has a fast slew rate. To keep power dissipation low and remove the chance of signal distortion, TI  
recommendeds that the designer keep the slew rate of any input signal on the TVS3301 below 2.5 V/µs at room  
temperature and below 1.0 V/µs at 85°C shown in 8-7. Faster slew rates will cause the device to clamp the  
input signal and draw current through the device for a few microseconds, increasing the rise time of the signal.  
This will not cause any harm to the system or to the device, however, it can cause device overheating if the fast  
input voltage swings occur regularly.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TVS3301  
TVS3301  
www.ti.com.cn  
ZHCSIV5B SEPTEMBER 2018 REVISED SEPTEMBER 2022  
10 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
10.1 Application Information  
The TVS3301 can be used to protect any power, analog, or digital signal from transient fault conditions caused  
by the environment or other electrical components. One common example is using the TVS3301 to protect both  
sides of a PLC module and a sensor transmitter, as shown in the following figure. The transmitter side of this will  
be examined in more detail in the following section.  
10-1. TVS3301 Application Example  
10.2 Typical Application  
10-2. TVS3301 Application Schematic  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TVS3301  
 
 
 
 
TVS3301  
www.ti.com.cn  
ZHCSIV5B SEPTEMBER 2018 REVISED SEPTEMBER 2022  
10.2.1 Design Requirements  
A typical operation for the TVS3301 would be protecting an analog output module on a PLC similar to 10-2. In  
this example, the TVS3301 is protecting a 4-20 mA transmitter that uses the XTR115, a standard transmitter that  
has a nominal voltage of 24 V and a maximum input voltage of 40 V. Most industrial interfaces such as this  
require protection against ±1 kV surge test through a 42-Ω coupling resistor and a 0.5-µF capacitor, equaling  
roughly 24 A of surge current. The system also requires protection from reverse wiring conditions. Without any  
input protection, this input voltage will rise to hundreds of volts for multiple microseconds, and violate the  
absolute maximum input voltage and harn the device if a surge event is caused by lightning, coupling, ringing, or  
any other fault condition. TI's Flat-Clamp technology provides surge protection diodes that can maximize the  
useable voltage range and clamp at a safe level for the system.  
10.2.2 Detailed Design Procedure  
If the TVS3301 is in place to protect the device, the voltage will rise to the breakdown of the diode at 37.5 V,  
during a surge event. The TVS3301 will then turn on to shunt the surge current to ground. With the low dynamic  
resistance of the TVS3301, large amounts of surge current will have minimal impact on the clamping voltage.  
The dynamic resistance of the TVS3301 is around 35 mΩ, which means a 24-A surge current will cause a  
voltage raise of 24 A × 35 m= 0.84 V. Because the device turns on at 37.5 V, this means the XTR115 input will  
be exposed to a maximum of 37.5 V + 0.84 V = 38.34 V during surge pulses, well within the absolute maximum  
input voltage to ensure robust protection of the circuit.  
Because the TVS3301 is a bidirectional device, it also satisfies the condition for withstanding reverse wiring. In  
this case, if VLOOP is wired in reverse, the input terminal of the TVS3301 will see 24 V, which is below the  
negative VRWM. The leakages will be the same as if the battery is wired properly.  
The small size of the device also improves fault protection by lowering the effect of fault current coupling onto  
neighboring traces. The small form factor of the TVS3301 allows the device to be placed extremely close to the  
input connector, which lowers the length of the path fault current going through the system compared to larger  
protection solutions. Finally, the low leakage of the TVS3301 will have low input power losses. At 33 V, the  
device will see typical 2.5-nA leakage for a constant power dissipation of less than 100 µW, a small quantity that  
will minimally effect overall efficiency metrics and heating concerns.  
10.2.3 Application Curves  
As shown in 10-3, the TVS3301 will clamp when exposed to a surge.  
50  
Voltage  
Current  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
-5  
0
10  
20  
30  
40  
50  
Time (ms)  
60  
70  
80  
90 100  
TVS3  
10-3. TVS3301 Clamping Waveform (27-A, 8/20-µs Surge)  
10.2.4 PLC Surge Protection Reference Design  
For a detailed description of the Flat-Clamp devices advantages in a PLC Analog Input Module, reference TI's  
Surge Protection Reference Design for PLC Analog Input Module. This document describes the considerations  
and performance of the TVS3300 in a common industrial application. While the document does not reference the  
TVS3301 specifically, performance between the devices should be similar.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TVS3301  
 
TVS3301  
www.ti.com.cn  
ZHCSIV5B SEPTEMBER 2018 REVISED SEPTEMBER 2022  
11 Power Supply Recommendations  
The TVS3301 is a clamping device so there is no need to power it. To ensure the device functions properly do  
not violate the recommended VIN voltage range (33 V to 33 V).  
12 Layout  
12.1 Layout Guidelines  
The optimum placement is close to the connector. EMI during an ESD event can couple from the tested trace to  
other nearby unprotected traces, which could result in system failures. The PCB designer must minimize the  
possibility of EMI coupling by keeping all unprotected traces away from protected traces between the TVS and  
the connector. Route the protected traces straight. Use rounded corners with the largest radii possible to  
eliminate any sharp corners on the protected traces between the TVS3301 and the connector. Electric fields  
tend to build up on corners, which could increase EMI coupling.  
Ensure that the thermal pad on the layout is floating rather than grounded. Grounding the thermal pad will  
impede the operating range of the TVS3301, and can cause failures when the applied voltage is negative. A  
floating thermal pad allows the maximum operating range without sacrificing any transient performance.  
12.2 Layout Example  
12-1. TVS3301 Layout  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TVS3301  
 
 
 
 
TVS3301  
www.ti.com.cn  
ZHCSIV5B SEPTEMBER 2018 REVISED SEPTEMBER 2022  
13 Device and Documentation Support  
13.1 Documentation Support  
13.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Flat-Clamp Surge Protection Technology for Efficient System Protection white papers  
Texas Instruments, IEC 61000-4-x Tests for TIs Protection Devices application reports  
Texas Instruments, Surge Protection Reference Design for PLC Analog Input Module  
Texas Instruments, TVS Surge Protection in High-Temperature Environments application reports  
Texas Instruments, TVS3301 Functional Safety, FIT Rate, Failure Mode Distribution and Pin FMA  
13.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
13.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
13.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
13.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TVS3301  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Oct-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TVS3301DRBR  
ACTIVE  
SON  
DRB  
8
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
1PQP  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TVS3301DRBR  
SON  
DRB  
8
3000  
330.0  
12.4  
3.3  
3.3  
1.1  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SON DRB  
SPQ  
Length (mm) Width (mm) Height (mm)  
338.0 355.0 50.0  
TVS3301DRBR  
8
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DRB0008A  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
DIM A  
OPT 1  
(0.1)  
OPT 2  
(0.2)  
1.5 0.1  
4X (0.23)  
EXPOSED  
THERMAL PAD  
(DIM A) TYP  
4
5
2X  
1.95  
1.75 0.1  
8
1
6X 0.65  
0.37  
0.25  
8X  
PIN 1 ID  
0.1  
C A B  
C
(OPTIONAL)  
(0.65)  
0.05  
0.5  
0.3  
8X  
4218875/A 01/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRB0008A  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.5)  
(0.65)  
SYMM  
8X (0.6)  
(0.825)  
8
8X (0.31)  
1
SYMM  
(1.75)  
(0.625)  
6X (0.65)  
4
5
(R0.05) TYP  
(
0.2) VIA  
(0.23)  
TYP  
(0.5)  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218875/A 01/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRB0008A  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.65)  
4X (0.23)  
SYMM  
METAL  
TYP  
8X (0.6)  
4X  
(0.725)  
8
1
8X (0.31)  
(2.674)  
(1.55)  
SYMM  
6X (0.65)  
4
5
(R0.05) TYP  
(1.34)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
84% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4218875/A 01/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TVS348

TRANSIENT VOLTAGE SUPPRESORS
MICROSEMI

TVS348

Diode TVS Single 48V 150W 2-Pin Case A
NJSEMI

TVS348E3

Trans Voltage Suppressor Diode, 150W, 48V V(RWM), Unidirectional, 1 Element, Silicon, HERMETIC SEALED, MINIATURE, GLASS PACKAGE-2
MICROSEMI

TVS348HR

Trans Voltage Suppressor Diode
DIGITRON

TVS348SM

Transient Voltage Suppressor
MICROSEMI

TVS348SME3

Trans Voltage Suppressor Diode, 150W, 48V V(RWM), Unidirectional, 1 Element, Silicon, MELF-2
MICROSEMI

TVS3527

35 AMP OVERVOLTAGE TRANSIENT SUPPRESSORS
DEC

TVS3527D

35 AMP OVERVOLTAGE TRANSIENT DISH DIODE
DEC

TVS3527S

35 AMP OVERVOLTAGE TRANSIENT SUPPRESSORS
DEC

TVS360

TRANSIENT VOLTAGE SUPPRESORS
MICROSEMI

TVS360

Diode TVS Single 60V 150W 2-Pin Case A
NJSEMI

TVS360-PBF

Trans Voltage Suppressor Diode
DIGITRON