TWL2214CAPFB [TI]

1-CHANNEL POWER SUPPLY SUPPORT CKT, PQFP48, PLASTIC, TQFP-48;
TWL2214CAPFB
型号: TWL2214CAPFB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

1-CHANNEL POWER SUPPLY SUPPORT CKT, PQFP48, PLASTIC, TQFP-48

文件: 总36页 (文件大小:503K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁ ꢂꢃ ꢃꢄ ꢅꢆ ꢇ  
ꢈꢉ ꢁ ꢊꢋ ꢌꢍ ꢈꢈꢂꢎ ꢏ ꢇꢐꢇꢑ ꢊꢏ ꢊꢐꢀ ꢒ ꢆ ꢇ ꢐꢓ  
ꢂ ꢔꢕꢒ ꢖꢗ ꢘꢇꢀ ꢀꢊ ꢋꢎ ꢆꢙꢇ ꢋꢑ ꢊ ꢆ ꢉꢐ ꢀꢋ ꢉ ꢂ  
SLVS321A – OCTOBER 2001 – REVISED JANUARY 2002  
D
D
D
D
D
D
Programmable Charging Current  
features  
Six Programmable Low-Dropout Linear  
Voltage Regulators  
D
Integrated, Single-Chip Solution for Battery  
Charge Control and Power Supply  
Management  
Over 65-dB Power Supply Rejection Ratio  
(PSRR) From 10 Hz to 10 kHz  
D
D
Linear Charger for Single-Cell Li-Ion or  
Li-Polymer Packs  
System Over- and Under-Voltage Shutdown  
Power On/Off and Reset Control Logic  
Integrated Control over Precharge,  
Constant-Current, and Constant-Voltage  
Charging Phases  
Three Individually Selectable LED Backlight  
Drivers  
D
Programmable Charge Termination by  
Minimum Current and Time  
D
Vibrator and Ringer Drivers  
D
Internal 8-Bit Analog-to-Digital Converter  
With Auxiliary Inputs  
D
Battery Temperature Sensing  
D
Pack Wake-Up and Damaged Cell Detect  
Functions  
2
D
D
I C Control Interface and Three-Wire SPI  
Interface  
D
Safety Charge Timers During Precharge  
and Constant-Current Charging  
48-Terminal Plastic TQFP (PFB) or  
MicroStar Junior BGA (GQE) Package  
description  
The TWL2214CA device is a single-chip battery and power management solution for wireless handsets, pagers,  
personal digital assistants (PDAs), and other battery-powered devices. For battery charging, the device  
incorporates a linear charger for single-cell Li-Ion and lithium polymer battery packs. Prior to charging, the  
TWL2214CA device initiates battery pack wake-up and damaged cell detect functions. For deeply discharged  
batteries, the device performs precharge conditioning by trickle charge to a user-defined current setting. Once  
an acceptable pack voltage is detected, the TWL2214CA device applies a constant-current fast charge at a  
current level that is determined by the combination of an external sense resistor and user-programmable sense  
voltage. When the battery reaches the selected charge regulation voltage, the TWL2214CA device maintains  
regulation until charging is terminated by a minimum current or a timer. During the entire charge cycle, the  
TWL2214CA device monitors temperature by external thermistor and suspends charging if temperature  
exceeds a programmed range. Three programmable safety timers limit the precharge, constant current, and  
total charge times.  
For power management, the TWL2214CA device includes six low-dropout linear voltage regulators. One  
regulator is driven from the device power-on/-off logic and incorporates a microcontroller reset function. Five  
low-noise regulators include individually programmable output voltage and enable-disable. The TWL2214CA  
device can be powered from a battery or from an ac adapter. When an adapter is present, it supplies power to  
the device, allowing the system to function without a battery.  
The TWL2214CA device also includes individually selectable drivers for three separate backlight LEDs, a ringer,  
and a vibrator motor. An internal 8-bit analog-to-digital converter (ADC) is accessible from external terminals.  
2
All TWL2214CA programming and status are accessed by the system microcontroller via the I C/SPI serial  
interface.  
The TWL2214CA device is packaged in the Texas Instruments 48-terminal plastic thin quad flatpack (TQFP)  
(PFB) or the MicroStar Junior BGA (GQE) package.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
MicroStar Junior BGA is a trademark of Texas Instruments Incorporated.  
Copyright 2002, Texas Instruments Incorporated  
ꢀꢢ  
ꢞ ꢢ ꢟ ꢞꢔ ꢗꢬ ꢖꢚ ꢝ ꢥꢥ ꢣꢝ ꢛ ꢝ ꢜ ꢢ ꢞ ꢢ ꢛ ꢟ ꢧ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄ ꢅꢆ ꢇ  
ꢈ ꢉꢁ ꢊꢋ ꢌꢍ ꢈꢈꢂꢎ ꢏꢇ ꢐꢇꢑ ꢊ ꢏꢊ ꢐꢀ ꢒ ꢆ ꢇꢐ ꢓ  
ꢂ ꢔ ꢕꢒ ꢖ ꢗ ꢘ ꢇꢀ ꢀ ꢊꢋꢎ ꢆꢙ ꢇꢋꢑ ꢊ ꢆꢉ ꢐꢀ ꢋꢉ ꢂ  
SLVS321A OCTOBER 2001 REVISED JANUARY 2002  
AVAILABLE OPTIONS  
PACKAGE  
OUTPUT VOLTAGE  
REGULATOR 6  
T
A
DEVICE NAME  
INTERFACE  
REGULATOR 1  
2
I C  
40°C to 85°C  
40°C to 85°C  
TWL2214CAPFBR  
TQFP  
2.8 V  
2.8 V  
3 V  
3 V  
2
I C/SPI  
TWL2214CAGQER MicroStar Junior BGA  
GQE PACKAGE  
(BOTTOM VIEW)  
J
H
G
F
E
D
C
B
A
1
2
3
4
5
6
7
8
9
36 35 34 33 32 31 30 29 28 27 26 25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
TS  
PWRKOUT  
PWRKIN  
PSH  
37  
ADCIN1  
ADCIN2  
CONT  
38  
39  
40  
41  
42  
43  
44  
45  
DATA  
CLK  
CD2  
DGND  
VIOUT  
V
REG5  
V
PFB PACKAGE  
(TOP VIEW)  
DD4  
V
REG4  
BGRF  
GND2  
V
DD5  
V
RINGOUT 46  
REG3  
V
RINGIN  
GND3  
47  
48  
DD3  
V
REG2  
1
2
3
4
5
6
7
8
9 10 11 12  
DISSIPATION RATING TABLE  
OPERATING FACTOR  
T
= 25°C  
T
= 70°C  
T = 85°C  
A
A
A
PACKAGE  
POWER RATING  
ABOVE 25°C  
11.8 mW/°C  
15.7 mW/°C  
POWER RATING POWER RATING  
GQE  
PFB  
1176 mW  
647 mW  
471 mW  
1962 mW  
1256 mW  
1020 mW  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢃꢄ ꢅꢆ ꢇ  
ꢈꢉ ꢁ ꢊꢋ ꢌꢍꢈ ꢈꢂꢎ ꢏ ꢇꢐꢇꢑ ꢊꢏ ꢊꢐ ꢀ ꢒ ꢆ ꢇ ꢐꢓ  
ꢂ ꢔꢕꢒ ꢖꢗ ꢘꢇꢀ ꢀꢊ ꢋꢎ ꢆꢙꢇ ꢋꢑ ꢊ ꢆ ꢉꢐ ꢀꢋ ꢉ ꢂ  
SLVS321A OCTOBER 2001 REVISED JANUARY 2002  
block diagram  
IRQ  
Battery Charger Control  
GND  
REF  
CT  
AGND  
V
DD1  
V
REG1  
GND  
REG1  
Reference System  
BGRF  
Reset  
Control  
XRST  
CD1  
PWRKOUT  
PWRKIN  
PSH  
V
V
DD2  
REG6  
Power  
On/Off  
Control  
REG6  
CONT  
CD2  
V
DD3  
REG2  
REG3  
REG4  
REG5  
CE  
DATA  
CLK  
V
REG2  
2
I C  
DGND  
V
V
V
REG3  
DD4  
REG4  
LED  
Driver  
Ring  
Driver  
Vibrator  
Driver  
V
REG5  
GND2  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄ ꢅꢆ ꢇ  
ꢈ ꢉꢁ ꢊꢋ ꢌꢍ ꢈꢈꢂꢎ ꢏꢇ ꢐꢇꢑ ꢊ ꢏꢊ ꢐꢀ ꢒ ꢆ ꢇꢐ ꢓ  
ꢂ ꢔ ꢕꢒ ꢖ ꢗ ꢘ ꢇꢀ ꢀ ꢊꢋꢎ ꢆꢙ ꢇꢋꢑ ꢊ ꢆꢉ ꢐꢀ ꢋꢉ ꢂ  
SLVS321A OCTOBER 2001 REVISED JANUARY 2002  
Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
ADCIN1  
GQE NO. PFB NO.  
J8  
J7  
23  
22  
8
I
I
ADC input  
ADCIN2  
AGND  
ADC input  
C4, D3,  
I/O  
Regulator 1 ground  
D4, E3, E4  
BGRF  
CD1  
CD2  
CE  
J4  
F1  
A5  
A8  
B5  
H6  
17  
9
I/O  
Band gap output bypass capacitance  
XRST output delay adjustment capacitance  
Regulator 1 off delay adjustment capacitance  
Clock enabled  
I/O  
42  
I/O  
I
I
I
2
CLK  
41  
21  
I C/SPI bus serial clock input  
CONT  
Regulator 6 is always on after power up except when CONT = H; regulator 6 is  
2
enabled through I C interface.  
CT  
B9  
A6  
A4  
C8, G2  
H4  
B2  
B1  
C2  
C1  
B8  
E9  
B6  
A7  
B7  
H9  
A2  
B3  
C9  
D2  
H8  
G8  
D9  
F8  
35  
40  
43  
12, 34  
16  
48  
1
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
O
O
O
I
External oscillator timing cap  
2
DATA  
DGND  
GND  
I C/SPI bus serial address/data input output; this is a bidirectional terminal.  
Digital ground  
Ground  
GND2  
GND3  
IL0  
Ground for V  
, V  
, V  
, and V  
REG5  
REG2 REG3 REG4  
Ground for vibrator, LED, and ringer  
160-mA LED driver output  
20-mA LED driver output  
IL1  
2
IL2  
3
10-mA LED driver output  
IRQ  
36  
31  
39  
38  
37  
25  
47  
46  
33  
4
Interrupt signal for external controller regarding to charger start/stop action  
Current sense input for charger function  
Power hold signal from controller  
ISENSE  
PSH  
I
PWRKIN  
PWRKOUT  
REF  
I
Power-up start  
O
O
I/O  
O
I/O  
I
Power-up signal for CPU  
Voltage reference during charge cycle, 3 V, I = 3 mA  
O
RINGIN  
RINGOUT  
RPRE  
SEL  
Input for ring driver  
Ring driver output  
Precharge current sense resistor  
Input for vibrator output voltage change  
Battery temperature sense input voltage  
Battery voltage sense input or output for precharge, wakeup  
DC voltage input for charger  
TS  
24  
26  
32  
28  
5
I
V
V
V
V
V
V
V
V
I/O  
I
BAT  
CHG  
DD  
I
Device dc supply feedback for charger function  
Device dc supply input and regulator 1 input  
Input to regulator 6  
D1  
G1  
J2  
I
DD1  
DD2  
DD3  
DD4  
DD5  
11  
14  
19  
45  
30  
29  
I
I
Input for regulators 2 and 3  
J5  
I
Input for regulators 4 and 5  
A3  
E8  
F9  
I
Input for vibrator, PN diode connection of ringer  
Gate control of an external P-FET for charger regulation  
Gate control of an external P-FET for battery blockage  
VG  
O
O
VG2  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢃꢄ ꢅꢆ ꢇ  
ꢈꢉ ꢁ ꢊꢋ ꢌꢍꢈ ꢈꢂꢎ ꢏ ꢇꢐꢇꢑ ꢊꢏ ꢊꢐ ꢀ ꢒ ꢆ ꢇ ꢐꢓ  
ꢂ ꢔꢕꢒ ꢖꢗ ꢘꢇꢀ ꢀꢊ ꢋꢎ ꢆꢙꢇ ꢋꢑ ꢊ ꢆ ꢉꢐ ꢀꢋ ꢉ ꢂ  
SLVS321A OCTOBER 2001 REVISED JANUARY 2002  
Terminal Functions (Continued)  
TERMINAL  
GQE NO. PFB NO.  
I/O  
DESCRIPTION  
NAME  
VG3  
VIOUT  
G9  
B4  
E2  
H2  
J3  
27  
44  
6
O
I/O  
O
Gate control of an external P-FET for charging action  
Vibrator output  
V
V
V
V
V
V
Regulator 1 output  
REG1  
REG2  
REG3  
REG4  
REG5  
REG6  
13  
15  
18  
20  
10  
7
O
Regulator 2 output  
O
Regulator 3 output  
H5  
J6  
O
Regulator 4 output  
O
Regulator 5 output  
F2  
E1  
O
Regulator 6 output  
XRST  
O
Reset output  
detailed description  
power-on/-off control  
The timing of the delayed power-on reset is controlled by the power-on/-off control circuit. There are two different  
conditions to power-on the device: manual power on and automatic power on.  
manual power on  
During the power-off state, after the power key is pressed, the PWRKIN signal becomes high and the output  
of V (regulator 1 output) is enabled. When the V output reaches 90% of its nominal output voltage,  
REG1  
REG1  
the TWL2214CA device starts the delayed reset process by charging the reset timing capacitor (CD1). When  
the voltage of CD1 reaches 1.2 V, the XRST signal is released by the TWL2214CA device and pulled high by  
an external pull-up resistor. The reset process is completed, and the external controller operates in normal  
condition. While PWRKIN remains high, the power-on condition remains active. Before PWRKIN goes low, the  
external controller must drive PSH high to retain power; otherwise, the TWL2214CA device starts the delay  
power-off process by charging timing capacitor CD2. After the voltage of CD2 reaches 1.2 V and no valid PSH  
signal is received, the device is powered off.  
automatic power on  
During the power-off state, after the adapter is attached, the output of V  
is automatically enabled. When  
REG1  
V
reaches 90% of its nominal output voltage, the TWL2214CA device starts the delayed reset process by  
REG1  
charging the reset timing capacitor (CD1). When the voltage of the CD1 reaches 1.2 V, the XRST signal is  
released by the TWL2214CA device and pulled high by an external pull-up resistor. The reset process is  
completed and the external controller operates in normal condition. The external controller must drive PSH to  
high in time to retain power; otherwise, the TWL2214CA device starts the delay power-off process by charging  
timing capacitor CD2. After voltage of CD2 reaches 1.2 V and if no valid PSH signal is received, the device is  
powered off.  
During the on state, the device generates an output signal PWRKOUT with an inverted polarity to PWRKIN. An  
external controller can use PWRKOUT to sense whether the power key has been pressed.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄ ꢅꢆ ꢇ  
ꢈ ꢉꢁ ꢊꢋ ꢌꢍ ꢈꢈꢂꢎ ꢏꢇ ꢐꢇꢑ ꢊ ꢏꢊ ꢐꢀ ꢒ ꢆ ꢇꢐ ꢓ  
ꢂ ꢔ ꢕꢒ ꢖ ꢗ ꢘ ꢇꢀ ꢀ ꢊꢋꢎ ꢆꢙ ꢇꢋꢑ ꢊ ꢆꢉ ꢐꢀ ꢋꢉ ꢂ  
SLVS321A OCTOBER 2001 REVISED JANUARY 2002  
detailed description (continued)  
Battery Attachment  
VG3  
VG2  
V
DD  
PWRKIN  
PWRKOUT  
0.9 V  
OUT  
V
REG1  
CDI Delay  
CPU senses this falling  
edge and drives PSH to L  
CD1  
XRST  
PSH  
CD2  
Power Off  
Power On  
Figure 1. Power-On/-Off Sequence  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢃꢄ ꢅꢆ ꢇ  
ꢈꢉ ꢁ ꢊꢋ ꢌꢍꢈ ꢈꢂꢎ ꢏ ꢇꢐꢇꢑ ꢊꢏ ꢊꢐ ꢀ ꢒ ꢆ ꢇ ꢐꢓ  
ꢂ ꢔꢕꢒ ꢖꢗ ꢘꢇꢀ ꢀꢊ ꢋꢎ ꢆꢙꢇ ꢋꢑ ꢊ ꢆ ꢉꢐ ꢀꢋ ꢉ ꢂ  
SLVS321A OCTOBER 2001 REVISED JANUARY 2002  
detailed description (continued)  
Battery Attachment  
VG3  
VG2  
V
DD  
A
B
A
PWRKIN  
PWRKOUT  
V
CHG  
Adapter Attachment  
Adapter Attachment  
OUT  
0.9 V  
V
REG1  
CDI Delay  
CD1  
XRST  
PSH  
CD2  
A:V  
B:V  
= V  
BAT  
= 4.1 V or 4.2 V  
DD  
DD  
Auto power up with  
adapter insertion  
Figure 2. Adapter Powered (With Battery)  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄ ꢅꢆ ꢇ  
ꢈ ꢉꢁ ꢊꢋ ꢌꢍ ꢈꢈꢂꢎ ꢏꢇ ꢐꢇꢑ ꢊ ꢏꢊ ꢐꢀ ꢒ ꢆ ꢇꢐ ꢓ  
ꢂ ꢔ ꢕꢒ ꢖ ꢗ ꢘ ꢇꢀ ꢀ ꢊꢋꢎ ꢆꢙ ꢇꢋꢑ ꢊ ꢆꢉ ꢐꢀ ꢋꢉ ꢂ  
SLVS321A OCTOBER 2001 REVISED JANUARY 2002  
detailed description (continued)  
VG3  
VG2  
V
DD  
PWRKIN  
PWRKOUT  
V
CHG  
Adapter Attachment  
OUT  
0.9 V  
V
REG1  
CDI Delay  
CPU senses this falling  
edge and drives PSH to L  
CD1  
XRST  
PSH  
CD2  
Power down by  
power key insertion  
Auto power up with  
adapter insertion  
Figure 3. Adapter Powered (Without Battery)  
reset controller  
The reset controller performs two major functions: one is to control the timing of delayed power-on reset, and  
the other is to monitor the V level.  
REG1  
The delay reset process is started when V  
reaches 90% of its nominal output voltage level. The delay time  
REG1  
of the reset output (XRST) can be adjusted by an external timing capacitor (CD1).  
During the system active state when V drops below 0.9 × V hysteresis, XRST is driven low. If V  
REG1  
REG1  
nominal  
reaches 90% of its nominal output voltage level again, the delayed reset process is started over.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢃꢄ ꢅꢆ ꢇ  
ꢈꢉ ꢁ ꢊꢋ ꢌꢍꢈ ꢈꢂꢎ ꢏ ꢇꢐꢇꢑ ꢊꢏ ꢊꢐ ꢀ ꢒ ꢆ ꢇ ꢐꢓ  
ꢂ ꢔꢕꢒ ꢖꢗ ꢘꢇꢀ ꢀꢊ ꢋꢎ ꢆꢙꢇ ꢋꢑ ꢊ ꢆ ꢉꢐ ꢀꢋ ꢉ ꢂ  
SLVS321A OCTOBER 2001 REVISED JANUARY 2002  
detailed description (continued)  
V
REG1  
Hysteresis  
0.9 V  
OUT  
XRST  
CD1 delay  
PSH  
CD1  
CD2  
To keep power-on condition PSH must be  
high within maximum CD2 delay.  
Figure 4. V  
Monitoring of Reset Control  
REG1  
regulator 1  
This regulator is automatically enabled after the power-on process is complete. It stays enabled until the  
power-off condition occurs. Regulator 1 supplies power to the microprocessor. The nominal output voltage is  
2.8 V and the maximum output current is 150 mA. Regulator 1 requires an output capacitor in the range of 4.7 µF  
to10 µF with an ESR less than 6 Ω.  
regulator 6  
2
This regulator output voltage can be enabled by I C by attaching CONT (terminal 21 or H6) to V . Attaching  
DD  
CONT to GND makes this regulator automatically enabled with power on. The output voltage is programmed  
2
by I C. The maximum output current of 100 mA requires an output capacitor in range of 4.7 µF to 10 µF, with  
ESR in the range of 1 to 6 Ω. The output voltage ranges from 2.5 V to 3 V.  
regulators 2, 3, 4, and 5  
2
Regulators 2, 3, 4, and 5 are output voltages programmed and enabled by I C. The output voltage ranges from  
2.3 V to 3 V in 100-mV steps. The maximum output current for regulators 2 and 3 is 80 mA, for regulator 4 it  
is 120 mA, and for regulator 5 it is 150 mA. The default output voltage for all regulators is 3 V. These regulators  
have very low output noise (maximum 30 µV  
an output capacitor in the range of 4.7 µF to 10 µF with an ESR less than 6 .  
); they are suitable for powering up the RF block, which requires  
RMS  
vibrator driver  
The TWL2214CA device has incorporated a vibrator driver with selectable output voltage and current. This  
2
integrated vibrator driver has the same features as the other LDO regulators. The vibrator is enabled by I C.  
The output voltage can be selected by tying SEL (terminal 4 or D2) to V  
output voltage is set to 3 V. If SEL is tied to GND, the output voltage is set to 1.3 V.  
or GND. If SEL is tied to V , the  
DD  
DD  
LED driver  
2
The TWL2214CA device provides the capability of driving three LEDs. These drivers, enabled by I C, can drive  
currents of 160 mA, 20 mA, and 10 mA individually with a maximum voltage drop of 0.8 V.  
ringer driver  
2
The TWL2214CA device provides the capability of driving a ringer. It is enabled by I C and uses an N-channel  
FET with a maximum resistance of 3 .  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄ ꢅꢆ ꢇ  
ꢈ ꢉꢁ ꢊꢋ ꢌꢍ ꢈꢈꢂꢎ ꢏꢇ ꢐꢇꢑ ꢊ ꢏꢊ ꢐꢀ ꢒ ꢆ ꢇꢐ ꢓ  
ꢂ ꢔ ꢕꢒ ꢖ ꢗ ꢘ ꢇꢀ ꢀ ꢊꢋꢎ ꢆꢙ ꢇꢋꢑ ꢊ ꢆꢉ ꢐꢀ ꢋꢉ ꢂ  
SLVS321A OCTOBER 2001 REVISED JANUARY 2002  
dual-interface serial bus: DISB  
2
The DISB is a three-wire interface bus that incorporates both Phillips I C and three-wire SPI. The SPI interface  
used here is different from the standard SPI interface; it combines both transmit and receive channels into one  
bidirectional port. It also incorporates the slave addressing topology to work like a bus and control many devices  
at the same time. The interface does not have a selection pin to choose between the two protocols. It uses the  
clock enable line to distinguish the communication format of the interface. When clock enable is high, the clock  
2
and data lines work as a standard I C interface. However, on the falling edge of clock enable, the device expects  
the SPI protocol defined in the following section. The protocol includes a slave address identifier that allows the  
2
lines to be connected to many devices similar to that of I C serial bus. Speed also improves when eliminating  
the master wait period to receive an acknowledge from the slave device.  
battery charger control  
This block provides the necessary signals to control the external circuits that perform the charger function. The  
charging activities include battery pack wake-up, precharge, fast charge, and battery temperature monitoring.  
This block also provides 2 ADC inputs for general measurement purposes. The input voltage level is from 0 V  
to 2 V. This block also includes an oscillator generator circuit, which generates the clocks for the device. The  
nominal frequency of the main clock is 500 kHz. It requires an external capacitor of 470 pF.  
reference system  
This block provides voltage reference and bias current for the internal circuitry.  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
V
to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 12 V  
CHG  
All other terminals relative to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 6.5 V  
Operating ambient temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
Operating junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25°C to 150°C  
J
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 150°C  
STG  
Soldering temperature (for 10 seconds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
recommended operating conditions  
MIN  
4.5  
MAX  
6
UNIT  
V
V
V
CHG  
, V  
, V  
, V  
, V  
3.3  
4.3  
V
DD1 DD2 DD3 DD4 DD5  
High-level logic input, PWRKIN, SEL, CONT  
Low-level logic input, PWRKIN, SEL, CONT  
High-level logic input, PSH and CE  
Low-level logic input, PSH and CE  
Precharge current  
0.7V  
DD1  
V
V
DD1  
GND  
0.7V  
0.3V  
V
DD1  
V
V
REG1  
REG1  
GND  
0.3V  
REG1  
V
100  
mA  
°C  
Operating free-air temperature, T  
40  
85  
A
logic level output  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
V
OH  
V
OL  
V
OL  
V
OH  
V
OL  
of terminals PWRKOUT, IRQ, CE  
I
I
I
I
I
= 2 mA  
= 2 mA  
= 2 mA  
0.8V  
REG1  
V
REG1  
V
V
V
V
V
OH  
OL  
OL  
OH  
OL  
of terminals PWRKOUT, IRQ, CE  
GND  
GND  
0.22V  
REG1  
0.22V  
REG1  
of DATA  
of XRST  
of XRST  
= 2 mA (open drain with 100 kinternal pullup)  
= 2 mA (open drain 100 kinternal pullup)  
V
REG1  
GND  
0.22V  
REG1  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢃꢄ ꢅꢆ ꢇ  
ꢈꢉ ꢁ ꢊꢋ ꢌꢍꢈ ꢈꢂꢎ ꢏ ꢇꢐꢇꢑ ꢊꢏ ꢊꢐ ꢀ ꢒ ꢆ ꢇ ꢐꢓ  
ꢂ ꢔꢕꢒ ꢖꢗ ꢘꢇꢀ ꢀꢊ ꢋꢎ ꢆꢙꢇ ꢋꢑ ꢊ ꢆ ꢉꢐ ꢀꢋ ꢉ ꢂ  
SLVS321A OCTOBER 2001 REVISED JANUARY 2002  
electrical characteristics, T = 25°C to 85°C (unless otherwise noted)  
A
regulator 1 (C = 4.7 µF with ESR = 2 )  
O
PARAMETER  
TEST CONDITIONS  
MIN  
3.3  
TYP  
MAX  
4.3  
UNIT  
V
V
V
Input voltage  
DD1  
Output voltage  
Output current  
Short circuit  
I
= I  
MAX  
2.68  
2.8  
2.91  
150  
550  
80  
V
REG1  
O
I
I
V
V
= 3.8 V  
= 3.8 V  
mA  
mA  
mV  
mV  
mV  
dB  
O
DD1  
OS  
DD1  
Load regulation  
Line regulation  
Dropout voltage  
Ripple rejection  
Standby current  
I
O
= 1 mA to I = 3.8 V  
, V  
MAX DD1  
V
= 3.3 V to 4.3 V, I = I  
O
20  
DD1  
MAX  
I
O
= I  
MAX  
100  
65  
300  
PSRR  
f = 10 Hz to 10 kHz, V  
= 3.8 V  
= 1.5 mA (regulator 1 and internal bias circuitry are active)  
O
DD1  
I
I
105  
120  
µA  
(Standby)  
regulator 6 (C = 4.7 µF with ESR = 2 )  
O
2
This 100-mA LDO can be enabled with serial interface I C or by CONT (terminal 21 or H6). The output range  
is from 2.5 V to 3 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
3.3  
2.88  
0.96V  
TYP  
MAX  
4.3  
3.12  
UNIT  
V
V
V
Input voltage  
DD2  
CONT = Low  
CONT = High (see Note 1 and function register 4)  
3
V
Output voltage  
REG6  
V
p
1.04V  
V
p
p
I
Output current  
Short circuit  
100  
mA  
mA  
mV  
mV  
mV  
dB  
µs  
O
330  
70  
Load regulation  
Line regulation  
Dropout voltage  
Ripple rejection  
Turnon time  
I
= 1 mA to I = 3.8 V  
, V  
O
MAX DD2  
V
V
= 3.3 V to 4.3 V, I = I  
O MAX  
20  
S
DD2  
I
O
= I  
MAX  
100  
65  
300  
PSRR  
f = 10 Hz to 10 kHz, V  
= 3.8 V  
DD2  
t
t
I
See Note 2  
150  
5
ON  
Turnoff time  
See Note 3  
2
ms  
µA  
OFF  
Quiescent current  
I
O
= 1.5 mA  
15  
30  
(Quiescent)  
2
NOTES: 1. I C/SPI programmable, V is the programmed voltage. Refer to function registers 2 and 3 for programming information.  
(p)  
2. Output enable to output voltage = 0.9 × nominal value  
3. Output disable to output voltage = 0.5 V  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄ ꢅꢆ ꢇ  
ꢈ ꢉꢁ ꢊꢋ ꢌꢍ ꢈꢈꢂꢎ ꢏꢇ ꢐꢇꢑ ꢊ ꢏꢊ ꢐꢀ ꢒ ꢆ ꢇꢐ ꢓ  
ꢂ ꢔ ꢕꢒ ꢖ ꢗ ꢘ ꢇꢀ ꢀ ꢊꢋꢎ ꢆꢙ ꢇꢋꢑ ꢊ ꢆꢉ ꢐꢀ ꢋꢉ ꢂ  
SLVS321A OCTOBER 2001 REVISED JANUARY 2002  
electrical characteristics, T = 25°C to 85°C (unless otherwise noted) (continued)  
A
regulators 2, 3, 4, and 5 (C = 4.7 µF with ESR = 2 )  
O
Regulators 2, 3, 4, and 5 provide programmable output. The output range, 2.3 V to 3 V, can be programmed  
in 100-mV steps.  
PARAMETER  
Input voltage  
TEST CONDITIONS  
MIN  
3.3  
0.96V  
TYP  
MAX  
4.3  
1.04V  
UNIT  
V
V
V
I
Output voltage  
See Note 1  
Regulator 2  
Regulator 3  
Regulator 4  
Regulator 5  
Regulator 2  
Regulator 3  
Regulator 4  
Regulator 5  
V
p
V
O
p
p
80  
80  
I
O
Output current  
mA  
120  
150  
300  
300  
400  
500  
70  
Short-circuit current  
Load regulation  
mA  
mV  
Regulator 2, I = 1 mA to I  
O
MAX  
Regulator 4, I = 1 mA to I  
O
50  
MAX  
Regulators 3 and 5, I = 1 mA to I  
MAX  
50  
O
Line regulation  
Dropout voltage  
Ripple rejection  
Output noise  
V = 3.3 V to 4.3 V  
20  
mV  
mV  
dB  
I
V
I = I  
O MAX  
300  
DROPOUT  
PSRR  
N
f = 10 Hz to 10 kHz, V  
DD3  
= V  
DD4  
= 3.8 V  
65  
45  
f = 10 Hz to 100 kHz, I = I  
, V = 3.3 V  
MAX  
µVrms  
µs  
O
I
t
t
I
Turnon time  
See Note 2  
80  
5
ON  
Turnoff time  
No load, See Note 3  
1
ms  
OFF  
Quiescent current  
I
O
= 1 mA  
120  
150  
µA  
(Quiescent)  
regulator 1 voltage DET  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
V  
V  
0
0.3  
REG1  
TH HY  
V
V
Voltage at XRST (see Note 4)  
V
O
V  
V
REG1  
TH  
REG1  
100  
Hysteresis voltage  
80  
120  
1.25  
1.3  
mV  
V
HY  
Time delay voltage at CD1  
Time delay current at CD1  
1.15  
0.7  
1.2  
1
µA  
NOTE 4:  
V
TH  
is 90% of the nominal V  
.
REG1  
LED driver  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
160  
20  
UNIT  
mA  
mA  
mA  
µA  
Output current at IL0  
V
V
V
= 0.8 V  
= 0.8 V  
= 0.8 V  
IL0  
IL1  
IL2  
Output current at IL1  
Output current at IL2  
Leakage current  
10  
I
Off  
1
LKG  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢃꢄ ꢅꢆ ꢇ  
ꢈꢉ ꢁ ꢊꢋ ꢌꢍꢈ ꢈꢂꢎ ꢏ ꢇꢐꢇꢑ ꢊꢏ ꢊꢐ ꢀ ꢒ ꢆ ꢇ ꢐꢓ  
ꢂ ꢔꢕꢒ ꢖꢗ ꢘꢇꢀ ꢀꢊ ꢋꢎ ꢆꢙꢇ ꢋꢑ ꢊ ꢆ ꢉꢐ ꢀꢋ ꢉ ꢂ  
SLVS321A OCTOBER 2001 REVISED JANUARY 2002  
electrical characteristics, T = 25°C to 85°C (unless otherwise noted) (continued)  
A
vibrator driver  
PARAMETER  
Input voltage  
TEST CONDITIONS  
MIN  
3.3  
TYP  
MAX  
4.3  
3.12  
85  
UNIT  
V
V
V
DD5  
Output voltage  
Output current  
Output voltage  
Output current  
Line regulation  
Load regulation  
Quiescent current  
Current limit  
SEL = H  
SEL = H  
SEL = L  
SEL = L  
2.88  
3
V
O
I
O
mA  
V
V
O
1.17  
1.3  
1.43  
140  
20  
I
O
mA  
mV  
mV  
µA  
mA  
V
S
V
= 3.3 V to 4.3 V, I  
= I  
DD5  
OUT  
OUT  
OUT MAX  
I
I
= 1 mA to I , V = 3.8 V  
MAX DD5  
= 0  
80  
I
I
80  
(Quiescent)  
V
O
= 0, V  
DD5  
= 3.3 V to 4.3 V  
490  
L
ring driver  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
On resistance  
Leakage current  
I
= 100 mA at 25°C  
3
1
OUT  
Off  
I
µΑ  
LKG  
battery charger control  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
input  
4.2  
4.059  
4.158  
6.5  
V
CHG  
V
V
= 4.1 V  
4.1 4.141  
4.2 4.242  
BREG  
V
V
V
System V  
DD  
V
V
DD1  
= 4.2 V (see function control register)  
BREG  
Required 0.1-µF capacitor ESR of 2 , load = 1 mA  
maximum  
2.91  
3
3.09  
REF  
Set maximum current, 100 to 200, 20-mV steps with  
I C, See CSV register  
Current sense voltage  
V
mV  
(current sense)  
SENSE  
2
VGH  
VGL  
IGH = 0 mA  
IGL = 0 mA  
V
CHG  
0
V
V
VG  
IGH  
149  
214  
178.5  
218  
197  
226  
IG  
VG = 2 V  
µA  
V
IGL  
VG2H  
VG2L  
IG2H  
IG2L  
VG3H  
VG3L  
IG3H  
IG3L  
IG2H = 0 mA  
IG2L = 0 mA  
V
BAT  
0
VG2  
IG2  
VG3  
IG3  
VG2 = V  
BAT  
0.3 V  
0.3 V  
2.8  
4.03 4.65  
mA  
V
VG2 = 0.3 V  
IG3H = 0 mA  
IG3L = 0 mA  
3.2  
5.02  
5.70  
V
DD1  
0
VG3 = V  
DD1  
2.7  
3.87 4.65  
4.43 5.3  
mA  
VG3 = 0.3 V  
2.95  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄ ꢅꢆ ꢇ  
ꢈ ꢉꢁ ꢊꢋ ꢌꢍ ꢈꢈꢂꢎ ꢏꢇ ꢐꢇꢑ ꢊ ꢏꢊ ꢐꢀ ꢒ ꢆ ꢇꢐ ꢓ  
ꢂ ꢔ ꢕꢒ ꢖ ꢗ ꢘ ꢇꢀ ꢀ ꢊꢋꢎ ꢆꢙ ꢇꢋꢑ ꢊ ꢆꢉ ꢐꢀ ꢋꢉ ꢂ  
SLVS321A OCTOBER 2001 REVISED JANUARY 2002  
electrical characteristics, T = 25°C to 85°C (unless otherwise noted) (continued)  
A
battery charger control (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
= 4.1 V  
4.059  
4.158  
4.1 4.141  
4.2 4.242  
1.9  
BREG  
V
BAT  
regulation (CV)  
V
= 4.2 V  
BREG  
Low voltage cutoff  
High voltage cutoff  
Fast charge voltage  
Precharge voltage  
Pack wake-up voltage  
Operating current  
4.45  
3.2  
V
V
BAT  
(see Note 5)  
1.9  
2.05  
2.2  
4.214  
4.30 4.386  
20  
I
mA  
CC  
V
is the regulated battery voltage programmed by setting bit 1 of CSV register.  
BREG  
V
PRE  
NOTES: 5. Precharge current set by I  
+
  45  
where V  
+ 1.2 V " 10%  
PRE  
PRE  
R
PR  
ADC specification  
PARAMETER  
Resolution  
TEST CONDITIONS  
Output impedance <100 kΩ  
MIN  
TYP  
MAX  
UNIT  
bit  
8
Integral nonlinearity  
Low-level input  
Confirm monotonous (see Note 6)  
ADC output = 00H  
1  
0
1
LSB  
V
0.1  
2.1  
High-level input  
ADC output = FFH  
1.9  
2
3
V
Input capacitance  
ADC CLK  
pF  
450  
500  
16  
550  
10  
kHz  
CLK  
µs  
AD conversion time, t  
Power-up time  
From the start of SETUP  
C
From the ADEN up selection  
2V  
255  
NOTE 6: LSB +  
+ 7.8 mV  
DISB interface  
2
The TWL2214CA device supports both I C bus and SPI bus serial interfaces. The interface uses serial data  
(DATA) and serial clock (CLK) to carry information between the devices. The CE terminal (A8) in the GQE  
2
package selects I C or SPI. The device that initiates a transfer, generates clock signals, and terminates a  
transfer is the master. The TWL2214CA device operates as a slave device. The slave address for this device  
is fixed at E4h for write operations and E5h for read operations. The LSB of this slave address is simply an R/W  
flag. DATA is a bidirectional line connected to V  
via a 10-kpullup resistor. Data can be transferred at a  
REG1  
2
rate up to 400K bits/s for I C and up to 2M bits/s for SPI with one clock pulse generated for each data bit  
transferred. MSB is transferred first. When the bus is free, both DATA and CLK are high. Data transfer can only  
be initiated when the bus is free. The bus must return to the free state when the transfer is complete. Failure  
to return to the free state may cause an error.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢃꢄ ꢅꢆ ꢇ  
ꢈꢉ ꢁ ꢊꢋ ꢌꢍꢈ ꢈꢂꢎ ꢏ ꢇꢐꢇꢑ ꢊꢏ ꢊꢐ ꢀ ꢒ ꢆ ꢇ ꢐꢓ  
ꢂ ꢔꢕꢒ ꢖꢗ ꢘꢇꢀ ꢀꢊ ꢋꢎ ꢆꢙꢇ ꢋꢑ ꢊ ꢆ ꢉꢐ ꢀꢋ ꢉ ꢂ  
SLVS321A OCTOBER 2001 REVISED JANUARY 2002  
SPI bus protocols  
The TWL2214CA serial bus is SPI-compatible when a negative transition is generated on the CE input (A8) in  
the GQE package.  
2
Unlike I C, in this mode, the slave device does not send an acknowledge bit for all data received. The data frame  
includes 2 start bits, 1 byte of slave address, 1 byte of register address, 1 byte of data, and half clock cycle of  
th  
hold time. The total frame length, therefore, includes 26 full clock cycles and the rising edge of the 27 clock  
th  
cycle. After the rising edge of the 27 clock cycle, CLK remains high.  
The following requirements must be satisfied for the interface:  
1. CE goes low after the falling edge of CLK and remains low for no longer than 35 clock cycles. The data line  
2
must remain unchanged prior to the initial trailing edge of the CLK line. Failure to comply triggers the I C  
start condition and the SPI interface fails.  
2. Input data is sampled on the rising edge of the CLK when CE is set to low.  
th  
3. Input data is latched into the device on the last (26 ) rising edge of the CLK.  
4. If CE goes high before completing the transmission, data is ignored and the register is not updated.  
5. Output data is updated on the falling edge of the CLK when CE is set to low.  
6. The first two bits in the data line are dead bits to allow enough time for the communication mode option  
selection of the SPI.  
7. During a read operation the direction of data line changes after the register address is received.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄ ꢅꢆ ꢇ  
ꢈ ꢉꢁ ꢊꢋ ꢌꢍ ꢈꢈꢂꢎ ꢏꢇ ꢐꢇꢑ ꢊ ꢏꢊ ꢐꢀ ꢒ ꢆ ꢇꢐ ꢓ  
ꢂ ꢔ ꢕꢒ ꢖ ꢗ ꢘ ꢇꢀ ꢀ ꢊꢋꢎ ꢆꢙ ꢇꢋꢑ ꢊ ꢆꢉ ꢐꢀ ꢋꢉ ꢂ  
SLVS321A OCTOBER 2001 REVISED JANUARY 2002  
SPI bus protocols (continued)  
t
CLK  
t
SUCE  
CLK  
CE  
t
or t  
CE  
CLKH  
t
CLKL  
CLK  
DATA  
SPI1  
SPI0  
CE  
t
TD  
t
HDIN  
t
SUDIN  
CLK  
t
HCE  
CE  
DATA  
DATA IN  
CLK  
t
HDO  
CLK  
DATA MSB  
DATA  
DATA OUT  
DATA  
Figure 5. SPI Protocol Timing  
CE  
CLK  
SPI[10] SA7 SA6 SA5 SA4 SA3 SA2 SA1 R/W A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
DATA  
DISB_SPI  
Format  
Start when CE goes low  
SPI[10]  
Slave Address [70]  
Register Address [70]  
Data [70]  
Ignore data while CE is low  
Stop when CE goes high  
One Cycle  
Figure 6. SPI Read and Write  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢃꢄ ꢅꢆ ꢇ  
ꢈꢉ ꢁ ꢊꢋ ꢌꢍꢈ ꢈꢂꢎ ꢏ ꢇꢐꢇꢑ ꢊꢏ ꢊꢐ ꢀ ꢒ ꢆ ꢇ ꢐꢓ  
ꢂ ꢔꢕꢒ ꢖꢗ ꢘꢇꢀ ꢀꢊ ꢋꢎ ꢆꢙꢇ ꢋꢑ ꢊ ꢆ ꢉꢐ ꢀꢋ ꢉ ꢂ  
SLVS321A OCTOBER 2001 REVISED JANUARY 2002  
SPI timing requirements (see Figure 5)  
PARAMETER  
MIN  
500  
200  
200  
5
MAX  
UNIT  
ns  
t
t
t
t
t
t
t
t
t
t
t
t
Clock period  
CLK  
CLKL  
CLKH  
TD  
Clock low time  
ns  
Clock high time  
ns  
Interframe transfer delay  
CE low transition period  
Clock enable setup time  
Clock enable hold time  
Input data setup time  
Input data hold time  
Output data hold time  
Clock or data rise time  
Clock or data fall time  
t
t
CLK  
27  
35  
CE  
CLK  
ns  
50  
SUCE  
HCE  
SUDIN  
HDIN  
HDO  
r
0
ns  
ns  
ns  
ns  
ns  
ns  
50  
50  
t
50  
t
CLK  
CLK  
20  
20  
f
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄ ꢅꢆ ꢇ  
ꢈ ꢉꢁ ꢊꢋ ꢌꢍ ꢈꢈꢂꢎ ꢏꢇ ꢐꢇꢑ ꢊ ꢏꢊ ꢐꢀ ꢒ ꢆ ꢇꢐ ꢓ  
ꢂ ꢔ ꢕꢒ ꢖ ꢗ ꢘ ꢇꢀ ꢀ ꢊꢋꢎ ꢆꢙ ꢇꢋꢑ ꢊ ꢆꢉ ꢐꢀ ꢋꢉ ꢂ  
SLVS321A OCTOBER 2001 REVISED JANUARY 2002  
2
I C bus protocols  
For normal data transfer, DATA is allowed to change only when CLK is low. Changes when CLK is high are  
reserved for indicating the start and stop conditions. During data transfer, the data line must remain stable  
whenever the clock line is high. There is one clock pulse per bit of data. Each data transfer is initiated with a  
start condition and terminated with a stop condition. When addressed, the TWL2214CA device generates an  
acknowledge bit after the reception of each byte. The master device (microprocessor) must generate an extra  
clock pulse that is associated with the acknowledge bit. The TWL2214CA device must pull down the DATA line  
during the acknowledge clock pulse so that the DATA line is a stable low during the high period of the  
acknowledge clock pulse. The DATA line is a stable low during the high period of the acknowledge-related clock  
pulse. Setup and hold times must be taken into account. During read operations, a master must signal the end  
of data to the slave by not generating an acknowledge bit on the last byte that was clocked out of the slave. In  
this case, the slave TWL2214CA device must leave the data line high to enable the master to generate the stop  
condition.  
DATA  
CLK  
Data line  
stable;  
data valid  
Change  
of data  
allowed  
2
Figure 7. Bit Transfer on the I C Bus  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢃꢄ ꢅꢆ ꢇ  
ꢈꢉ ꢁ ꢊꢋ ꢌꢍꢈ ꢈꢂꢎ ꢏ ꢇꢐꢇꢑ ꢊꢏ ꢊꢐ ꢀ ꢒ ꢆ ꢇ ꢐꢓ  
ꢂ ꢔꢕꢒ ꢖꢗ ꢘꢇꢀ ꢀꢊ ꢋꢎ ꢆꢙꢇ ꢋꢑ ꢊ ꢆ ꢉꢐ ꢀꢋ ꢉ ꢂ  
SLVS321A OCTOBER 2001 REVISED JANUARY 2002  
2
I C bus protocols (continued)  
CE  
DATA  
CLK  
S
P
START Condition  
STOP Condition  
Figure 8. START and STOP Conditions  
CE  
CLK  
DATA  
Start  
A6  
A5  
A4  
A0 R/W ACK  
R7  
R6  
R5  
R0 ACK  
0
D7  
D6  
D5  
D0 ACK  
0
0
0
Stop  
Slave Address  
Register Address  
Data  
NOTE: SLAVE = TWL2214CA  
2
Figure 9. I C Bus Write to TWL2214CA Device  
CE  
CLK  
A6 A5  
A0 R/W ACK  
R7 R6  
R0 ACK  
A6  
A0 R/W ACK D7 D6  
D0 ACK  
DATA  
Start  
1
0
1
0
Slave  
Drives  
Stop  
Master  
Drives  
ACK and Stop  
Slave Address  
Register Address  
Slave Address  
the Data  
Repeated  
Start  
NOTE: SLAVE = TWL2214CA  
2
Figure 10. I C Read From TWL2214CA Protocol A  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄ ꢅꢆ ꢇ  
ꢈ ꢉꢁ ꢊꢋ ꢌꢍ ꢈꢈꢂꢎ ꢏꢇ ꢐꢇꢑ ꢊ ꢏꢊ ꢐꢀ ꢒ ꢆ ꢇꢐ ꢓ  
ꢂ ꢔ ꢕꢒ ꢖ ꢗ ꢘ ꢇꢀ ꢀ ꢊꢋꢎ ꢆꢙ ꢇꢋꢑ ꢊ ꢆꢉ ꢐꢀ ꢋꢉ ꢂ  
SLVS321A OCTOBER 2001 REVISED JANUARY 2002  
2
I C bus protocols (continued)  
CE  
CLK  
DATA  
A0 R/W ACK D7  
D0 ACK  
A6 A5  
A0 R/W ACK  
R7 R6  
R0 ACK  
A6 A5  
1
0
Start  
Stop  
Master  
Drives  
Stop Start  
Slave  
Drives  
the Data  
Slave Address  
Register Address  
Slave Address  
ACK and Stop  
NOTE: SLAVE = TWL2214CA  
2
Figure 11. I C Read From TWL2214CA Protocol B  
2
I C timing  
DATA  
t(  
BUF)  
t
h(STA)  
t
(LOW)  
t
t
f
r
CLK  
t
t
t
t
su(STO)  
h(STA)  
(HIGH)  
su(STA)  
t
t
h(DATA)  
su(DATA)  
STO  
STA  
STA  
STO  
MIN  
MAX  
UNIT  
kHz  
ns  
Clock frequency, f  
400  
MAX  
Clock high time, t  
600  
wH(HIGH)  
Clock low time, t  
1300  
ns  
wL(LOW)  
DATA and CLK rise time, t  
300  
300  
ns  
R
DATA and CLK fall time, t  
ns  
F
Hold time (repeated) START condition (after this period the first clock pulse is generated), t  
h(STA)  
600  
600  
0
ns  
Setup time for repeated START condition, t  
h(DATA)  
ns  
Data input hold time, t  
h(DATA)  
ns  
Data input setup time, t  
su(DATA)  
100  
600  
1300  
ns  
STOP condition setup time, t  
su(STO)  
ns  
Bus free time, t  
(BUF)  
ns  
2
Figure 12. I C Bus Timing Diagram  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
register map  
charger  
ADDRESS  
(HEX)  
D7  
(MSB)  
D0  
(LSB)  
REGISTER  
D6  
D5  
D4  
D3  
D2  
D1  
00000 = 0 minutes  
10h  
(R/W)  
0 = Disable  
1 = Enable  
L
PTR: Precharge timer  
register  
Dont care  
Dont care  
11111 = 136 minutes in 4-minute steps  
Default  
0
0
0
0
0
1
0
0
0
0
00000 = 0 minutes  
11h  
(R/W)  
0 = Disable  
1 = Enable  
L
CCTR: CC charge timer  
register  
11111 = 273 minutes in 8-minute steps  
Default  
0
0
0
0000 = 0 hours  
12h  
(R/W)  
L
TCTR: Total charge timer  
(CC+CV) register  
Dont Care  
1111 = 15 hours in 1-hour steps  
Default  
1
1
1
00h = 0 V  
L
13h  
(R/W)  
VBOTRH+: Battery over  
temperature register at  
High+  
FFh = 2 V  
Default  
00h = 0 V  
00h = 0 V  
L
14h  
(R/W)  
VBOTRH: Battery over  
temperature register at  
High–  
FFh = 2 V  
Default  
00h = 0 V  
00h = 0 V  
L
15h  
VBOTRL: Battery over  
temperature register at low  
(R/W)  
FFh = 2 V  
Default  
00h = 0 V  
Sensing voltage  
Termination current ratio  
16h  
(R/W)  
0 = 4.1 V  
1 = 4.2 V  
000 = 100 mV  
L
000 = 10%  
L
CSV: Charge current  
sensing voltage and  
termination current ratio  
Dont care  
101 = 200 mV in 20-mV steps  
100 = 50% in 10% steps  
Default  
0
0
0
0
0
0
0
17h  
(R)  
ADBV: Battery voltage  
VABV = 2 V × 2.5 × Value/256  
VADBAT = 2 V × Value/256  
VADCIN1 = 2 V × Value/256  
VADCIN2 = 2 V × Value/256  
ADBT: Battery temperature  
voltage  
18h  
(R)  
19h  
(R)  
ADCIN1: Voltage  
ADCIN2: Voltage  
1Ah  
(R)  
charger (continued)  
ADDRESS  
(HEX)  
D7  
(MSB)  
D0  
(LSB)  
REGISTER  
D6  
D5  
D4  
D3  
D2  
D1  
CHGSTR  
0 =  
1 = Charger  
Start  
ADC status  
0 = Disable  
1 = Enable  
See Notes 7  
and 8  
ADC function  
0 = Single  
1 = Periodically 1 = Enable  
See Notes 7  
and 8  
ADBV  
0 = Disable  
VTS  
ADCIN1  
ADCIN2  
IRQ  
0 = IRQ is L  
1 = IRQ is H  
0 = Disable  
1 = Enable  
See Notes 7  
and 10  
0 = Disable  
1 = Enable  
See Notes 7  
and 10  
0 = Disable  
1 = Enable  
See Notes 7  
and 10  
1Bh  
(R/W)  
FCR1: Function control  
SR: STATUS register  
See Notes 7  
and 9  
See Note 7  
Default  
0
0
0
0
0
0
0
0
VEXT  
BATERR  
VBOT  
CTERM  
NOCHG  
1 = Charge  
condition,  
reset  
PCHG  
CCTO  
TCTO  
1 = VCCHG in 1 = Battery  
range error  
1 = Battery  
overvoltage  
1 = Charge  
current goes  
below  
1 = Precharge 1 = CC charge 1 = Total  
1Ch  
(R)  
mode  
timeout  
charge time  
(CC+CV) out  
termination out CHGSTR to 0.  
See Note 11  
NOTES: 7. After the TWL2214CA device has finished charging, these values are set to 0.  
8. During CHGSTR H, ADC enables and periodically keeps functioning.  
9. During charging mode ADVB is enabled automatically.  
10. Charging mode is not necessary to set enable for function.  
11. External microprocessor must set CHGSTR bit to 0 when NOCHG = 1  
regulator, LED, VIBRATOR  
ADDRESS  
(HEX)  
D7  
(MSB)  
D0  
(LSB)  
REGISTER  
D6  
D5  
D4  
D3  
D2  
D1  
REG2  
REG3  
20h  
(R/W)  
000 = 3 V  
L
000 = 3 V  
L
0 = Disable  
1 = Enable  
0 = Disable  
1 = Enable  
FCR2: Function register 2  
111 = 2.3 V in 100-mV steps  
111 = 2.3 V in 100-mV steps  
Default  
0
0
0
0
0
0
0
0
0
0
REG4  
REG5  
21h  
(R/W)  
000 = 3 V  
000 = 3 V  
0 = Disable  
1 = Enable  
0 = Disable  
1 = Enable  
L
L
FCR3: Function register 3  
101 = 2.5 V in 100-mV steps  
101 = 2.5 V in 100-mV steps  
Default  
0
0
0
0
0
0
REG6  
22h  
(R/W)  
0 = Disable  
1 = Enable  
See Note 12  
000 = 3 V  
L
FCR4: Function register 4  
FCR5: Function register 5  
Dont care  
101 = 2.5 V in 100-mV steps  
Default  
0
0
0
0
Vibrator  
Ringer  
IL2  
IL1  
IL0  
VG3_EN  
23h  
(R/W)  
0 = Disable  
1 = Enable  
0 = Disable  
1 = Enable  
0 = Disable  
1 = Enable  
0 = Disable  
1 = Enable  
0 = Disable  
1 = Enable  
0 = Disable  
1 = Enable  
Dont care  
Default  
0
0
0
0
0
0 See Note 13  
NOTES: 12. CONT = H, REG6 is dependent on D7 to enable. CONT = L, REG6 is independent of D7, always on after power up.  
13. VG3_EN = 1, forces VG3 signal to Low. VG3_EN = 0, VG3 signal is at normal condition. Control of this bit is valid only when the adapter is connected.  
ꢀ ꢁ ꢂꢃ ꢃꢄ ꢅꢆ ꢇ  
ꢈꢉ ꢁ ꢊꢋ ꢌꢍꢈ ꢈꢂꢎ ꢏ ꢇꢐꢇꢑ ꢊꢏ ꢊꢐ ꢀ ꢒ ꢆ ꢇ ꢐꢓ  
ꢂ ꢔꢕꢒ ꢖꢗ ꢘꢇꢀ ꢀꢊ ꢋꢎ ꢆꢙꢇ ꢋꢑ ꢊ ꢆ ꢉꢐ ꢀꢋ ꢉ ꢂ  
SLVS321A OCTOBER 2001 REVISED JANUARY 2002  
APPLICATION INFORMATION  
DC Input  
4.5 V to 6.0 V  
Q1  
R_SENSE1  
0.2 Ω  
ZXM64P02X  
5
C1  
0.1 µF  
3
2
1
6
7
8
S
D
R1  
1 MΩ  
4
G
Q2:1  
S 1  
Q2:2  
R2  
100 kΩ  
8 D  
7 D  
D
D
6
5
SI9934DY  
4 G  
SI9934DY  
G 2  
R3  
1 kΩ  
R4  
1.2 kΩ  
C3  
RT1  
3.74 kΩ  
Battery Pack  
NTC  
C2  
1 µF  
470 pF  
RT2  
6.19 kΩ  
C4  
4.7 µF  
D1  
Vibrator +  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
PWRKOUT  
TS  
ADCIN1  
ADCIN2  
CONT  
To V  
or GND  
DD  
PWRKIN  
PSH  
S1  
DATA  
CLK  
CD2  
V
REG5  
U2  
TWL2214CA  
V
DD4  
DGND  
VIOUT  
V
REG4  
BGRF  
R5  
10 kΩ  
V
DD5  
C5  
4.7 µF  
GND2  
RINGOUT  
RINGIN  
GND3  
V
REG3  
V
DD3  
V
REG2  
C13  
0.001 µF  
C6  
R6  
10 kΩ  
C10  
0.1 µF  
C9  
0.1 µF  
4.7 µF  
C12  
C11  
0.1 µF  
4.7 µF  
C8  
0.1 µF  
C7  
4.7 µF  
EXT_CONTROLLER  
C14  
IRQ  
PWRKOUT  
PSH  
0.01 µF  
DATA  
CLK  
RST  
To V  
or GND  
DD  
C17  
0.1 µF  
C18  
0.1 µF  
R7  
R9  
100 kΩ  
C15  
4.7 µF  
C16  
4.7 µF  
To  
V
DD  
R8  
V
DD  
or  
+
R10  
Buzzer  
GND  
VREG1  
C19  
0.1 µF  
Figure 13. Typical Application Circuit (PFB)  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄ ꢅꢆ ꢇ  
ꢈ ꢉꢁ ꢊꢋ ꢌꢍ ꢈꢈꢂꢎ ꢏꢇ ꢐꢇꢑ ꢊ ꢏꢊ ꢐꢀ ꢒ ꢆ ꢇꢐ ꢓ  
ꢂ ꢔ ꢕꢒ ꢖ ꢗ ꢘ ꢇꢀ ꢀ ꢊꢋꢎ ꢆꢙ ꢇꢋꢑ ꢊ ꢆꢉ ꢐꢀ ꢋꢉ ꢂ  
SLVS321A OCTOBER 2001 REVISED JANUARY 2002  
APPLICATION INFORMATION  
DC Input  
4.5 V to 6.0 V  
Q1  
R_SENSE1  
0.2 Ω  
ZXM64P02X  
5
C1  
0.1 µF  
3
2
1
6
7
8
S
D
R1  
1 MΩ  
4
G
Q2:1  
S 1  
Q2:2  
R2  
100 kΩ  
8 D  
7 D  
D
D
6
5
SI9934DY  
4 G  
SI9934DY  
G 2  
R3  
1 kΩ  
R4  
1.2 kΩ  
C3  
RT1  
3.74 kΩ  
Battery Pack  
NTC  
C2  
1 µF  
470 pF  
RT2  
6.19 kΩ  
C4  
4.7 µF  
D1  
Vibrator +  
H8  
B7  
A7  
B6  
A6  
B5  
A5  
A4  
B4  
A3  
B3  
A2  
B2  
PWRKOUT  
TS  
ADCIN1  
ADCIN2  
CONT  
To V  
or GND  
DD  
J8  
J7  
H6  
J6  
J5  
H5  
J4  
H4  
J3  
J2  
H2  
PWRKIN  
PSH  
S1  
DATA  
CLK  
CD2  
V
REG5  
U2  
TWL2214CA  
V
DD4  
DGND  
VIOUT  
V
REG4  
BGRF  
R5  
V
DD5  
C5  
GND2  
RINGOUT  
RINGIN  
GND3  
V
10 kΩ  
REG3  
4.7 µF  
V
DD3  
V
REG2  
C13  
0.001 µF  
C6  
0.1 µF  
R6  
10 kΩ  
C10  
0.1 µF  
C9  
4.7 µF  
C12  
C11  
0.1 µF  
4.7 µF  
C8  
0.1 µF  
C7  
4.7 µF  
EXT_CONTROLLER  
C14  
IRQ  
PWRKOUT  
PSH  
0.01 µF  
DATA  
CLK  
CE  
RST  
To V  
or GND  
DD  
C17  
0.1 µF  
C18  
0.1 µF  
R7  
R9  
100 kΩ  
C15  
4.7 µF  
C16  
4.7 µF  
To  
V
DD  
R8  
V
DD  
or  
+
R10  
Buzzer  
GND  
VREG1  
C19  
0.1 µF  
Figure 14. Typical Application Circuit (GQE)  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢃꢄ ꢅꢆ ꢇ  
ꢈꢉ ꢁ ꢊꢋ ꢌꢍꢈ ꢈꢂꢎ ꢏ ꢇꢐꢇꢑ ꢊꢏ ꢊꢐ ꢀ ꢒ ꢆ ꢇ ꢐꢓ  
ꢂ ꢔꢕꢒ ꢖꢗ ꢘꢇꢀ ꢀꢊ ꢋꢎ ꢆꢙꢇ ꢋꢑ ꢊ ꢆ ꢉꢐ ꢀꢋ ꢉ ꢂ  
SLVS321A OCTOBER 2001 REVISED JANUARY 2002  
APPLICATION INFORMATION  
device power supply control (V  
)
DD1  
The TWL2214CA device receives device power by regulating the V  
input to 4.1 V or 4.2 V, whenever V  
CHG  
CHG  
is available; otherwise, the device uses the V  
2
input directly as device dc supply. The regulated voltage from  
BAT  
V
is programmable through the I C interface.  
CHG  
RS  
V
CHG  
+
V
BAT  
VG3  
VG  
VG2  
V
+
_
BG  
DD  
V
DD  
Control  
Logic  
Decode  
R1  
R2  
V
DD1  
TWL2214CA  
BG: Band Gap Voltage  
R1: Fixed  
R2: Programmable  
Figure 15. Device Power Supply  
Condition 1:  
V
V
is on (VG = Active, VG2 = On, VG3 = Off)  
CHG  
+ 4.1 V or 4.2 V  
DD1  
The TWL2214CA device sets R2 value according to the programmed voltage level (4.1 V or 4.2 V).  
Condition 2:  
V
V
is off and V  
applied (VG = High, VG2 = Off, VG3 = On)  
CHG  
BAT  
+ VBAT  
DD1  
battery charger  
The TWL2214CA device provides a charger function for single cell Li-Ion battery packs. The charging activity  
starts with the battery pack wake-up cycle. If the wake-up cycle completes successfully, the charger starts the  
precharge function and slowly charges the battery to 3.2 V. If the battery is charged to 3.2 V within the time limit,  
the charger goes into the fast charge mode. The fast charge mode has two phases: 1) constant current (CC)  
mode and 2) constant voltage (CV) mode. The charger starts CC mode with the maximal charging current until  
the battery voltage reaches the regulated voltage level; the charger is then switched to CV mode. During the  
CV mode, the TWL2214CA device monitors the charging current; once it is below the programmed termination  
current level, the charger activity is terminated. The termination current level can be programmed at 10%, 20%,  
30%, 40%, or 50% of the maximum charging current at the CC mode.  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄ ꢅꢆ ꢇ  
ꢈ ꢉꢁ ꢊꢋ ꢌꢍ ꢈꢈꢂꢎ ꢏꢇ ꢐꢇꢑ ꢊ ꢏꢊ ꢐꢀ ꢒ ꢆ ꢇꢐ ꢓ  
ꢂ ꢔ ꢕꢒ ꢖ ꢗ ꢘ ꢇꢀ ꢀ ꢊꢋꢎ ꢆꢙ ꢇꢋꢑ ꢊ ꢆꢉ ꢐꢀ ꢋꢉ ꢂ  
SLVS321A OCTOBER 2001 REVISED JANUARY 2002  
APPLICATION INFORMATION  
Non-Charging  
Power Up  
V
CHG  
V
CHG  
< 4.5 V or  
> 6.5 V  
Mode  
4.5 V V  
CHG  
6.5 V  
XRST = Low or CHGSTR = Low  
Standby  
XRST = High and CHGSTR = High  
V
BAT  
4.3 V  
V
BAT  
< 2.0 V or V > 4.45 V  
BAT  
Wake Up  
V
BAT  
3.2 V  
V
BAT  
< 3.2 V  
V
BAT  
< 3.2 V  
Temperature  
Out of Range  
Time-Out or  
> 4.45 V  
Precharge  
V
BAT  
Temperature In Range  
V
BAT  
3.2 V  
V
BAT  
< 4.1 V or 4.2 V  
Temperature Out of Range  
Charge  
Suspended  
CC Time-Out or  
> 4.45 V  
Terminate  
Charge  
Fast-Charge  
CC Mode  
Temperature In Range  
V
BAT  
Temperature Out of Range  
Temperature In Range  
V
BAT  
4.1 V or 4.2 V  
V
BAT  
> 4.45 V  
Fast-Charge  
CV Mode  
Temperature Out of Range  
I
> I  
CHG TERMINATE  
I
I or  
CHG TERMINATE  
and not CV Time-Out  
CV Time-Out  
Charge  
Complete  
Figure 16. Charger State Diagram  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢃꢄ ꢅꢆ ꢇ  
ꢈꢉ ꢁ ꢊꢋ ꢌꢍꢈ ꢈꢂꢎ ꢏ ꢇꢐꢇꢑ ꢊꢏ ꢊꢐ ꢀ ꢒ ꢆ ꢇ ꢐꢓ  
ꢂ ꢔꢕꢒ ꢖꢗ ꢘꢇꢀ ꢀꢊ ꢋꢎ ꢆꢙꢇ ꢋꢑ ꢊ ꢆ ꢉꢐ ꢀꢋ ꢉ ꢂ  
SLVS321A OCTOBER 2001 REVISED JANUARY 2002  
APPLICATION INFORMATION  
control registerFCR1 (1BH)  
BIT  
NAME  
CHGSTR  
DESCRIPTION  
7
Set this bit to 1 to start the charger operation. This bit is cleared if the charger is terminated. (Refer to  
status register table below for terminated conditions)  
6
5
4
3
2
1
0
ADC ENABLE  
ADC FUNCTION  
ADBV  
Set this bit to 1 to enable ADC operation, 0 to stop.  
Set this bit to 1 to have ADC operate continuously. Set to 0 to have ADC to operate one cycle only.  
Set this bit to 1 to enable the V  
BAT  
input channel to ADC. Clear this bit to 0 to disable the input channel.  
VTS  
Set this bit to 1 to enable the VTS input channel to ADC. Clear this bit to 0 to disable the input channel.  
Set this bit to 1 to enable the ADCIN1 input channel.  
ADCIN1  
ADCIN2  
IRQ  
Set this bit to 1 to enable the ADCIN2 input channel.  
Status of IRQ terminal (refer to IRQ operation section).  
ADC has four input channels (ADBV, VTS, ADCIN1, and ADCIN2). Each channel can be enabled or disabled  
individually. The selected channel must be enabled before ADC FUNCTION and ADC ENABLE bits are  
enabled, the channel is included in the ADC operation.  
IRQ control/status  
The TWL2214CA device uses IRQ signal to inform the external controller about the exception condition of the  
input and the charger status. Bit 0 reflects the state of the IRQ signal. IRQ occurs in the following five  
V
CHG  
conditions:  
1.  
2.  
V
V
returns to operating range from nonoperating range.  
goes out of range from operating range.  
CHG  
CHG  
3. Battery erroroccurs only during the charging cycle.  
4. Battery temperature out of rangeoccurs only during the charging cycle. The charger is suspended  
temporarily. IRQ is cleared when the temperature returns to normal and the charger resumes automatically.  
5. Charge complete.  
The controller must clear the IRQ signal by writing 0 to bit 0 in the interrupt service routine, except in the VBOT  
condition. The controller may miss the next interrupt if it fails to write the 0. In the VBOT condition, the  
TWL2214CA device clears the IRQ when the condition goes away.  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄ ꢅꢆ ꢇ  
ꢈ ꢉꢁ ꢊꢋ ꢌꢍ ꢈꢈꢂꢎ ꢏꢇ ꢐꢇꢑ ꢊ ꢏꢊ ꢐꢀ ꢒ ꢆ ꢇꢐ ꢓ  
ꢂ ꢔ ꢕꢒ ꢖ ꢗ ꢘ ꢇꢀ ꢀ ꢊꢋꢎ ꢆꢙ ꢇꢋꢑ ꢊ ꢆꢉ ꢐꢀ ꢋꢉ ꢂ  
SLVS321A OCTOBER 2001 REVISED JANUARY 2002  
APPLICATION INFORMATION  
status register descriptionSR (1CH)  
SR shows the status of the charger. The external controller reads the SR to track the state of the charging  
condition.  
BIT  
7
NAME  
Vext  
DESCRIPTION  
When Vext = 1, the V  
CHG  
input is in the operating range. Otherwise the V  
is out of range.  
CHG  
6
BATERR  
This bit is set to 1 indicating battery error. Four cases cause battery error: precharge timeout, constant-current mode  
timeout, V < 2.9 V, or V > 4.45 V.  
BAT BAT  
5
VBOT  
During the charging cycle, if the battery temperature exceeds or falls below the nominal range, this sets to 1. The  
charger is suspended temporarily. VBOT is cleared when the temperature returns to nominal range and the charger  
function resumes automatically.  
4
3
CTERM  
NOCHG  
The charger is terminated normally because the charging current is below the preset termination current value.  
No charge condition. This condition is detected only during the wake-up state of the charging function. After the  
8-second wake-up period expires, if V  
BAT  
is above 4.3 V, the NOCHG flag is set. The cause of this is a missing or  
completely charged battery. The TWL2214CA device does not deactivate the charger by setting CHGSTR = 0. The  
external processor must turn off the CHGSTR bit by setting it to 0.  
2
1
PCHG  
CCTO  
Set to 1 to indicate the charger is in precharge state.  
Set to 1 to indicate the charging time has exceeded the time limit allowed during CC mode. This is a fatal error. The  
TWL2214CA device clears CHGSTR bit, sets the BATERR flag, and makes IRQ go high to interrupt the external  
controller.  
0
TCTO  
Set to 1 to indicate the charging time has exceeded the overall time limit allowed during CV mode. This is treated  
as normal termination of the charger function. The TWL2214CA device clears bit 7 (CHGSTR) of the control register  
and sets IRQ to 1 to interrupt the external controller.  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢃꢄ ꢅꢆ ꢇ  
ꢈꢉ ꢁ ꢊꢋ ꢌꢍꢈ ꢈꢂꢎ ꢏ ꢇꢐꢇꢑ ꢊꢏ ꢊꢐ ꢀ ꢒ ꢆ ꢇ ꢐꢓ  
ꢂ ꢔꢕꢒ ꢖꢗ ꢘꢇꢀ ꢀꢊ ꢋꢎ ꢆꢙꢇ ꢋꢑ ꢊ ꢆ ꢉꢐ ꢀꢋ ꢉ ꢂ  
SLVS321A OCTOBER 2001 REVISED JANUARY 2002  
APPLICATION INFORMATION  
IRQ  
No  
V
out of  
Bound  
CHG  
VEXT=1  
Yes  
1
No  
Yes  
Display Error  
Message  
BATTERR=1  
Yes  
No  
NOCHG=1  
1
Yes  
No  
VBOT  
Set CHGSTR  
to 0  
No  
Yes  
Return  
CTERM  
1
Yes  
Charge  
TCTO  
Complete  
No  
1
1
1
Set IRQ1  
to 0  
Return  
Figure 17. Charger State Diagram  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄ ꢅꢆ ꢇ  
ꢈ ꢉꢁ ꢊꢋ ꢌꢍ ꢈꢈꢂꢎ ꢏꢇ ꢐꢇꢑ ꢊ ꢏꢊ ꢐꢀ ꢒ ꢆ ꢇꢐ ꢓ  
ꢂ ꢔ ꢕꢒ ꢖ ꢗ ꢘ ꢇꢀ ꢀ ꢊꢋꢎ ꢆꢙ ꢇꢋꢑ ꢊ ꢆꢉ ꢐꢀ ꢋꢉ ꢂ  
SLVS321A OCTOBER 2001 REVISED JANUARY 2002  
APPLICATION INFORMATION  
battery pack wake-up  
Li-Ion cells can be easily damaged by overcharging or overdischarging. To prevent damage, a pack-protector  
device is used within the battery pack. During the charging cycle, if the pack-protector senses an over-voltage  
condition, it disconnects the pack from the charger to prevent further charging but allows discharging. During  
the discharging cycle, if the protector senses an under-voltage condition, it disconnects the cell from the load  
to prevent further discharging.  
This phase of the charging cycle provides a wake-up capability for the battery pack with a pack-protector device.  
At the start of the charge cycle, the TWL2214CA device provides a wake-up signal of 1 mA and 4.3 V to the  
battery pack. At the end of the 8-second time limit, if the battery pack voltage remains at 4.3 V, a no-battery flag  
is set in the status register to signal the condition that the charging path is open. If the battery voltage is below  
2.5 V, a BATTERR flag is set in the status register to signal a bad battery cell. In either case, the charging activity  
is halted.  
V
CHG  
_
+
V
DD1  
1 mA  
No Battery  
_
+
BG  
V
BAT  
+
Wake-Up  
Enable  
Battery  
R1  
R2  
Control  
Logic  
TWL2214CA  
BG = 1.2 V  
R1 + R2  
BG ×  
= 4.3 V  
R2  
Figure 18. Battery Pack Wake Up  
precharge  
The TWL2214CA device starts the precharge phase when the battery voltage is less than 3.2 V. The precharge  
time is limited by the PTR timer. The precharge current level is set by an external resistor. The maximum  
precharge current the charger can supply is 100 mA. Use the following equation to choose the external resistor  
value.  
V
PRE  
R
+
  45, V  
+ 1.2V " 10%  
PRE  
PR  
I
PRE  
Where:  
R
= External resistor  
= Desired precharge current  
= Voltage at RPRE terminal  
PR  
I
V
PRE  
PRE  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢃꢄ ꢅꢆ ꢇ  
ꢈꢉ ꢁ ꢊꢋ ꢌꢍꢈ ꢈꢂꢎ ꢏ ꢇꢐꢇꢑ ꢊꢏ ꢊꢐ ꢀ ꢒ ꢆ ꢇ ꢐꢓ  
ꢂ ꢔꢕꢒ ꢖꢗ ꢘꢇꢀ ꢀꢊ ꢋꢎ ꢆꢙꢇ ꢋꢑ ꢊ ꢆ ꢉꢐ ꢀꢋ ꢉ ꢂ  
SLVS321A OCTOBER 2001 REVISED JANUARY 2002  
APPLICATION INFORMATION  
Rsense  
Active  
VG  
ON  
VG2  
OFF  
DC Input  
+
V
CHG  
V
BAT  
VG3  
ISENSE  
V
DD  
Voltage and  
Current Regulation  
Logic  
Constant  
Current  
Source  
Switch  
Control  
RPRE  
R
PR  
Precharge Path  
TWL2214CA  
Figure 19. Precharge Functional Diagram  
fast charge constant current (CC mode)  
When the battery voltage is 3.2 V or higher, the TWL2214CA device starts the fast charge CC mode cycle. In  
CC mode, the charger regulates the charging current to its maximum level. The maximum charging current  
(I  
) is determined by the external sense resistor, R  
, and the voltage, V  
. V  
, is programmable  
MAX  
SENSE  
SENSE SENSE  
2
through the I C interface (refer to CSV register for programming information). The range of V  
100 mV to 200 mV, in 20-mV steps. The CC mode charge time is limited by the CCTR timer.  
is from  
SENSE  
V
SENSE  
I
+
MAX  
R
SENSE  
fast charge constant current (CV mode)  
When the cell reaches the constant voltage phase, the charger switches to the fast charge CV mode. The  
charging current begins tapering down while the charging voltage is regulated at the programmed voltage level  
(4.1 V or 4.2 V). The CV mode charging is limited by the TCTR timer.  
Fast Charge Path (CC, CV)  
Rsense  
Active  
ON  
ON  
DC Input  
+
V
CHG  
V
BAT  
ISENSE  
VG  
VG3  
VG2  
V
DD  
Voltage and  
Current Regulation  
Logic  
Switch  
Control  
TWL2214CA  
Figure 20. Fast Charge Functional Diagram  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄ ꢅꢆ ꢇ  
ꢈ ꢉꢁ ꢊꢋ ꢌꢍ ꢈꢈꢂꢎ ꢏꢇ ꢐꢇꢑ ꢊ ꢏꢊ ꢐꢀ ꢒ ꢆ ꢇꢐ ꢓ  
ꢂ ꢔ ꢕꢒ ꢖ ꢗ ꢘ ꢇꢀ ꢀ ꢊꢋꢎ ꢆꢙ ꢇꢋꢑ ꢊ ꢆꢉ ꢐꢀ ꢋꢉ ꢂ  
SLVS321A OCTOBER 2001 REVISED JANUARY 2002  
APPLICATION INFORMATION  
current termination  
During the CV mode, the charge cycle is terminated when the charging current is under the programmed  
terminated level or when the total charge timer (TCTR) times out. The terminated current level can be  
programmed to 10%, 20%, 30%, 40%, or 50% of the charging current at CC mode.  
temperature monitoring  
The TWL2214CA device monitors the battery temperature throughout the charge cycle. The input for ADC  
reference voltage is generated by a negative temperature coefficient (NTC) thermistor. The TWL2214CA device  
compares the ADC input reference voltage to the programmed threshold voltages to determine if charging is  
allowed. Three required thresholds are:  
D
D
D
VBOTRH+ Voltage for over-temperature cutoff; charging is suspended.  
VBOTRHVoltage to resume charging function for over-temperature cutoff.  
VBOTRL Voltage for low-temperature cutoff; charging is suspended.  
Ts (V)  
2 V  
VBOTRL  
VBOTRH–  
VBOTRH+  
0 V  
Charge Condition  
Enable  
Disabled  
Enabled  
Disabled  
Enabled  
Figure 21. Temperature Monitoring  
NOTE: The power-up default values are zero for these three thresholds. If the user opts not to use the temperature monitoring function during  
the charge cycle, the TS terminal of the device must be tied to GND to avoid an error signal.  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢃꢄ ꢅꢆ ꢇ  
ꢈꢉ ꢁ ꢊꢋ ꢌꢍꢈ ꢈꢂꢎ ꢏ ꢇꢐꢇꢑ ꢊꢏ ꢊꢐ ꢀ ꢒ ꢆ ꢇ ꢐꢓ  
ꢂ ꢔꢕꢒ ꢖꢗ ꢘꢇꢀ ꢀꢊ ꢋꢎ ꢆꢙꢇ ꢋꢑ ꢊ ꢆ ꢉꢐ ꢀꢋ ꢉ ꢂ  
SLVS321A OCTOBER 2001 REVISED JANUARY 2002  
APPLICATION INFORMATION  
maximum time out  
The TWL2214CA device provides three timers for maximal time allowed for charging. The time is programmable  
2
through I C interface.  
TIMER DESCRIPTION  
RANGE  
STEP  
COMMENT  
PTRPrecharge timer  
0136 min  
4 min  
During the precharge cycle, if the timer expires before the precharging activity is  
complete, a BATT_ERR flag is set in the status register, and the charge is  
terminated.  
CCTRCC charge timer  
TCTRtotal charge timer  
0274 min  
015 hr  
8 min  
1 hr  
During the CC mode cycle, if the timer expires before the CC activity is complete,  
a BATT_ERR flag is set in the status register, and the charge is terminated.  
Total charge time is defined as the total charge time of CC mode and CV mode.  
TCTR time-out occurs only in the CV mode. If the timer expires before, the charge  
is complete.  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃ ꢄ ꢅꢆ ꢇ  
ꢈ ꢉꢁ ꢊꢋ ꢌꢍ ꢈꢈꢂꢎ ꢏꢇ ꢐꢇꢑ ꢊ ꢏꢊ ꢐꢀ ꢒ ꢆ ꢇꢐ ꢓ  
ꢂ ꢔ ꢕꢒ ꢖ ꢗ ꢘ ꢇꢀ ꢀ ꢊꢋꢎ ꢆꢙ ꢇꢋꢑ ꢊ ꢆꢉ ꢐꢀ ꢋꢉ ꢂ  
SLVS321A OCTOBER 2001 REVISED JANUARY 2002  
MECHANICAL DATA  
GQE (S-PBGA-N80)  
PLASTIC BALL GRID ARRAY  
5,10  
SQ  
4,00 TYP  
4,90  
0,50  
J
H
G
F
E
D
C
B
A
1
2
3
4
5
6
7
8
9
0,68  
0,62  
1,00 MAX  
Seating Plane  
0,08  
0,35  
0,25  
0,05  
M
0,21  
0,11  
4200461/C 10/00  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. MicroStar Junior BGA configuration  
D. Falls within JEDEC MO-225  
MicroStar Junior is a trademark of Texas Instruments.  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢃꢄ ꢅꢆ ꢇ  
ꢈꢉ ꢁ ꢊꢋ ꢌꢍꢈ ꢈꢂꢎ ꢏ ꢇꢐꢇꢑ ꢊꢏ ꢊꢐ ꢀ ꢒ ꢆ ꢇ ꢐꢓ  
ꢂ ꢔꢕꢒ ꢖꢗ ꢘꢇꢀ ꢀꢊ ꢋꢎ ꢆꢙꢇ ꢋꢑ ꢊ ꢆ ꢉꢐ ꢀꢋ ꢉ ꢂ  
SLVS321A OCTOBER 2001 REVISED JANUARY 2002  
PFB (S-PQFP-G48)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
M
0,08  
36  
25  
37  
24  
48  
13  
0,13 NOM  
1
12  
5,50 TYP  
7,20  
SQ  
Gage Plane  
6,80  
9,20  
SQ  
8,80  
0,25  
0,05 MIN  
0°ā7°  
1,05  
0,95  
0,75  
0,45  
Seating Plane  
0,08  
1,20 MAX  
4073176/B 10/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TIs terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TIs standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, maskworkright, orotherTIintellectualpropertyrightrelatingtoanycombination, machine, orprocess  
in which TI products or services are used. Information published by TI regarding thirdparty products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Mailing Address:  
Texas Instruments  
Post Office Box 655303  
Dallas, Texas 75265  
Copyright 2002, Texas Instruments Incorporated  

相关型号:

TWL2214CAPFBR

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PQFP48, PLASTIC, TQFP-48, Power Management Circuit
TI

TWL6030

Fully Integrated Power Management with Switch Mode Charger
TI

TWL6030B107CMR

Fully Integrated Power Management with Switch Mode Charger
TI

TWL6030B107CMRR

Fully Integrated Power Management with Switch Mode Charger
TI

TWL6030B1A0CMR

Fully Integrated Power Management with Switch Mode Charger
TI

TWL6030B1A0CMRR

Fully Integrated Power Management with Switch Mode Charger
TI

TWL6030B1A4CMR

Fully Integrated Power Management with Switch Mode Charger
TI

TWL6030B1A4CMRR

Fully Integrated Power Management with Switch Mode Charger
TI

TWL6030B1AACMR

Fully Integrated Power Management with Switch Mode Charger
TI

TWL6030B1AACMRR

Fully Integrated Power Management with Switch Mode Charger
TI

TWL6030B1AECMR

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PBGA187, 7 X 7 MM, 0.40 MM PITCH, GREEN, FCBGA-187
TI

TWL6030B1AECMRR

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PBGA187, 7 X 7 MM, 0.40 MM PITCH, GREEN, FCBGA-187
TI