TXS0102QDCURQ1 [TI]

用于漏极开路和推挽应用的汽车类 2 位双向电压电平转换器 | DCU | 8 | -40 to 125;
TXS0102QDCURQ1
型号: TXS0102QDCURQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

用于漏极开路和推挽应用的汽车类 2 位双向电压电平转换器 | DCU | 8 | -40 to 125

光电二极管 接口集成电路 转换器 电平转换器
文件: 总27页 (文件大小:1361K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TXS0102-Q1  
ZHCSCH5A MAY 2014REVISED SEPTEMBER 2017  
适用于漏极开路和推挽应用的 TXS0102-Q1 2 位双向  
电压电平 转换器  
1 特性  
3 说明  
1
符合汽车应用 要求  
具有符合 AEC-Q100 标准的下列结果:  
由于电压不匹配,TXS0102-Q1 器件连接芯片与芯片  
间的非兼容逻辑通信。这款自动导向转换器可方便地用  
来在无需主机方向控制的情况下缩小电压之间的差距。  
在无需主机干预的情况下,每个通道可混合使用,并且  
可以与不同的输出类型(开漏或推挽)和混合数据流  
(发送或接收)相匹配。这个 4 位非反向转换器使用  
两个独立的可配置电源轨。A B 端口被设计用来分  
别跟踪 VCCA VCCBVCCB 引脚在 VCCA 引脚接受  
1.65V 3.6V 之间的任一电源电压的同时,接受 2.3V  
5.5V 之间的任何电源电压,这样的话,VCCA 小于  
或等于 VCCB。这个跟踪功能可实现 1.8V2.5V3.3V  
5V 电压节点之间的低电压双向转换。  
器件温度 1 级:-40℃ 至 +125℃ 的环境运行温  
度范围  
器件人体模型 (HBM) 静电放电 (ESD) 分类等级  
2
充电器件模型 (CDM) ESD 分类等级 C5  
ESD 保护符合 JESD 22 规范的要求  
A 端口  
2500V 人体放电模式 (A114-B)  
750V 组件充电模式 (C101)  
B 端口  
8kV 人体放电模式 (A114-B)  
750V 组件充电模式 (C101)  
当输出使能端 (OE) 输入为低电平时,所有输出都被置  
于高阻抗状态。  
无需方向控制信号  
最大数据速率  
TXS0102-Q1 器件被设计成 OE 输入电路由 VCCA 供  
电。  
最大值 24Mbps(推挽)  
2Mbps(开漏)  
为了确保加电或断电期间的高阻抗状态,OE 引脚必须  
通过一个下拉电阻器接到 GND 引脚;此电阻器的最小  
值由驱动器的拉电流能力决定。  
采用德州仪器的 NanoFree™封装  
A 端口上 1.65V 3.6VB 端口上 2.3V 5.5V  
(VCCA VCCB  
)
器件信息(1)  
无需电源排序 — VCCA VCCB 可首先斜升  
器件型号  
TXS0102-Q1  
封装  
封装尺寸(标称值)  
2 应用  
超薄小外形尺寸封  
(VSSOP)(8)  
2.30mm x 2.00mm  
车用信息娱乐  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
高级驾驶员辅助系统 (ADAS)  
主处理器和外设模块间的隔离和电平转换  
I2C 1 线制电压电平转换  
N 通道晶体管的传输特征  
3.2  
2.8  
2.4  
2
VG = 4.3 V  
VG = 3.5 V  
VG = 2.8 V  
VG = 2.5 V  
VG = 2.2 V  
1.6  
1.2  
0.8  
0.4  
0
0
1
2
3
4
5
Input Voltage (V)  
D004  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SCES854  
 
 
 
TXS0102-Q1  
ZHCSCH5A MAY 2014REVISED SEPTEMBER 2017  
www.ti.com.cn  
目录  
7.2 Voltage Waveforms................................................. 13  
Detailed Description ............................................ 14  
8.1 Overview ................................................................. 14  
8.2 Functional Block Diagram ....................................... 14  
8.3 Feature Description................................................. 15  
8.4 Device Functional Modes........................................ 15  
Application and Implementation ........................ 16  
9.1 Application Information............................................ 16  
9.2 Typical Application .................................................. 16  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 3  
6.1 Absolute Maximum Ratings ...................................... 3  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements — VCCA = 1.8 V ± 0.15 V....... 5  
6.7 Timing Requirements — VCCA = 2.5 V ± 0.2 V ........ 6  
6.8 Timing Requirements — VCCA = 3.3 V ± 0.3 V......... 6  
6.9 Switching Characteristics — VCCA = 1.8 V ± 0.15 V. 6  
6.10 Switching Characteristics — VCCA = 2.5 V ± 0.2 V. 8  
8
9
10 Power Supply Recommendations ..................... 17  
11 Layout................................................................... 18  
11.1 Layout Guidelines ................................................. 18  
11.2 Layout Example .................................................... 18  
12 器件和文档支持 ..................................................... 19  
12.1 文档支持................................................................ 19  
12.2 接收文档更新通知 ................................................. 19  
12.3 社区资源................................................................ 19  
12.4 ....................................................................... 19  
12.5 静电放电警告......................................................... 19  
12.6 Glossary................................................................ 19  
13 机械、封装和可订购信息....................................... 19  
6.11 Switching Characteristics — VCCA = 3.3 V ± 0.3  
V............................................................................... 10  
6.12 Typical Characteristics.......................................... 11  
Parameter Measurement Information ................ 12  
7.1 Load Circuits ........................................................... 12  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (May 2014) to Revision A  
Page  
Changed Handling Ratings table to ESD Ratings table ......................................................................................................... 4  
已更改 Functional Block Diagram with new figure................................................................................................................ 14  
已更改 TXS0102-Q1 Layout Example with new figure......................................................................................................... 18  
已添加 文档支持接收文档更新通知以及社区资源.............................................................................................................. 19  
2
Copyright © 2014–2017, Texas Instruments Incorporated  
 
TXS0102-Q1  
www.ti.com.cn  
ZHCSCH5A MAY 2014REVISED SEPTEMBER 2017  
5 Pin Configuration and Functions  
DCU Package  
8-Pin VSSOP  
Top View  
B1  
1
8
7
6
5
B2  
GND  
VCCA  
A2  
2
3
4
VCCB  
OE  
A1  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
A1  
NO.  
5
I/O Input-output 1 for the A port. This pin is referenced to VCCA  
I/O Input-output 2 for the A port. This pin is referenced to VCCA  
I/O Input-output 1 for the B port. This pin is referenced to VCCB  
I/O Input-output 2 for the B port. This pin is referenced to VCCB  
.
.
.
.
A2  
4
B1  
8
B2  
1
GND  
2
Ground  
Tri-state output-mode enable. Pull the OE pin low to place all outputs in tri-state mode. This pin is  
referenced to VCCA  
OE  
6
I
.
VCCA  
VCCB  
3
7
A-port supply voltage. 1.65 V VCCA 3.6 V and VCCA VCCB  
.
B-port supply voltage. 2.3 V VCCB 5.5 V.  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
MAX  
4.6  
UNIT  
VCCA  
Supply voltage  
VCCB  
V
6.5  
A1, A2  
A port  
B port  
A port  
B port  
A port  
B port  
VI < 0  
VO < 0  
4.6  
(2)  
Input-output pin voltage, VIO  
V
V
V
B1, B2  
6.5  
4.6  
Voltage range applied to any output in the high-  
impedance or power-off state(2)  
6.5  
Output voltage, VO  
VCCA + 0.5  
VCCB + 0.5  
–50  
Voltage range applied to any output in the high  
or low state(2)(3)  
Input clamp current, IIK  
mA  
mA  
mA  
mA  
°C  
Output clamp current, IOK  
Continuous output current, IO  
–50  
±50  
Continuous current through each VCCA, VCCB, or GND  
±100  
150  
Tstg  
TJ  
Storage temperature  
Junction temperature  
–65  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.  
(3) The value of VCCA and VCCB are provided in the recommended operating conditions table.  
Copyright © 2014–2017, Texas Instruments Incorporated  
3
TXS0102-Q1  
ZHCSCH5A MAY 2014REVISED SEPTEMBER 2017  
www.ti.com.cn  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
A Port  
B Port  
A Port  
B Port  
±2500  
8000  
V
Electrostatic  
discharge  
V(ESD)  
Charged device model (CDM), per AEC Q100-011  
±750  
V
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
VCCA  
VCCB  
MIN  
MAX  
3.6  
UNIT  
VCCA  
VCCB  
Supply voltage(1)  
Supply voltage(1)  
1.65  
V
2.3  
5.5  
1.65 to 1.95 V  
2.3 to 3.6 V  
VCCA – 0.2  
VCCA  
VCCA  
VCCB  
5.5  
VIH(Ax)  
High-level input voltage  
A-port I/Os  
2.3 to 5.5 V  
2.3 to 5.5 V  
VCCA – 0.4  
V
V
VIH(Bx)  
VIH(OE)  
VIL(Ax)  
VIL(Bx)  
VIL(OE)  
High-level input voltage  
High-level input voltage  
Low-level input voltage  
Low-level input voltage  
Low-level input voltage  
B-port I/Os  
OE input  
VCCB – 0.4  
1.65 to 3.6 V  
VCCA × 0.65  
A-port I/Os  
B-port I/Os  
OE input  
0
0
0
0.15  
1.65 to 3.6 V  
2.3 to 5.5 V  
2.3 to 5.5 V  
0.15  
VCCA × 0.35  
10  
A-port I/Os,  
push-pull driving  
Δt/Δv(Ax)  
Δt/Δv(Bx)  
Input transition rise or fall rate  
Input transition rise or fall rate  
B-port I/Os,  
push-pull driving  
1.65 to 3.6 V  
10  
ns/V  
°C  
Δt/Δv(OE)  
Input transition rise or fall rate  
Operating free-air temperature  
OE input  
10  
TA  
–40  
125  
(1) VCCA must be less than or equal to VCCB, and VCCA must not exceed 3.6 V.  
6.4 Thermal Information  
over operating free-air temperature range (unless otherwise noted)  
TXS0102-Q1  
THERMAL METRIC(1)  
DCU (VSSOP)  
8 PINS  
199.1  
72.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
RθJB  
ψJT  
Junction-to-board thermal resistance  
77.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
6.2  
ψJB  
77.4  
RθJC(bot) Junction-to-case (bottom) thermal resistance  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2014–2017, Texas Instruments Incorporated  
TXS0102-Q1  
www.ti.com.cn  
ZHCSCH5A MAY 2014REVISED SEPTEMBER 2017  
6.5 Electrical Characteristics  
over recommended operating free-air temperature range (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
VCCA  
VCCB  
MIN  
TYP MAX  
UNIT  
High-level output voltage,  
A port  
IOH = –20 µA,  
VI(Bx) VCCB – 0.4 V  
TA = –40°C  
to +125°C  
VCCA  
0.67  
×
VOH(Ax)  
VOL(Ax)  
VOH(Bx)  
VOL(Bx)  
1.65 to 3.6 V  
2.3 to 5.5 V  
V
Low-level output voltage,  
A port  
IOL = 1 mA,  
VI(Bx) 0.15 V  
TA = –40°C  
to +125°C  
1.65 to 3.6 V  
1.65 to 3.6 V  
1.65 to 3.6 V  
2.3 to 5.5 V  
2.3 to 5.5 V  
2.3 to 5.5 V  
0.4  
V
V
V
High-level output voltage,  
B port  
IOH = –20 µA,  
VI(Ax) VCCA – 0.2 V  
TA = –40°C  
to +125°C  
VCCB  
0.67  
×
Low-level output voltage,  
B port  
IOL = 1 mA,  
VI(Ax) 0.15 V  
TA = –40°C  
to +125°C  
0.4  
±1  
±2  
TA = 25°C  
II(OE)  
Input current OE  
VI = VCCI or GND  
1.65 to 3.6 V  
2.3 to 5.5 V  
µA  
TA = –40°C  
to +125°C  
TA = 25°C  
±1  
±2  
±1  
±2  
±1  
A port  
0 V  
0 to 5.5 V  
0 V  
µA  
µA  
Power-off  
leakage  
current  
TA = –40°C to +125°C  
TA = 25°C  
I OFF  
B port  
0 to 3.6 V  
TA = –40°C to +125°C  
TA = 25°C  
Off-state  
A or B  
output current port  
IOZ  
OE = VIL  
1.65 to 3.6 V  
2.3 to 5.5 V  
µA  
µA  
TA = –40°C  
to +125°C  
±2  
1.65 to VCCB  
2.3 to 5.5 V  
4
2.2  
–1  
21  
–1  
1
VI = VO = Open,  
IO = 0  
TA = –40°C  
to +125°C  
ICCA  
Supply current, A port  
3.6 V  
0
5.5 V  
0
1.65 to VCCB  
3.6 V  
2.3 to 5.5 V  
0
VI = VO = Open,  
IO = 0  
TA = –40°C  
to +125°C  
ICCB  
Supply current, B port  
µA  
0
5.5 V  
ICCA+ICC Supply current, A port plus VI = VO = Open,  
TA = –40°C  
to +125°C  
1.65 to VCCB  
3.3 V  
2.3 to 5.5 V  
3.3 V  
25  
µA  
pF  
B port supply current  
IO = 0  
B
TA = 25°C  
2.5  
3.5  
5
Input  
capacitance  
CI(OE)  
OE  
TA = –40°C to +125°C  
TA = 25°C  
CIO(Ax)  
A port  
Input-output  
capacitance  
B port  
TA = –40°C to +125°C  
TA = 25°C  
6.5  
12  
7.5  
3.3 V  
3.3 V  
pF  
CIO(Bx)  
TA = –40°C to +125°C  
(1) VCCA must be less than or equal to VCCB, and VCCA must not exceed 3.6 V.  
6.6 Timing Requirements — VCCA = 1.8 V ± 0.15 V  
over recommended operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
18  
21  
23  
2
UNIT  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
Data rate  
Mbps  
2
2
55  
47  
43  
Pulse duration  
See 7  
tw  
Data inputs  
ns  
500  
500  
500  
Copyright © 2014–2017, Texas Instruments Incorporated  
5
TXS0102-Q1  
ZHCSCH5A MAY 2014REVISED SEPTEMBER 2017  
www.ti.com.cn  
6.7 Timing Requirements — VCCA = 2.5 V ± 0.2 V  
over recommended operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
VCCB = 2.5 V ± 0.2 V  
20  
22  
24  
2
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
Data rate  
Mbps  
2
2
50  
45  
41  
Pulse duration  
See 7  
tw  
Data inputs  
ns  
500  
500  
500  
6.8 Timing Requirements — VCCA = 3.3 V ± 0.3 V  
over recommended operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
22  
24  
2
UNIT  
VCCB = 3.3 V ± 0.3 V  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
Data rate  
Mbps  
2
45  
41  
Pulse duration  
See 7  
tw  
Data inputs  
ns  
500  
500  
6.9 Switching Characteristics — VCCA = 1.8 V ± 0.15 V  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
5.3  
5.4  
6.8  
8.8  
9.6  
10  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
Propagation delay time  
(high to low)  
See 8  
tPHL(A-B)  
From A (input) to B (output)  
ns  
4.4  
4.5  
4.7  
5.3  
4.4  
4
Propagation delay time  
(high to low)  
See 8  
tPHL(B-A)  
From B (input) to A (output)  
6
Copyright © 2014–2017, Texas Instruments Incorporated  
TXS0102-Q1  
www.ti.com.cn  
ZHCSCH5A MAY 2014REVISED SEPTEMBER 2017  
Switching Characteristics — VCCA = 1.8 V ± 0.15 V (continued)  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
6.8  
7.1  
7.5  
50  
UNIT  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
Propagation delay time  
tPLH(A-B)  
(low to high)  
See 8  
From A (input) to B (output)  
40  
33  
ns  
5.3  
4.5  
0.5  
36  
Propagation delay time  
(low to high)  
tPLH(B-A)  
From B (input) to A (output)  
See 8  
26  
20  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
200  
250  
275  
200  
200  
200  
9.5  
9.3  
7.6  
165  
132  
95  
ten(OE-A)  
ten(OE-B)  
From OE (input) to A  
or B (output)  
Enable time  
Disable time  
ns  
ns  
tdis(OE-A)  
tdis(OE-B)  
From OE (input) to A  
or B (output)  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
tr(Ax)  
tr(Bx)  
tf(Ax)  
Rise time, A port  
Rise time, B port  
Fall time, A port  
ns  
38  
30  
22  
10.8  
9.1  
7.6  
145  
106  
58  
ns  
34  
23  
10  
5.9  
6
13.3  
6.9  
6.4  
6.1  
13.8  
16.2  
16.2  
13.8  
16.2  
16.2  
1
ns  
tf(Bx)  
Fall time, B port  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
tsk  
Channel-to-channel skew  
1
ns  
1
Copyright © 2014–2017, Texas Instruments Incorporated  
7
TXS0102-Q1  
ZHCSCH5A MAY 2014REVISED SEPTEMBER 2017  
www.ti.com.cn  
Switching Characteristics — VCCA = 1.8 V ± 0.15 V (continued)  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
18  
21  
23  
2
MAX  
UNIT  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
Push-pull driving  
Maximum data rate  
Mbps  
Open-drain driving  
2
2
6.10 Switching Characteristics — VCCA = 2.5 V ± 0.2 V  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
3.2  
3.7  
3.8  
6.3  
6
UNIT  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
Propagation delay time  
tPHL(A-B)  
tPHL(B-A)  
tPLH(A-B)  
tPLH(B-A)  
(high to low)  
See 8  
From A (input) to B (output)  
From B (input) to A (output)  
From A (input) to B (output)  
From B (input) to A (output)  
5.8  
3
ns  
3.6  
4.3  
4.7  
4.2  
4
Propagation delay time  
(high to low)  
See 8  
3.5  
4.1  
4.4  
3.5  
4.1  
4.4  
2.5  
1.6  
1
Propagation delay time  
(low to high)  
See 8  
ns  
Propagation delay time  
(low to high)  
2.5  
1.6  
1
See 8  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
200  
200  
250  
200  
200  
200  
7.4  
6.6  
5.6  
149  
121  
89  
ten(OE-A)  
ten(OE-B)  
Enable time  
Disable time  
From OE (input) to A or B (output)  
From OE (input) to A or B (output)  
ns  
ns  
tdis(OE-A)  
tdis(OE-B)  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
Push-pull driving  
tr(Ax)  
Rise time, A port  
ns  
34  
28  
24  
Open-drain driving  
8
Copyright © 2014–2017, Texas Instruments Incorporated  
TXS0102-Q1  
www.ti.com.cn  
ZHCSCH5A MAY 2014REVISED SEPTEMBER 2017  
Switching Characteristics — VCCA = 2.5 V ± 0.2 V (continued)  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
8.3  
7.2  
6.1  
151  
112  
64  
UNIT  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
tr(Bx)  
Rise time, B port  
Fall time, A port  
Fall time, B port  
ns  
35  
24  
12  
5.7  
5.5  
5.3  
6.9  
6.2  
5.8  
7.8  
6.7  
6.6  
8.8  
9.4  
10.4  
1
tf(Ax)  
ns  
tf(Bx)  
ns  
ns  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
tsk  
Channel-to-channel skew  
Maximum data rate  
1
1
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
20  
22  
24  
2
Push-pull driving  
Mbps  
Open-drain driving  
2
2
Copyright © 2014–2017, Texas Instruments Incorporated  
9
TXS0102-Q1  
ZHCSCH5A MAY 2014REVISED SEPTEMBER 2017  
www.ti.com.cn  
6.11 Switching Characteristics — VCCA = 3.3 V ± 0.3 V  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
2.4  
3.1  
4.2  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
Propagation delay time  
tPHL(A-B) (high to low)  
From A (input) to B (output)  
From B (input) to A (output)  
From A (input) to B (output)  
From B (input) to A (output)  
See 8  
4.6  
ns  
2.5  
Propagation delay time  
tPHL(B-A) (high to low)  
3.3  
2.5  
3.3  
4.2  
4.4  
4.2  
See 8  
Propagation delay time  
tPLH(A-B) (low to high)  
See 8  
4.4  
ns  
2.5  
Propagation delay time  
tPLH(B-A) (low to high)  
2.6  
2.5  
2.6  
See 8  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
200  
ns  
ten(OE-A)  
ten(OE-B)  
Enable time  
Disable time  
From OE (input) to A or B (output)  
From OE (input) to A or B (output)  
250  
200  
ns  
200  
tdis(OE-A)  
tdis(OE-B)  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
5.6  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
4.8  
ns  
116  
tr(Ax)  
tr(Bx)  
tf(Ax)  
Rise time, A port  
Rise time, B port  
Fall time, A port  
25  
19  
85  
6.4  
7.4  
ns  
116  
26  
14  
72  
5.4  
5
ns  
6.1  
5.7  
7.4  
7.6  
ns  
7.6  
tf(Bx)  
Fall time, B port  
8.3  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
1
tsk  
Channel-to-channel skew  
Maximum data rate  
ns  
1
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
22  
24  
2
Push-pull driving  
Mbps  
Open-drain driving  
2
10  
版权 © 2014–2017, Texas Instruments Incorporated  
TXS0102-Q1  
www.ti.com.cn  
ZHCSCH5A MAY 2014REVISED SEPTEMBER 2017  
6.12 Typical Characteristics  
700  
600  
500  
400  
300  
200  
100  
0
700  
600  
500  
400  
300  
200  
100  
0
VCCB = 2.7 V  
VCCB = 3.3 V  
VCCB = 5 V  
VCCB = 3.3 V  
VCCB = 5 V  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
Low-Level Current (mA)  
Low-Level Current (mA)  
D001  
D003  
VCCA = 1.8 V  
VIL(A) = 150 mV  
VCCA = 2.7 V  
VIL(A) = 150 mV  
1. Low-Level Output Voltage (VOL(Bx)  
)
2. Low-Level Output Voltage (VOL(Bx)  
vs Low-Level Current (IOL(Bx)  
)
vs Low-Level Current (IOL(Bx)  
)
)
700  
600  
500  
400  
300  
200  
100  
0
VCCB = 3.3 V  
12 14 16  
0
2
4
6
8
10  
Low-Level Current (mA)  
D002  
VCCA = 3.3 V  
VIL(A) = 150 mV  
3. Low-Level Output Voltage (VOL(Bx)) vs Low-Level Current (IOL(Bx)  
)
版权 © 2014–2017, Texas Instruments Incorporated  
11  
TXS0102-Q1  
ZHCSCH5A MAY 2014REVISED SEPTEMBER 2017  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 Load Circuits  
V
V
V
CCI  
V
CCI  
CCO  
CCO  
TXS0102-Q1  
IN  
TXS0102-Q1  
IN  
OUT  
OUT  
1 M  
1 M  
15 pF  
15 pF  
4. Data Rate, Pulse Duration, Propagation Delay, 5. Data Rate, Pulse Duration, Propagation Delay,  
Output Rise-Time and Fall-Time Measurement  
Using a Push-Pull Driver  
Output Rise-Time and Fall-Time Measurement  
Using an Open-Drain Driver  
2 × V  
CCO  
S1  
Open  
50 k  
From output  
under test  
15 pF  
50 kꢀ  
TEST  
S1  
tPZL / tPLZ  
2 × VCCO  
Open  
(tdis  
)
tPHZ / tPZH  
(ten)  
6. Load Circuit for Enable-Time and Disable-Time Measurement  
1. tPLZ and tPHZ are the same as tdis  
.
2. tPZL and tPZH are the same as ten.  
3. VCCI is the VCC associated with the input port.  
4. VCCO is the VCC associated with the output port.  
12  
版权 © 2014–2017, Texas Instruments Incorporated  
 
TXS0102-Q1  
www.ti.com.cn  
ZHCSCH5A MAY 2014REVISED SEPTEMBER 2017  
7.2 Voltage Waveforms  
VCCI  
tw  
Input  
VCCI / 2  
VCCI / 2  
VCCI  
0 V  
Input  
VCCI / 2  
VCCI / 2  
tPLH  
tPHL  
0 V  
VOH  
0.9 × VCCO  
0.1 × VCCO  
VCCO / 2  
tr  
Output  
VCCO / 2  
VOL  
tf  
7. Pulse Duration  
8. Propagation Delay Times  
VCCA  
VCCA / 2  
VCCA / 2  
OE input  
0 V  
tPLZ  
tPZL  
VOH  
Output  
Waveform 1  
S1 at 2 × VCCO  
VCCO / 2  
V
× 0.1  
OH  
VOL  
(see Note 2)  
tPHZ  
tPZH  
VOH  
0 V  
Output  
Waveform 2  
S1 at GND  
(see Note 2)  
V
× 0.9  
OH  
VCCO / 2  
9. Enable and Disable Times  
1. CL includes probe and jig capacitance.  
2. Waveform 1 in 9 is for an output with internal such that the output is high, except when OE is high (see 图  
6). Waveform 2 in 9 is for an output with conditions such that the output is low, except when OE is high.  
3. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 Ω,  
dv/dt 1 V/ns.  
4. The outputs are measured one at a time, with one transition per measurement.  
5. tPLZ and tPHZ are the same as tdis  
.
6. tPZL and tPZH are the same as ten.  
7. tPLH and tPHL are the same as tpd.  
8. VCCI is the VCC associated with the input port.  
9. VCCO is the VCC associated with the output port.  
版权 © 2014–2017, Texas Instruments Incorporated  
13  
 
TXS0102-Q1  
ZHCSCH5A MAY 2014REVISED SEPTEMBER 2017  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TXS0102-Q1 device is a directionless voltage-level translator specifically designed for translating logic  
voltage levels. The A port is able to accept I/O voltages ranging from 1.65 V to 3.6 V, while the B port can accept  
I/O voltages from 2.3 V to 5.5 V. The device is a pass gate architecture with edge rate accelerators (one shots)  
to improve the overall data rate. 10-kΩ pullup resistors, commonly used in open drain applications, have been  
conveniently integrated so that an external resistor is not needed. While this device is designed for open drain  
applications, the device can also translate push-pull CMOS logic outputs.  
8.2 Functional Block Diagram  
14  
版权 © 2014–2017, Texas Instruments Incorporated  
TXS0102-Q1  
www.ti.com.cn  
ZHCSCH5A MAY 2014REVISED SEPTEMBER 2017  
8.3 Feature Description  
8.3.1 Architecture  
The TXS0102-Q1 architecture (see 10) does not require a direction-control signal in order to control the  
direction of data flow from A to B or from B to A.  
VCCB  
VCCA  
One-shot  
One-shot  
T1  
T2  
10 kΩ  
10 kΩ  
Gate Bias  
A
B
10. Architecture of a TXS01xx Cell  
Each A-port I/O has an internal 10-kpullup resistor to VCCA, and each B-port I/O has an internal 10-kpullup  
resistor to VCCB. The output one-shots detect rising edges on the A or B ports. During a rising edge, the one-shot  
turns on the PMOS transistors (T1, T2) for a short duration which speeds up the low-to-high transition.  
8.3.2 Input Driver Requirements  
The fall time (tfA, tfB) of a signal depends on the output impedance of the external device driving the data I/Os of  
the TXS0102-Q1 device. Similarly, the tPHL and maximum data rates also depend on the output impedance of the  
external driver. The values for tfA, tfB, tPHL, and maximum data rates in the data sheet assume that the output  
impedance of the external driver is less than 50 .  
8.3.3 Power Up  
During operation, assure that VCCA VCCB at all times. During power-up sequencing, VCCA VCCB does not  
damage the device, so any power supply can be ramped up first.  
8.3.4 Enable and Disable  
The TXS0102-Q1 device has an OE input that disables the device by setting OE low, which places all I/Os in the  
high-impedance state. The disable time (tdis) indicates the delay between the time when the OE pin goes low and  
when the outputs actually enter the high-impedance state. The enable time (ten) indicates the amount of time the  
user must allow for the one-shot circuitry to become operational after the OE pin is taken high.  
8.3.5 Pullup and Pulldown Resistors on I/O Lines  
Each A-port I/O has an internal 10-kpullup resistor to VCCA, and each B-port I/O has an internal 10-kpullup  
resistor to VCCB. If a smaller value of pullup resistor is required, an external resistor must be added from the I/O  
to VCCA or VCCB (in parallel with the internal 10-kresistors).  
8.4 Device Functional Modes  
The TXS0102-Q1 device has two functional modes, enabled and disabled. To disable the device set the OE  
input low, which places all I/Os in a high impedance state. Setting the OE input high will enable the device.  
版权 © 2014–2017, Texas Instruments Incorporated  
15  
 
TXS0102-Q1  
ZHCSCH5A MAY 2014REVISED SEPTEMBER 2017  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TXS0102-Q1 device can be used in level-translation applications for interfacing devices or systems  
operating at different interface voltages with one another. The TXS0102-Q1 device is ideal for use in applications  
where an open-drain driver is connected to the data I/Os.  
9.2 Typical Application  
1.8 V  
3.3 V  
0.1 µF  
0.1 µF  
V
V
CCA  
OE  
CCB  
1.8-V  
System  
Controller  
3.3-V  
System  
TXS0102-Q1  
A1  
A2  
B1  
B2  
Data  
Data  
GND  
11. Application Schematic  
9.2.1 Design Requirements  
For this design example, use the parameters listed in 1.  
1. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
EXAMPLE VALUE  
1.65 to 3.6 V  
Output voltage range  
2.3 to 5.5 V  
9.2.2 Detailed Design Procedure  
To begin the design process, determine the following:  
Input voltage range  
Use the supply voltage of the device that is driving the TXS0102-Q1 device to determine the input voltage  
range. For a valid logic high the value must exceed the VIH of the input port. For a valid logic low the value  
must be less than the VIL of the input port.  
Output voltage range  
Use the supply voltage of the device that the TXS0102-Q1 device is driving to determine the output  
voltage range.  
The TXS0102-Q1 device has 10-kΩ internal pullup resistors. External pullup resistors can be added to  
reduce the total RC of a signal trace if necessary.  
16  
版权 © 2014–2017, Texas Instruments Incorporated  
 
TXS0102-Q1  
www.ti.com.cn  
ZHCSCH5A MAY 2014REVISED SEPTEMBER 2017  
An external pull down resistor decreases the output VOH and VOL. Use 公式 1 to calculate the VOH as a result  
of an external pull down resistor.  
VOH = VCCx × RPD / (RPD + 10 kΩ)  
where  
VCCx is the supply voltage on either VCCA or VCCB  
RPD is the value of the external pull down resistor  
(1)  
9.2.3 Application Curve  
5 V  
2 V  
10 ns/div  
VCCA = 1.8 V  
VCCB = 5 V  
12. Level-Translation of a 2.5-MHz Signal  
10 Power Supply Recommendations  
The TXS0102-Q1 device uses two separate configurable power-supply rails, VCCA and VCCB. VCCB accepts any  
supply voltage from 2.3 V to 5.5 V and VCCA accepts any supply voltage from 1.65 V to 3.6 V as long as VCCA is  
less than or equal to VCCB. The A port and B port are designed to track VCCA and VCCB respectively allowing for  
low-voltage bidirectional translation between any of the 1.8-V, 2.5-V, 3.3-V, and 5-V voltage nodes.  
The TXS0102-Q1 device does not require power sequencing between VCCA and VCCB during power-up so the  
power-supply rails can be ramped in any order. A VCCA value greater than or equal to VCCB (VCCA VCCB) does  
not damage the device, but during operation, VCCA must be less than or equal to VCCB (VCCA VCCB) at all times.  
The output-enable (OE) input circuit is designed so that it is supplied by VCCA and when the (OE) input is low, all  
outputs are placed in the high-impedance state. To assure the high-impedance state of the outputs during power  
up or power down, the OE input pin must be tied to GND through a pulldown resistor and must not be enabled  
until VCCA and VCCB are fully ramped and stable. The minimum value of the pulldown resistor to ground is  
determined by the current-sourcing capability of the driver.  
版权 © 2014–2017, Texas Instruments Incorporated  
17  
 
TXS0102-Q1  
ZHCSCH5A MAY 2014REVISED SEPTEMBER 2017  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
To assure reliability of the device, following common printed-circuit board layout guidelines is recommended.  
Bypass capacitors should be used on power supplies.  
Short trace lengths should be used to avoid excessive loading.  
PCB signal trace-lengths must be kept short enough so that the round-trip delay of any reflection is less than  
the one shot duration, approximately 30 ns, assuring that any reflection encounters low impedance at the  
source driver.  
To help adjust rise and fall times of signals depending on system requirements, place pads on the signal  
paths for loading capacitors or pullup resistors.  
11.2 Layout Example  
[9D9b5  
ꢀolygonal /opper ꢀour  
ëL! to ꢀower ꢀlane  
ëL! to Db5 ꢀlane (Lnner [ayer)  
Ço /ontroller  
Ço {ystem  
1
2
8
7
6
.2  
.1  
Db5  
ë//.  
.ypass capacitor  
.ypass capacitor  
0ꢂ1uC  
3
Yeep h9 low until ë//! and  
ë//. are powered up  
ë//!  
!2  
h9  
!1  
4
Ço /ontroller  
Ço {ystem  
13. TXS0102-Q1 Layout Example  
18  
版权 © 2014–2017, Texas Instruments Incorporated  
TXS0102-Q1  
www.ti.com.cn  
ZHCSCH5A MAY 2014REVISED SEPTEMBER 2017  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:  
《逻辑器件简介》  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
NanoFree, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械封装、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据如有变更,恕  
不另行通知和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
版权 © 2014–2017, Texas Instruments Incorporated  
19  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Apr-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TXS0102QDCURQ1  
ACTIVE  
VSSOP  
DCU  
8
3000 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
-40 to 125  
NG3R  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TXS0102-Q1 :  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Apr-2021  
Catalog : TXS0102  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Jan-2018  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TXS0102QDCURQ1  
VSSOP  
DCU  
8
3000  
180.0  
8.4  
2.25  
3.35  
1.05  
4.0  
8.0  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Jan-2018  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VSSOP DCU  
SPQ  
Length (mm) Width (mm) Height (mm)  
213.0 191.0 35.0  
TXS0102QDCURQ1  
8
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DCU0008A  
VSSOP - 0.9 mm max height  
S
C
A
L
E
6
.
0
0
0
SMALL OUTLINE PACKAGE  
3.2  
3.0  
TYP  
C
A
0.1 C  
PIN 1 INDEX AREA  
SEATING  
PLANE  
6X 0.5  
8
1
2X  
2.1  
1.9  
1.5  
NOTE 3  
4
5
0.25  
0.17  
8X  
2.4  
2.2  
B
0.08  
C A B  
NOTE 3  
SEE DETAIL A  
0.9  
0.6  
0.12  
GAGE PLANE  
0.1  
0.0  
0.35  
0.20  
0 -6  
(0.13) TYP  
A
30  
DETAIL A  
TYPICAL  
4225266/A 09/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-187 variation CA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCU0008A  
VSSOP - 0.9 mm max height  
SMALL OUTLINE PACKAGE  
SEE SOLDER MASK  
DETAILS  
SYMM  
8X (0.85)  
(R0.05) TYP  
8
8X (0.3)  
1
SYMM  
6X (0.5)  
5
4
(3.1)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 25X  
SOLDER MASK  
OPENING  
METAL UNDER  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4225266/A 09/2014  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCU0008A  
VSSOP - 0.9 mm max height  
SMALL OUTLINE PACKAGE  
8X (0.85)  
SYMM  
(R0.05) TYP  
8
1
8X (0.3)  
SYMM  
6X (0.5)  
4
5
(3.1)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 25X  
4225266/A 09/2014  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TXS0102YZPR

2-BIT BIDIRECTIONAL VOLTAGE-LEVEL TRANSLATOR FOR OPEN-DRAIN APPLICATIONS
TI

TXS0102YZTR

SPECIALTY INTERFACE CIRCUIT, BGA8, GREEN, DSBGA-8
TI

TXS0102_09

2-BIT BIDIRECTIONAL VOLTAGE-LEVEL TRANSLATOR FOR OPEN-DRAIN AND PUSH-PULL APPLICATIONS
TI

TXS0102_10

2-BIT BIDIRECTIONAL VOLTAGE-LEVEL TRANSLATOR FOR OPEN-DRAIN AND PUSH-PULL APPLICATIONS
TI

TXS0102_101

2-BIT BIDIRECTIONAL VOLTAGE-LEVEL TRANSLATOR FOR OPEN-DRAIN AND PUSH-PULL APPLICATIONS
TI

TXS0102_11

2-BIT BIDIRECTIONAL VOLTAGE-LEVEL TRANSLATOR FOR OPEN-DRAIN AND PUSH-PULL APPLICATIONS
TI

TXS0102_16

2-Bit Bidirectional Voltage-Level Translator
TI

TXS0104E

4-BIT BIDIRECTIONAL VOLTAGE-LEVEL TRANSLATOR FOR OPEN-DRAIN APPLICATIONS
TI

TXS0104E-Q1

汽车类用于漏极开路应用的 4 位双向电压电平转换器
TI

TXS0104ED

4-BIT BIDIRECTIONAL VOLTAGE-LEVEL TRANSLATOR FOR OPEN-DRAIN APPLICATIONS
TI

TXS0104EDG4

4-BIT BIDIRECTIONAL VOLTAGE-LEVEL TRANSLATOR FOR OPEN-DRAIN APPLICATIONS
TI

TXS0104EDR

4-BIT BIDIRECTIONAL VOLTAGE-LEVEL TRANSLATOR FOR OPEN-DRAIN APPLICATIONS
TI