TXS0108EQPWRQ1 [TI]

面向漏极开路和推挽应用的 8 位双向电压电平转换器 | PW | 20 | -40 to 125;
TXS0108EQPWRQ1
型号: TXS0108EQPWRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

面向漏极开路和推挽应用的 8 位双向电压电平转换器 | PW | 20 | -40 to 125

光电二极管 接口集成电路 转换器 电平转换器
文件: 总29页 (文件大小:1094K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TXS0108E-Q1  
ZHCSDZ8A JUNE 2015REVISED FEBRUARY 2016  
TXS0108E-Q1面向开漏和推挽应用的  
8 位双向电压电平转换 转换器  
1 特性  
3 说明  
1
符合汽车类应用的 AEC-Q100 标准  
这款 8 位非反向转换器使用两个独立的可配置电源  
轨。A 端口跟踪 VCCA 引脚的电源电压。VCCA 引脚可  
接受 1.4V 3.6V 范围内的任意电源电压。B 端口跟  
VCCB 引脚的电源电压。VCCB 引脚可接受 1.65V 到  
5.5V 范围内的任意电源电压。这两个输入电源引脚可  
实现 1.5V1.8V2.5V3.3V 5V 电压节点之间的  
任意低压双向转换。  
器件温度等级 1-40°C 125°C  
器件人体放电模式 (HBM) 静电放电 (ESD) 分类  
等级 2  
器件组件充电模式 (CDM) ESD 分类等级 C6  
无需方向控制信号  
最大数据速率  
110Mbps(推挽)  
1.2Mbps(开漏)  
输出使能 (OE) 输入为低电平时,所有输出均将置于高  
阻抗 (Hi-Z) 状态。  
A 端口 1.4V 3.6VB 端口 1.65V 5.5V (VCCA  
VCCB  
为确保输出在上电或断电期间处于 Hi-Z 状态,需通过  
一个下拉电阻将 OE 接至 GND。该电阻的最小值取决  
于驱动器的拉电流能力。  
)
无需电源排序 - VCCA VCCB 均可优先斜升  
锁断性能超过 100mA,符合  
JESD 78 II 类规范的要求  
.
静电放电 (ESD) 保护性能超过 JESD 22 规范的要  
求(A 端口)  
器件信息(1)  
2000V 人体放电模式 (A114-B)  
1000V 充电器件模型 (C101)  
器件型号  
封装  
封装尺寸(标称值)  
TXS0108E-Q1  
TSSOP (20)  
6.50mm x 6.40mm  
IEC 61000-4-2 ESDB 端口)  
(1) 如需了解所有可用封装,请参见数据表末尾的可订购产品附  
录。  
±8kV 接触放电  
±6kV 气隙放电  
.
.
2 应用  
汽车  
简化应用  
1.8 V  
3.3 V  
0.1 mF  
0.1 mF  
VCCA  
VCCB  
OE  
1.8-V  
System  
3.3-V  
System  
Controller  
Controller  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
TXS0108E-Q1  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
Data  
GND  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SCES861  
 
 
 
 
TXS0108E-Q1  
ZHCSDZ8A JUNE 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
目录  
7.1 Load Circuits ........................................................... 13  
7.2 Voltage Waveforms................................................. 14  
Detailed Description ............................................ 15  
8.1 Overview ................................................................. 15  
8.2 Functional Block Diagram ....................................... 15  
8.3 Feature Description................................................. 15  
8.4 Device Functional Modes........................................ 17  
Application and Implementation ........................ 18  
9.1 Application Information............................................ 18  
9.2 Typical Application ................................................. 18  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ..................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions ...................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics .......................................... 6  
6.6 Timing Requirements: VCCA = 1.5 V ± 0.1 V ............ 6  
6.7 Timing Requirements: VCCA = 1.8 V ± 0.15 V .......... 7  
6.8 Timing Requirements: VCCA = 2.5 V ± 0.2 V ............ 7  
6.9 Timing Requirements: VCCA = 3.3 V ± 0.3 V ............ 7  
6.10 Switching Characteristics: VCCA = 1.5 V ± 0.1 V .... 8  
6.11 Switching Characteristics: VCCA = 1.8 V ± 0.15 V .. 9  
6.12 Switching Characteristics: VCCA = 2.5 V ± 0.2 V .. 10  
6.13 Switching Characteristics: VCCA = 3.3 V ± 0.3 V .. 11  
6.14 Typical Characteristics.......................................... 12  
Parameter Measurement Information ................ 13  
8
9
10 Power Supply Recommendations ..................... 20  
11 Layout................................................................... 20  
11.1 Layout Guidelines ................................................. 20  
11.2 Layout Example .................................................... 20  
12 器件和文档支持 ..................................................... 21  
12.1 社区资源................................................................ 21  
12.2 ....................................................................... 21  
12.3 静电放电警告......................................................... 21  
12.4 Glossary................................................................ 21  
13 机械、封装和可订购信息....................................... 21  
7
4 修订历史记录  
Changes from Original (June 2015) to Revision A  
Page  
已更改引脚功能 ...................................................................................................................................................................... 1  
2
Copyright © 2015–2016, Texas Instruments Incorporated  
 
TXS0108E-Q1  
www.ti.com.cn  
ZHCSDZ8A JUNE 2015REVISED FEBRUARY 2016  
5 Pin Configuration and Functions  
PW PACKAGE  
20-PIN TSSOP  
(TOP VIEW)  
A1  
B1  
20  
1
2
3
4
5
6
7
8
9
10  
V
VCCB  
19  
18  
17  
16  
15  
14  
13  
12  
11  
CCA  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
OE  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
GND  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
A1  
NO.  
1
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
G
Input/output 1. Referenced to VCCA  
A2  
3
Input/output 2. Referenced to VCCA  
Input/output 3. Referenced to VCCA  
Input/output 4. Referenced to VCCA  
Input/output 5. Referenced to VCCA  
Input/output 6. Referenced to VCCA  
Input/output 7. Referenced to VCCA  
Input/output 8. Referenced to VCCA  
Input/output 1. Referenced to VCCB  
Input/output 2. Referenced to VCCB  
Input/output 3. Referenced to VCCB  
Input/output 4. Referenced to VCCB  
Input/output 5. Referenced to VCCB  
Input/output 6. Referenced to VCCB  
Input/output 7. Referenced to VCCB  
Input/output 8. Referenced to VCCB  
Ground  
A3  
4
A4  
5
A5  
6
A6  
7
A7  
8
A8  
9
B1  
20  
18  
17  
16  
15  
14  
13  
12  
11  
10  
2
B2  
B3  
B4  
B5  
B6  
B7  
B8  
GND  
OE  
VCCA  
VCCB  
I
3-state output-mode enable. Pull OE low to place all outputs in 3-state mode. Referenced to VCCA.  
I
A-port supply voltage. 1.5 V VCCA 3.6 V, VCCA VCCB  
.
19  
I
B-port supply voltage. 1.65 V VCCB 5.5 V.  
(1) I = Input, O = Output, I/O = Bi-directional, G = Ground  
Copyright © 2015–2016, Texas Instruments Incorporated  
3
TXS0108E-Q1  
ZHCSDZ8A JUNE 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
MAX  
UNIT  
V
VCCA  
4.6  
5.5  
Supply voltage  
VCCB  
V
A port  
B port  
A port  
B port  
A port  
B port  
VI < 0  
VO < 0  
4.6  
VI  
Input voltage(2)  
V
V
V
6.5  
4.6  
Voltage range applied to any output  
VO  
VO  
in the high-impedance or power-off state(2)  
6.5  
VCCA + 0.5  
VCCB + 0.5  
–50  
Voltage range applied to any output in the high or low state(2) (3)  
IIK  
IOK  
IO  
Input clamp current  
mA  
mA  
mA  
mA  
°C  
Output clamp current  
–50  
Continuous output current  
Continuous current through VCCA, VCCB, or GND  
Storage temperature  
–50  
–100  
–65  
50  
100  
Tstg  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The input and output negative Voltage ratings may be exceeded if the input and output current ratings are observed.  
(3) The value of VCCA and VCCB are provided in the recommended operating conditions table.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
Electrostatic  
discharge  
V(ESD)  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
4
Copyright © 2015–2016, Texas Instruments Incorporated  
TXS0108E-Q1  
www.ti.com.cn  
ZHCSDZ8A JUNE 2015REVISED FEBRUARY 2016  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
VCCA (V)  
VCCB (V)  
MIN  
MAX  
3.6  
UNIT  
VCCA  
1.4  
Supply voltage(3)  
VCCB  
V
1.65  
5.5  
1.4 to 1.95  
A-Port I/Os  
VCCI – 0.2  
VCCI  
1.95 to 3.6  
VCCI – 0.4  
VCCI  
High-level input  
voltage  
VIH  
V
V
B-Port I/Os  
OE  
VCCI – 0.4  
VCCI  
1.4 to 3.6  
VCCA × 0.65  
5.5  
1.4 to 1.95  
1.95 to 3.6  
0
0
0
0
0.15  
A-Port I/Os  
1.65 to 5.5  
0.15  
Low-level input  
voltage  
VIL  
B-Port I/Os  
0.15  
1.4 to 3.6  
OE  
VCCA × 0.35  
A-Port I/Os Push-pull  
B-Port I/Os Push-pull  
Control input  
Input transition rise or  
fall rate  
Δt/Δv  
1.4 to 3.6  
10  
ns/V  
°C  
TA  
Operating free-air temperature  
–40  
125  
(1) VCCI is the VCC associated with the data input port.  
(2) VCCO is the VCC associated with the output port.  
(3) VCCA must be less than or equal to VCCB, and VCCA must not exceed 3.6 V.  
6.4 Thermal Information  
TXS0108E-Q1  
PW (TSSOP)  
20 PINS  
101.5  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
RθJC(top)  
RθJB  
35.9  
52.4  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.3  
ψJB  
51.9  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2015–2016, Texas Instruments Incorporated  
5
TXS0108E-Q1  
ZHCSDZ8A JUNE 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
6.5 Electrical Characteristics(1)(2)(3)  
over recommended operating free-air temperature range (unless otherwise noted)  
TA = 25°C  
TA = –40°C to 125°C  
TEST  
CONDITIONS  
PARAMETER  
VCCA (V)  
VCCB (V)  
UNIT  
MIN  
TYP  
MAX  
MIN  
MAX  
IOH = –20 μA,  
VIB VCCB – 0.4 V  
VOHA  
1.4 to 3.6  
1.65 to 5.5  
VCCA × 0.67  
V
IOL = 180 μA, VIB 0.15 V  
IOL = 220 μA, VIB 0.15 V  
IOL = 300 μA, VIB 0.15 V  
IOL = 400 μA, VIB 0.15 V  
1.4  
1.65  
2.3  
3
0.4  
0.4  
VOLA  
VOHB  
VOLB  
1.65 to 5.5  
1.65 to 5.5  
V
V
V
0.4  
0.55  
IOH = –20 μA,  
VIA VCCA – 0.2 V  
1.4 to 3.6  
VCCB × 0.67  
IOL = 220 μA, VIA 0.15 V  
IOL = 300 μA, VIA 0.15 V  
IOL = 400 μA, VIA 0.15 V  
IOL = 620 μA, VIA 0.15 V  
VI = VCCI or GND  
1.65  
0.4  
0.4  
2.3  
1.4 to 3.6  
3
0.55  
0.55  
2
4.5  
II  
OE  
1.4  
1.4  
1.65 to 5.5  
–1  
–1  
1
1
μA  
μA  
A or  
B port  
IOZ  
1.65 to 5.5  
–2  
2
1.4 to 3.6  
2.3 to 5.5  
2
2
ICCA  
VI = VO = Open, IO = 0  
VI = VO = Open, IO = 0  
3.6  
0
5.5  
μA  
μA  
0
1.4 to 3.6  
3.6  
–1  
6
2.3 to 5.5  
0
ICCB  
–1  
1.5  
0
5.5  
VI = VCCI or GND,  
IO = 0  
ICCA + ICCB  
ICCZA  
ICCZB  
Ci  
1.4 to 3.6  
1.4 to 3.6  
2.3 to 5.5  
8
2
6
μA  
μA  
VI = VO = Open,  
IO = 0, OE = GND  
1.65 to 5.5  
VI = VO = Open,  
IO = 0, OE = GND  
1.4 to 3.6  
3.3  
1.65 to 5.5  
3.3  
μA  
OE  
4.5  
6
6.75  
7.6  
pF  
A port  
B port  
Cio  
3.3  
3.3  
pF  
5.5  
6.9  
(1) VCCO is the VCC associated with the output port.  
(2) VCCI is the VCC associated with the input port.  
(3) VCCA must be less than or equal to VCCB, and VCCA must not exceed 3.6 V.  
6.6 Timing Requirements: VCCA = 1.5 V ± 0.1 V  
over recommended operating free-air temperature range, VCCA = 1.5 V ± 0.1 V (unless otherwise noted)  
VCC B = 1.8 V VCC B = 2.5 V  
± 0.15 V ± 0.2 V  
VCC B= 3.3 V  
± 0.3 V  
VCC B= 5 V  
± 0.5 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
60  
MIN  
MAX  
60  
Data rate  
Push-pull  
40  
60  
Mbps  
ns  
Open-drain  
Push-pull  
0.8  
0.8  
1
1
tw  
25  
16.7  
16.7  
16.7  
Pulse duration  
Data inputs  
Open-drain  
1250  
1250  
1000  
1000  
6
Copyright © 2015–2016, Texas Instruments Incorporated  
TXS0108E-Q1  
www.ti.com.cn  
ZHCSDZ8A JUNE 2015REVISED FEBRUARY 2016  
6.7 Timing Requirements: VCCA = 1.8 V ± 0.15 V  
over recommended operating free-air temperature range, VCCA = 1.8 V ± 0.15 V (unless otherwise noted)  
VCC B = 1.8 V  
± 0.15 V  
VCC B = 2.5 V  
± 0.2 V  
VCC B= 3.3 V  
± 0.3 V  
VCC B= 5 V  
± 0.5 V  
UNIT  
MIN  
MAX  
MIN MAX  
65  
MIN MAX  
70  
MIN  
MAX  
Push-pull  
45  
70  
1
Data rate  
Mbps  
ns  
Open-drain  
Push-pull  
0.8  
0.8  
0.8  
22.2  
15.3  
15.3  
15.3  
tw Pulse duration  
Data inputs  
Open-drain  
1250  
1250  
1250  
1000  
6.8 Timing Requirements: VCCA = 2.5 V ± 0.2 V  
over recommended operating free-air temperature range, VCCA = 2.5 V ± 0.2 V (unless otherwise noted)  
VCCB = 2.5 V  
± 0.2 V  
VCCB = 3.3 V  
± 0.3 V  
VCC = 5 V  
± 0.5 V  
UNIT  
MIN  
MAX  
80  
MIN  
MAX  
MIN  
MAX  
100  
1
Push-pull  
95  
Data rate  
Mbps  
ns  
Open-drain  
Push-pull  
0.8  
0.8  
12.5  
10.5  
10  
tw  
Pulse duration  
Data inputs  
Open-drain  
1250  
1250  
1000  
6.9 Timing Requirements: VCCA = 3.3 V ± 0.3 V  
over recommended operating free-air temperature range, VCCA = 3.3 V ± 0.3 V (unless otherwise noted)  
VCCB = 3.3 V  
± 0.3 V  
VCC = 5 V  
± 0.5 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
110  
1.2  
Push-pull  
100  
0.8  
Data rate  
Mbps  
ns  
Open-drain  
Push-pull  
10  
9.1  
tw  
Pulse duration  
Data inputs  
Open-drain  
1250  
833  
Copyright © 2015–2016, Texas Instruments Incorporated  
7
TXS0108E-Q1  
ZHCSDZ8A JUNE 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
6.10 Switching Characteristics: VCCA = 1.5 V ± 0.1 V  
over recommended operating free-air temperature range, VCCA = 1.5 V ± 0.1 V (unless otherwise noted)  
TEST  
CONDITIO  
N
VCCB = 1.8 V  
± 0.15 V  
VCCB = 2.5 V  
± 0.2 V  
VCCB = 3.3 V  
± 0.3 V  
VCCB = 5 V  
± 0.5 V  
PARA  
METER  
FROM  
(INPUT)  
TO  
(OUTPUT)  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
(DRIVING)  
Push-pull  
11  
14.4  
12  
9.2  
12.8  
10  
8.6  
12.2  
9.8  
473  
11  
8.6  
12  
tPHL  
tPLH  
tPHL  
tPLH  
Open-drain  
Push-pull  
2.5  
0.9  
3.4  
2
0.9  
2.6  
2
1
1.9  
1.5  
2
A
B
B
A
ns  
9.7  
384  
12  
Open-drain  
Push-pull  
720  
12.7  
13.2  
9.5  
554  
11.1  
9.6  
6.2  
603  
480  
400  
9.8  
716  
7.4  
756  
7.7  
8.2  
5.5  
8.6  
1
Open-drain  
Push-pull  
2.3  
8.5  
5.1  
519  
480  
400  
9
7.5  
4.2  
407  
480  
400  
8.9  
481  
5
ns  
Open-drain  
745  
480  
400  
13.1  
982  
11.4  
1020  
9.9  
ten  
OE  
OE  
A or B  
A or B  
ns  
ns  
Push-pull  
tdis  
Push-pull  
3
220  
2.6  
220  
2.3  
2.4  
2
2.4  
180  
1.6  
150  
1.7  
1.8  
1.3  
1.3  
2
140  
1
2
100  
0.7  
40  
1.7  
1.5  
1
trA  
trB  
tfA  
A-port rise time  
B-port rise time  
A-port fall time  
B-port fall time  
ns  
ns  
Open-drain  
Push-pull  
592  
6
Open-drain  
Push-pull  
100  
1.6  
1.7  
1
653  
6.8  
9
370  
6
Open-drain  
Push-pull  
10  
9.15  
3.1  
7.7  
1
ns  
ns  
8.7  
3.8  
9.6  
1
tfB  
Open-drain  
2
11.5  
1
1
1
tSK(O)  
Channel-to-channel skew Push-pull  
8
Copyright © 2015–2016, Texas Instruments Incorporated  
TXS0108E-Q1  
www.ti.com.cn  
ZHCSDZ8A JUNE 2015REVISED FEBRUARY 2016  
6.11 Switching Characteristics: VCCA = 1.8 V ± 0.15 V  
over recommended operating free-air temperature range, VCCA = 1.8 V ± 0.15 V (unless otherwise noted)  
VCCB = 1.8 V  
± 0.15 V  
VCCB = 2.5 V  
± 0.2 V  
VCCB = 3.3 V  
± 0.3 V  
VCCB = 5 V  
± 0.5 V  
TO  
TEST  
PARA-  
METER  
FROM  
(INPUT)  
(OUTPUT CONDITION  
UNIT  
)
(DRIVING)  
MIN  
MAX  
8.2  
MIN  
1.7  
0.2  
2
MAX  
6.4  
9.9  
5.6  
584  
8
MIN  
1.6  
0.3  
1.9  
MAX  
5.7  
9.3  
6.5  
466  
7.4  
7.3  
5.8  
459  
100  
410  
7.8  
508  
5.3  
546  
6.8  
6.8  
3.9  
9.6  
MIN  
1.5  
0.3  
1.8  
MAX  
5.6  
8.9  
6.3  
346  
7
Push-pull  
tPHL  
Open-drain  
Push-pull  
2.1  
11.4  
9
A
B
B
ns  
tPLH  
tPHL  
tPLH  
Open-drain  
Push-pull  
0.15  
3.19  
729  
9.8  
Open-drain  
Push-pull  
12.1  
10.2  
733  
100  
410  
11.9  
996  
10.5  
1001  
8.8  
8.5  
7
6.2  
5
A
ns  
Open-drain  
578  
100  
410  
8.6  
691  
7.4  
677  
7.1  
7.2  
5.4  
10.7  
323  
100  
410  
7.4  
365  
4.7  
323  
6.06  
6.1  
3
ten  
OE  
OE  
A or B  
A or B  
ns  
ns  
Push-pull  
tdis  
Push-pull  
2.7  
250  
2.5  
250  
2.1  
2.2  
2
2
200  
1.7  
170  
1.6  
1.7  
1.3  
1
1.9  
150  
1.1  
120  
1.4  
1.4  
0.9  
1
1.8  
110  
60  
trA  
trB  
tfA  
A-port rise time  
ns  
ns  
Open-drain  
Push-pull  
B-port rise time  
A-port fall time  
B-port fall time  
Open-drain  
Push-pull  
32  
1.4  
1.2  
0.7  
0.6  
Open-drain  
Push-pull  
9
ns  
ns  
8.3  
tfB  
Open-drain  
2
10.5  
7.8  
Channel-to-channel  
skew  
tSK(O)  
Push-pull  
1
1
1
1
Copyright © 2015–2016, Texas Instruments Incorporated  
9
TXS0108E-Q1  
ZHCSDZ8A JUNE 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
6.12 Switching Characteristics: VCCA = 2.5 V ± 0.2 V  
over recommended operating free-air temperature range, VCCA = 2.5 V ± 0.2 V (unless otherwise noted)  
VCCB = 2.5 V  
± 0.2 V  
VCCB = 3.3 V  
± 0.3 V  
VCCB = 5 V  
± 0.5 V  
TEST  
CONDITION  
(DRIVING)  
PARA-  
METER  
FROM  
(INPUT) (OUTPUT)  
TO  
UNIT  
MAX  
MIN  
MAX  
5
MIN  
MAX  
4
MIN  
Push-pull  
3.7  
tPHL  
Open-drain  
Push-pull  
6.2  
5.2  
5
6.3  
4.3  
17.5  
4.7  
6
5.8  
ns  
A
B
3.9  
tPLH  
tPHL  
tPLH  
Open-drain  
Push-pull  
15.5  
4.2  
5.4  
7.3  
5.9  
5
Open-drain  
Push-pull  
4.9  
ns  
B
A
4.4  
5
3.5  
Open-drain  
5
ten  
OE  
A or B  
100  
400  
7.3  
692  
6.5  
693  
5.7  
5.6  
5.4  
14.2  
100  
400  
6.4  
529  
5.1  
483  
4.7  
4.7  
4.1  
19.4  
100  
400  
5.8  
377  
4.32  
304  
3.8  
4.2  
3
ns  
ns  
Push-pull  
tdis  
OE  
A or B  
Push-pull  
1.89  
110.00  
1.70  
1.6  
157  
1.3  
140  
1.2  
1.2  
0.9  
0.5  
1.5  
116  
0.9  
77  
trA  
trB  
tfA  
A-port rise time  
B-port rise time  
A-port fall time  
B-port fall time  
ns  
ns  
Open-drain  
Push-pull  
Open-drain  
Push-pull  
107.00  
1.50  
1.3  
1.1  
0.7  
0.4  
Open-drain  
Push-pull  
1.50  
ns  
ns  
1.40  
tfB  
Open-drain  
0.40  
3
Channel-to-channel  
skew  
tSK(O)  
Push-pull  
1
1
1
10  
Copyright © 2015–2016, Texas Instruments Incorporated  
TXS0108E-Q1  
www.ti.com.cn  
ZHCSDZ8A JUNE 2015REVISED FEBRUARY 2016  
6.13 Switching Characteristics: VCCA = 3.3 V ± 0.3 V  
over recommended operating free-air temperature range, VCCA = 3.3 V ± 0.3 V (unless otherwise noted)  
VCCB = 3.3 V  
± 0.3 V  
VCCB = 5 V  
± 0.5 V  
TEST  
CONDITION  
(DRIVING)  
PARAME  
TER  
FROM  
(INPUT)  
TO  
(OUTPUT)  
UNIT  
MIN  
MAX  
3.8  
5.3  
3.9  
5
MIN  
MAX  
3.28  
4.8  
3.5  
12.5  
3.8  
4.5  
4.3  
5
Push-pull  
tPHL  
tPLH  
tPHL  
tPLH  
Open-drain  
Push-pull  
A
B
B
A
ns  
Open-drain  
Push-pull  
4.2  
5.5  
4.32  
5
Open-drain  
Push-pull  
ns  
Open-drain  
ten  
OE  
OE  
A or B  
A or B  
100  
400  
5.7  
446  
5
100  
400  
5
ns  
ns  
Push-pull  
tdis  
Push-pull  
Open-drain  
Push-pull  
Open-drain  
Push-pull  
Open-drain  
Push-pull  
Open-drain  
Push-pull  
1.5  
129  
1.35  
129  
1.4  
1.4  
99.6  
1
trA  
trB  
tfA  
A-port rise time  
B-port rise time  
A-port fall time  
B-port fall time  
ns  
ns  
337  
4.24  
290  
3.5  
3.7  
3.1  
3.1  
1
427  
4.5  
4.4  
4.2  
4.2  
1
77  
1.3  
1.2  
1.1  
1.1  
1.4  
ns  
ns  
1.3  
tfB  
1.3  
tSK(O)  
Channel-to-channel skew  
Copyright © 2015–2016, Texas Instruments Incorporated  
11  
TXS0108E-Q1  
ZHCSDZ8A JUNE 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
6.14 Typical Characteristics  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
TA = œ 40°C  
TA = 25°C  
TA = 125°C  
TA = œ 40°C  
TA = 25°C  
TA = 125°C  
0
100 200 300 400 500 600 700 800 900 1000  
0
100 200 300 400 500 600 700 800 900 1000  
Low-Level Current (µA)  
Low-Level Current (µA)  
D001  
D001  
VCCA = 2.3 V  
VCCB = 2.7 V  
VIL(A) = 0.15 V  
VCCA = 3 V  
VCCB = 5.5 V  
VIL(A) = 0.15 V  
Figure 1. Low-Level Output Voltage (VOL(Bx)  
vs Low-Level Current (IOL(Bx)  
)
Figure 2. Low-Level Output Voltage (VOL(Bx)  
vs Low-Level Current (IOL(Bx)  
)
)
)
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
TA = œ 40°C  
TA = 25°C  
TA = 125°C  
TA = œ 40°C  
TA = 25°C  
TA = 125°C  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
Low-Level Current (µA)  
Low-Level Current (µA)  
D001  
D001  
VCCA = 1.65 V  
VCCB = 1.95 V  
VIL(A) = 0.15 V  
VCCA = 1.65 V  
VCCB = 5.5 V  
VIL(A) = 0.15 V  
Figure 3. Low-Level Output Voltage (VOL(Bx)  
vs Low-Level Current (IOL(Bx)  
)
Figure 4. Low-Level Output Voltage (VOL(Bx)  
vs Low-Level Current (IOL(Bx)  
)
)
)
12  
Copyright © 2015–2016, Texas Instruments Incorporated  
TXS0108E-Q1  
www.ti.com.cn  
ZHCSDZ8A JUNE 2015REVISED FEBRUARY 2016  
7 Parameter Measurement Information  
7.1 Load Circuits  
Figure 5 shows the push-pull driver circuit used for measuring data rate, pulse duration, propagation delay,  
output rise-time and fall-time. Figure 6 shows the open-drain driver circuit used for measuring data rate, pulse  
duration, propagation delay, output rise-time and fall-time.  
VCCI  
VCCI  
VCCO  
VCCO  
DUT  
DUT  
IN  
IN  
OUT  
OUT  
1 M  
15 pF  
15 pF  
1 M  
Figure 5. Data Rate, Pulse Duration, Propagation  
Delay, Output Rise-Time and Fall-Time  
Measurement Using a Push-Pull Driver  
Figure 6. Data Rate (10 pF), Pulse Duration (10 pF),  
Propagation Delay, Output Rise-Time and Fall-  
Time Measurement Using an Open-Drain Driver  
2 × VCCO  
Open  
S1  
50 k  
From Output  
Under Test  
15 pF  
50 kꢀ  
TEST  
S1  
tPZL / tPLZ  
2 × VCCO  
Open  
(tdis  
)
tPHZ / tPZH  
(ten)  
Figure 7. Load Circuit for Enable-Time and Disable-Time Measurement  
1. tPLZ and tPHZ are the same as tdis  
.
2. tPZL and tPZH are the same as ten.  
3. VCCI is the VCC associated with the input port.  
4. VCCO is the VCC associated with the output port.  
Copyright © 2015–2016, Texas Instruments Incorporated  
13  
 
 
TXS0108E-Q1  
ZHCSDZ8A JUNE 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
7.2 Voltage Waveforms  
V
CCI  
t
W .  
Input  
V
CCI  
/2  
V
CCI  
/2  
0 V  
V
CCI  
Input  
V
/V  
V
/V  
OHA OHB  
OHA OHB  
t
t
PLH  
PHL  
0 V  
V
OH  
0.9  
0.1  
V
CCO  
Output  
V /2  
CCO  
V
CCO  
/2  
V
CCO  
V
OL  
t
f
t
r
Figure 8. Pulse Duration (Push-Pull)  
Figure 9. Propagation Delay Times  
CL includes probe and jig capacitance.  
Waveform 1 in Figure 10 is for an output with internal such that the output is high, except when OE is high (see  
Figure 7). Waveform 2 in Figure 10 is for an output with conditions such that the output is low, except when OE is  
high.  
All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 Ω, dv/dt  
1 V/ns.  
The outputs are measured one at a time, with one transition per measurement.  
tPLZ and tPHZ are the same as tdis  
.
tPZL and tPZH are the same as ten  
.
tPLH and tPHL are the same as tpd  
.
VCCI is the VCC associated with the input port.  
VCCO is the VCC associated with the output port.  
VCCA  
VCCA / 2  
VCCA / 2  
OE input  
0 V  
tPLZ  
tPZL  
VOH  
Output  
Waveform 1  
S1 at 2 × VCCO  
VCCO / 2  
V
× 0.2  
CCO  
VOL  
(see Note 2)  
tPHZ  
tPZH  
VCCO  
Output  
Waveform 2  
S1 at GND  
V
× 0.9  
OH  
VCCO / 2  
(see Note 2)  
0 V  
Figure 10. Enable and Disable Times  
14  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
TXS0108E-Q1  
www.ti.com.cn  
ZHCSDZ8A JUNE 2015REVISED FEBRUARY 2016  
8 Detailed Description  
8.1 Overview  
The TXS0108E-Q1 device is a directionless voltage-level translator specifically designed for translating logic  
voltage levels. The A-port accepts I/O voltages ranging from 1.4 V to 3.6 V. The B-port accepts I/O voltages from  
1.65 V to 5.5 V. The device uses pass gate architecture with edge rate accelerators (one shots) to improve the  
overall data rate. The pull-up resistors, commonly used in open-drain applications, have been conveniently  
integrated so that an external resistor is not needed. While this device is designed for open-drain applications,  
the device can also translate push-pull CMOS logic outputs.  
8.2 Functional Block Diagram  
VCCA  
VCCB  
OE  
A1  
One-Shot  
Accelerator  
One-Shot  
Accelerator  
Gate Bias  
RPUA  
RPUB  
B1  
B2  
One-Shot  
Accelerator  
One-Shot  
Accelerator  
Gate Bias  
RPUA  
RPUB  
A2  
A3  
B3  
A4  
A5  
A6  
B4  
B5  
B6  
One-Shot  
Accelerator  
One-Shot  
Accelerator  
Gate Bias  
RPUA  
RPUB  
A7  
B7  
One-Shot  
Accelerator  
One-Shot  
Accelerator  
Gate Bias  
RPUA  
RPUB  
A8  
B8  
Each A-port I/O has a pull-up resistor (RPUA) to VCCA and each B-port I/O has a pull-up resistor (RPUB) to VCCB  
.
RPUA and RPUB have a value of 40 kΩ when the output is driving low. RPUA and RPUB have a value of 4 kΩ when  
the output is driving high. RPUA and RPUB are disabled when OE = Low.  
8.3 Feature Description  
8.3.1 Architecture  
Figure 11 describes semi-buffered architecture design this application requires for both push-pull and open-drain  
mode. This application uses edge-rate accelerator circuitry (for both the high-to-low and low-to-high edges), a  
high-on-resistance N-channel pass-gate transistor (on the order of 300 Ω to 500 Ω) and pull-up resistors (to  
provide DC-bias and drive capabilities) to meet these requirements. This design needs no direction-control signal  
(to control the direction of data flow from A to B or from B to A). The resulting implementation supports both low-  
speed open-drain operation as well as high-speed push-pull operation.  
Copyright © 2015–2016, Texas Instruments Incorporated  
15  
TXS0108E-Q1  
ZHCSDZ8A JUNE 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
Feature Description (continued)  
VCC  
A
VCCB  
One-Shot  
Accelerator  
OS3  
P2  
N2  
RPUB  
RPUA  
Translator  
T1  
One-Shot  
Accelerator  
OS4  
A
Bias  
B
R1  
R2  
Npass  
P1  
N1  
One-Shot  
Accelerator  
OS1  
Translator  
T2  
One-Shot  
Accelerator  
OS2  
Figure 11. Architecture of a TXS0108E-Q1 Cell  
When transmitting data from A-ports to B-ports, during a rising edge the one-shot circuit (OS3) turns on the  
PMOS transistor (P2) for a short-duration which reduces the low-to-high transition time. Similarly, during a falling  
edge, when transmitting data from A to B, the one-shot circuit (OS4) turns on the N-channel MOSFET transistor  
(N2) for a short-duration which speeds up the high-to-low transition. The B-port edge-rate accelerator consists of  
one-shot circuits OS3 and OS4. Transistors P2 and N2 and serves to rapidly force the B port high or low when a  
corresponding transition is detected on the A port.  
When transmitting data from B- to A-ports, during a rising edge the one-shot circuit (OS1) turns on the PMOS  
transistor (P1) for a short-duration which reduces the low-to-high transition time. Similarly, during a falling edge,  
when transmitting data from B to A, the one-shot circuit (OS2) turns on NMOS transistor (N1) for a short-duration  
and this speeds up the high-to-low transition. The A-port edge-rate accelerator consists of one-shots OS1 and  
OS2, transistors P1 and N1 components and form the edge-rate accelerator and serves to rapidly force the A  
port high or low when a corresponding transition is detected on the B port.  
8.3.2 Input Driver Requirements  
The continuous DC-current sinking capability is determined by the external system-level open-drain (or push-pull)  
drivers that are interfaced to the TXS0108E-Q1 I/O pins. Because the high bandwidth of these bidirectional I/O  
circuits is used to facilitate this fast change from an input to an output and an output to an input, they have a  
modest DC-current sourcing capability of hundreds of micro-amperes, as determined by the internal pull-up  
resistors.  
The fall time (tfA, tfB) of a signal depends on the edge-rate and output impedance of the external device driving  
TXS0108E-Q1 data I/Os, as well as the capacitive loading on the data lines.  
Similarly, the tPHL and maximum data rates also depend on the output impedance of the external driver. The  
values for tfA, tfB, tPHL, and maximum data rates in the data sheet assume that the output impedance of the  
external driver is less than 50 Ω.  
16  
Copyright © 2015–2016, Texas Instruments Incorporated  
TXS0108E-Q1  
www.ti.com.cn  
ZHCSDZ8A JUNE 2015REVISED FEBRUARY 2016  
Feature Description (continued)  
8.3.3 Output Load Considerations  
TI recommends careful PCB layout practices with short PCB trace lengths to avoid excessive capacitive loading  
and to ensure that proper one-shot triggering takes place. PCB signal trace-lengths should be kept short enough  
such that the round trip delay of any reflection is less than the one-shot duration. This improves signal integrity  
by ensuring that any reflection sees a low impedance at the driver. The one-shot circuits have been designed to  
stay on for approximately 30 ns. The maximum capacitance of the lumped load that can be driven also depends  
directly on the one-shot duration. With very heavy capacitive loads, the one-shot can time-out before the signal is  
driven fully to the positive rail. The one-shot duration has been set to best optimize trade-offs between dynamic  
ICC, load driving capability, and maximum bit-rate considerations. Both PCB trace length and connectors add to  
the capacitance of the TXS0108E-Q1 output. Therefore, TI recommends that this lumped-load capacitance is  
considered in order to avoid one-shot retriggering, bus contention, output signal oscillations, or other adverse  
system-level affects.  
8.3.4 Enable and Disable  
The TXS0108E-Q1 has an OE pin input that is used to disable the device by setting the OE pin low, which  
places all I/Os in the Hi-Z state. The disable time (tdis) indicates the delay between the time when the OE pin  
goes low and when the outputs actually get disabled (Hi-Z). The enable time (ten) indicates the amount of time  
the design must allow for the one-shot circuitry to become operational after the OE pin goes high.  
8.3.5 Pull-up or Pull-down Resistors on I/O Lines  
The TXS0108E-Q1 has the smart pull-up resistors dynamically change value based on whether a low or a high is  
being passed through the I/O line. Each A-port I/O has a pull-up resistor (RPUA) to VCCA and each B-port I/O has  
a pull-up resistor (RPUB) to VCCB. RPUA and RPUB have a value of 40 kΩ when the output is driving low. RPUA and  
RPUB have a value of 4 kΩ when the output is driving high. RPUA and RPUB are disabled when OE = Low. This  
feature provides lower static power consumption (when the I/Os are passing a low), and supports lower VOL  
values for the same size pass-gate transistor, and helps improve simultaneous switching performance.  
8.4 Device Functional Modes  
The TXS0108E-Q1 device has two functional modes, enabled and disabled. To disable the device set the OE pin  
input low, which places all I/Os in a high impedance state. Setting the OE pin input high enables the device.  
Copyright © 2015–2016, Texas Instruments Incorporated  
17  
TXS0108E-Q1  
ZHCSDZ8A JUNE 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TXS0108E-Q1 can be used in level-translation applications for interfacing devices or systems operating at  
different interface voltages with one another. The device is ideal for use in applications where an open-drain  
driver is connected to the data I/Os. The device is appropriate for applications where a push-pull driver is  
connected to the data I/Os, but the TXB0104 device, (SCES650) 4-Bit Bidirectional Voltage-Level Translator  
might be a better option for such push-pull applications. The device is a semi-buffered auto-direction-sensing  
voltage translator design is optimized for translation applications (for example, MMC Card Interfaces) that require  
the system to start out in a low-speed open-drain mode and then switch to a higher speed push-pull mode.  
9.2 Typical Application  
1.8 V  
3.3 V  
0.1 mF  
0.1 mF  
VCCA  
VCCB  
OE  
1.8-V  
System  
3.3-V  
System  
Controller  
Controller  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
TXS0108E-Q1  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
Data  
GND  
Figure 12. Typical Application Circuit  
9.2.1 Design Requirements  
For this design example, use the parameters listed in Table 1. Ensure that VCCA VCCB  
.
Table 1. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
EXAMPLE VALUE  
1.4 V to 3.6 V  
Output voltage range  
1.65 V to 5.5 V  
9.2.2 Detailed Design Procedure  
To begin the design process, determine the following:  
Input voltage range  
Use the supply voltage of the device that is driving the TXS0108E-Q1 device to determine the input  
voltage range. For a valid logic high the value must exceed the VIH of the input port. For a valid logic low  
the value must be less than the VIL of the input port.  
18  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
TXS0108E-Q1  
www.ti.com.cn  
ZHCSDZ8A JUNE 2015REVISED FEBRUARY 2016  
Output voltage range  
Use the supply voltage of the device that the TXS0108E-Q1 device is driving to determine the output  
voltage range.  
The TXS0108E-Q1 device has smart internal pull-up resistors. External pull-up resistors can be added to  
reduce the total RC of a signal trace if necessary.  
An external pull-down resistor decreases the output VOH and VOL. Use Equation 1 to calculate the VOH as a  
result of an external pull-down resistor.  
VOH = VCCx × RPD / (RPD + 4 kΩ)  
(1)  
9.2.3 Application Curves  
VCCA = 1.8 V  
VCCB = 3.3 V  
Figure 13. Level-Translation of a 2.5-MHz Signal  
Copyright © 2015–2016, Texas Instruments Incorporated  
19  
 
TXS0108E-Q1  
ZHCSDZ8A JUNE 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
10 Power Supply Recommendations  
During operation, ensure that VCCA VCCB at all times. The sequencing of each power supply will not damage the  
device during the power up operation, so either power supply can be ramped up first. The output-enable (OE)  
input circuit is designed so that it is supplied by VCCA and when the (OE) input is low, all outputs are placed in the  
high-impedance state. To ensure the high-impedance state of the outputs during power up or power down, the  
OE input pin must be tied to GND through a pull-down resistor and must not be enabled until VCCA and VCCB are  
fully ramped and stable. The minimum value of the pull-down resistor to ground is determined by the current-  
sourcing capability of the driver.  
11 Layout  
11.1 Layout Guidelines  
To ensure reliability of the device, following common printed-circuit board layout guidelines is recommended.  
Bypass capacitors should be used on power supplies. Place the capacitors as close as possible to the VCCA,  
VCCB pin and GND pin.  
Short trace lengths should be used to avoid excessive loading.  
PCB signal trace-lengths must be kept short enough so that the round-trip delay of any reflection is less than  
the one shot duration, approximately 30 ns, ensuring that any reflection encounters low impedance at the  
source driver.  
11.2 Layout Example  
LEGEND  
Polygonal Copper Pour  
VIA to Power Plane  
VIA to GND Plane (Inner Layer)  
TXS0108E-Q1PWR  
To Controller  
1
2
3
4
20  
19  
18  
17  
A1  
B1  
To system  
Bypass capacitor  
0.1 µF  
0.1 µF  
0.1 µF  
Bypass capacitor  
0.1 µF  
VCCA  
VCCB  
To system  
To system  
To Controller  
A2  
A3  
B2  
B3  
To Controller  
5
6
16  
15  
14  
13  
12  
11  
A4  
A5  
B4  
B5  
To system  
To system  
To system  
To Controller  
To Controller  
To Controller  
7
A6  
A7  
A8  
OE  
B6  
B7  
8
9
B8  
To system  
To system  
10  
GND  
To Controller  
To Controller  
Keep OE low until VCCA and VCCB are powered up  
Figure 14. Layout Example  
20  
版权 © 2015–2016, Texas Instruments Incorporated  
TXS0108E-Q1  
www.ti.com.cn  
ZHCSDZ8A JUNE 2015REVISED FEBRUARY 2016  
12 器件和文档支持  
12.1 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.2 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015–2016, Texas Instruments Incorporated  
21  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TXS0108EQPWRQ1  
ACTIVE  
TSSOP  
PW  
20  
2000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
YF08EQ1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TXS0108EQPWRQ1  
TSSOP  
PW  
20  
2000  
330.0  
16.4  
6.95  
7.0  
1.4  
8.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TSSOP PW 20  
SPQ  
Length (mm) Width (mm) Height (mm)  
356.0 356.0 35.0  
TXS0108EQPWRQ1  
2000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PW0020A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
18X 0.65  
20  
1
2X  
5.85  
6.6  
6.4  
NOTE 3  
10  
B
11  
0.30  
20X  
4.5  
4.3  
NOTE 4  
0.19  
1.2 MAX  
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220206/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0020A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
20X (1.5)  
(R0.05) TYP  
20  
1
20X (0.45)  
SYMM  
18X (0.65)  
11  
10  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220206/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0020A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
20X (1.5)  
SYMM  
(R0.05) TYP  
20  
1
20X (0.45)  
SYMM  
18X (0.65)  
10  
11  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220206/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TXS0108ERGYR

8-BIT BIDIRECTIONAL VOLTAGE-LEVEL TRANSLATOR FOR OPEN-DRAIN AND PUSH-PULL APPLICATIONS
TI

TXS0108EZXYR

8-BIT BIDIRECTIONAL VOLTAGE-LEVEL TRANSLATOR FOR OPEN-DRAIN AND PUSH-PULL APPLICATIONS
TI

TXS0108E_10

8-BIT BIDIRECTIONAL VOLTAGE-LEVEL TRANSLATOR FOR OPEN-DRAIN AND PUSH-PULL APPLICATIONS
TI

TXS0108E_101

8-BIT BIDIRECTIONAL VOLTAGE-LEVEL TRANSLATOR FOR OPEN-DRAIN AND PUSH-PULL APPLICATIONS
TI

TXS0108E_16

8-Bit Bi-directional, Level-Shifting, Voltage Translator
TI

TXS0202

A Inter Chip-USB Voltage Level Translator Small Packages: WCSP
TI

TXS0202YZPR

A Inter Chip-USB Voltage Level Translator Small Packages: WCSP
TI

TXS0206

MMC, SD CARD, Memory Stick™ VOLTAGE-TRANSLATION TRANSCEIVER WITH ESD PROTECTION AND EMI FILTERING
TI

TXS0206-29

MMC, SD CARD, Memory Stick™ VOLTAGE-TRANSLATION TRANSCEIVER AND LDO VOLTAGE REGULATOR WITH ESD PROTECTION AND EMI FILTERING
TI

TXS0206-29YFPR

MMC, SD CARD, Memory Stick™ VOLTAGE-TRANSLATION TRANSCEIVER AND LDO VOLTAGE REGULATOR WITH ESD PROTECTION AND EMI FILTERING
TI

TXS0206-29YFPRB

暂无描述
TI

TXS0206-29_0912

MMC, SD CARD, Memory Stick™ VOLTAGE-TRANSLATION TRANSCEIVER AND LDO VOLTAGE REGULATOR WITH ESD PROTECTION AND EMI FILTERING
TI