UC1823A-SP [TI]

耐辐射 QMLV、30V 输入、2A 双路输出 1MHz PWM 控制器、100% 占空比;
UC1823A-SP
型号: UC1823A-SP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

耐辐射 QMLV、30V 输入、2A 双路输出 1MHz PWM 控制器、100% 占空比

开关 控制器 开关式稳压器 开关式控制器 电源电路 开关式稳压器或控制器
文件: 总15页 (文件大小:302K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢀꢁꢄ ꢃ ꢄ ꢅ ꢆꢇ ꢀ ꢁꢄ ꢃꢄ ꢅꢈ ꢇ  
ꢀꢁꢅ ꢃ ꢄ ꢅ ꢆꢇ ꢀꢁꢅ ꢃ ꢄ ꢅ ꢈꢇ ꢀ ꢁꢂ ꢃꢄ ꢉꢆ ꢇ  
www.ti.com  
SLUS334C − AUGUST 1995 − REVISED AUGUST 2004  
ꢎꢏ  
FEATURES  
DESCRIPTION  
D
D
D
Improved Versions of the UC3823/UC3825  
PWMs  
The UC3823A and UC3823B and the UC3825A and  
UC3825B family of PWM controllers are improved  
versions of the standard UC3823 and UC3825 family.  
Performance enhancements have been made to several  
of the circuit blocks. Error amplifier gain bandwidth product  
is 12 MHz, while input offset voltage is 2 mV. Current limit  
threshold is assured to a tolerance of 5%. Oscillator  
discharge current is specified at 10 mA for accurate dead  
time control. Frequency accuracy is improved to 6%.  
Startup supply current, typically 100 µA, is ideal for off-line  
applications. The output drivers are redesigned to actively  
sink current during UVLO at no expense to the startup  
current specification. In addition each output is capable of  
2-A peak currents during transitions.  
Compatible with Voltage-Mode or  
Current-Mode Control Methods  
Practical Operation at Switching Frequencies  
to 1 MHz  
D
50-ns Propagation Delay to Output  
D
High-Current Dual Totem Pole Outputs  
(2-A Peak)  
D
D
D
D
Trimmed Oscillator Discharge Current  
Low 100-µA Startup Current  
Pulse-by-Pulse Current Limiting Comparator  
Latched Overcurrent Comparator With Full  
Cycle Restart  
BLOCK DIAGRAM  
CLK/LEB 4  
(60%)  
13 VC  
RT  
CT  
5
6
7
3
2
1
11 OUTA  
*
OSC  
R
S
T
RAMP  
EAOUT  
NI  
D
1.25 V  
E/A  
14 OUTB  
12 PGND  
PWM  
LATCH  
PWM COMPARATOR  
9 mA  
INV  
SOFT−START COMPLETE  
RESTART  
CURRENT  
LIMIT  
5 V  
250mA  
DELAY  
LATCH  
SS  
8
1.0 V  
1.2 V  
0.2 V  
OVER CURRENT  
ILIM 9  
S
R
S
D
RESTART  
DELAY  
R
FAULT LATCH  
UVLO  
VCC 15  
GND 10  
”B” 16V/10V  
”A” 9.2V/8.4V  
INTERNAL  
BIAS  
VREF  
5.1 V  
ON/OFF  
4 V  
V
GOOD  
REF  
16 5.1 VREF  
UDG−02091  
* On the UC1823A version, toggles Q and Q are always low.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢏꢗ ꢔ ꢑꢀ ꢁ ꢖꢋ ꢔꢕ ꢑ ꢆꢖꢆ ꢙꢚ ꢛꢜ ꢝ ꢞꢟ ꢠꢙꢜꢚ ꢙꢡ ꢢꢣ ꢝ ꢝ ꢤꢚꢠ ꢟꢡ ꢜꢛ ꢥꢣꢦ ꢧꢙꢢ ꢟꢠꢙ ꢜꢚ ꢨꢟ ꢠꢤꢩ ꢏꢝ ꢜꢨꢣ ꢢꢠꢡ  
ꢢ ꢜꢚ ꢛꢜꢝ ꢞ ꢠꢜ ꢡ ꢥꢤ ꢢ ꢙ ꢛꢙ ꢢ ꢟ ꢠꢙ ꢜꢚꢡ ꢥ ꢤꢝ ꢠꢪꢤ ꢠꢤ ꢝ ꢞꢡ ꢜꢛ ꢖꢤꢫ ꢟꢡ ꢋꢚꢡ ꢠꢝ ꢣꢞ ꢤꢚꢠ ꢡ ꢡꢠ ꢟꢚꢨ ꢟꢝ ꢨ ꢬ ꢟꢝ ꢝ ꢟ ꢚꢠꢭꢩ  
ꢏꢝ ꢜ ꢨꢣꢢ ꢠ ꢙꢜ ꢚ ꢥꢝ ꢜ ꢢ ꢤ ꢡ ꢡ ꢙꢚ ꢮ ꢨꢜ ꢤ ꢡ ꢚꢜꢠ ꢚꢤ ꢢꢤ ꢡꢡ ꢟꢝ ꢙꢧ ꢭ ꢙꢚꢢ ꢧꢣꢨ ꢤ ꢠꢤ ꢡꢠꢙ ꢚꢮ ꢜꢛ ꢟꢧ ꢧ ꢥꢟ ꢝ ꢟꢞ ꢤꢠꢤ ꢝ ꢡꢩ  
Copyright 2004, Texas Instruments Incorporated  
ꢀꢁ  
ꢀ ꢁ  
ꢀ ꢁ  
ꢂ ꢃꢄ ꢅ ꢆ ꢇ  
ꢅꢃ ꢄꢅ ꢆ ꢇ  
ꢄꢃ ꢄꢉ ꢆ ꢇ  
ꢀꢁ  
ꢃꢄ  
www.ti.com  
SLUS334C − AUGUST 1995 − REVISED AUGUST 2004  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during  
storage or handling to prevent electrostatic damage to the MOS gates.  
DESCRIPTION (CONTINUED)  
Functional improvements have also been implemented in this family. The UC3825 shutdown comparator is now a  
high-speed overcurrent comparator with a threshold of 1.2 V. The overcurrent comparator sets a latch that ensures full  
discharge of the soft-start capacitor before allowing a restart. While the fault latch is set, the outputs are in the low state.  
In the event of continuous faults, the soft-start capacitor is fully charged before discharge to insure that the fault frequency  
does not exceed the designed soft start period. The UC3825 CLOCK pin has become CLK/LEB. This pin combines the  
functions of clock output and leading edge blanking adjustment and has been buffered for easier interfacing.  
The UC3825A and UC3825B have dual alternating outputs and the same pin configuration of the UC3825. The UC3823A  
and UC3823B outputs operate in phase with duty cycles from zero to less than 100%. The pin configuration of the UC3823A  
and UC3823B is the same as the UC3823 except pin 11 is now an output pin instead of the reference pin to the current  
limit comparator. “A” version parts have UVLO thresholds identical to the original UC3823 and UC3825. The “B” versions  
have UVLO thresholds of 16 V and 10 V, intended for ease of use in off-line applications.  
Consult the application note, The UC3823A,B and UC3825A,B Enhanced Generation of PWM Controllers, (SLUA125) for  
detailed technical and applications information.  
ORDERING INFORMATION  
UVLO  
9.2 V / 8.4 V  
16 V / 10 V  
MAXIMUM  
DUTY CYCLE  
T
A
(1)  
SOIC−16  
(1)  
PLCC−20  
(1)  
PLCC−20  
PDIP−16  
(N)  
SOIC−16  
(DW)  
PDIP−16  
(N)  
(DW)  
(Q)  
(Q)  
< 100%  
< 50%  
< 100%  
< 50%  
UC2823ADW  
UC2825ADW  
UC3823ADW  
UC3825ADW  
UC2823AN  
UC2825AN  
UC3823AN  
UC3825AN  
UC2823AQ  
UC2825AQ  
UC3823AQ  
UC3825AQ  
UC2823BDW  
UC2825BDW  
UC3823BDW  
UC3825BDW  
UC2823BN  
UC2825BN  
UC3823BN  
UC3825BN  
−40°C to 85°C  
−0°C to 70°C  
UC3825BQ  
(1)  
The DW and Q packages are also available taped and reeled. Add TR suffix to the device type (i.e., UC2823ADWR). To order quantities of 1000  
devices per reel for the Q package and 2000 devices per reel for the DW package.  
UVLO  
9.2 V / 8.4 V  
MAXIMUM  
DUTY CYCLE  
T
A
CDIP−16  
(J)  
LCCC−20  
(L)  
< 100%  
< 50%  
UC1823AJ, UC1823AJ883B, UC1823AJQMLV  
UC1825AJ, UC1825AJ883B, UC1825AJQMLV  
UC1823AL, UC1823AL883B  
−55°C to 125°C  
UC1825AL, UC1825AL883B, UC1825ALQMLV  
PIN ASSIGNMENTS  
Q OR L PACKAGES  
(TOP VIEW)  
DW, J, OR N PACKAGES  
(TOP VIEW)  
INV  
NI  
EAOUT  
CLK/LEB  
RT  
VREF  
VCC  
OUTB  
VC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
3
2
1
20 19  
18  
OUTB  
VC  
EAOUT  
CLK/LEB  
NC  
4
5
6
7
8
17  
16  
15  
PGND  
NC  
PGND  
CT  
11 OUTA  
RT  
10  
9
RAMP  
SS  
GND  
ILIM  
14 OUTA  
9 10 11 12 13  
CT  
NC = no connection  
2
ꢀꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢀꢁꢄ ꢃ ꢄ ꢅ ꢆꢇ ꢀ ꢁꢄ ꢃꢄ ꢅꢈ ꢇ  
ꢀꢁꢅ ꢃ ꢄ ꢅ ꢆꢇ ꢀꢁꢅ ꢃ ꢄ ꢅ ꢈꢇ ꢀ ꢁꢂ ꢃꢄ ꢉꢆ ꢇ  
www.ti.com  
ꢀꢁꢄ ꢃ ꢄ ꢉ ꢆꢇ ꢀꢁꢄ ꢃ ꢄ ꢉ ꢈꢇ ꢀꢁꢅ ꢃ ꢄ ꢉ ꢆꢇ ꢀ ꢁꢅ ꢃꢄ ꢉꢈ  
SLUS334C − AUGUST 1995 − REVISED AUGUST 2004  
TERMINAL FUNCTIONS  
TERMINAL  
NO.  
I/O  
DESCRIPTION  
NAME  
J or DW  
Q or L  
CLK/LEB  
CT  
4
5
O
I
Output of the internal oscillator  
Timing capacitor connection pin for oscillator frequency programming. The timing capacitor should  
be connected to the device ground using minimal trace length.  
6
8
EAOUT  
GND  
ILIM  
3
10  
9
4
O
I
Output of the error amplifier for compensation  
Analog ground return pin  
13  
12  
2
Input to the current limit comparator  
INV  
1
I
Inverting input to the error amplifier  
NI  
2
3
I
Non-inverting input to the error amplifier  
High current totem pole output A of the on-chip drive stage.  
High current totem pole output B of the on-chip drive stage.  
Ground return pin for the output driver stage  
OUTA  
OUTB  
PGND  
11  
14  
12  
14  
18  
15  
O
O
Non-inverting input to the PWM comparator with 1.25-V internal input offset. In voltage mode  
operation, this serves as the input voltage feed-forward function by using the CT ramp. In peak  
current mode operation, this serves as the slope compensation input.  
RAMP  
7
9
I
RT  
SS  
5
8
7
I
I
Timing resistor connection pin for oscillator frequency programming  
Soft-start input pin which also doubles as the maximum duty cycle clamp.  
10  
Power supply pin for the output stage. This pin should be bypassed with a 0.1-µF monolithic ceramic  
low ESL capacitor with minimal trace lengths.  
VC  
13  
15  
16  
17  
19  
20  
Power supply pin for the device. This pin should be bypassed with a 0.1-µF monolithic ceramic low  
ESL capacitor with minimal trace lengths  
VCC  
VREF  
5.1-V reference. For stability, the reference should be bypassed with a 0.1-µF monolithic ceramic  
low ESL capacitor and minimal trace length to the ground plane.  
O
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range unless otherwise noted  
(1)  
UNIT  
22 V  
V
IN  
Supply voltage,  
VC, VCC  
I
I
Source or sink current, DC  
Source or sink current, pulse (0.5 µs)  
OUTA, OUTB  
OUTA, OUTB  
INV, NI, RAMP  
ILIM, SS  
PGND  
0.5 A  
O
2.2 A  
O
−0.3 V to 7 V  
−0.3 V to 6 V  
0.2 V  
Analog inputs  
Power ground  
I
I
I
I
Clock output current  
Error amplifier output current  
Soft-start sink current  
Oscillator charging current  
CLK/LEB  
EAOUT  
−5 mA  
CLK  
O(EA)  
SS  
5 mA  
SS  
20 mA  
RT  
−5 mA  
OSC  
T
Operating virtual junction temperature range  
Storage temperature  
−55°C to 150°C  
−65°C to 150°C  
−55C°C to 150°C  
−65°C to 150°C  
300°C  
J
T
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds  
Storage temperature  
t
STG  
Lead temperature 1,6 mm (1/16 inch) from cases for 10 seconds  
(1)  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
3
ꢀꢁ  
ꢀ ꢁ  
ꢀ ꢁ  
ꢂ ꢃꢄ ꢅ ꢆ ꢇ  
ꢅꢃ ꢄꢅ ꢆ ꢇ  
ꢄꢃ ꢄꢉ ꢆ ꢇ  
ꢃꢄ  
www.ti.com  
SLUS334C − AUGUST 1995 − REVISED AUGUST 2004  
ELECTRICAL CHARACTERISTICS  
T
R
= −55°C to 125°C for the UC1823A/UC1825A, T = −40°C to 85°C for the UC2823x/UC2825x, T = 0°C to 70°C for the UC3823x/UC3825x,  
A A  
A
T
= 3.65 k, C = 1 nF, V = 12 V, T = T (unless otherwise noted)  
T
CC A J  
PARAMETER  
REF  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
REFERENCE, V  
V
Ouput voltage range  
Line regulation  
T = 25°C,  
I = 1 mA  
O
5.05  
5.1  
2
5.15  
15  
V
O
J
12 V VCC 20 V  
mV  
V
Load regulation  
1 mA I 10 mA  
5
20  
O
Total output variation  
Temperature stability  
Output noise voltage  
Line, load, temperature  
5.03  
30  
5.17  
(1)  
(1)  
T
(min)  
< T < T  
(max)  
0.2  
50  
5
0.4 mV/°C  
µV  
A
10 Hz < f < 10 kHz  
RMS  
(1)  
Long term stability  
T = 125°C, 1000 hours  
J
25  
90  
mV  
mA  
Short circuit current  
OSCILLATOR  
VREF = 0 V  
60  
T = 25°C  
375  
0.9  
400  
1
425  
1.1  
kHz  
MHz  
kHz  
J
(1)  
Initial accuracy  
f
OSC  
R
T
= 6.6 k, C = 220 pF, T = 25°C  
T A  
Line, temperature  
= 6.6 k, C = 220 pF,  
350  
0.85  
450  
1.15  
1%  
(1)  
Total variation  
R
T
MHz  
T
Voltage stability  
12 V < VCC < 20 V  
< T < T  
(max)  
(1)  
Temperature stability  
T
(min)  
+/−  
3.7  
5%  
4
A
High-level output voltage, clock  
Low-level output voltage, clock  
Ramp peak  
0
0.2  
3
2.6  
0.7  
1.6  
9
2.8  
1
V
Ramp valley  
1.25  
2
Ramp valley-to-peak  
Oscillator discharge current  
1.8  
10  
I
OSC  
R
T
= OPEN,  
V
CT  
= 2 V  
11  
mA  
ERROR AMPLIFIER  
Input offset voltage  
2
0.6  
0.1  
95  
10  
3
mV  
Input bias current  
Input offset current  
µA  
1
Open loop gain  
1 V < V < 4 V  
60  
75  
85  
1
O
CMRR Common mode rejection ratio  
1.5 V < V  
< 5.5 V  
< 20 V  
95  
dB  
CM  
PSRR  
Power supply rejection ratio  
Output sink current  
12 V < V  
CC  
110  
2.5  
−1.3  
4.7  
0.5  
12  
I
I
V
= 1 V  
O(sink)  
EAOUT  
EAOUT  
EAOUT  
EAOUT  
mA  
V
Output source current  
High-level output voltage  
Low-level output voltage  
Gain bandwidth product  
V
= 4 V  
−0.5  
4.5  
0
O(src)  
I
I
= −0.5 mA  
= −1 mA  
5
1
f = 200 kHz  
6
Mhz  
(1)  
Slew rate  
6
9
V/µs  
(1)  
Ensured by design. Not production tested.  
4
ꢀꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢀꢁꢄ ꢃ ꢄ ꢅ ꢆꢇ ꢀ ꢁꢄ ꢃꢄ ꢅꢈ ꢇ  
ꢀꢁꢅ ꢃ ꢄ ꢅ ꢆꢇ ꢀꢁꢅ ꢃ ꢄ ꢅ ꢈꢇ ꢀ ꢁꢂ ꢃꢄ ꢉꢆ ꢇ  
www.ti.com  
ꢀꢁꢄ ꢃ ꢄ ꢉ ꢆꢇ ꢀꢁꢄ ꢃ ꢄ ꢉ ꢈꢇ ꢀꢁꢅ ꢃ ꢄ ꢉ ꢆꢇ ꢀ ꢁꢅ ꢃꢄ ꢉꢈ  
SLUS334C − AUGUST 1995 − REVISED AUGUST 2004  
ELECTRICAL CHARACTERISTICS  
T
R
= −55°C to 125°C for the UC1823A/UC1825A, T = −40°C to 85°C for the UC2823x/UC2825x, T = 0°C to 70°C for the UC3823x/UC3825x,  
A A  
A
T
= 3.65 k, C = 1 nF, V = 12 V, T = T (unless otherwise noted)  
T
CC A J  
PWM COMPARATOR  
I
Bias current, RAMP  
V
= 0 V  
−1  
−8  
µA  
BIAS  
RAMP  
Minimum duty cycle  
0%  
Maximum duty cycle  
Leading edge blanking time  
85%  
300  
8.5  
t
R
= 2 k,  
C
= 470 pF  
375  
10.0  
1.25  
50  
450  
11.5  
1.4  
ns  
kΩ  
V
LEB  
LEB  
LEB  
R
Leading edge blanking resistance  
V
V
V
= 3 V  
LEB  
CLK/LEB  
V
Zero dc threshold voltage, EAOUT  
Delay-to-output time  
= 0 V  
1.10  
ZDC  
RAMP  
t
= 2.1 V,  
V = 0 V to 2 V step  
ILIM  
80  
ns  
DELAY  
EAOUT  
CURRENT LIMIT / START SEQUENCE / FAULT  
I
Soft-start charge current  
Full soft-start threshold voltage  
Restart discharge current  
Restart threshold voltage  
ILIM bias current  
V
V
V
= 2.5 V  
8
4.3  
14  
5
20  
µA  
V
SS  
SS  
V
SS  
DSCH  
SS  
I
I
I
I
= 2.5 V  
SS  
100  
250  
0.3  
350  
0.5  
µA  
V
= 0 V to 2 V step  
= 0 V to 2 V step  
15  
µA  
BIAS  
CL  
ILIM  
Current limit threshold voltage  
Overcurrent threshold voltage  
0.95  
1.14  
1
1.2  
50  
1.05  
1.26  
80  
V
(1)  
Delay-to-output time, ILIM  
t
d
V
ILIM  
ns  
OUTPUT  
I
I
I
I
= 20 mA  
= 200 mA  
= 20 mA  
= 200 mA  
0.25  
1.2  
1.9  
2
0.4  
2.2  
2.9  
3
OUT  
OUT  
OUT  
OUT  
Low-level output saturation voltage  
High-level output saturation voltage  
V
t
r,  
t
f
(1)  
Rise/fall time  
C
L
= 1 nF  
20  
45  
ns  
UNDERVOLTAGE LOCKOUT (UVLO)  
Start threshold voltage  
Stop threshold voltage  
OVLO hysteresis  
UC2823B, UC2825B, UC3825B, UC3825B  
16  
9.2  
10  
0.8  
6
17  
UC1823A, UC1825A, UC2823A, UC2825A  
UC3825A, UC3825A  
8.4  
9
9.6  
UC2823B, UC2825B, UC3825B, UC3825B  
V
UC1823A, UC1825A, UC2823A, UC2825A  
UC3825A, UC3825A  
0.4  
5
1.2  
7
UC2823B, UC2825B, UC3825B, UC3825B  
SUPPLY CURRENT  
I
I
Startup current  
Input current  
VC = VCC = V  
TH  
= −0.5 V  
100  
28  
300  
36  
µA  
su  
mA  
CC  
(1)  
Ensured by design. Not production tested.  
5
ꢀꢁ  
ꢀ ꢁ  
ꢀ ꢁ  
ꢂ ꢃꢄ ꢅ ꢆ ꢇ  
ꢅꢃ ꢄꢅ ꢆ ꢇ  
ꢄꢃ ꢄꢉ ꢆ ꢇ  
ꢃꢄ  
www.ti.com  
SLUS334C − AUGUST 1995 − REVISED AUGUST 2004  
APPLICATION INFORMATION  
The oscillator of the UC3823A, UC3823B, UC3825A, and UC3825B is a saw tooth. The rising edge is governed by a current  
controlled by the RT pin and value of capacitance at the CT pin (C ). The falling edge of the sawtooth sets dead time for  
CT  
the outputs. Selection of RT should be done first, based on desired maximum duty cycle. CT can then be chosen based  
on the desired frequency (RT) and D . The design equations are:  
MAX  
ǒ1.6   DMAXǓ  
3 V  
R +  
C +  
T
T
10 mA   ǒ1 * DMAXǓ  
ǒR   fǓ  
T
(
)
(1)  
Recommended values for R range from 1 kto 100 k. Control of D  
less than 70% is not recommended.  
T
MAX  
UDG−95102  
Figure 1. Oscillator  
OSCILLATOR FREQUENCY  
vs  
MAXIMUM DUTY CYCLE  
vs  
TIMING RESISTANCE  
TIMING RESISTANCE  
100  
95  
10 M  
1 M  
90  
85  
80  
100 k  
10 k  
75  
70  
10 k  
1 k  
10 k  
100 k  
1 k  
100 k  
R
T
− Timing Resistance − W  
R − Timing Resistance − W  
T
Figure 3  
Figure 2  
6
ꢀꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢀꢁꢄ ꢃ ꢄ ꢅ ꢆꢇ ꢀ ꢁꢄ ꢃꢄ ꢅꢈ ꢇ  
ꢀꢁꢅ ꢃ ꢄ ꢅ ꢆꢇ ꢀꢁꢅ ꢃ ꢄ ꢅ ꢈꢇ ꢀ ꢁꢂ ꢃꢄ ꢉꢆ ꢇ  
www.ti.com  
ꢀꢁꢄ ꢃ ꢄ ꢉ ꢆꢇ ꢀꢁꢄ ꢃ ꢄ ꢉ ꢈꢇ ꢀꢁꢅ ꢃ ꢄ ꢉ ꢆꢇ ꢀ ꢁꢅ ꢃꢄ ꢉꢈ  
SLUS334C − AUGUST 1995 − REVISED AUGUST 2004  
LEADING EDGE BLANKING  
The UC3823A, UC2823B, UC3825A, and UC3825B perform fixed frequency pulse width modulation control. The  
UC3823A, and UC3823B outputs operate together at the switching frequency and can vary from zero to some value less  
than 100%. The UC3825A and UC3825B outputs are alternately controlled. During every other cycle, one output is off.  
Each output then switches at one-half the oscillator frequency, varying in duty cycle from 0 to less than 50%.  
To limit maximum duty cycle, the internal clock pulse blanks both outputs low during the discharge time of the oscillator.  
On the falling edge of the clock, the appropriate output(s) is driven high. The end of the pulse is controlled by the PWM  
comparator, current limit comparator, or the overcurrent comparator.  
Normally the PWM comparator senses a ramp crossing a control voltage (error amplifier output) and terminates the pulse.  
Leading edge blanking (LEB) causes the PWM comparator to be ignored for a fixed amount of time after the start of the  
pulse. This allows noise inherent with switched mode power conversion to be rejected. The PWM ramp input may not  
require any filtering as result of leading edge blanking.  
To program a leading edge blanking (LEB) period, connect a capacitor, C, to CLK/LEB. The discharge time set by C and  
the internal 10-kresistor determines the blanked interval. The 10-kresistor has a 10% tolerance. For more accuracy,  
an external 2-k1% resistor (R) can be added, resulting in an equivalent resistance of 1.66 kwith a tolerance of 2.4%.  
The design equation is:  
ǒ Ǔ  
+ 0.5   R ø 10 kW   C  
t
LEB  
(2)  
Values of R less than 2 kshould not be used.  
Leading edge blanking is also applied to the current limit comparator. After LEB, if the ILIM pin exceeds the 1-V threshold,  
the pulse is terminated. The overcurrent comparator, however, is not blanked. It catches catastrophic overcurrent faults  
without a blanking delay. Any time the ILIM pin exceeds 1.2 V, the fault latch is set and the outputs driven low. For this  
reason, some noise filtering may be required on the ILIM pin.  
UDG−95105  
Figure 4. Leading Edge Blanking Operational Waveforms  
7
ꢀꢁ  
ꢀ ꢁ  
ꢀ ꢁ  
ꢂ ꢃꢄ ꢅ ꢆ ꢇ  
ꢅꢃ ꢄꢅ ꢆ ꢇ  
ꢄꢃ ꢄꢉ ꢆ ꢇ  
ꢀꢁ  
www.ti.com  
SLUS334C − AUGUST 1995 − REVISED AUGUST 2004  
UVLO, SOFT-START AND FAULT MANAGEMENT  
Soft-start is programmed by a capacitor on the SS pin. At power up, SS is discharged. When SS is low, the error amplifier  
output is also forced low. While the internal 9-µA source charges the SS pin, the error amplifier output follows until closed  
loop regulation takes over.  
Anytime ILIM exceeds 1.2 V, the fault latch is set and the output pins are driven low. The soft-start cap is then discharged  
by a 250-µA current sink. No more output pulses are allowed until soft-start is fully discharged and ILIM is below 1.2 V. At  
this point the fault latch resets and the chip executes a soft-start.  
Should the fault latch get set during soft-start, the outputs are immediately terminated, but the soft-start capacitor does not  
discharge until it has been fully charged first. This results in a controlled hiccup interval for continuous fault conditions.  
UDG−95106  
Figure 5. Soft-Start and Fault Waveforms  
ACTIVE LOW OUTPUTS DURING UVLO  
The UVLO function forces the outputs to be low and considers both VCC and VREF before allowing the chip to operate.  
UDG−95108  
UDG−95106  
Figure 6. Output Voltage vs Output Current  
Figure 7. Output V and I During UVLO  
8
ꢀꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢀꢁꢄ ꢃ ꢄ ꢅ ꢆꢇ ꢀ ꢁꢄ ꢃꢄ ꢅꢈ ꢇ  
ꢀꢁꢅ ꢃ ꢄ ꢅ ꢆꢇ ꢀꢁꢅ ꢃ ꢄ ꢅ ꢈꢇ ꢀ ꢁꢂ ꢃꢄ ꢉꢆ ꢇ  
www.ti.com  
ꢀꢁꢄ ꢃ ꢄ ꢉ ꢆꢇ ꢀꢁꢄ ꢃ ꢄ ꢉ ꢈꢇ ꢀꢁꢅ ꢃ ꢄ ꢉ ꢆꢇ ꢀ ꢁꢅ ꢃꢄ ꢉꢈ  
SLUS334C − AUGUST 1995 − REVISED AUGUST 2004  
CONTROL METHODS  
Current Mode  
Voltage Mode  
UDG−95110  
UDG−95109  
.
Figure 8. Control Methods  
SYNCHRONIZATION  
The oscillator can be synchronized by an external pulse inserted in series with the timing capacitor. Program the free  
running frequency of the oscillator to be 10% to 15% slower than the desired synchronous frequency. The pulse width  
should be greater than 10 ns and less than half the discharge time of the oscillator. The rising edge of the CLK/LEB pin  
can be used to generate a synchronizing pulse for other chips. Note that the CLK/LEB pin no longer accepts an incoming  
synchronizing signal.  
UDG−95111  
UDG−95113  
Figure 9. General Oscillator Synchronization  
Figure 10. Two Unit Interface  
UDG−95112  
Figure 11. Operational Waveforms  
9
ꢀꢁ  
ꢀ ꢁ  
ꢀ ꢁ  
ꢂ ꢃꢄ ꢅ ꢆ ꢇ  
ꢅꢃ ꢄꢅ ꢆ ꢇ  
ꢄꢃ ꢄꢉ ꢆ ꢇ  
ꢀꢁ  
ꢃꢄ  
www.ti.com  
SLUS334C − AUGUST 1995 − REVISED AUGUST 2004  
HIGH CURRENT OUTPUTS  
Each totem pole output of the UC3823A and UC3823AB, UC3825A, and UC3825B can deliver a 2-A peak current into a  
capacitive load. The output can slew a 1000-pF capacitor by 15 V in approximately 20 ns. Separate collector supply (VC)  
and power ground (PGND) pins help decouple the device’s analog circuitry from the high-power gate drive noise. The use  
of 3-A Schottky diodes (1N5120, USD245, or equivalent) as shown in the Figure 13 from each output to both VC and PGND  
are recommended. The diodes clamp the output swing to the supply rails, necessary with any type of inductive/capacitive  
load, typical of a MOSFET gate. Schottky diodes must be used because a low forward voltage drop is required. DO NOT  
USE standard silicon diodes.  
Although they are single-ended devices, two output drivers are available on the UC3823A and UC3823B devices. These  
can be paralleled by the use of a 0.5 (noninductive) resistor connected in series with each output for a combined peak  
current of 4 A.  
UDG−95114  
Figure 12. Power MOSFET Drive Circuit  
GROUND PLANES  
Each output driver of these devices is capable of 2-A peak currents. Careful layout is essential for correct operation of the  
chip. A ground plane must be employed. A unique section of the ground plane must be designated for high di/dt currents  
associated with the output stages. This point is the power ground to which the PGND pin is connected. Power ground can  
be separated from the rest of the ground plane and connected at a single point, although this is not necessary if the high  
di/dt paths are well understood and accounted for. VCC should be bypassed directly to power ground with a good high  
frequency capacitor. The sources of the power MOSFET should connect to power ground as should the return connection  
for input power to the system and the bulk input capacitor. The output should be clamped with a high current Schottky diode  
to both VCC and PGND. Nothing else should be connected to power ground.  
VREF should be bypassed directly to the signal portion of the ground plane with a good high frequency capacitor. Low  
ESR/ESL ceramic 1-mF capacitors are recommended for both VCC and VREF. All analog circuitry should likewise be  
bypassed to the signal ground plane.  
10  
ꢀꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ ꢀꢁꢄ ꢃ ꢄ ꢅ ꢆꢇ ꢀ ꢁꢄ ꢃꢄ ꢅꢈ ꢇ  
ꢀꢁꢅ ꢃ ꢄ ꢅ ꢆꢇ ꢀꢁꢅ ꢃ ꢄ ꢅ ꢈꢇ ꢀ ꢁꢂ ꢃꢄ ꢉꢆ ꢇ  
www.ti.com  
ꢀꢁꢄ ꢃ ꢄ ꢉ ꢆꢇ ꢀꢁꢄ ꢃ ꢄ ꢉ ꢈꢇ ꢀꢁꢅ ꢃ ꢄ ꢉ ꢆꢇ ꢀ ꢁꢅ ꢃꢄ ꢉꢈ  
SLUS334C − AUGUST 1995 − REVISED AUGUST 2004  
UDG−95115  
Figure 13. Ground Planes Diagram  
OPEN LOOP TEST CIRCUIT  
This test fixture is useful for exercising many functions of this device family and measuring their specifications. As with any  
wideband circuit, careful grounding and bypass procedures should be followed. The use of a ground plane is highly  
recommended.  
UDG−95116  
Figure 14. Open Loop Test Circuit Schematic  
11  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Nov-2005  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
LCCC  
CDIP  
LCCC  
CDIP  
TO-92  
TO-92  
LCCC  
CDIP  
CDIP  
CDIP  
CDIP  
CDIP  
LCCC  
LCCC  
CDIP  
CDIP  
LCCC  
LCCC  
CDIP  
CDIP  
CDIP  
LCCC  
LCCC  
TO-92  
LCCC  
CDIP  
CDIP  
Drawing  
5962-87681022A  
5962-8768102EA  
5962-8768102V2A  
5962-8768102VEA  
5962-8768102XA  
5962-8768103XA  
5962-89905022A  
5962-8990502EA  
5962-8990502VEA  
UC1823AJ  
ACTIVE  
ACTIVE  
FK  
J
20  
16  
20  
16  
28  
28  
20  
16  
16  
16  
16  
16  
20  
20  
16  
16  
20  
20  
16  
16  
16  
20  
20  
28  
20  
16  
16  
20  
20  
28  
16  
1
1
1
1
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
POST-PLATE Level-NC-NC-NC  
A42 SNPB  
Call TI  
Level-NC-NC-NC  
Level-NC-NC-NC  
Level-NC-NC-NC  
Call TI  
ACTIVE  
FK  
J
ACTIVE  
Call TI  
OBSOLETE  
OBSOLETE  
ACTIVE  
LP  
LP  
FK  
J
Call TI  
Call TI  
Call TI  
1
1
1
1
1
POST-PLATE Level-NC-NC-NC  
ACTIVE  
A42 SNPB  
Call TI  
Level-NC-NC-NC  
Level-NC-NC-NC  
Level-NC-NC-NC  
Level-NC-NC-NC  
Call TI  
ACTIVE  
J
ACTIVE  
J
A42 SNPB  
A42 SNPB  
Call TI  
UC1823AJ883B  
UC1823AJQMLV  
UC1823AL  
ACTIVE  
J
ACTIVE  
J
ACTIVE  
FK  
FK  
J
1
1
POST-PLATE Level-NC-NC-NC  
POST-PLATE Level-NC-NC-NC  
UC1823AL883B  
UC1823BJ  
ACTIVE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
ACTIVE  
Call TI  
Call TI  
Call TI  
UC1823BJ883B  
UC1823BL  
J
Call TI  
FK  
FK  
J
Call TI  
Call TI  
UC1823BL883B  
UC1825AJ  
Call TI  
Call TI  
1
1
A42 SNPB  
A42 SNPB  
Call TI  
Level-NC-NC-NC  
Level-NC-NC-NC  
Call TI  
UC1825AJ883B  
UC1825AJQMLV  
UC1825AL  
ACTIVE  
J
ACTIVE  
J
ACTIVE  
FK  
FK  
LP  
FK  
J
1
1
POST-PLATE Level-NC-NC-NC  
POST-PLATE Level-NC-NC-NC  
UC1825AL883B  
UC1825ALP883B  
UC1825ALQMLV  
UC1825BJ  
ACTIVE  
OBSOLETE  
ACTIVE  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
OBSOLETE  
OBSOLETE  
UC1825BJ883B  
UC1825BL/81047  
UC1825BL883B  
UC1825BLP883B  
UC2823ADW  
J
OBSOLETE TO/SOT  
L
OBSOLETE  
OBSOLETE  
ACTIVE  
LCCC  
TO-92  
SOIC  
FK  
LP  
DW  
40 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
UC2823ADWTR  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
DW  
DW  
16  
16  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
UC2823ADWTRG4  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
UC2823AJ  
UC2823AN  
ACTIVE  
ACTIVE  
CDIP  
PDIP  
J
16  
16  
1
TBD  
A42 SNPB  
Level-NC-NC-NC  
N
25 Green (RoHS & CU NIPDAU Level-NC-NC-NC  
no Sb/Br)  
UC2823ANG4  
UC2823AQ  
ACTIVE  
ACTIVE  
ACTIVE  
PDIP  
PLCC  
SOIC  
N
16  
20  
16  
25 Green (RoHS & CU NIPDAU Level-NC-NC-NC  
no Sb/Br)  
FN  
DW  
46 Green (RoHS &  
no Sb/Br)  
CU SN  
Level-2-260C-1 YEAR  
UC2823BDW  
40 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Nov-2005  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
no Sb/Br)  
UC2823BDWG4  
ACTIVE  
SOIC  
DW  
16  
40 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
UC2823BJ  
UC2823BN  
OBSOLETE  
ACTIVE  
CDIP  
PDIP  
J
16  
16  
TBD  
Call TI  
Call TI  
N
25 Green (RoHS & CU NIPDAU Level-NC-NC-NC  
no Sb/Br)  
UC2823BNG4  
UC2825ADW  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
PLCC  
SOIC  
SOIC  
N
16  
16  
16  
16  
16  
16  
16  
20  
16  
16  
25 Green (RoHS & CU NIPDAU Level-NC-NC-NC  
no Sb/Br)  
DW  
DW  
DW  
DW  
N
40 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
UC2825ADWG4  
UC2825ADWTR  
UC2825ADWTRG4  
UC2825AN  
40 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU Level-NC-NC-NC  
no Sb/Br)  
UC2825ANG4  
UC2825AQ  
N
25 Green (RoHS & CU NIPDAU Level-NC-NC-NC  
no Sb/Br)  
FN  
DW  
DW  
46 Green (RoHS &  
no Sb/Br)  
CU SN  
Level-2-260C-1 YEAR  
UC2825BDW  
40 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
UC2825BDWTR  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
UC2825BJ  
UC2825BN  
OBSOLETE  
ACTIVE  
CDIP  
PDIP  
J
16  
16  
TBD  
Call TI  
Call TI  
N
25 Green (RoHS & CU NIPDAU Level-NC-NC-NC  
no Sb/Br)  
UC2825BNG4  
UC3823ADW  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
PDIP  
N
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
25 Green (RoHS & CU NIPDAU Level-NC-NC-NC  
no Sb/Br)  
DW  
DW  
DW  
DW  
N
40 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
UC3823ADWG4  
UC3823ADWTR  
UC3823ADWTRG4  
UC3823AN  
40 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU Level-NC-NC-NC  
no Sb/Br)  
UC3823ANG4  
UC3823BDW  
N
25 Green (RoHS & CU NIPDAU Level-NC-NC-NC  
no Sb/Br)  
DW  
DW  
DW  
N
40 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
UC3823BDWTR  
UC3823BDWTRG4  
UC3823BN  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU Level-NC-NC-NC  
no Sb/Br)  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Nov-2005  
Orderable Device  
UC3825ADW  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
DW  
16  
16  
16  
16  
20  
20  
16  
16  
16  
16  
40 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
UC3825ADWTR  
UC3825ADWTRG4  
UC3825AN  
SOIC  
SOIC  
PDIP  
PLCC  
PLCC  
SOIC  
SOIC  
SOIC  
PDIP  
DW  
DW  
N
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU Level-NC-NC-NC  
no Sb/Br)  
UC3825AQ  
FN  
FN  
DW  
DW  
DW  
N
46 Green (RoHS &  
no Sb/Br)  
CU SN  
Level-2-260C-1 YEAR  
UC3825AQTR  
UC3825BDW  
1000 Green (RoHS &  
no Sb/Br)  
CU SN  
Level-2-260C-1 YEAR  
40 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
UC3825BDWTR  
UC3825BDWTRG4  
UC3825BN  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU Level-NC-NC-NC  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 3  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

UC1823ADW

Current/Voltage-Mode SMPS Controller
ETC

UC1823ADWTR

Current/Voltage-Mode SMPS Controller
ETC

UC1823AJ

High Speed PWM Controller
TI

UC1823AJ883B

High Speed PWM Controller
TI

UC1823AJQMLV

High Speed PWM Controller
TI

UC1823AL

High Speed PWM Controller
TI

UC1823AL883B

High Speed PWM Controller
TI

UC1823AN

Analog IC
ETC

UC1823AQ

Analog IC
ETC

UC1823AQTR

Analog IC
ETC

UC1823A_10

HIGH-SPEED PWM CONTROLLER
TI

UC1823B

High Speed PWM Controller
TI