UCC14341-Q1 [TI]

具有集成变压器的汽车级、1.5W、15V 输入电压、稳压、5kVRMS 隔离式直流/直流模块;
UCC14341-Q1
型号: UCC14341-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成变压器的汽车级、1.5W、15V 输入电压、稳压、5kVRMS 隔离式直流/直流模块

变压器
文件: 总42页 (文件大小:2038K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
UCC14341-Q1 汽车1.5W15V VIN25V VOUT、高密度、  
> 5kVRMS、隔离式直流/直流模块  
1 特性  
3 说明  
• 采用隔离变压器的完全集成高密度隔离式直流/直流  
模块  
• 隔离式直流/直流模块用于驱动IGBTSiC FET  
• 输入电压范围13.5V 16.5V绝对最大值为  
32V  
13.5V < VVIN < 16.5V TA 105°C 输出  
功率1.5W  
• 可调节(VDD VEE) 输出电压通过外部电阻  
):在整个温度范围内18V 25V调节精度  
±1.3%  
• 可调节(COM VEE) 输出电压通过外部电阻  
):在整个温度范围内2.5V (VDD –  
VEE)调节精度±1.3%  
• 通过展频调制和集成变压器设计降低电磁发射  
• 使能、电源正常、UVLOOVLO、软启动、短路、  
功率限制、欠压、过压和过热保护  
CMTI > 150kV/µs  
UCC14341-Q1 是一款高隔离电压直流/直流模块旨  
在为 IGBT SiC 栅极驱动器供电。该模块集成了一  
个变压器和具有专有架构的直流/直流控制器可实现  
高效率和非常低的电磁发射。高精度输出电压可提供更  
高的系统效率不会对功率器件栅极造成过应力。  
这款完全集成的模块具有片上器件保护功能需要非常  
少的外部元件可提供额外的特性例如输入欠压锁  
定、过压锁定、输出电压电源正常比较器、过热关断、  
软启动时序、可调隔离式正负输出电压、使能引脚和开  
漏输出电源正常引脚。  
器件信息  
可订购器件型号(1)  
PUCC14341QDWNQ1  
UCC14341QDWNRQ1  
封装尺寸标称值)  
12.83mm × 7.50mm  
12.83mm × 7.50mm  
封装  
SSOP  
SSOP  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• 符合面向汽车应用AEC-Q100 标准  
– 温度等140°C TJ 150°C  
– 温度等140°C TA 125°C  
• 计划的安全相关认证:  
PG  
PG  
VDD  
VDD  
COUT2  
R1  
R2  
RLIM  
ENA  
ENA  
VIN  
RLIM  
FBVDD  
FBVEE  
COM  
Source/  
emitter  
COUT1  
• – DIN EN IEC 60747-17 (VDE 0884-17) 标  
7071VPK 增强型隔离  
VIN  
R3  
R4  
COUT3  
CIN  
– 符UL 1577 标准且长1 分钟5000VRMS  
隔离  
GNDP  
VEE  
VEE  
– 符CQC GB4943.1 标准的增强型绝缘  
36 引脚宽SSOP 封装  
简化版应用  
2 应用  
混合动力、电动和动力总成系(EV/HEV)  
逆变器和电机控制  
车载充电(OBC) 和无线充电器  
直流/直流转换器  
VIN = 15V  
(VDD-COM) = 18V  
(VEE-COM) = -4V  
电网基础设施  
电动汽车充电站电源模块  
直流充电站  
串式逆变器  
电机驱动器  
交流逆变器和变频驱动器机器人伺服驱动器  
工业运输  
典型上电序列  
非公路用车电力驱动器  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSF11  
 
 
 
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
内容  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 修订历史记录.....................................................................2  
5 器件比较............................................................................ 3  
6 引脚配置和功能................................................................. 4  
7 规格................................................................................... 6  
7.1 绝对最大额定值...........................................................6  
7.2 ESD 等级.................................................................... 6  
7.3 建议运行条件.............................................................. 6  
7.4 热性能信息..................................................................6  
7.5 绝缘规格......................................................................7  
7.6 安全相关认证.............................................................. 9  
7.7 电气特性......................................................................9  
7.8 安全限值....................................................................11  
7.9 典型特性....................................................................12  
8 详细说明.......................................................................... 13  
8.1 概述...........................................................................13  
8.2 功能方框图................................................................14  
8.3 特性说明....................................................................15  
8.4 器件功能模式............................................................ 24  
9 应用和实施.......................................................................25  
9.1 应用信息....................................................................25  
9.2 典型应用....................................................................25  
9.3 系统示例....................................................................31  
9.4 电源相关建议............................................................ 32  
9.5 布局...........................................................................32  
10 器件和文档支持............................................................. 35  
10.1 文档支持..................................................................35  
10.2 接收文档更新通知................................................... 35  
10.3 支持资源..................................................................35  
10.4 商标.........................................................................35  
10.5 静电放电警告.......................................................... 35  
10.6 术语表..................................................................... 35  
11 机械、封装和可订购信息............................................... 36  
12 卷带封装信息.................................................................37  
4 修订历史记录  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (February 2023) to Revision A (March 2023)  
Page  
• 更新了“器件比较表”........................................................................................................................................3  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF11  
2
Submit Document Feedback  
Product Folder Links: UCC14341-Q1  
 
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
5 器件比较  
5-1. 器件比较表  
(VDD-VEE) 可调范围  
18V 25V  
V
VIN 范围  
器件名称  
典型电源  
2W  
隔离等级  
基础型  
UCC14240-Q1  
21V 27V  
8V 18V  
1W  
18V 25V  
UCC14141-Q1  
UCC14341-Q1  
增强型  
增强型  
1.5W  
1.5W  
10.8V 13.2V  
13.5V 16.5V  
18V 25V  
18V 25V  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: UCC14341-Q1  
English Data Sheet: SLUSF11  
 
 
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
6 引脚配置和功能  
GNDP  
GNDP  
PG  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
VEE  
2
VEEA  
FBVDD  
FBVEE  
RLIM  
VEE  
3
ENA  
4
GNDP  
VIN  
5
6
VIN  
7
VEE  
GNDP  
GNDP  
GNDP  
GNDP  
GNDP  
GNDP  
GNDP  
GNDP  
GNDP  
GNDP  
GNDP  
8
VDD  
VDD  
VEE  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
6-1. DWN 封装36 SSOP顶视图)  
6-1. 引脚功能  
引脚  
类型(1)  
说明  
名称  
编号  
1258、  
91011、  
121314、  
151617、  
18  
VIN 的初级侧接地连接。引12 5 是模拟地。引8910111213141516、  
17 18 是电源地。在覆铜上放置几个过孔以进行散热。请参阅布局指南。  
GNDP  
G
低电平有效电源正常开漏输出引脚。(UVLO VVIN OVLO)(UVP1 (VDD VEE) ≤  
OVP1)(UVP2 (COM VEE) OVP2)TJ_Primary TSHUTPPRIMARY_RISE TJ_secondary  
TSHUTSECONDARY_RISE PG 保持低电平  
PG  
3
4
O
I
启用引脚。强ENA 为低电平会禁用器件。上拉至高电平以启用正常的器件功能。建议最大值为  
5.5V。  
ENA  
VIN  
初级输入电压。引6 用于模拟输入7 用于电源输入。对于引7将一20µF 陶瓷电容  
器从电VIN 7 连接到电GNDP 8。在引7 和引8 附近连接一0.1µF 高频旁路  
陶瓷电容器。  
P
67  
192021、  
222324、  
252627、  
303136  
VEE  
G
VDD COM 的次级侧参考连接。VEE 引脚用于高电流返回路径。  
来自变压器的次级侧隔离式输出电压。VDD VEE 之间连接一10µF 和一个并联0.1µF 陶  
瓷电容。0.1µF 陶瓷电容是高频旁路必须靠IC 引脚。  
VDD  
P
P
2829  
第二个次级侧隔离式输出电压电阻用于限制VDD COM 节点的拉电流和COM VEE 的  
灌电流。RLIM COM 之间连接一个电阻以调(COM VEE) 电压。有关更多详情请参阅  
RLIM  
32  
RLIM 电阻器选型。  
(COM VEE) 输出电压检测引脚用于调整输(COM VEE) 电压。COM VEE 之间  
连接一个电阻分压器使中点连接FBVEE调节时的等FBVEE 电压2.5V。在低侧反馈电  
阻并联一330pF 陶瓷电容用于高频去耦。用于高频旁路330pF 陶瓷电容器必须紧挨着顶层  
或底层两层通过过孔连接FBVEE VEEA IC 引脚。  
FBVEE  
33  
I
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: UCC14341-Q1  
English Data Sheet: SLUSF11  
 
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
6-1. 引脚功(continued)  
引脚  
类型(1)  
说明  
名称  
编号  
(VDD VEE) 输出电压检测引脚用于调整输(VDD VEE) 电压。VDD VEE 之间连  
接一个电阻分压器使中点连接FBVDD调节时的等FBVDD 电压2.5V。在低侧反馈电阻  
并联一330pF 陶瓷电容用于高频去耦。用于高频旁路330pF 陶瓷电容器必须紧挨着顶层或  
底层两层通过过孔连接FBVDD VEEA IC 引脚。  
FBVDD  
34  
I
用于噪声敏感模拟反馈输入、FBVDD FBVEE 的次级侧模拟检测参考连接。将低侧反馈电阻和高  
频去耦滤波电容连接到靠VEEA 引脚和各自的反馈引FBVDD FBVEE。连接到次级侧栅极  
驱动最低电压基VEE。使用单点连接并将高频去耦陶瓷电容器靠VEEA 引脚放置。请参阅布局  
指南。  
VEEA  
35  
G
(1) P = 电源G = I = 输入O = 输出  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: UCC14341-Q1  
English Data Sheet: SLUSF11  
 
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
7 规格  
7.1 绝对最大额定值  
在自然通风条件下的工作温度范围内测得除非另有说明(1)  
参数  
引脚  
最小值  
典型值  
最大值  
单位  
-0.3  
32  
V
VIN GNDP  
7
32  
V
V
ENAPG GNDP  
0.3  
-0.3  
VDDVEERLIMFBVDDFBVEE VEE  
(VDD-VEE) 输出功(TA = 25°C)  
POUT_VDD_MAX  
IRLIM_MAX_RMS_SOURCE  
2.5  
W
VDD RLIM RLIM 引脚最大均方根拉电流。  
24,500 小时的使用寿命内平均运行时间16%)  
0.125  
0.125  
A)  
A
RLIM VEE RLIM 引脚最大均方根灌电流。  
24,500 小时的使用寿命内平均运行时间16%)  
IRLIM_MAX_RMS_SINK  
TJ  
-40  
150  
150  
°C  
°C  
工作结温范围  
贮存温度  
Tstg  
65  
(1) 应力超出绝对最大额定下所列的值可能会对器件造成永久损坏。这些列出的值仅仅是应力额定值这并不表示器件在这些条件下以及  
建议运行条以外的任何其他条件下能够正常运行。长时间处于绝对最大额定条件下可能会影响器件的可靠性。  
7.2 ESD 等级  
单位  
人体放电模(HBM)AEC Q100-002(1) 标  
±2000  
V
V(ESD)  
静电放电  
充电器件模(CDM)AEC Q100-011 标准  
7.2 节规定  
±500  
V
(1) AEC Q100-002 HBM 应力测试应符ANSI/ESDA/JEDEC JS-001 规范。  
7.3 建议运行条件  
在自然通风条件下的工作温度范围内测得除非另有说明)  
引脚  
最小值  
典型值  
最大值  
单位  
VVIN  
VENA  
13.5  
15  
16.5  
5.5  
V
初级侧输入电压GNDP  
使能GNDP  
0
0
V
V
V
V
VPG  
5.5  
电源正常GNDP  
VDD VEE  
VVDD  
VVEE  
18  
2.5  
25  
VDD-VEE  
COM VEE  
VFBVDD  
VFBVEE  
0
2.5  
5.5  
V
FBVDDFBVEE VEE  
TA  
-40  
-40  
125  
150  
°C  
°C  
环境温度  
结温  
(1)  
TJ  
(1) 请参阅“(VDD-VEE) (COM-VEE) 负载推荐工作区”部分了解不(VDD-VEE) (COM-VEE) 输出电压设置在各种温度VVIN 条  
件下的最大额定值。  
7.4 热性能信息  
DWN (SOIC)  
热指标(1)  
单位  
36 引脚  
RθJA  
52.3  
28.5  
°C/W  
°C/W  
结至环境热阻  
RθJC(top)  
结至外壳顶部热阻  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF11  
6
Submit Document Feedback  
Product Folder Links: UCC14341-Q1  
 
 
 
 
 
 
 
 
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
DWN (SOIC)  
热指标(1)  
单位  
36 引脚  
RθJB  
ΨJT  
25.9  
16.6  
25.6  
°C/W  
°C/W  
°C/W  
°C/W  
结至电路板热阻  
结至顶部特征参数  
结至电路板特征参数  
ΨJB  
RθJC(bot)  
结至外壳底部热阻  
(1) 有关新旧热指标的更多信息请参阅半导体IC 封装热指标应用报告。  
7.5 绝缘规格  
参数  
测试条件  
单位  
通用  
外部间隙(1)  
CLR  
CPG  
> 8  
> 8  
mm  
mm  
µm  
µm  
V
端子间的最短空间距离  
端子间的最短封装表面距离  
外部爬电距离(1)  
> 120  
> 15.4  
> 600  
I
最小内部间隙内部间压器电源隔离)  
最小内部间隙内部间容式信号隔离)  
DIN EN 60112 (VDE 0303-11)IEC 60112  
IEC 60664-1  
DTI  
CTI  
绝缘穿透距离  
相对漏电起痕指数  
材料组别  
I-IV  
额定市电电300VRMS  
I-IV  
额定市电电600 VRMS  
过压类别  
I-III  
额定市电电1000VRMS  
DIN EN IEC 60747-17 (VDE 0884-17)计划认证目标(2)  
VIORM  
1414  
1000  
1414  
7071  
VPK  
VRMS  
VDC  
交流电压双极)  
最大重复峰值隔离电压  
交流电压正弦波),时间依赖型电介质击穿  
(TDDB) 测试  
VIOWM  
最大工作隔离电压  
直流电压  
VTEST = VIOTMt = 60s鉴定测试);VTEST  
1.2 × VIOTMt = 1s100% 生产测试)  
=
VIOTM  
VPK  
最大瞬态隔离电压  
最大脉冲电(3)  
在空气中进行测试IEC 62368-1 标准的  
1.2/50µs 波形  
VIMP  
6250  
VPK  
VPK  
在油中进行测试鉴定测试),IEC 62368-1  
1.2/50µs 波形  
最大浪涌隔离电压(3)  
VIOSM  
10000  
aI/O 安全测试子2/3 Vini = VIOTM  
pC  
pC  
pC  
tini = 60sVpd(m) = 1.2 × VIORM = 1696VPKtm  
=
5  
5  
5  
10s  
a环境测试子1 Vini = VIOTMtini  
=
视在电荷(4)  
qpd  
60sVpd(m) = 1.6 × VIORM = 2262VPKtm = 10s  
b1常规测试100% 生产测试和预调节  
类型测试),Vini = 1.2 × VIOTMtini = 1s;  
Vpd(m) = 1.875 × VIORM = 2651VPKtm = 1s  
势垒电容输入至输出(5)  
隔离电阻输入至输出(5)  
VIO = 0.4 sin (2πft)f = 1MHz  
VIO = 500VTA = 25°C  
CIO  
RIO  
< 3.5  
> 1012  
> 1011  
> 109  
pF  
Ω
Ω
Ω
VIO = 500V100°C TA 125°C  
VIO = 500VTS = 150°C  
2
污染等级  
气候类别  
40/125/21  
UL 1577计划认证目标)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: UCC14341-Q1  
English Data Sheet: SLUSF11  
 
 
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
参数  
测试条件  
单位  
VTEST = VISO = 5000VRMSt = 60s鉴定测  
);VTEST = 1.2 × VISO = 6000VRMSt = 1s  
100% 生产测试)  
VISO  
5000  
VRMS  
可承受的隔离电压  
(1) 爬电距离和间隙应满足应用的特定设备隔离标准中的要求。请注意保持电路板设计的爬电距离和间隙从而确保印刷电路板上隔离器的  
安装焊盘不会导致此距离缩短。在特定的情况下印刷电路板上的爬电距离和间隙变得相等。在印刷电路板上采用插入坡口和/或肋材等  
技术有助于提高这些规格。  
(2) 此耦合器仅适用于最大工作额定值范围内的安全电气绝缘。应借助合适的保护电路来确保符合安全额定值。  
(3) 在空气或油中进行测试以便确定隔离栅的固有浪涌抗扰度  
(4) 视在电荷是局部放(pd) 引起的电气放电。  
(5) 将隔离栅每一侧的所有引脚都连在一起构成了一个双端子器件。  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF11  
8
Submit Document Feedback  
Product Folder Links: UCC14341-Q1  
 
 
 
 
 
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
7.6 安全相关认证  
VDE  
UL  
CQC  
计划根DIN EN IEC 60747-17 (VDE 0884-17) 进  
行认证  
计划根UL 1577 组件认证计划进行认证  
计划根GB4943.1 进行认证  
增强型绝缘最大瞬态隔离电7071VPK最大重复  
峰值隔离电1414VPK最大浪涌隔离电压  
10000VPK  
增强型绝缘5000m热带气候700VRMS  
单一保护5000VRMS  
文件编号:(计划)  
最大工作电压  
证书编号:(计划)  
证书编号:(计划)  
7.7 电气特性  
在工作温度范围TJ = 40°C 150°CVVIN = 13.5V 16.5VCIN = 20µFCOUT = 10µFRLIM = 1kΩ,VENA  
=
5V除非另有说明。TA = 25°C VVIN = 15V 时的所有典型值。  
参数  
测试条件  
最小值 典型值 最大值 单位  
输入电源初级侧所有电压均GNDP 为基准)  
VVIN  
13.5  
15  
16.5  
600  
V
初级侧输入电压GNDP  
输入电压范围  
IVINQ_OFF  
µA  
VIN 静态电流已禁用  
VENA = 0VVVIN = 13.5V 16.5V  
VENA = 5VVVIN = 13.5V 16.5V;  
(VDD-VEE) = 25V 调节IVDD-VEE  
0mA。单路输出。  
IVIN_ON_NO_LOAD  
35  
mA  
mA  
VIN 工作电流已启用空载  
VIN 工作电流已启用满载  
=
VENA = 5VVVIN = 13.5V 16.5V;  
(VDD-VEE) = 25V 调节IVDD-VEE  
60mA。单路输出。  
IVIN_ON_FULL_LOAD  
190  
=
UVLOP 比较器初级侧所有电压均GNDP 为基准)  
VVIN_UVLOP_RISING  
11.4  
12  
12.6  
11  
V
V
VIN 欠压锁定上升阈值  
VVIN_UVLOP_FALLIN  
9.975  
10.5  
VIN 欠压锁定下降阈值  
G
OVLO 比较器初级侧所有电压均GNDP 为基准)  
VVIN_OVLO_RISING  
VVIN_OVLO_FALLING  
20.9  
19  
22  
20  
23.1  
21  
V
V
VIN 过压锁定上升阈值  
VIN 过压锁定下降阈值  
TSHUTP 热关断比较器初级侧所有电压均GNDP 为基准)  
TSHUTPPRIMARY_  
首次上电时TJ 需要低140°C 才能  
启用  
150  
15  
160  
20  
170  
25  
°C  
°C  
初级侧过热关断上升阈值  
初级侧过热关断迟滞  
RISING  
TSHUTPPRIMARY_  
HYST  
ENA 输入引脚初级侧所有电压均GNDP 为基准)  
VEN_IR  
VEN_IF  
IEN  
1.25  
0.84  
1.95  
1.44  
10  
V
V
输入电压上升阈值逻辑高电平  
输入电压下降阈值逻辑低电平  
使能引脚输入电流  
上升沿  
下降沿  
VENA = 5.0V  
5
µA  
PG 开漏输出引脚初级侧所有电压均GNDP 为基准)  
VPG_OUT_LO  
IPG_OUT_HI  
0.5  
5
V
PG 输出低饱和电压  
PG 漏电流  
灌电= 5mA电源正常  
VPG = 5.5V电源不正常  
µA  
初级侧控制所有电压均GNDP 为基准)  
VVIN = 15VVENA = 5V(VDD-VEE)  
FSW  
15  
90  
MHz  
kHz  
开关频率  
= 25V  
仅在初级侧启动期间VIN 高于  
UVLOP ENA 为高电平之后启动;  
FSS_BURST_P = 125kHz  
FSSM  
展频调(SSM) 三角波形的频率  
仅在初级侧启动期间VIN 高于  
UVLOP ENA 为高电平之后启动;  
FSS_BURST_P = 125kHz  
三角波形展频调(SSM) 期间载波频  
SSM 百分比变化  
FCARRIER SSM  
百分比变化  
5
%
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: UCC14341-Q1  
English Data Sheet: SLUSF11  
 
 
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
在工作温度范围TJ = 40°C 150°CVVIN = 13.5V 16.5VCIN = 20µFCOUT = 10µFRLIM = 1kΩ,VENA  
5V除非另有说明。TA = 25°C VVIN = 15V 时的所有典型值。  
=
参数  
测试条件  
最小值 典型值 最大值 单位  
VIN UVLOP ENA 为高电平  
时计时器开始工作当电源正常引脚指  
示正常时复位  
tSOFT_START_TIME_O  
28.4 ms  
初级侧软启动超时  
UT  
(VDD-VEE) 输出电压次级侧所有电压均VEE 为基准)  
VVDD_RANGE  
18  
25  
V
(VDD-VEE) 输出电压范围  
次级(VDD-VEE) 输出电压在负  
载、线性变化和温度范围内通过外部  
电阻分压器进行外部调节  
VVDD_DC_ACCURAC  
-1.3  
1.3  
%
(VDD-VEE) 输出电压直流调节精度  
Y
(VDD-VEE) 调节迟滞比较器次级侧所有电压均VEE 为基准)  
VFBVDD_REF  
2.4675  
9
2.5 2.5325  
V
(VDD-VEE) 的反馈调节基准电压  
(VDD-VEE) 稳压输出  
VISO1 迟滞比较器迟滞设置。  
VFB 引脚迟滞。[例如如果外部电阻  
分压器增益1/10V/VVISO1 将是  
10 VFB = 2.5V VISO1 =  
25V]请参阅“说明”  
VFBVDD_HYSTCMP_H  
10  
12.3  
mV  
迟滞设1  
YST  
(COM-VEE) 输出电压次级侧所有电压均VEE 为基准)  
(VDD-  
VEE)  
次级(COM-VEE)通过外部电阻分  
压器进行调节  
VVEE_RANGE  
2.5  
V
(COM-VEE) 输出电压范围  
次级(COM-VEE)  
(COM-VEE)  
输出电压直流  
调节精度  
输出电压在负载、线性变化和温度范  
围内通过外部电阻分压器  
进行外部调节  
VVEE_DC_ACURACY  
1.3  
%
1.3  
VISO2 调节迟滞比较器次级侧所有电压均VEE 为基准)  
VFBVEE_REF  
2.4675  
2.5 2.5325  
0.73  
V
V
(COM-VEE) 的反馈调节基准电压  
(COM-VEE) 稳压输出  
VRLIM_SHORT_CHRG  
用于退PWM Rlim 短路充电比较  
器上升阈值  
上升阈值  
_CMP_RISE  
tRLIM_SHORT_CHRG_  
RLIM 引脚短路充PWM 模式期间的 RLIM < 0.645VFBVEE 引脚  
< 2.48V  
1.2  
5
us  
us  
导通时间  
ON_TIME  
tRLIM_SHORT_CHRG_  
RLIM 引脚短路充PWM 模式期间的 RLIM < 0.645VFBVEE 引脚  
< 2.48V  
关断时间  
OFF_TIME  
(VDD-VEE) UVLO 比较器次级侧所有电压均VEE 为基准)  
VVDD_UVLO_RISING  
VVDD_UVLO_HYST  
0.9  
0.2  
V
V
(VDD-VEE) 欠压锁定上升阈值  
(VDD-VEE) 欠压锁定迟滞  
FBVDD 处的电压  
FBVDD 处的电压  
(VDD-VEE) OVLO 比较器次级侧所有电压均VEE 为基准)  
VVDD_OVLOS_RISING  
29.45  
27.55  
31  
29  
32.55  
30.45  
V
V
(VDD-VEE) 过压锁定上升阈值  
电压范围VDD VEE上升  
VVDD_OVLOS_FALLIN  
(VDD-VEE) 过压锁定下降阈值  
电压范围VDD VEE下降  
G
软启动次级侧所有电压均VEE 为基准)  
软启动后、PG 之前(VDD-VEE) UVP  
tblankout  
3
ms  
(COM-VEE) UVP OVP 的消隐时  
(VDD-VEE) UVP欠压保护比较器次级侧所有电压均VEE 为基准)  
(VDD-VEE) 欠压保护上升阈值VUVP  
VVDD_UVP_RISING  
VVDD_UVP_HYST  
2.175  
2.7  
2.25  
20  
2.35  
V
= VREF × 90%  
mV  
(VDD-VEE) 欠压保护迟滞  
(VDD-VEE) OVP过压保护比较器次级侧所有电压均VEE 为基准)  
(VDD-VEE) 过压锁定上升阈值VOVP  
VVDD_OVP_RISING  
= VREF × 110%  
2.75  
2.825  
V
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF11  
10  
Submit Document Feedback  
Product Folder Links: UCC14341-Q1  
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
在工作温度范围TJ = 40°C 150°CVVIN = 13.5V 16.5VCIN = 20µFCOUT = 10µFRLIM = 1kΩ,VENA  
=
5V除非另有说明。TA = 25°C VVIN = 15V 时的所有典型值。  
参数  
测试条件  
最小值 典型值 最大值 单位  
VVDD_OVP_HYST  
20  
mV  
(VDD-VEE) 过压保护迟滞  
(COM-VEE) UVP欠压保护比较器次级侧所有电压均VEE 为基准)  
(COM-VEE) 欠压保护上升阈值VUVP  
VVEE_UVP_RISING  
VVEE_UVP_HYST  
2.1  
2.7  
2.25  
20  
2.4  
V
= VREF × 90%  
mV  
(COM-VEE) 欠压保护迟滞  
(COM-VEE) OVP过压保护比较器次级侧所有电压均VEE 为基准)  
(COM-VEE) 过压保护上升阈值VOVP  
VVEE_OVP_RISING  
= VREF × 110%  
2.75  
20  
2.825  
V
VVEE_OVP_HYST  
mV  
(COM-VEE) 过压保护迟滞  
TSHUTS 热关断比较器次级侧所有电压均VEE 为基准)  
首次上电时Tj 需要低140oC 才能  
启用。  
TSHUTSSECONDAR  
155  
15  
160  
20  
165  
25  
°C  
°C  
次级侧过热关断上升阈值  
次级侧过热关断迟滞  
Y_RISE  
TSHUTSSECONDAR  
Y_HYST  
CMTI共模瞬态抗扰度)  
CMTI  
150  
V/ns  
V/ns  
GNDP 为基准的VEE  
GNDP 为基准的VEE  
共模瞬态抗扰度  
-150  
集成MAGLAM 变压器初级侧至次级侧。注意这些值对于每XFMR 版本都是唯一的)  
N
2.02  
-
变压器有效匝数比  
次级侧至初级侧  
7.8 安全限值  
参数  
测试条件  
θJA = 52.3°C/WVVIN = 16.5VTJ = 150°C,  
TA = 25°CPOUT = 2W (1) (2)  
θJA = 52.3°C/WVVIN = 13.5VTJ = 150°C,  
TA = 25°CPOUT = 1.3W (1) (2)  
最大值  
单位  
R
216  
449  
mA  
mA  
IS  
安全输入均方根电流  
R
R
θJA = 52.3°C/WVVIN = 15VTJ = 150°CTA  
PS  
TS  
2.39  
150  
W
安全功率耗散输入功- 输出功率)  
= 25°CPOUT = 2.3W (1) (2)  
(1) (2)  
°C  
安全温度  
(1) 最高安全温TS 具有与为器件指定的最大结TJ 相同的值。IS PS 参数分别表示安全电流和安全功率耗散。请勿超IS PS 的最  
大限值。这些限值随环境温TA 的变化而变化。  
(2) 在“热性能信息”表中结至空气热RθJA 是安装在引线式表面贴装封装、K JEDEC 测试板上的器件的热阻。可以使用这些公式  
计算每个参数的值TJ = TA + RθJA × PP 为器件中耗散的功率。TJ(max) = TS = TA + RθJA × PSTJ(max) 为最大允许结温。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: UCC14341-Q1  
English Data Sheet: SLUSF11  
 
 
 
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
7.9 典型特性  
热降额功率通过评估板获得该评估板与“布局示例”部分中所示EVM 类似。  
7-1. SOA 降额曲线  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF11  
12  
Submit Document Feedback  
Product Folder Links: UCC14341-Q1  
 
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
8 详细说明  
8.1 概述  
UCC14341-Q1 器件适用于布板空间有限且需要更多集成的应用还适用于为满足所需隔离规范而采用体积庞大  
且价格昂贵的电源变压器的超高电压应用。器件具有低厚度、低重心和轻重量特性与使用大型大体积变压器的  
系统相比可提供更高的振动耐受度。该器件易于使用可在优化栅极电压来实现最高效率时根据需要灵活调整  
正负输出电压同时以其严格的电压调节精度保护栅极氧化物免受过应力影响。  
这款器件集成了一个高效、低辐射隔离式直流/直流转换器可为牵引逆变器电机驱动器、工业电机驱动器或其他  
高压直流/直流转换器中的 SiC IGBT 功率器件的栅极驱动器供电。对于稳压电源轨的 13.5V < VVIN < 16.5V,  
该直流/直流转换器提供大1.5W 的功率。  
集成式直流/直流转换器采用开关模式操作和专有的电路技术来降低功率损耗并提高效率。专用控制机制、时钟方  
案和片上变压器带来了高效率和低辐射。  
集成变压器可在宽温度范围内提供电力输送同时保持 5000VRMS 隔离和 1000VRMS 连续工作电压。变压器的低  
隔离电容可提供CMTI从而实现快dv/dt 开关和更高的开关频率同时降低噪声。  
VVIN 电源为初级侧电源控制器供电该控制器负责开关连接到集成式变压器的输入级。电源传输到次级侧输出  
并调节(VDDVEE) 引脚FBVDD 引脚之间连接的电阻分压器相对VEE 引脚设置的电平。输出电  
压通过外部电阻分压器进行调节从而实现(VDDVEE) 范围。  
为了获得理想性能请确保 VVIN 输入电压保持在建议的工作电压范围内。请勿超过绝对最大额定电压避免输入  
引脚承受过大的应力。  
快速滞环反馈突发控制环路监控 (VDDVEE)并确保输出电压保持在迟滞范围内同时在负载和线路瞬态期间  
具有低过冲和下冲。突发控制环路可在满载条件下实现高效运行并可在整个 VVIN 范围内实现宽 VOUT 调节能  
力。欠压锁定 (UVLO) 保护功能可监控输入电压引脚 VIN并具有迟滞和输入滤波器确保在嘈杂条件下实现稳  
健的系统性能。过压锁定 (OVLO) 保护可监控输入电压引脚 VIN通过禁用开关并降低内部峰值电压来防止过压  
应力。在整个上电时间内提供受控软启动时序可在为输出电容器和负载充电的同时限制峰值输入浪涌电流。  
UCC14341-Q1 还提供了第二个输出轨 (COMVEE)用作栅极驱动器的负偏置可实现更快的 IGBT 关断开  
还可在 SiC 器件快速开关期间防止不必要的导通。(COMVEE) 具有一个简单、快速且高效的偏置控制器,  
可确保PWM 开关期间调节正负电源轨。COM 引脚可连接 SiC 器件的源极或 IGBT 器件的发射极。借助外部限  
流电阻器设计人员可以根据栅极驱动系统的需求对灌电流和拉电流峰值进行编程。  
故障保护和电源正常状态引脚为主机控制器提供了一种机制用于监控直流/直流转换器的状态并为栅极驱动器  
提供正确的电源和 PWM 控制信号时序控制。故障保护包括欠压、过压、过热关断和隔离通道通信接口看门狗计  
时器。  
典型的软启动斜升时间大约为 3ms但会根据输入电压、输出电压、输出电容和负载而变化。如果任一输出短路  
或过载器件将无法在 28.4ms 软启动看门狗计时器保护时间内上电因此器件会锁存以提供保护。可通过切换  
ENA 引脚或VIN 下电上电来复位锁存器。  
输出负载必须保持低电平直到启动完成且 PG 引脚为低电平。上电时PG 引脚指示电源正常拉低逻辑电  
之前请勿(VDDVEE) (COMVEE) 输出施加重负载避免通过提供电源来斜升电压的问题。  
TI 建议使用 PG 状态指示器作为开始将 PWM 信号传输至栅极驱动器的触发点。PG 输出通过提供有关 (VDD–  
VEE) (COMVEE) 输出何时都达到其调节阈值 ±10% 范围内的可靠闭环指示消除了输出何时就绪的任何歧  
义。  
PG 变为低电平之前请勿让主机开始将 PWM 传输到栅极驱动器。此操作通常在 VVIN > VVIN_UVLOP ENA  
变为高电平后不到 28.4ms 时发生。PG 状态输出指示电源在 (VDDVEE) (COMVEE) 软启动后正常并且  
±10% 的调节范围内。  
如果主机不监PG请确保主机VVIN > VVIN_UVLOP ENA 变为高电35ms 之前不会开始PWM 传输到  
栅极驱动器以便VDD VEE 软启动后有足够的时间使电源正常。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: UCC14341-Q1  
English Data Sheet: SLUSF11  
 
 
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
8.2 功能方框图  
VIN  
VDD  
Q1  
Q2  
Q3  
Q4  
Source  
D1  
D3  
RLIM  
Sink  
D2  
D4  
GNDP  
VEE  
Gate-drive logic  
and  
level shifting  
Oscillator  
SSM  
FBVEE  
Enable  
Power off/on  
FBVDD  
ENA  
PG  
Secondary-  
side feedback  
regulation  
and  
RX  
TX  
Primary-side  
controller and  
fault monitoring  
+
fault monitoring  
VREF  
VEEA  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF11  
14  
Submit Document Feedback  
Product Folder Links: UCC14341-Q1  
 
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
8.3 特性说明  
8.3.1 功率级运行  
UCC14341-Q1 模块在初级侧使用有源全桥逆变器在次级侧使用无源全桥整流器。小型集成变压器具有相对较  
高的载波频率可减小尺寸以集成到 36 引脚 SOIC 封装中。功率级载波频率在 11MHz 18MHz 范围内运行。  
功率级载波频率由具有前馈控制的输入电压决定VVIN 12V 频率为 18MHzVVIN 18V 频率  
11MHzVVIN 介于 12V 18V 之间时随着 VVIN 电压上升频率会从 18MHz 逐渐降低到 11MHz。扩频  
(SSM) 用于减少辐射。器件会维ZVS 运行以降低开关功率损耗。  
UCC14341-Q1 模块可生成两个稳压输出。它可以配置为单输出转换器VDD VEE或双输出转换器  
VDD VEE COM VEE。即使模块使用 VEE 作为参考点来生成两个正输出电压输出也可以使用  
COM 作为参考点并成为正输出和负输出。  
这两个输出通过迟滞控制进行独立控制。此外VDD-VEE 是主输出COM VEE 使用主输出作为其输入,  
可产生第二个稳压输出电压。  
8.3.1.1 VDD-VEE 电压调节  
VDD-VEE 输出是模块的主输出。功率级操作由 FBVDD 引脚上检测到的 VDD-VEE 电压决定。如8-1 所示,  
VDD-VEE 电压通过分压器 RFBVDD_TOP RFBVDD_BOT 检测。当 FBVDD 电压低于关断阈值(大约比 VFBVDD_REF  
10mV )功率级将运行向次级侧供电并使 VDD-VEE 输出电压上升。输出达到关断阈值后功率级将关  
闭。输出电压会因负载电流而下降。当输出电压降至导通阈值大约比 VFBVDD_REF 10mV以下后功率级将  
再次开启。借助精确的电压基准和迟滞控制可以高精度调节 VDD-VEE 输出电压。为了提高抗噪性能应在  
FBVDD VEE 引脚之间添加一个 330pF 的小型电容器。过大的电容器会减慢迟滞环路并可能导致输出电压纹  
波过大甚至造成稳定性问题。  
Power stage  
VIN  
VDD  
RFBVDD_TOP  
FBVDD  
GNDP  
COUT1  
+
CFBVDD  
RFBVDD_BOT  
VFBVDD_REF  
VEE  
8-1. VDD-VEE 电压调节  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: UCC14341-Q1  
English Data Sheet: SLUSF11  
 
 
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
8.3.1.2 COM-VEE 电压调节  
COM-VEE 输出将 VDD-VEE 输出作为其输入并产生稳定的输出电压。尽管工作原理并不完全相同但它可被  
VDD-VEE LDO 输出。由于其输入电压VDD-VEECOM-VEE 的最大输出电压VDD VEE 之  
间的电压。  
COM-VEE 输出稳压器级使用与外部限流电阻(RLIM) 串联的内部高侧或低FET COM-VEE 输出电压进行充  
电或放电。迟滞控制用于控制两个 FET 的开关实例可实现精确调节的 COM-VEE 电压。如8-2 所示COM-  
VEE 输出电压通过 FBVEE 引脚上的分压器 RFBVEE_TOP RFBVEE_BOT 进行检测。TI 建议在 FBVEE 引脚上使用  
330pF 电容器来滤除开关频率噪声。FBVEE 上的电压低于充电阈值VFBVEE_REF 20mV充电  
电阻器保持导通状态放电电阻器保持关断状态。COM-VEE 输出电压会上升。FBVEE 电压达到停止充电阈值  
VFBVEE_REF 20mV充电电阻器将关断。输出电压会停止上升。当充电电阻器关断时放电电阻器由  
另一个迟滞控制器根FBVEE 引脚电压、基准电VFBVEE_REF 20mV 的迟滞进行控制。  
COM-VEE 输出稳压器级将防止在 COM-VEE 短路期间使高侧 FET 长时间保持导通。该保护功能通过监控 RLIM  
引脚电压和控制高侧 FET 占空比来实现。当 COM 引脚电压低于 0.645VFBVEE 电压低于 2.48V 高侧  
FET 20% 的占空比控制会覆盖 COM-VEE 稳压器的迟滞控制每个占空比中的典型导通时间和关断时间分别  
tRLIM_SHORT_CHRG_  
tRLIM_SHORT_CHRG_  
。 当  
COM  
引 脚 电 压 高 于  
ON_TIME  
OFF_TIME  
V
RLIM_SHORT_CHRG_CMP_RISE 占空比控制将被禁用迟滞控制将恢复正常运行。  
VDD  
VDD  
COUT2  
RLIM  
COM  
RCharge  
+
VFBVEE_REF  
RLIM  
SW  
20 mV  
RFBVEE_TOP  
FBVEE  
COUT3  
SW  
+
RDischarge  
VFBVEE_REF  
1.25 mV  
RFBVEE_BOT  
CFBVEE  
VEE  
VEE  
8-2. COM-VEE 电压调节  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF11  
16  
Submit Document Feedback  
Product Folder Links: UCC14341-Q1  
 
 
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
2.52V  
2.50125V  
VFBVEE_REF = 2.5V  
2.48V  
TurnON  
Charge FET  
TurnON  
Charge FET  
TurnOFF  
CHARGE FET  
Discharge Comparitor  
Discharge Control  
TurnON  
Discharge FET  
8-3. COM-VEE 电压调节图  
8.3.1.3 功率处理能力  
最大功率处理能力由电路运行和热条件决定。对于给定的输出电压在触发热保护之前最大功率会随输入电压  
的增加而增加。该器件实施了过功率保(OPP)可限制最大输出功率并降低高输入电压下的功率RMS 电流。  
OPP 由从输入电压OPP 突发占空(DOPP) 的前馈控制来实现。DOPP (VDD-VEE) 调节的主反馈环路的“大  
型”突发导通时间内添加“小型”突发。当输入电压增加时DOPP 会自动降低以限制平均输出功率。  
在高环境温度下热性能决定了最大功率和安全工作区 (SOA)。检测到过热后会触发保护性热关断。变压器和器  
件具有高效和优化的热设计并采用小型封装可在高环境温度下提供高功率处理能力。  
(VDD-VEE)  
OPP burst  
(VDD-VEE) burst  
8-4. 带小型突发的过功率保护示意图  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: UCC14341-Q1  
English Data Sheet: SLUSF11  
 
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
8.3.2 输出电压软启动  
8-5 展示了 UCC14341-Q1 软启动时两个输出轨的上电图。在 VVIN > VVIN_UVLOP 并且 ENA 被拉高后软启动  
序列开始并以软占空比增量进行突发占空比控制。随着时间的推移突发占空比由初级侧控制信(DSS_PRI) 逐渐  
12.5% 增加到 50%因此 VVDD-VEE VCOM-VEE 都以受控的浅上升斜率按比例增加。VVDD-VEE 增加到高于  
V
VDD_UVLOS 反馈环路通信通道有足够的偏置电压因此次级侧的突发反馈控制将接管。因此DSS_PRI 会被  
拉高不再影响突发占空比。突发占空比通过比VFBVDD VREF 来确定。VREF 以七个增量步长0.9V 增加到  
2.5V其中第一个 0.4V 阶跃将 VREF 0.9V 升压到 1.3然后接下来的六个 0.2 阶跃将 VREF 1.3 升压到  
2.5V。每个阶跃持续 128µs。在 VVDD-VEE > VVDD_UVP VCOM-VEE RLIM 拉电流/灌电流稳压器将被启用。  
RLIM 引脚的拉电流或灌电流极性通过比VFBVEE VREF 来确定从而使VCOM-VEE 保持在严格的稳压范围内。  
VVDD-VEE VCOM-VEE 上升至其 UVP 阈值以上后VVDD-VEE UVP VCOM-VEE UVP OVP 的消隐时间为  
3ms典型值),然后通过拉低 PG 电压来发出电源正常信号。仅在启动期间发出电源正常信号之前应用 3ms  
典型值的消隐时间。它为 VVDD-VEE VCOM-VEE 提供了足够的时间使其能够在启动后稳定在其调节滞环  
从而使转换器不会在启动期间因过冲或下冲而关断。  
软启动功能大大降低了上电期间的输入浪涌电流。此外如果 VVDD-VEE 无法在 28.4ms 内达到 VVDD_UVLOS则  
器件会在安全状态下关断。28.4ms 软启动超时功能可在上电前输出短路情况下保护模块。  
VIN  
VIN_UVLOP  
tdelay  
UVLOP  
ENA  
PG  
D = 12.5%  
D = 25%  
D = 50% D = 100%  
DSS(PRI)  
VDD_UVLOS  
Comparator_Enable  
2.5V  
128µs  
VVDD_OVP  
VREF  
VVDD_UVP  
VVEE_OVP  
VVEE_UVP  
VVDD_UVLOS  
VVDD-VEE  
VCOM-VEE  
RLIM Comparator_Enable  
8-5. 输出电压软启动图  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF11  
18  
Submit Document Feedback  
Product Folder Links: UCC14341-Q1  
 
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
8.3.3 ENA PG  
初级侧上ENA 输入引脚PG 输出引脚使5V TTL 3.3V LVTTL 电平逻辑阈值。  
高电平有效使能输入 (ENA) 引脚用于打开模块的隔离式直流/直流转换器。可以使用 3.3V 5V 逻辑轨。将 ENA  
引脚电压保持在 5.5V 以下。ENA 引脚电压高于使能阈值 VEN_IR UCC14341-Q1 使能并开始开关然后经过  
软启动过程并向次级侧供电。ENA 引脚电压降至禁用阈VEN_IF 以下后UCC14341-Q1 将禁用并停止开关。  
ENA 引脚还可用于在 UCC14341-Q1 器件进入保护安全状态模式后对其进行复位。检测到故障后保护逻辑将锁  
存并将器件置于安全状态。当所有故障都清除时可以使用 ENA 引脚来清除 UCC14341-Q1 锁存方法是将  
ENA 引脚电压降至 VEN_IF 以下并保持超过 150μs然后切换回 3.3V 5V。器件随后将退出闭锁模式并启动  
软启动。8-6 展示了闭锁复位时序。  
ENA  
150 µs  
Latched-off  
Latch-off state  
Latch-off reset  
Run  
Power-stage state  
Stop  
8-6. 使ENA 引脚的闭锁复位  
低电平有效电源正常 (PG) 引脚为开漏输出用于指示模块何时不存在故障短路且输出电压在其调节设定点的  
±10% 范围内。将 PG 引脚上的上拉电阻 (> 1kΩ) 连接到 5V 3.3V 逻辑轨。将 PG 引脚电压保持在 5.5V 以  
同时不超过其建议的工作电压。PG 引脚的逻辑可通过8-7 来说明。  
1.1×VFBVDD_REF  
+
FBVDD  
+
0.9×VFBVDD_REF  
Isolation  
+
1.1×VFBVEE_REF  
PG  
FBVEE  
+
0.9×VFBVEE_REF  
Protections (Over-temperature, output over  
voltage, input UVLO, input OVLO)  
+
ENA  
VEN_IR/VEN_IF  
GNDP  
8-7. PG 引脚逻辑  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: UCC14341-Q1  
English Data Sheet: SLUSF11  
 
 
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
8.3.4 保护功能  
UCC14341-Q1 器件具有完整的保护功能包括输入欠压锁定、过压锁定保护、输出欠压保护、过压保护、过功  
率保护和过热保护。输入欠压和过压锁定保护功能具有自动恢复响应。所有其他保护功能都具有闭锁响应。触发  
闭锁响应保护后换器会进入闭锁状态并永久停止开关。通过将 VVIN 压降至锁存复位下降阈值  
V
VIN_RESET_FALLING 以下可以恢复闭锁状态。也可以通过将 ENA 引脚电压降至使能阈VEN_IF 以下来复位闭锁  
状态。  
8.3.4.1 输入欠压锁定  
UCC14341-Q1 可接受 13.5V 16.5V 的宽输入电压范围。当输入电压变得过低时要么因为变压器匝数比限制  
而无法调节输出要么转换器的电流应力会过大。无论哪种方式转换器都必须关闭以保护系统。  
VVIN 电压低UVLO VVIN_UVLOP_FALLING UCC14341-Q1 会进入输入欠压锁定。UVLO 模式下转  
换器会停止开关。VIN 引脚电压低于 RESET 下降阈值 VVIN_RESET_FALLINGUCC14341-Q1 会复位所有保护。之  
VVIN 电压高UVLO VVIN_UVLOP_RISING 转换器会被启用。根ENA 引脚电压转换器可以开始  
开关完成软启动过程或在禁用模式下ENA 引脚电压变为高电平。  
8.3.4.2 输入过压锁定  
输入过压锁定保护用于保UCC14341-Q1 器件免受过压损坏。它具有自动恢复响应。VVIN 引脚电压高于输入  
过压锁定阈值 VVIN_OVLO_RISE 开关将停止转换器会停止向次级侧发送能量。在输入过压锁定保护之后在  
VVIN 引脚电压降至恢复阈值 VVIN_OVLO_FALLING 以下后根据 ENA 引脚电压状态转换器可以恢复运行完成整  
个软启动过程或者在禁用模式下ENA 引脚变为高电平。输入过压锁定不会复位其他闭锁保护。  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF11  
20  
Submit Document Feedback  
Product Folder Links: UCC14341-Q1  
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
8.3.4.3 输出过压保护  
UCC14341-Q1 器件通过 FBVDD FBVEE 引脚检测输出电压以便控制输出电压。为了防止输出电压过高而损  
坏负载或 UCC14341-Q1 器件本身UCC14341-Q1 器件配备了输出过压保护功能。根据反馈引脚电压和输出电  
有两个过压保护级别。  
在正常工作期间由于负载瞬态或两个输出之间的负载不平衡输出电压可能会超过其调节电平。根据 FBVDD  
FBVEE 上的引脚电压在电压超过阈值 VVDD_OVP_RISE VVEE_OVP_RISE比目标调节电压高 10%转换  
器会立即停止开关。  
在极少数情况下分压器会发生故障并提供错误的输出电压信息。继而控制环路可能将输出电压调节到错误的  
电压电平。UCC14341-Q1 件还配备了失效防护过压保护功能。当 VDD-VEE 压高于过压保护阈值  
VVDD_OVLOS_RISE 转换器会立即关闭。该失效防护保护电平设置为 31V。它旨在保护 UCC14341-Q1 器件,  
而不是负载。此设计必须确保电压反馈分压器在所有条件下都能正常运行。  
输出过压保护具有闭锁响应。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: UCC14341-Q1  
English Data Sheet: SLUSF11  
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
8.3.4.4 过功率保护  
过功率保护 (OPP) 限制了最大平均输出功率。当输出过载时务必要关断模块防止其进一步损坏或将故障传播  
到整个系统的其他部分。由于开关频率极高实施传统的逐周期电流限制是不切实际的。UCC14341-Q1 器件依  
赖于过功率保(OPP) 与输出欠压保护协同工作。  
功率处理能力所述通过输入电压前馈和“小幅”突发占空比调整UCC14341-Q1 的最大电力输送能力得到  
了良好控制。8-8 展示OPP Vin 和最大输出功率之间关系的影响。  
Max  
Power  
Disable OPP  
Enable OPP  
Vin  
8-8. 不同输入电压条件下的最大输出功率  
当负载超过最大电力输送能力时输出电压开始下降。当输出电压降至欠压保护阈值以下时会触发输出欠压保  
并且器件会锁存至安全状态。  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF11  
22  
Submit Document Feedback  
Product Folder Links: UCC14341-Q1  
 
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
8.3.4.4.1 输出欠压保护  
输出电压欠压保护基于 FBVDD FBVEE 引脚电压。当 FBVDD 引脚电压低于其 UVP 阈值 VVDD_UVP_FALL或  
FBVEE 引脚电压低于其 UVP VVEE_UVP_FALL 便会激活欠压保护。UCC14341-Q1 会停止开关PG  
引脚会变为开路。  
在软启动期间输出电压从零开始上升。FBVDD FBVEE 引脚电压低于 UVP 阈值。软启动期间会禁用 UVP。  
如果软启动完成后引脚电压无法达到 UVP 恢复阈值VVDD_UVP_RISEVVEE_UVP_RISE),则会激活欠压保护。  
UCC14341-Q1 会停止开关PG 引脚会变为开路。  
欠压保护具有闭锁响应。激活后可以通过将 VVIN 下电上电来清来除闭锁状态。切换 ENA 引脚也可以复位闭锁  
状态。有关详细信息请参ENA PG 部分。  
8.3.4.5 过热保护  
UCC14341-Q1 集成了初级侧功率级、次级侧功率级以及隔离变压器。功率转换导致的功率损耗会导致模块温度  
高于环境温度。为了确保电源模块的安全运行UCC14341-Q1 器件配备了过热保护功能。器件会检测初级侧功  
率级和次级侧功率级的温度并与过热保护阈值进行比较。如果初级侧功率级温度高TSHUTPPRIMARY_RISE或者  
次级侧功率级温度高于 TSHUTSSECONDARY_RISE模块将进入过热保护模式。模块将停止开关PG 引脚会变为  
开路。保护后模块将进入闭锁模式。当功率级温度降至过热恢复阈值以下时VVIN 下电上电或切ENA 引脚电  
压会使模块退出闭锁模式。根据 ENA 引脚电压模块要么开始开关向次级侧供电要么在待机模式下等待  
ENA 引脚电压变为高电平。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: UCC14341-Q1  
English Data Sheet: SLUSF11  
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
8.4 器件功能模式  
根据输入和输出条件、ENA 引脚电压以及器件温度UCC14341-Q1 会采用以下其中一种工作模式。  
1. 禁用模式。在此模式下模块处于关闭状态但会等ENA 引脚变为高电平以开始工作。  
2. 软启动模式。在此模式下模块开始向次级侧供电。初级侧运行占空比和次级侧基准逐渐升高来减少对模块  
的应力。  
3. 正常运行模式。在此模式下模块正常运行向次级侧供电。  
4. 保护模式、自动恢复。在此模式下由于输UVLO OVLO 保护模块处于关闭状态。在输入电压故障清  
除后ENA 引脚电压条件ENA 引脚电压为低电平它将变为禁用模式或者它将通过软启动模  
式进入正常运行模式。  
5. 保护模式、闭锁。在此模式下由于其他保护措施模块处于关闭状态。即使导致保护的故障被清除模块仍  
会保持关闭状态。VVIN 上电下电操作必须先确保输入电压低于模UVLO 下降阈值  
(VVIN_ANALOG_UVLOP_FALLING) 以复位闭锁状态ENA 引脚会先切换至低电(OFF)然后切换至高电平  
(ON)。  
8-1 列出了此器件的电源功能模式。ENA 引脚有一个内部弱接地下拉电阻TI 不建议将此引脚保持开路。  
8-1. 器件功能模式  
输入  
输出  
工作模式  
V(VDD VEE)  
V(COM VEE)  
VVIN  
ENA  
X
PG 开漏  
故障  
X
隔离式输1  
隔离式输2  
保护模式、自动  
恢复  
VVIN < VVIN_UVLOP_RISING  
OFF  
OFF  
关闭  
关闭  
VVIN_UVLOP_RISING < VVIN  
VVIN_OVLO_RISING  
<
X
低电平  
高电平  
高电平  
X
禁用模式  
VVIN_UVLOP_RISING < VVIN  
VVIN_OVLO_RISING  
<
<
无故障  
有故障  
X
在设定点调节  
关闭  
在设定点调节  
关闭  
正常运行  
VVIN_UVLOP_RISING < VVIN  
VVIN_OVLO_RISING  
保护模式、闭锁  
保护模式、自动  
恢复  
VVIN > VVIN_OVLO_RISING  
OFF  
关闭  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF11  
24  
Submit Document Feedback  
Product Folder Links: UCC14341-Q1  
 
 
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
9 应用和实施  
备注  
以下应用部分中的信息不属于 TI 元件规格TI 不担保其准确性和完整性。TI 的客户负责确定元件是否  
适合其用途以及验证和测试其设计实现以确认系统功能。  
9.1 应用信息  
UCC14341-Q1 器件适用于布板空间有限且需要更多集成的应用。该器件还适用于为满足所需隔离规范而采用体  
积庞大且价格昂贵的电源变压器的超高电压应用。  
9.2 典型应用  
下图展示了为隔离负载供电UCC14341-Q1 器件配置的典型应用原理图。  
GNDP  
GNDP  
PG  
VEE  
VEEA  
FBVDD  
FBVEE  
RLIM  
VEE  
VDD  
COUT2  
PG  
ENA  
ENA  
RLIM  
GNDP  
COM  
RFBVEE_TOP  
VIN  
VIN  
VEE  
CIN  
VIN  
VDD  
GNDP  
GNDP  
GNDP  
GNDP  
GNDP  
GNDP  
GNDP  
GNDP  
GNDP  
GNDP  
GNDP  
CFBVEE  
VDD  
RFBVEE_BOT  
COUT3  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
RFBVDD_TOP  
COUT1  
CFBVDD  
RFBVDD_BOT  
9-1. 双路可调输出配置  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: UCC14341-Q1  
English Data Sheet: SLUSF11  
 
 
 
 
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
GNDP  
GNDP  
VEE  
VEEA  
FBVDD  
FBVEE  
RLIM  
VEE  
VDD  
RFBVDD_TOP  
PG  
PG  
ENA  
ENA  
GNDP  
RLIM  
RFBVDD_BOT  
(optional)  
CFBVDD  
VIN  
VIN  
VEE  
CIN  
VIN  
VDD  
GNDP  
GNDP  
GNDP  
GNDP  
GNDP  
GNDP  
GNDP  
GNDP  
GNDP  
GNDP  
GNDP  
COUT2  
VDD  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
COUT1  
9-2. 单路可调输出配置  
9.2.1 设计要求  
使用 UCC14341-Q1 模块进行设计很简单。首先选择单路输出还是双路输出。确定每个输出的电压然后通过  
电阻分压器设置调节。功率器件的栅极电荷决定了栅极驱动器输入端所需的输出去耦电容大小。计算双路输出用  
于调(COMVEE) 电压轨RLIM 电阻器值。最后按照以下步骤添加推荐的输入和输出电容器。  
9.2.2 详细设计过程  
将陶瓷去耦电容器放置在尽可能靠近器件引脚的位置。对于输入电源请将电容器放在引脚 6 7 (VIN) 和引8  
9 (GNDP) 之间。对于隔离式输出电源 (VDDVEE)请将电容器放在引脚 28 29 (VDD) 和引脚 30 31  
(VEE) 之间。对于隔离式输出电源 (COMVEE)请在 RLIM 引脚和栅极驱动器 COM 电源输入端之间放置一个  
RLIM 电阻器。还应在栅极驱动器电源引脚COM VEE和栅极驱动器电源引脚VDD VEE处放置去耦  
电容器并根据以下元件计算部分的值进行计算。这些位置对所有去耦电容特别重要因为这些电容提供与电源  
驱动电路的快速开关波形相关的瞬态电流。确保电容器电介质材料与目标应用温度兼容。  
9.2.2.1 电容器选型  
UCC14341-Q1 器件提供隔离式输出 VDD-VEE 作为其主输出。该器件还使用 VDD-VEE 作为其电源提供了另  
一个输出 COM-VEE。由于两个输出都与输入隔离并且共用 VEE 作为公共参考点UCC14341-Q1 输出可  
配置为两个正输出、两个负输出或一正一负两个输出。UCC14341-Q1 输出也可用作单个正输出或单个负输出。  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF11  
26  
Submit Document Feedback  
Product Folder Links: UCC14341-Q1  
 
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
当模块配置为一正一负两个输出时务必要正确选择输出电容比 COUT2 COUT3来优化调节并避免导致过压或  
欠压故障。  
9-1. 计算出的电容器值  
(µF)  
电容器  
说明  
VIN 引脚附近并联放置一20μF 和一0.1μF 高频去耦电容器。当从电压源VIN 引  
脚的串联阻抗较大时可以使用大20uF 的电容来减少电压纹波。  
CIN  
20 + 0.1  
添加一10μF 和一0.1μF 电容器用于(VDDVEE) 进行高频去耦。应靠VDD 和  
VEE 引脚放置。可以使用大10uF 的电容来降低输出电压纹波。  
COUT1  
10 + 0.1  
COUT2  
COUT3  
请见下方  
请见下方  
栅极驱动器引脚上需要大容量去耦输出充电电容器。COUT2 COUT3 电容比对于在充电或放  
电开关周期内优化双路输出分压器精度非常重要。  
COUT2 COUT3 的选择基于栅极驱动器负载的栅极电荷要求、启动期间的电荷平衡以及预期的最大电流负载。  
在启动期间COUT2 COUT3 之间的比率必须等于 (COMVEE) (VDDCOM) 之间的比率并由 VDD-COM  
COM-VEE 的负载电流偏移以便使 COM VEE VDD VEE 电压同时达到稳定状态方程式 1 所  
示。  
先根据功率器件无论IGBT SiC MOSFET的栅极电QG_Total COUT2 以及在栅极导通期  
间相对于施加的正栅极电VDD COM 所需的压降百分比。  
其中  
Q
G_Total  
C
=
(1)  
OUT2  
Percent_Cdroop  
× V  
VDD − COM  
100  
QG_Total 是电源开关的总栅极电荷  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: UCC14341-Q1  
English Data Sheet: SLUSF11  
 
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
然后根据输出电压比、预期负载电流和输出电容器的变化COUT3 值。  
C
× V  
× I  
− I  
OUT2  
VDD − COM  
MAX_POWER  
COM − VEE  
VDD − COM  
C
=
(2)  
OUT3  
V
× I  
− I  
COM − VEE  
MAX_POWER  
其中负载 IVDD-COM ICOM-VEE 分别是负载电流IMAX_POWER 等于 25oC 环境温度下的 SOA 最大功率  
(PMAX_SOA) VVDD-VEE 输出电压。  
I
I
= I  
+ I  
(3)  
(4)  
VDD − COM  
COM − VEE  
Q_Driver_VDD −COM  
Oter_load_VDD −COM  
+ I  
Oter_load_COM − VEE  
= I  
Q_Driver_COM − VEE  
其中  
I(VDD-COM) VDD COM 的总电流不包括平均栅极驱动电流。  
I(COM-VEE) COM VEE 的总电流不包括平均栅极驱动电流。  
IQ_DRIVER_VDD-COM 是栅极驱动器来(VDDCOM) 的最大静态电流并必须包含通过外部逻辑VDD 拉取  
的任何电流。  
IQ_DRIVER_COM-VEE 是栅极驱动器来(COMVEE) 的最大静态电流。  
IOther_load_VDD-COM 是外部逻辑(VDDCOM) 拉取的最大电流。  
IOther_load_COM-VEE 是外部逻辑(COMVEE) 拉取的最大电流。  
P
MAX  
I
=
(5)  
POWER  
V
VDD − VEE  
25oC 环境温度下可以从提供SOA 曲线中提PMAX 近似值。  
根据预期变化 COUT2_maximum使用最坏情况下的电容器值计算 COUT3。此操作可确保电容比在启动期间会将  
COM-VEE 电压推至略低于目标调节值的值。  
备注  
C
OUT2 COUT3 VDD VEE 输出上的总电容。它们包括来自隔离式辅助电源和栅极驱动器电路的电容器。  
OUT2 COUT3 的大小由栅极驱动器负载栅极电荷和纹波电压要求决定。然后可以使用 COUT1 来降低总纹波电压  
C
并缩短启动时间。  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF11  
28  
Submit Document Feedback  
Product Folder Links: UCC14341-Q1  
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
9.2.2.2 RLIM 电阻器选型  
当模块配置为双路正输出或双路负输出时RLIM 电阻器是真正的限流电阻器。利用方程式 6RLIM 电阻器值  
设置VCOM-VEE 所需的最大负载电流。IVOUT2_max VCOM-VEE 输出的最大负载电流。  
V
COM − VEE  
R
=
R  
(6)  
LIM  
LIM_INT  
I
VDD − COM _max  
RLIM_INT 是内部开关电阻值典型值30Ω。  
对于隔离式栅极驱动器应用需要一个正输出和一个负输出。在这种情况下VDD-VEE 是总输出电压中间点成  
为参考点。由于 VDD VEE 之间的总电压始终通过 FBVDD 反馈进行调节因此 RLIM 引脚只需调节中点电  
以便能够提供正确的正负电压。可以通FBVEE 引脚来实RLIM 控制COM-VEE 电压调节中所述。  
根据电容器选型选择与电压比成正比的输出电容比时电容器将形成分压器。中点电压必须自然提供正确的正  
负电压。同时对于栅极驱动器电路导通期间从正电源轨电容器拉出的栅极电荷会在关断期间反馈到负电源轨  
电容器两个输出电源轨负载必须始终保持平衡。但是由于栅极驱动器电路静态电流不平衡以及两个电源轨的  
电容容差中点电压可能会随着时间的推移而发生偏移。RLIM 引脚提供相反的电流可将中点电压保持在正确的  
电平。  
9-3 (a) 所示在不考虑栅极电荷的情况下栅极驱动器电路静态电流会以不同的方式加载正电源轨和负电源  
轨。净电流显示为中点的直流失调电流。  
9-3 (b) 所示每次栅极驱动器电路打开主电源开关时它都会将电荷从正负电源轨输出电容器中拉出。当模  
块功率级向次级侧供电使这些电容器刷新时会将相同的电荷馈入这两个电容器中。如果电容器值完全匹配,  
则电容中的电压上升将成比例。正负电压不会改变。但是由于电容器容差电容器值并不完全匹配。电压将以  
不同的比率上升其中较小的电容器上升得更快。随着时间的推移中点电压 COM 将拉至另一个值。其中一个  
电容器上的负载将导致电压不平衡。RLIM 功能可抵消电压不平衡并使COM 电压恢复到稳压状态。  
VDD=Q/COUT2  
VEE=Q/COUT3  
ISO Driver  
ISO Driver  
Iq_off=Iq_VDDIq_VEE  
VDD/ VEE=COUT3/COUT2  
VDD  
VDD  
VDD  
RLIM  
VEE  
VDD  
RLIM  
VEE  
Q
COUT2  
Iq_VDD  
VIN  
VDD  
VEE  
VIN  
COM  
Iq_off  
OUT  
COM  
VEE  
COM  
Q
COM  
Iq_VEE  
GNDP  
COUT3  
GNDP  
COM  
VEE  
(a) 负载电流不平衡  
(b) 电容不平衡  
9-3. 电压不平衡来源  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: UCC14341-Q1  
English Data Sheet: SLUSF11  
 
 
 
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
由于这两个影响RLIM 必须提供足够的电流来补偿此失调电流。RLIM 必须足够低以提供足够的电流但不能太  
否则会在栅极驱动器的每个导通和关断边沿纠正中点电压并产生过多的功率损耗。  
使用以下公式选择的 RLIM 电阻器可以为负载提供足够的电流其中 RLIM 值以这两个公式中的较低者为准。方程  
7 展示了因为电容器变化和栅极驱动器静态电(IQ) 而产生的拉电流。方程8 展示了因为电容器变化和 IQ 而  
产生的灌电流。  
R
(7)  
(8)  
LIM_MAX  
V
VDD − COM  
=
C
× 1 − ∆ C  
C
OUT3  
× 1 − ∆ C  
OUT3  
× 1 − ∆ C  
OUT3  
× Q  
× f  
+
+
I
I
I  
COM VEE VDD COM  
G_Total  
SW  
C
+ C  
C
+ C  
OUT2  
OUT3  
OUT2  
OUT2  
OUT3  
OUT3  
R  
LIM_INT  
R
LIM_MAX  
V
COM − VEE  
=
C
× 1 − ∆ C  
C
OUT2  
× 1 − ∆ C  
OUT2  
+ C × 1 − ∆ C  
OUT3  
OUT2  
× Q  
× f  
I  
COM VEE VDD COM  
G_Total  
SW  
C
+ C  
C
OUT2  
OUT3  
OUT2  
OUT2  
OUT3  
R  
LIM_INT  
RLIM 值选择以下两者中的较小者1) 电容器不平衡和负载所需的 RLIM 2) 在给定负载电流的情况下在  
1.5ms 内响VCOM-VEE 10% 过冲所需RLIM 值。  
其中  
V
COM − VEE  
R
=
R  
(9)  
LIM_MAX_for_oversoot  
LIM_INT  
0 . 10 × V  
COM − VEE  
C
×
+ I  
− I  
VDD − COM COM − VEE  
OUT3_max  
1 . 5 ms  
QG_Total 是电源开关的总栅极电荷。  
fSW 是栅极驱动器负载的开关频率。  
RLIM 值决(COMVEE) 调节的响应时间。RLIM 值过低会导致振荡并可能使(VDDVEE) 过载。RLIM 值过高可  
能会因响应缓慢而导致失调电压误差。如果 RLIM 大于上述计算值则没有足够的电流来为输出电容器充电从而  
导致电荷不平衡其中电压无法保持调节并最终超过 OVP2 UVP2 故障阈值这时器件将关断以提供保护。  
选择RLIM 值应当比两个计算结果中的较小值10%。  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF11  
30  
Submit Document Feedback  
Product Folder Links: UCC14341-Q1  
 
 
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
9.3 系统示例  
UCC14341-Q1 模块设计为允许微控制器主机通过 ENA 引脚来启用它可实现正确的系统时序控制。/PG 输出还  
允许主机监控模块的状态。当没有故障且输出电压处于设定目标输出电压的 ±10% 范围内时/PG 引脚变为低电  
平。输出电压用于IGBT SiC FET 功率器件的栅极驱动器供电。/PG 引脚变为低电平后主机可以开始向  
栅极驱动器发送 PWM 控制以便确保正确进行时序控制。下面展示了双输出配置的系统图和单输出配置的系统  
图。  
VIN  
VDD  
VDD  
VIN  
CIN  
GNDP  
COUT2  
Buck  
RLIM  
COUT1  
EMITTER/  
SOURCE  
400-800V  
RLIM  
Open- Drain  
From Battery  
COM  
/PG  
COUT3  
ENA  
5V/3.3V  
VEE  
VEE  
EMITTER/  
SOURCE  
Microcontroller  
VDD  
VCC  
5V/3.3V  
VCC
/PG_BIAS  
PWM  
Control  
GATE  
VEE  
PWM  
ON_BIAS  
To Motor  
GNDP  
-
Similar Isolated DC DC + Isolated Gate Driver Block as Above  
9-4. 双输出系统配置  
VIN  
VDD  
VDD  
VIN  
CIN  
GNDP  
Buck  
RLIM  
COUT  
400-800V  
RLIM  
Open- Drain  
From Battery  
/PG  
ENA  
5V/3.3V  
GATE  
VEE  
VEE  
EMITTER  
/ SOURCE  
EMITTER  
/ SOURCE  
Microcontroller  
VDD  
VCC  
5V/3.3V  
VCC
/PG_BIAS  
PWM  
Control  
GATE  
VEE  
PWM  
ON_BIAS  
To Motor  
GNDP  
-
Similar Isolated DC DC + Isolated Gate Driver Block as Above  
9-5. 单输出系统配置  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: UCC14341-Q1  
English Data Sheet: SLUSF11  
 
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
9.4 电源相关建议  
UCC14341-Q1 的建议输入电源电压 (VVIN) 介于 13.5V 16.5V 之间。为了帮助确保可靠运行必须在尽可能靠  
近电源引脚的位置放置足够的去耦电容器。本地旁路电容器必须放置在输入端VIN GNDP 引脚之间隔离式  
输出电源的 VDD VEE 之间以及低电压输出电源COM VEE 之间。TI 建议使用低 ESR 的陶瓷表面贴装  
电容器。TI 进一步建议放置两个这样的电容器一个值为 2.2μF 的电容器用于电源旁路另一个并联的 0.1μF  
电容器用于高频滤波。输入电源必须具有适当的额定电流来支持终端应用所需的输出负载。  
9.5 布局  
9.5.1 布局指南  
UCC14341-Q1 集成隔离式电源解决方案可简化系统设计并减少使用的电路板面积。请遵循这些指南进行正确的  
PCB 布局以便实现理想性能。  
• 将去耦电容器尽可能靠近器件引脚放置。对于输入电源将电容器放在引7VIN和引818电  
GNDP之间。对于隔离式输出电源将电容器放在引2829 (VDD) 和引1925303135-36  
(VEE) 之间。该位置对输入去耦电容特别重要因为该电容提供与电源驱动电路的快速开关波形相关的瞬态电  
流。  
• 由于该器件没有用于散热的散热焊盘因此器件通过各自GND 引脚散热。确GNDP VEE 引脚上有充  
足的覆铜最好是接地层的连接),以便实现理想的散热效果。  
• 在空间和层数允许的情况下TI 建议通过多个通孔VINGNDPVDD VEE 引脚连接到内部接地平面或  
电源平面。或者使连接到这些引脚的走线尽可能宽以便更大限度地减少损耗。  
• 通过在布线时分离布线并尽可能FBVEE 引脚附近使用过孔来实现不同层的反馈连接布线从而更大限度  
地减RLIM 引脚FBVEE 引脚之间的电容耦合。  
• 建议至少使用两层以便实现热性能良好PCB 设计。内层可用于GNDP VEE 之间创建高频旁通电容  
从而减轻辐射发射。  
• 密切注PCB 外层的初级接地(GNDP) 和次级接地(VEE) 之间的间距。如果两个接地层的间距小于  
UCC14341-Q1 封装的间距则系统的有效爬电距离和间隙将减小。  
• 为确保初级侧和次级侧之间的隔离性能请避免UCC14341-Q1 模块下方放置任PCB 迹线或覆铜。  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF11  
32  
Submit Document Feedback  
Product Folder Links: UCC14341-Q1  
 
 
 
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
9.5.2 布局示例  
下图中所示的布局示例来自评估UCC14341-Q1EVMUCC14341EVM-069 并基9-1 设计。  
9-6. UCC14341-Q1EVMPCB 顶层组装  
9-7. UCC14341-Q1EVM信号23 层相同)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: UCC14341-Q1  
English Data Sheet: SLUSF11  
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
9-8. UCC14341-Q1EVM信号32 层相同)  
9-9. UCC14341-Q1EVMPCB 底层组装镜像视图)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF11  
34  
Submit Document Feedback  
Product Folder Links: UCC14341-Q1  
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
10 器件和文档支持  
10.1 文档支持  
10.1.1 相关文档  
请参阅如下相关文档:  
• 德州仪(TI)UCC14240EVM-052 适用于需要正偏置单电源和正/负偏置双电源的牵引逆变器栅极驱动IC  
偏置应用户指南。  
• 德州仪(TI)隔离相关术语  
10.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.4 商标  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: UCC14341-Q1  
English Data Sheet: SLUSF11  
 
 
 
 
 
 
 
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
11 机械、封装和可订购信息  
下述页面包含机械、封装和订购信息。这些信息是指定器件可用的最新数据。数据如有变更恕不另行通知且  
不会对此文档进行修订。有关此数据表的浏览器版本请查阅左侧的导航栏。  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF11  
36  
Submit Document Feedback  
Product Folder Links: UCC14341-Q1  
 
UCC14341-Q1  
ZHCSRQ6A FEBRUARY 2023 REVISED MARCH 2023  
www.ti.com.cn  
12 卷带封装信息  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
卷带  
W1  
(mm)  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
象限  
卷带  
(mm)  
封装  
类型  
SPQ  
器件  
封装图  
引脚  
UCC14240-Q1  
SSOP  
DWN  
36  
750  
330.0  
16.4  
10.85  
13.4  
4.0  
16.0  
16.0  
Q1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: UCC14341-Q1  
English Data Sheet: SLUSF11  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PUCC14341QDWNQ1  
ACTIVE  
SO-MOD  
DWN  
36  
37  
TBD  
Call TI  
Call TI  
-40 to 125  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

UCC1570

Low Power Pulse Width Modulator
TI

UCC15701

Advanced Voltage Mode Pulse Width Modulator
TI

UCC15701J

Advanced Voltage Mode Pulse Width Modulator
TI

UCC15701L

Advanced Voltage Mode Pulse Width Modulator
TI

UCC15701_05

Advanced Voltage Mode Pulse Width Modulator
TI

UCC15702

Advanced Voltage Mode Pulse Width Modulator
TI

UCC15702J

Advanced Voltage Mode Pulse Width Modulator
TI

UCC1570J

Low Power Pulse Width Modulator
TI

UCC1570L

Voltage-Mode SMPS Controller
ETC

UCC1580

Single Ended Active Clamp/Reset PWM
TI

UCC1580-

Single Ended Active Clamp/Reset PWM
TI

UCC1580-1

Single Ended Active Clamp/Reset PWM
TI