UCC24636DBVR [TI]

具有超低待机电流的同步整流器控制器 | DBV | 6 | -40 to 125;
UCC24636DBVR
型号: UCC24636DBVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有超低待机电流的同步整流器控制器 | DBV | 6 | -40 to 125

控制器 开关 光电二极管
文件: 总36页 (文件大小:2459K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Reference  
Design  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
UCC24636  
ZHCSES5A MARCH 2016REVISED MARCH 2016  
UCC24636 具有超低待机电流  
的同步整流器 (SR) 控制器  
1 特性  
3 说明  
1
针对 5V 24V 输出断续/转换模式反激转换器而优  
化的二次侧 SR 控制器  
UCC24636 SR 是一款紧凑型 6 引脚二次侧同步整流  
MOSFET 控制器和驱动器,适用于在断续 (DCM)  
和转换模式 (TM) 下工作的高效率反激转换器。与测量  
SR MOSFET 漏极电压的传统 SR 控制器不同的  
是,UCC24636 采用伏秒平衡控制方案来确定 SR  
MOSFET 的关闭转换;因此,SR 导通时间与  
MOSFET RDSON、寄生电感或振铃无关,这在组件选  
择和 PCB 布局布线方面给予了设计人员更大的灵活  
性。该控制方法可为给定的 MOSFET 实现最长的 SR  
导通时间和最高的整流器效率。  
通过伏秒平衡控制实现最高整流器效率  
兼容一次侧同步整流器 (PSR) 和二次侧同步整流器  
(SSR) 反激控制器  
110µA 超低待机电流消耗  
通过自动检测待机模式禁用 SR 开关以降低无负载  
时的功耗  
SR 关断与 RDSON 和寄生电感无关  
工作频率高达 130kHz  
VDD 范围:3.6V 28V  
自适应栅极驱动钳位  
该控制器内置智能特性,可在检测到转换器中无负载运  
行时自动进入待机模式。在待机模式下,它会禁用 SR  
MOSFET 并将其偏置电源电流降至 110uA,从而进一  
步降低总体系统待机功耗。该控制器具有较宽的 VDD  
工作电压范围,允许直接从控制器输出获取偏置电压以  
实现输出电压固定或可变的设计。这消除了主变压器对  
辅助绕组的需求,从而简化电路设计并降低成本。  
开路和短路引脚故障保护  
2 应用  
智能手机和平板电脑的 AC/DC 适配器  
带有 Type-C 连接器的 USB 充电器  
笔记本电脑和超极本适配器  
工业用开关模式电源 (SMPS) 中的高效率反激转换  
器件信息(1)  
器件型号  
UCC24636  
封装  
SOT23 (6)  
封装尺寸(标称值)  
服务器和台式机中的高效率辅助电源 应用  
2.92mm x 1.30mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
简化电路原理图  
栅极驱动时序与 VDS 感测 SR 驱动器间的关系  
VOUT  
1-mRDSON MOSFET Example  
15 A  
CB1  
CB2  
NP  
NS  
COUT  
œ
RVSC1  
VAC  
6
RVPC1  
VDD  
RVPC2  
VPC  
VSC  
1
4
2
3
UCC28740  
5 A  
RVSC2  
UCC24636  
DRV TBLK  
VDD  
HV  
0.85 A  
Secondary  
GND  
5
DRV  
CS  
VS  
FB  
Current  
TL431  
RTBLK  
GND  
Gate Drive  
VDS Sensing  
Driver  
300 ns  
Gate Drive  
UCC24636  
5 ms  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLUSCG2  
 
 
 
 
UCC24636  
ZHCSES5A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 10  
8.4 Device Functional Modes........................................ 19  
Application and Implementation ........................ 20  
9.1 Application Information............................................ 20  
9.2 Typical Application ................................................. 20  
9.3 Do's and Don'ts ...................................................... 27  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Timing Requirements ............................................... 6  
7.7 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 9  
8.1 Overview ................................................................... 9  
8.2 Functional Block Diagram ......................................... 9  
9
10 Power Supply Recommendations ..................... 27  
11 Layout................................................................... 28  
11.1 Layout Guidelines ................................................. 28  
11.2 Layout Example .................................................... 29  
12 器件和文档支持 ..................................................... 30  
12.1 器件支持 ............................................................... 30  
12.2 文档支持................................................................ 30  
12.3 ....................................................................... 30  
12.4 静电放电警告......................................................... 30  
12.5 Glossary................................................................ 30  
13 机械、封装和可订购信息....................................... 30  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (December 2015) to Revision A  
Page  
已将器件状态从产品预览更改为量产数据并已发布完整数据表。 ...................................................................................... 1  
2
Copyright © 2016, Texas Instruments Incorporated  
 
UCC24636  
www.ti.com.cn  
ZHCSES5A MARCH 2016REVISED MARCH 2016  
5 Device Comparison Table  
PART NUMBER  
UCC24636  
CCM DEAD TIME CONTROL  
tOFF (µs)  
FSW(MAX) (kHz)  
No  
4.35  
2.5  
130  
200  
UCC24630  
Yes  
6 Pin Configuration and Functions  
DBV Package  
6-Pin SOT23  
Top View  
1
6
5
4
VPC  
VSC  
TBLK  
VDD  
2
3
GND  
DRV  
Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NO.  
NAME  
The Voltage during Primary Conduction pin is connected to a resistor divider from the SR MOSFET  
drain. This pin determines a sample of the primary-side MOSFET volt seconds during the primary on-  
time. This voltage programs a voltage controlled current source for the internal VPC ramp charging  
current.  
1
VPC  
I
I
The Voltage during Secondary Conduction pin is connected to a resistor divider from the power-supply  
output. This pin determines a sample of the secondary-side output voltage used to determine SR  
MOSFET conduction time. This voltage programs a voltage controlled current source for the internal VSC  
ramp charging current.  
2
VSC  
TIME BLANK pin is used to select the blanking time of the VPC rising edge. A programmable range from  
200 ns to 2 µs is available to prevent false detection of the primary on-time due to ringing during DCM  
operation.  
3
4
5
6
TBLK  
DRV  
GND  
VDD  
O
G
P
DRIVE is an output used to drive the gate of an external synchronous rectifier N-channel MOSFET  
switching transistor, with source pin connected to GND.  
The GROUND pin is both the reference pin for the controller and the low-side return for the drive output.  
Special care should be taken to return all AC decoupling capacitors as close as possible to this pin and  
avoid any common trace length with analog signal return paths.  
VDD is the bias supply input pin to the controller. A carefully placed bypass capacitor to GND is required  
on this pin.  
(1) P = Power, G = Ground, I = Input, O = Output, I/O = Input/Output  
Copyright © 2016, Texas Instruments Incorporated  
3
UCC24636  
ZHCSES5A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
30  
UNIT  
V
VVDD  
IDRV  
Bias supply voltage, VDD  
–0.3  
Continuous gate current sink, DRV  
Continuous gate current source, DRV  
Peak VPC pin current  
50  
mA  
mA  
mA  
IDRV  
–50  
–1.2  
IVPC  
VDRV  
VVPC, VVSC  
TJ  
Gate drive voltage at DRV  
–0.3  
–0.3  
–55  
Self-limiting  
4.5  
V
Voltage range, VPC, VSC  
V
Operating junction temperature range  
Lead temperature 0.6 mm from case for 10 seconds  
Storage temperature  
150  
°C  
°C  
°C  
TL  
260  
Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 2000-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as  
±2000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 500-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±500 V  
may actually have higher performance.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.75  
0.22  
-40  
MAX  
UNIT  
V
VVDD  
Bias supply operating voltage  
VDD bypass capacitor  
28  
CVDD  
µF  
°C  
V
TJ  
Operating junction temperature  
Operating range  
125  
2.2  
VVPC, VVSC  
–0.3  
7.4 Thermal Information  
UCC24636  
THERMAL METRIC(1)  
DBV (SOT23)  
UNIT  
6 PINS  
180  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
71.2  
44  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
5.1  
ψJB  
13.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
4
Copyright © 2016, Texas Instruments Incorporated  
 
UCC24636  
www.ti.com.cn  
ZHCSES5A MARCH 2016REVISED MARCH 2016  
7.5 Electrical Characteristics  
over operating free-air temperature, VDD = 12 V, TA = –40°C to 125°C, TA = TJ (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
SUPPLY INPUT  
IRUN  
Supply current, run  
IDRV = 0, run state, FSW = 0 kHz  
IDRV = 0, standby mode  
0.9  
1.2  
mA  
µA  
ISTBY  
Supply current, standby  
110  
160  
UNDER-VOLTAGE LOCKOUT  
VVDD(on)  
VVDD(off)  
DRV  
VDD turn-on threshold  
VVDD low to high  
VVDD high to low  
3.9  
3.3  
4
4.3  
3.7  
V
V
VDD turn-off threshold  
3.6  
RDRVLS  
VDRVST  
VDRCL  
DRV low-side drive resistance  
DRV pull down in start-up  
DRV clamp voltage  
IDRV = 100 mA  
1
2
0.95  
15  
Ω
V
V
VDD= 0 to 2 V, IDRV= 10 µA  
VVDD = 30 V  
11  
13  
10  
VDD voltage to disable rail-to-rail  
drive, VDD rising  
VPMOS  
Disable PMOS high-side drive  
9.3  
10.5  
V
VDD voltage hysteresis to enable rail  
to rail drive, VDD falling  
VPMOS-HYS  
PMOS enable hysteresis  
DRV pull-up high voltage  
0.75  
4.6  
1
1.25  
5
V
V
VDRHI  
VVDD = 5 V, IDRV = 15 mA  
4.75  
VSC INPUT  
VVSCEN  
SR enable voltage  
SR enable hysteresis  
SR disable voltage  
Input bias current  
VVSC > VVSCEN, VVSC rising  
VVSC falling  
250  
300  
50  
340  
mV  
mV  
mV  
µA  
VVSC-HYS  
VVSCDIS  
IVSC  
220  
250  
0
280  
0.4  
VVSC = 2 V  
–0.25  
VPC INPUT  
VVPCEN  
SR enable voltage  
VVPCEN < VVPC  
VVPC > VVPCDIS  
345  
2.6  
400  
450  
3.1  
mV  
V
VVPCDIS  
VPC threshold to disable SR  
2.85  
VVPC = 0.95 V, VVPC-TH = 0.85 x VVPC  
previous cycle  
VVPC-TH  
Threshold of VVPC rising edge  
0.76  
0.808  
0.86  
V
VVPC-TH-CLP  
IVPC  
Clamp threshold of VVPC rising edge  
Input bias current  
VVPC = 2 V  
VVPC = 2 V  
0.9  
1
0
1.1  
0.4  
V
–0.25  
µA  
CURRENT EMULATOR  
VVPC = 1.25 V, tVPC = 1 µs,  
VVSC = 1.25 V  
3.97  
3.95  
3.85  
3.85  
4.17  
4.17  
4.09  
4.07  
4.35  
4.37  
4.26  
4.28  
VVPC = 1.25 V, tVPC = 5 µs,  
VVSC = 1.25 V  
RatioVPC_VSC  
KVPC/KVSC  
VVPC = 2 V, tVPC = 1 µs,  
VVSC = 1.25 V  
VVPC = 1.25 V, tVPC = 1 µs,  
VVSC = 0.45 V  
Copyright © 2016, Texas Instruments Incorporated  
5
UCC24636  
ZHCSES5A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
MAX UNIT  
Electrical Characteristics (continued)  
over operating free-air temperature, VDD = 12 V, TA = –40°C to 125°C, TA = TJ (unless otherwise noted)  
PARAMETER  
STANDBY OPERATION  
TEST CONDITION  
MIN  
TYP  
Number of switching cycles to enter  
standby operation during tENTO  
nENTO  
nEN  
64  
32  
Number of switching cycles to exit  
(1)  
standby operation during tEN  
OVER TEMPERATURE PROTECTION  
T(STOP) Thermal shutdown temperature  
Internal junction temperature  
165  
°C  
(1) The device exits standby operation as soon as nEN occurs within tEN  
.
7.6 Timing Requirements  
over operating free-air temperature range, VDD = 12 V, TA = –40°C to 125°C, TA = TJ (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
DRV  
VVDD = 12 V, CL = 3.3 nF, VDRV = 2 V to 8 V  
VVDD = 5 V, CL = 3.3 nF, VDRV = 1 V to 4 V  
VVDD = 12 V, CL = 3.3 nF, VDRV = 8 V to 2 V  
VVDD = 5 V, CL = 3.3 nF, VDRV = 4 V to 1 V  
27  
50  
20  
15  
54  
ns  
tR  
DRV high-side rise time  
DRV low-side fall time  
100  
54  
ns  
50  
tF  
VVPC = 1 V to –0.05 V falling to DRV high,  
VVDD = 12 V, VDRV = 0 V to 2 V  
tDRVON  
Propagation delay to DRV High  
Propagation delay to DRV Low  
80  
65  
160  
95  
ns  
ns  
tDRVOFF  
Test mode  
VPC INPUT  
tVPC-SPL  
VPC sampling time window  
81  
169  
100  
203  
125  
239  
ns  
ns  
µs  
RTBLK = 5 kΩ  
RTBLK = 50 kΩ  
Minimum VPC pulse for SR DRV  
operation  
tVPC-BLK  
0.85  
1.01  
1.18  
SR ON CONTROL  
tSRONMIN SR minimum on time after VPC falling.  
tOFF SR off blanking time from DRV falling.  
STANDBY OPERATION  
Time to disable SR operation, enter  
300  
350  
425  
ns  
us  
3.96  
4.35  
4.75  
tENTO  
Time to disable DRV  
Time to enable DRV(1)  
11.5  
2.3  
12.8  
2.56  
14.1  
2.82  
ms  
ms  
standby  
Time to enable SR operation, exit  
standby operation  
tEN  
(1) The device exits standby operation as soon as nEN occurs within tEN  
.
6
Copyright © 2016, Texas Instruments Incorporated  
UCC24636  
www.ti.com.cn  
ZHCSES5A MARCH 2016REVISED MARCH 2016  
7.7 Typical Characteristics  
VVDD = 12 V, TJ = 25°C, unless otherwise noted.  
4.75  
4.63  
4.50  
4.38  
4.25  
4.13  
4.00  
3.88  
3.75  
3.63  
3.50  
3.38  
3.25  
150  
140  
130  
120  
110  
100  
90  
VVDD(On)  
VVDD(Off)  
80  
0
25  
50  
75  
100  
125  
150  
œ50  
œ25  
0
25  
50  
75  
100  
125  
150  
œ50  
œ25  
Temperature (oC)  
Temperature (oC)  
C001  
C002  
Figure 1. VDD Turn-On and Turn-Off Threshold vs  
Temperature  
Figure 2. Standby Current vs Temperature  
500  
475  
450  
425  
400  
375  
350  
325  
300  
400  
375  
350  
325  
300  
275  
250  
225  
200  
0
25  
50  
75  
100  
125  
150  
œ50  
œ25  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (oC)  
C004  
Temperature (C°)  
Figure 4. VSC Enable Threshold vs Temperature  
Figure 3. VPC Enable Threshold vs Temperature  
4.60  
4.50  
4.40  
4.30  
4.20  
4.10  
4.00  
3.90  
3.80  
3.70  
4.80  
4.60  
4.40  
4.20  
4.00  
3.80  
3.60  
3.40  
0
25  
50  
75  
100  
125  
150  
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8  
œ50  
œ25  
Temperature (oC)  
VVPC (V)  
C005  
C006  
VVPC = 1.25 V  
tVPC = 1 µs  
VVSC = 1.25 V  
VVSC = 1.25 V  
tVPC × VVPC = 3 V-µs  
Figure 5. VPC-to-VSC Ramp Gain Ratio vs Temperature  
Figure 6. VPC-to-VSC Ramp-Gain Ratio vs VPC Voltage  
Copyright © 2016, Texas Instruments Incorporated  
7
 
UCC24636  
ZHCSES5A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
VVDD = 12 V, TJ = 25°C, unless otherwise noted.  
4.8  
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7  
0
25  
50  
75  
100  
125  
150  
œ50  
œ25  
Temperature (oC)  
VVSC (V)  
C007  
C009  
VVPC = 1.25 V  
tVPC = 2 µs  
RTBLK = 5 kΩ  
Figure 7. VPC-to-VSC Ramp-Gain Ratio vs VSC Voltage  
Figure 8. VPC Blanking Time vs Temperature (Minimum  
Setting)  
400  
390  
380  
370  
360  
350  
340  
330  
320  
310  
300  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0
25  
50  
75  
100  
125  
150  
œ50  
œ25  
0
25  
50  
75  
100  
125  
150  
œ50  
œ25  
Temperature (oC)  
Temperature (oC)  
C014  
C010  
RTBLK = 50 kΩ  
Figure 10. DRV Minimum On Time vs Temperature  
Figure 9. VPC Blanking Time vs Temperature (Maximum  
Setting)  
5.5  
5.25  
5
4.75  
4.5  
4.25  
4
3.75  
3.5  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
D013  
Figure 11. DRV Minimum Off Time vs Temperature  
8
Copyright © 2016, Texas Instruments Incorporated  
 
UCC24636  
www.ti.com.cn  
ZHCSES5A MARCH 2016REVISED MARCH 2016  
8 Detailed Description  
8.1 Overview  
The UCC24636 SR controller is targeted for flyback converters operating in DCM and TM modes of operation.  
The control method to determine SR on time is based on the volt-second balance principle of primary and  
secondary conduction volt-second product. In converters operating in DCM and TM, the secondary current  
always returns to zero in each cycle. The inductor charge voltage and time product is equal to the discharge  
voltage and time product. The device uses internal current ramp emulators to predict the proper SR on time  
based on voltage and time information on the VPC and VSC pins.  
To achieve very low standby power in the converter, the UCC24636 has a standby mode of operation that  
disables the SR MOSFET drive and reduces the device bias current to ISTBY. The device monitors the average  
switching frequency of the converter to enter and exit the standby mode of operation, and is compatible with  
converters operating in burst mode or constant frequency in light-load mode.  
8.2 Functional Block Diagram  
Thermal  
SD  
VPC  
Thresh  
S&H  
VPC  
UVLO  
4.0/3.6 V  
VDD  
+
SR Control Bias  
+
Bias  
VVPCEN  
Fsw Detect  
Stand By  
Stand By  
tVPC-BLK  
VPC  
Blanking  
Timer  
VPC  
Min tOFF  
TBLK  
DRV  
GND  
S
Q
Q
SRon  
Min tON  
R
SR_On  
Detect  
+
DRV  
Enable  
+
Ramp  
Enable  
VVSCEN  
VPC Ramp  
VSC Ramp  
VSC  
One  
Shot  
+
+
Copyright © 2016, Texas Instruments Incorporated  
9
UCC24636  
ZHCSES5A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Start Up and UVLO  
The UCC24636 features a wide operating VDD range and low UVLO thresholds. The start up of the device is  
dependent on voltage levels on three pins: VDD, VPC and VSC. The VDD pin can be directly connected to the  
power supply output on converters from 5-V to 24-V nominal outputs. The start UVLO threshold is VVDD(on), 4.0 V  
typical, and stop threshold is VVDD(off), 3.6 V typical. The DRV output is not enabled unless the voltage on the  
VPC pin is greater than VVPCEN for a time longer than tVPC-BLK and the voltage on the VSC pin is greater than  
VVSCEN. Once the VDD, VSC and VPC voltage and time thresholds are met, there is an internal initialization time  
before the DRV output is enabled.  
Refer to Figure 12 for a startup sequence that illustrates the timing sequence and configurable DRV output  
based on VDD level. In most converter designs, the conditions for the VPC and VSC voltage to enable the  
device are met before the VDD start-voltage threshold, this is reflected in the timing diagram. When VDD  
exceeds VVDD(on) UVLO threshold the device starts the initialization sequence of 150 µs to 250 µs illustrated as  
tINITIALIZE. After the device initialization, there is a logic initialization of 20 µs at which time VTBLK is enabled (high).  
At VDD < VPMOS the driver high-side PMOS device is enabled and the DRV peak will be close to VDD. When  
VDD exceeds VPMOS the PMOS device is disabled and the driver is operating as a high-side NMOS only and  
DRV is approximately 1.2 V to 1.5 V lower than VDD. As VDD continues to increase, the DRV output is limited to  
VDRCL regardless of VDD up to the recommended maximum rating.  
VPMOS  
VVDD  
VVDD(on)  
tINITIALIZE  
20 µs  
VTBLK  
VVPC  
VDRCL  
VDRV  
t
Figure 12. Start-Up Operation  
10  
Copyright © 2016, Texas Instruments Incorporated  
 
 
UCC24636  
www.ti.com.cn  
ZHCSES5A MARCH 2016REVISED MARCH 2016  
Feature Description (continued)  
8.3.2 Volt-Sec SR Driver On-Time Control  
Refer to the timing diagrams in Figure 13 for functional details of the UCC24636 volt-sec on-time control.  
VIN/NPS  
Pri Volt-Sec  
VOUT  
SR VDS  
Sec Volt-  
Sec  
VVPC Pk  
VVPC-TH (0.85 VVPC Pk)  
VVPC  
VVPCEN  
DRV  
ramp EN  
Enable  
Primary  
MOSFET  
Primary  
MOSFET  
Primary Drive  
and VDRV  
DRV  
DRV  
tVPC-BLK  
VPC Blanking Time  
VPC Sample Time  
tVPC-SPL  
tOFF  
DRV Inhibit  
tOFF  
tOFF  
VPC Ramp  
VPC Ramp  
V/s Control  
Ramps  
VSC Ramp  
VSC Ramp  
Normalized Pri  
and Sec Current  
IPRI  
ISEC/NPS  
tVSC TH  
IPRI  
ISEC/NPS  
tPRI  
tSEC DIS  
Figure 13. Operation in DCM  
Copyright © 2016, Texas Instruments Incorporated  
11  
 
UCC24636  
ZHCSES5A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
Feature Description (continued)  
The UCC24636 uses the VPC and VSC pins to sense the SR MOSFET VDS voltage and converter VOUT voltage  
through resistor dividers. The information of VIN/NPS, tPRI, and VOUT can be obtained from the information on VPC  
and VSC pins. The SR MOSFET turn on is determined when the SR MOSFET body diode starts conducting and  
the VPC pin voltage falls to near zero; the SR MOSFET turn off is determined by the current emulator control  
ramps.  
The UCC24636 volt-sec control generates the internal VPC ramp and VSC ramp to emulate the transformer Volt-  
Sec balancing as shown in Figure 13.  
The secondary current discharge time, tSEC-DIS can be determined indirectly. The primary volt-sec ramp and  
secondary volt-sec ramp both start when VPC rises above VVPC-EN and VVPC-TH. The charge currents for the VPC  
and VSC ramps are determined by the voltage on the VPC and VSC pins respectively.  
When VPC is higher than VVPC-EN and VVPC-TH for t > tVPC-BLK, the VPC pulse is qualified as a primary conduction  
pulse and the SR can be enabled on the VPC falling edge. The VPC ramp continues to rise until the VPC falling  
edge based on the real time voltage on the VPC pin and holds the peak for the cycle. The DRV output is turned  
on during the VPC falling edge near zero volts, and DRV is turned off when the VSC rising ramp crosses the  
VPC ramp held level.  
Both VPC and VSC ramps are reset to zero on each VPC rising edge above the VVPC-EN and VVPC-TH thresholds.  
To discriminate primary on-time pulses from DCM ringing, there are voltage and time criteria that must be  
satisfied on the VPC pin to enable the DRV output. tVPC-BLK can be adjusted through the resistor on TBLK pin.  
At the rising edge of VPC when the voltage exceeds VVPC-EN and VVPC-TH the blanking time tVPC-BLK is initiated. At  
the end of tVPC-BLK, the VPC voltage is sampled during tVPC-SPL window, which is 100 ns nominal. Also at the end  
of tVPC-BLK, the DRV output can be enabled.  
The VPC voltage sampled during tVPC-SPL determines the VPC dynamic threshold VVPC-TH which is normally 85%  
of the sampled VPC voltage. The dynamic threshold provides the ability to reject the DCM ringing and detect the  
primary on-time. Noise immunity during the turn-on event of DRV at the falling edge of the VPC pin is enhanced  
by a minimum DRV on time of tSRONMIN, which is 350 ns nominal.  
During the falling edge of DRV, the tOFF timer is initiated which inhibits turn on of the SR until tOFF expires. This  
eliminates false turn on of DRV if the DCM ringing is close to ground.  
12  
Copyright © 2016, Texas Instruments Incorporated  
UCC24636  
www.ti.com.cn  
ZHCSES5A MARCH 2016REVISED MARCH 2016  
Feature Description (continued)  
The UCC24636 is designed to operate in a variety of flyback converter applications over a wide operating range.  
The internal volt-sec control ramps do have a dynamic range limit based on volt-sec on the VPC pin. As shown  
in Figure 14, a Volt-sec product exceeding 7 V-µs on the VPC pin will result in saturation of the VPC volt-sec  
control ramp. Operation beyond this point results in a DRV on-time less than expected. For example, if VVPC  
=
0.5 V, tVPC should be < 14 µs, or if VVPC = 2.0 V, tVPC should be < 3.5 µs, to operate within the dynamic range of  
the device. Assuming a converter operating in transition mode at low line and full load with a 50% duty cycle, the  
operating period is 28 µs which results in a frequency that is under 40 kHz. The UCC24636 low-frequency  
operating range extends to the standby mode threshold of 5 kHz; but each switching cycle VVPC Volt-sec product  
should be less than 7 V-µs.  
The device can support switching frequencies exceeding 130 kHz but the following timing limits need to be  
confirmed to be compatible with the power train. The minimum primary on time when the device is expected to  
be active needs to be compatible with the minimum VPC blanking time (tVPC-BLK) setting of 203 ns plus the  
sampling window (tVPC-SPL) of 100 ns. The minimum secondary current conduction time should be greater than  
the minimum SR on time (tSRONMIN) of 350 ns. The minimum time from the SR drive turn off until the next SR  
drive turn on should be greater than the SR minimum off time (tOFF) of 4.35 µs.  
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
6.5  
7.5  
8.5  
VPC V-us (uWb)  
C008  
Figure 14. RatioVPC_VSC vs VPC V-µs  
IOUT  
VOUT  
bs  
VSEC  
RVSC1  
ë55  
RVPC1  
RVPC2  
ë{/  
ët/  
5wë  
COUT  
RPL  
UCC24636  
RVSC2  
Ç.[Y  
Db5  
RTBLK  
GND  
Figure 15. SR Controller Components  
Copyright © 2016, Texas Instruments Incorporated  
13  
 
 
UCC24636  
ZHCSES5A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
Feature Description (continued)  
Determining the VPC and VSC divider resistors is based on the operating voltage ranges of the converter and  
RatioVPC-VSC gain ratio. Referring to Figure 15, the following equation determines the VPC divider values.  
For RVPC2, a value of 10 kis recommended for minimal impact on time delay, and low-resistor dissipation. A  
higher RVPC2 value reduces resistor divider dissipation but may increase the DRV turn-on delay due to the time  
constant of ~2 pF pin capacitance and divider resistance. A lower RVPC2 value can be used with the tradeoff of  
higher dissipation in the resistor divider. A factor of 10% over the VPC threshold, VVPCEN, is shown in Equation 1  
for design margin.  
é
ê
ë
ù
V
æ
ö
÷
ø
IN(min)  
+ VOUT(min) - V  
´1.1 ´R  
ú
ç
÷
VPCEN  
VPC2  
ç
NPS  
ê
ú
û
è
RVPC1  
=
VVPCEN ´1.1  
where  
VIN(min) is the converter minimum primary bulk capacitor voltage.  
VOUT(min) is the minimum converter output voltage in normal operation.  
VVPCEN is the VPC enable threshold, use the specified maximum value.  
NPS is the transformer primary to secondary turns ratio.  
(1)  
The operating voltage range on the VPC pin should be within the range of 0.45 V < VVPC < 2.2 V. Referring to  
Figure 6, if VVPC is greater than 2.3 V the linear dynamic range is exceeded and RatioVPC_VSC is reduced; in this  
condition the DRV on time is less than expected. If VVPC is greater than 2.6 V for 500 ns, a fault is generated and  
DRV is disabled for the cycle, refer to Pin Fault Protection. To ensure the maximum voltage is within range  
confirm with Equation 2.  
V
æ
ç
è
ö
IN(max)  
+ VOUT(max) ´R  
÷
VPC2  
NPS  
ø
VVPC(max)  
=
RVPC1 + RVPC2  
where  
VIN(max) is the converter maximum primary bulk capacitor voltage.  
VOUT(max) is the maximum converter output voltage at OVP.  
NPS is the transformer primary-to-secondary turns ratio.  
(2)  
The program voltage on the VSC pin is determined by the VPC divider ratio and the device's parameter  
RatioVPC_VSC. The current emulator ramp gain is higher on the VPC pin by the multiple RatioVPC_VSC, so the VSC  
resistor divider ratio is reduced by the same RatioVPC_VSC accordingly. Determine the VSC divider resistors using  
Equation 3 below. To minimize resistor divider dissipation, a recommended range for RVSC2 is 25 kto 50 k.  
Higher RVSC2 values results in increasing offset due to VSC input current, IVSC. Lower RVSC2 values increases the  
resistor divider dissipation. To ensure DRV turn off slightly before the secondary current reaches zero, 10%  
margin is shown for initial values. Use a nominal value of 4.15 for RatioVPC_VSC  
.
é
ê
ê
ê
ê
ë
ù
ú
RVPC1 + RVPC2  
RVPC2  
æ
ç
ç
ç
ö
÷
÷
÷
ú
RVSC1  
=
-1 ´RVSC2  
ú
ú
û
RatioVPC _ VSC ´1.1  
ç
÷
è
ø
where  
RatioVPC_VSC is the device parameter VPC and VSC gain ratio, use a value of 4.15.  
(3)  
14  
Copyright © 2016, Texas Instruments Incorporated  
 
 
 
UCC24636  
www.ti.com.cn  
ZHCSES5A MARCH 2016REVISED MARCH 2016  
Feature Description (continued)  
The operating voltage on the VSC pin should be within the range of 0.3 V < VVSC < 2.2 V. Referring to Figure 7, if  
VVSC is greater than 2.3 V, the linear dynamic range is exceeded and RatioVPC_VSC is increased; in this condition  
the DRV on time is more than expected, resulting in possible negative current conduction. To ensure the VSC  
voltage is within range, confirm with Equation 4 and Equation 5.  
RVSC2  
´ VOUT(min) ³ 0.3V  
R
VSC1 + RVSC2  
(4)  
RVSC2  
´ VOUT(max) £ 2.2V  
R
VSC1 + RVSC2  
where  
VOUT(min) is the minimum converter output operating voltage of the SR controller.  
VOUT(max) is the maximum converter output operating voltage of the voltage at OVP.  
(5)  
Discrimination of ringing during DCM operation from valid primary on-time is achieved by a dynamic VPC rising  
threshold and programmable blanking time. The dynamic threshold VVPC-TH is 85% typical ratio of the previous  
VPC pin peak voltage. Referring to Figure 13, the VPC pin voltage is sampled after the VPC voltage is greater  
than VVPCEN and VVPC-TH for t > tVPC-BLK. The function of the dynamic threshold VVPC-TH is to reject the ringing in  
DCM operation from the primary conduction pulses. The dynamic threshold has an active range from the  
minimum VVPCEN voltage to a maximum of 1-V clamp. The blanking time is programmable from 200 ns to 2 µs in  
order to accommodate a variety of converter designs.  
Refer to Figure 16 for guidance on selecting the blanking time. The blanking time should be selected as long as  
reasonable and still accommodate the minimum primary on-time at light-load condition and high-line voltage. In  
the high-line minimum load condition, select a blanking time that meets the following criteria (Equation 6) to  
accommodate tolerance of the blanking time and the tVPC-SPL sampling time window.  
tVPC-BLK = (tPRI x 0.85) – 120 ns  
(6)  
For rejection of DCM ringing, the blanking time should be longer than the time that the ring is above the VVPC-TH  
dynamic threshold, which is 85% of the minimum SR VDS peak voltage. Determine these criteria at low line and  
maximum load condition. It is recommended that the transformer turns ratio be selected such that the secondary  
reflected voltage is < 85% of VIN(min) bulk capacitor voltage at the highest load when DCM operation occurs at the  
low line input condition.  
To determine the resistor value for tVPC-BLK use Equation 7 to select from a range of 200 ns to 2 µs.  
tVPC-BLK -100 ns  
=
RTBLK  
18 pF  
where  
tVPC-BLK is the target blanking time.  
(7)  
Additional discrimination for proper SR timing control is provided by the tOFF function. Refer to Figure 13 for the  
timing details. After the DRV turn off, the DRV is inhibited from turning on again until the tOFF timer expires. This  
protects against SR false turn on from SR VDS DCM ringing below ground.  
Copyright © 2016, Texas Instruments Incorporated  
15  
 
 
 
 
UCC24636  
ZHCSES5A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
Feature Description (continued)  
High Line Minimum Load  
Low Line Maximum Load  
Vout  
SR VDS  
VVPC-TH (1V)  
VPC Pk  
VVPC-TH (0.85 X VPC Pk)  
VVPC  
tVPC-BLK  
tVPC-BLK  
tVPC-BLK  
tVPC-SPL  
tVPC-SPL  
t
tVPC-BLK  
tPRI  
Figure 16. VPC Blanking Time Criteria  
16  
Copyright © 2016, Texas Instruments Incorporated  
 
UCC24636  
www.ti.com.cn  
ZHCSES5A MARCH 2016REVISED MARCH 2016  
Feature Description (continued)  
8.3.3 Standby Operation  
To minimize power consumption at very light load and standby conditions, the UCC24636 disables the SR DRV  
output and enters a low current operating state. The criteria for operating in standby mode or normal operation  
are determined by the average frequency detected on the VPC pin. The frequency detection is compatible with  
burst mode operation or continuous low frequency FM operation. At start up the device is in normal operation to  
enable DRV to the SR MOSFET. If < 64 cycles occur in tENTO,12.8 ms typical, the device disables the DRV  
output and enters low-current operating mode with bias current of ISTBY. In standby mode the criteria to enter  
normal operating mode is when > 32 cycles occur within tEN, 2.56 ms typical. The device enters normal operation  
as soon as the 32 cycles occur to reduce the response time exiting standby operation. The average frequency of  
entering standby mode is 5 kHz typical, and the average frequency of exiting standby mode is 12.5 kHz typical.  
Refer to Figure 17 for an illustration of standby mode timing.  
Fsw Averaging  
tEN  
tEN  
tENTO  
tENTO  
Window  
> 32 cycles  
<64 cycles during tENTO  
VPC Cycle Detect  
Constant Fsw  
Burst example  
VPC Cycle Detect  
Burst Mode  
SB Mode Enable  
SR Driver Disabled  
SR Driver Enabled  
Figure 17. Standby Mode Operation  
Copyright © 2016, Texas Instruments Incorporated  
17  
 
UCC24636  
ZHCSES5A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
Feature Description (continued)  
8.3.4 Pin Fault Protection  
The UCC24636 controller includes fault protection in the event of open pin, shorted pin to ground and abnormal  
out of range operation.  
8.3.4.1 VPC Pin Overvoltage  
In the event that there is an abnormal high level on the VPC pin for a period beyond expected transformer  
leakage spike duration, the DRV output is disabled on a cycle-to-cycle basis. If the voltage on the VPC pin  
exceeds VVPCDIS, 2.6 V minimum, for 500 ns the SR is not enabled until the next valid cycle.  
8.3.4.2 VPC Pin Open  
In the event of an open circuit VPC pin, the device defaults to a zero VPC input signal condition which results in  
disabling DRV operation.  
8.3.4.3 VSC Pin Open  
In the event of an open circuit VSC pin, the device defaults to a zero VSC input signal condition which results in  
disabling DRV operation.  
8.3.4.4 TBLK Pin Open  
In the event of an open circuit TBLK pin, the device disables DRV operation.  
8.3.4.5 VPC and VSC Short to Ground  
Since the VPC and VSC enable thresholds must be satisfied for DRV operation, DRV is inherently disabled.  
8.3.4.6 TBLK Pin Short to Ground  
A shorted TBLK pin results in a minimum setting for tVPC-BLK blanking time.  
18  
Copyright © 2016, Texas Instruments Incorporated  
UCC24636  
www.ti.com.cn  
ZHCSES5A MARCH 2016REVISED MARCH 2016  
8.4 Device Functional Modes  
According to VDD voltage, VSC voltage, and VPC voltage and frequency, the device can operate in different  
modes.  
8.4.1 Start-Up  
During start-up when VDD is less than VVDD(on) the device is disabled. When VDD exceeds the VVDD(on) UVLO  
threshold the IDD goes to IRUN and the device begins the start sequence detailed in Start Up and UVLO.  
8.4.2 Normal Operation  
When VDD exceeds VVDD(on), the VPC voltage exceeds VVPC-EN and VVPC-TH, and the VSC voltage exceeds  
VVSCEN the DRV output is active. If the switching frequency is above the standby criteria of > 5 kHz the device is  
in normal operation determining the DRV time based on volt-sec control. IDD will be IRUN  
.
1. The device operates in volt-sec control based on the VPC and VSC volt-sec control ramps.  
8.4.3 Standby Operation  
If the number of VPC pulses is less than nENTO, 64, during tENTO the device enters standby mode. DRV operation  
stops and most device functions are shut down. IDD is ISTBY during standby operation. To exit standby mode the  
number of VPC pulses must exceed nEN, 32, during tEN. IDD returns to IRUN and the DRV output starts after the  
initialization time as outlined in Figure 12.  
8.4.4 Conditions to Stop Operation  
The following conditions can disable DRV operation; IDD is IRUN during these conditions.  
1. VPC overvoltage: When VVPC > VVPCDIS for >500 ns the DRV output is disabled for the cycle.  
2. VSC undervoltage: When VVSC < VVSCEN, the DRV output is disabled.  
3. VPC undervoltage: When VVPC< VVPCEN, the DRV output is disabled.  
Copyright © 2016, Texas Instruments Incorporated  
19  
UCC24636  
ZHCSES5A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The UCC24636 is a high performance controller driver for N-channel MOSFET power devices used for  
secondary-side synchronous rectification. The UCC24636 is designed to operate as a companion device to a  
primary-side controller to help achieve efficient synchronous rectification in switching power supplies. The  
controller features a high-speed driver and provides appropriately timed logic circuitry that seamlessly generates  
an efficient synchronous rectification system. With its current emulator architecture, the UCC24636 has enough  
versatility to be applied in DCM and TM operation. The UCC24636 SR on-time adjustability allows optimizing for  
PSR and SSR applications. Additional features such as pin fault protection, dynamic VPC threshold sensing, and  
voltage sense blanking time and make the UCC24636 a robust synchronous controller.  
9.2 Typical Application  
9.2.1 AC-to-DC Adapter, 5 V, 15 W  
This design example describes the design of a 15-W off-line flyback converter providing 5 V at 3-A maximum  
load and operating from a universal AC input. The design uses the UCC28740 AC-to-DC valley-switching  
primary-side controller in a DCM type flyback converter and achieves over 86% full-load efficiency with the use of  
the secondary side UCC24636 synchronous rectifier controller.  
The design requirements are detailed in Design Requirements  
The design procedure for selecting the component circuitry for use with the UCC24636 is detailed in  
Calculation of Component Values.  
Test results shown in Application Waveforms And Curves highlight the unique advantages of using the  
UCC24636.  
20  
Copyright © 2016, Texas Instruments Incorporated  
UCC24636  
www.ti.com.cn  
ZHCSES5A MARCH 2016REVISED MARCH 2016  
L1  
F1  
7447462471  
L2  
VOUT  
39213150000  
D1  
MDB6S  
T1  
1
L3  
RLTI-1081  
806µH  
2
1
-
+
R1  
100k  
C1  
330pF  
R2  
330k  
10  
9
2
5
C6  
0.1µF  
R4  
100k  
C2  
12µF/400V  
C3  
12µF/400V  
C4  
680µF  
C5  
680µF  
7
8
C7  
R5  
20  
N1  
R6  
150  
1000pF  
4
750342752  
L4  
950 ohm  
R7  
150  
GND  
1,2,3  
7,8  
5,6,  
GND  
Q1  
CSD18503  
D5  
BAS20HT1  
GND  
GND  
D3  
D4  
DFLR1600-7  
R9  
147k  
R31  
130  
VAUX  
R8  
2.0  
BAS20HT1  
R10  
0
R12  
68k  
R13  
10  
R11  
115k  
U3  
VPC  
1
6
4
VDD  
DRV  
R14  
Q2  
AOD7N65  
U4  
VDD  
1
1
2
3
4
8
0
HV  
VS  
FB  
R15  
1.5k  
6
5
2
5
DRV  
CS  
VSC  
GND  
D6  
DFLZ27-7  
27V  
3
GND  
TBLK  
UCC28740DR  
UCC24636  
R17  
39k  
C8  
10µF  
R18  
20.0k  
R19  
1.0  
R20  
2.0  
R21  
10k  
C9  
NP  
R22  
20k  
C10  
1µF  
C11 R23  
220pF 47k  
C12  
100pF  
GND  
GND  
R24  
1.00k  
R27  
10.0k  
GND  
U5  
GND  
C13  
R25  
22k  
C14  
NA  
NA  
4
3
1
2
R26  
2.00k  
C15  
R28  
100k  
0.022µF  
TCMT1107  
U6  
TL431AIDBZR  
R29  
10.0k  
C16  
1µF  
GND  
Figure 18. AC-to-DC Charger: 5 V, 15 W  
Copyright © 2016, Texas Instruments Incorporated  
21  
 
UCC24636  
ZHCSES5A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
9.2.2 Design Requirements  
For this design example, use the parameters listed in Table 1.  
Table 1. Performance Specifications AC-to-DC Charger 5 V, 15 W  
PARAMETER  
INPUT CHARACTERISTICS  
VACIN Input voltage  
fLINE  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
90  
47  
115/230  
50/60  
72  
265  
64  
VRMS  
Hz  
Frequency  
VAC(uvlo)  
VAC(run)  
IIN  
Brownout voltage  
Brownout recovery voltage  
Input current  
IOUT = IOUT(nom)  
VRMS  
VRMS  
mA  
85  
VACIN = VACIN(min), IOUT = IOUT(nom)  
335  
OUTPUT CHARACTERISTICS  
VACIN = VACIN(min) to VACIN(max)  
IOUT = 0 to IOUT(nom)  
,
VOUT  
Output voltage  
4.9  
5.0  
5.1  
V
IOUT(nom)  
IOUT(min)  
Nominal output current  
Minimum output current  
VACIN = VACIN(min) to VACIN(max)  
VACIN = VACIN(min) to VACIN(max)  
3.0  
0
A
A
VACIN = VACIN(min) to VACIN(max)  
IOUT = 0 to IOUT(nom)  
,
ΔVOUT  
Output voltage ripple  
80  
15  
mV  
W
POUT  
Output power  
VACIN = VACIN(min), IOUT = IOUT(nom)  
SYSTEM CHARACTERISTICS  
ηavg  
ƞ10%  
PNL  
Average efficiency  
10% Load efficiency  
No load power  
VACIN = VACIN(nom), IOUT = 25%, 50%, 75%, 100% of IOUT(nom)  
VACIN = VACIN(nom), IOUT = 10% of IOUT(nom)  
VACIN = VACIN(nom), IOUT = 0  
85%  
87%  
82.5%  
14  
73.5%  
22  
mW  
22  
Copyright © 2016, Texas Instruments Incorporated  
 
UCC24636  
www.ti.com.cn  
ZHCSES5A MARCH 2016REVISED MARCH 2016  
9.2.3 Calculation of Component Values  
IOUT  
VOUT  
bs  
R11  
VSEC  
ë55  
UCC24636  
Db5  
R9  
R21  
ë{/  
ët/  
5wë  
COUT  
RPL  
R23  
Ç.[Y  
R22  
GND  
Figure 19. UCC24636 Circuit Design  
For ease of understanding, Figure 19 is a modified version of Figure 15 where the component reference  
designators are the same as the schematic drawing of Figure 18.  
9.2.3.1 VPC Input  
For designs operating in constant current (CC) with low VOUT, there are two cases to examine. At maximum  
power, VIN(MIN) will be lower but VOUT is nominal. In constant current operation, VOUT is the minimum but VIN(MIN)  
will be higher. Determine R9 for both conditions, and choose the lowest value.  
For minimal power dissipation, select:  
R21=10k  
Nominal VOUT, maximum power, minimum V case  
IN  
»
ÿ
V
IN(min) +VOUT -V  
×1.1 ×R21  
Ÿ
÷
VPC_EN  
÷
NPS  
Ÿ
«
R9=  
VVPC_EN×1.1  
VOUT=5V  
NPS=15  
VIN(min)=65V  
VVPC_EN=0.45V  
R9 = 179 kꢀ  
(8)  
Copyright © 2016, Texas Instruments Incorporated  
23  
 
UCC24636  
ZHCSES5A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
Minimum VOUT, constant current operation case  
»
ÿ
V
IN(min)CC +VOUT(min) -V  
×1.1 ×R21  
Ÿ
÷
VPC_EN  
÷
NPS  
Ÿ
«
R9=  
VVPC_EN×1.1  
VOUT(min)=1.8V  
IN(min)CC=89V  
R9 = 146 k  
Select standard value based on 146 kresult.  
With R9 = 147 k:  
V
(9)  
V
IN(max)  
(
+ VOUT(max) )ìR21  
R9 + R21  
NPS  
VVPC(max)  
=
VVPC(max) = 1.95V  
(10)  
Therefore, VVPC is within the recommended range of 0.45 V to 2.2 V.  
24  
Copyright © 2016, Texas Instruments Incorporated  
UCC24636  
www.ti.com.cn  
ZHCSES5A MARCH 2016REVISED MARCH 2016  
9.2.3.2 VSC Input  
The value of R23 is recommended to be with the range of 25 kto 50 k.  
There is a 10% margin included for the initial value calculation of R11 to provide timing margin during initial  
operation verification.  
R23 = 47 kW  
é
ê
ê
ê
ù
R9 + R21  
æ
ç
ç
ö
÷
÷
ú
R9  
R11=  
-1 ´R23  
ú
Ratio  
´1.1  
ú
ç
÷
VPC _ VSC  
ç
÷
ê
ú
è
ø
ë
û
R11= 115 kW  
(11)  
With R11 = 115 k, the operating range of the VSC pin is:  
R23  
»
ÿ
VVSC(min) = (  
) ì VOUT(min)  
Ÿ
R11+ R23  
VVSC(min) = 0.52V  
(12)  
(13)  
R23  
R11+ R23  
»
ÿ
VVSC(max) = (  
) ì VOUT(max)  
Ÿ
VVSC(max) = 1.74V  
Therefore, VVSC is within the recommended range of 0.3 V to 2.2 V.  
The UCC24636 SR timing can be optimized (SR on time increased) by increasing the R115 value after initial  
operation confirmation. The RatioVPC_VSC parameter has a positive tolerance of 5.3%. Using 1% divider resistors  
for VPC and VSC should allow reducing the 10% initial SR timing margin.  
9.2.3.3 TBLK Input  
The blanking time is set with resistor R22.  
Select the blanking time to meet the following criteria based on 660-ns minimum primary on-time at high line.  
tVPC-BLK = (tPRI × 0.85) – 120 ns  
spacer  
tVPC-BLK -100 ns  
R22 =  
18 pF  
(14)  
A value of R22 = 20 kresults in a blanking time of approximately 460 ns.  
Copyright © 2016, Texas Instruments Incorporated  
25  
UCC24636  
ZHCSES5A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
9.2.4 Application Waveforms And Curves  
CH2 (Blue): Drain of synchronous rectifier Q1, 10V/Div  
CH3 (Mag): VOUT, 2V/Div  
CH2 (Blue): Drain of synchronous rectifier Q1, 10V/Div  
CH3 (Mag): VOUT, 2V/Div  
CH4 (Green): DRV signal to Q1, 10V/Div  
CH4 (Green): DRV signal to Q1, 10V/Div  
Figure 20. DRV Timing at 115 VAC, 5 V, 3 A  
Figure 21. DRV Timing at 230 VAC, 5 V, 3 A  
CH2 (Blue): Drain of synchronous rectifier Q1, 10V/Div  
CH3 (Mag): VOUT, 2V/Div  
CH2 (Blue): Drain of synchronous rectifier Q1, 10V/Div  
CH3 (Mag): VOUT, 2V/Div  
CH4 (Green): DRV signal to Q1, 10V/Div  
CH4 (Green): DRV signal to Q1, 10V/Div  
Figure 22. DRV Timing at 115 VAC, 5 V, 300 mA  
Figure 23. DRV Timing at 115 VAC, 1.8 V, 3.3 A  
90  
88  
86  
84  
82  
80  
78  
76  
74  
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
90 VAC  
1
0.5  
0
115 VAC  
230 VAC  
264 VAC  
115 VAC  
230 VAC  
72  
70  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Output Current (A)  
3
3.3  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Output Current (A)  
3
3.3 3.6  
Figure 24. Efficiency vs Output Current  
Figure 25. Output Voltage vs Output Current  
26  
Copyright © 2016, Texas Instruments Incorporated  
UCC24636  
www.ti.com.cn  
ZHCSES5A MARCH 2016REVISED MARCH 2016  
9.3 Do's and Don'ts  
Do operate the device within the recommended operating maximum parameters. Consider output overvoltage  
conditions when determining stress.  
Do consider the guideline for setting the blanking time resistor value illustrated in Figure 16.  
Do not use the UCC24636 in CCM flyback converter designs. For CCM designs, use the UCC24630 with the  
CCM dead time control function.  
Do not use the UCC24636 in LLC converters as they can operate in CCM.  
Do not add capacitance to the TBLK pin.  
Do not add significant external capacitance to the VPC pin as there will be increased delay of the signal. If  
filtering is necessary a recommended maximum capacitance is 15 pF with a lower resistor divider network  
value of 10 k.  
10 Power Supply Recommendations  
The VDD operating range allows direct connection to converter outputs from 5 V to 24 V. Since the driver and  
control share the same VDD and ground, it is recommended to place a good quality ceramic capacitor as close  
as possible to VDD and GND pins. To reduce VDD noise and eliminate high-frequency ripple current injected  
from the converter output, it is recommended to place a small resistance of 2.2 Ω to 10 Ω between the converter  
output and VDD. The device can tolerate VDD rise times from 100 µs to very long rise times typical of constant  
current chargers. The start-up sequence will always be as shown in Figure 12. VDD can be connected to an  
external bias to extend the device's operating range to be compatible with converter output voltages below 3.5 V  
or above 24 V.  
Copyright © 2016, Texas Instruments Incorporated  
27  
UCC24636  
ZHCSES5A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
In general, try to keep all high current loops as short as possible. Keep all high current/high frequency traces  
away from other traces in the design. If necessary, high-frequency/high-current traces should be perpendicular to  
signal traces, not parallel to them. Shielding signal traces with ground traces can help reduce noise pick up.  
Always consider appropriate clearances between the high-voltage connections and any low-voltage nets.  
11.1.1 VDD Pin  
The VDD pin must be decoupled to GND with good quality, low ESR, low ESL ceramic bypass capacitors with  
short traces to the VDD and GND pins. To eliminate high-frequency ripple current in the SR control circuit, it is  
recommended to place a small value resistance of 2.2 to 10 between VDD and the converter output voltage.  
11.1.2 VPC Pin  
The trace between the resistor divider and the VPC pin should be as short as possible to reduce/eliminate  
possible noise coupling. The lower resistor of the resistor divider network connected to the VPC pin should be  
returned to GND with short traces. Avoid adding any significant external capacitance to the VPC pin so that there  
is no delay of signal. If filtering is necessary a recommended maximum capacitance is 15 pF with a lower resistor  
divider network value of 10 k. Avoid high dV/dt traces close to the VPC pin and connection trace such as the  
SR MOSFET drain and DRV output.  
11.1.3 VSC Pin  
The trace between the resistor divider and the VSC pin should be as short as possible to reduce/eliminate  
possible noise coupling. The lower resistor of the resistor divider network connected to the VSC pin should be  
returned to GND with short traces. External capacitance can be added to the VSC pin for noise filtering. The  
maximum capacitance consideration is a time constant of the capacitor and the resistor divider resistance that is  
less than 1/4 the minimum rise time of the converter output during startup. Avoid high dV/dt traces close to the  
VSC pin and connection trace such as the SR MOSFET drain and DRV output.  
11.1.4 GND Pin  
The GND pin is the power and signal ground connection for the controller. The effectiveness of the filter  
capacitors on the signal pins depends upon the integrity of the ground return. Place all decoupling capacitors as  
close as possible to the device pins with short traces. The device ground and power ground should meet at the  
output bulk capacitor’s return. Try to ensure that high frequency/high current from the power stage does not go  
through the signal ground.  
11.1.5 TBLK Pin  
The programming resistor is placed on TBLK to GND, with short traces. The value may have to be adjusted  
based on the time delay required. Avoid high dV/dt traces close to the TBLK pin and connection trace such as  
the SR MOSFET drain and DRV output.  
11.1.6 DRV Pin  
The track connected to DRV carries high dv/dt signals. Minimize noise pickup by routing the trace to this pin as  
far away as possible from tracks connected to the device signal inputs, VPC, VSC, and TBLK.  
28  
Copyright © 2016, Texas Instruments Incorporated  
UCC24636  
www.ti.com.cn  
ZHCSES5A MARCH 2016REVISED MARCH 2016  
11.2 Layout Example  
版权 © 2016, Texas Instruments Incorporated  
29  
UCC24636  
ZHCSES5A MARCH 2016REVISED MARCH 2016  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 器件命名规则  
12.1.1.1 术语定义(用于设计示例)  
VIN(min) = 65V:最高功率时转换器一次侧大容量电容的最低电压  
VIN(min)CC = 89VCC 工作模式下 VOUT(min) 时转换器一次侧大容量电容的最低电压  
VIN(max) = 370V:转换器一次侧大容量电容的最高电压  
VOUT(min) = 1.8VUCC24636 的最低转换器输出工作电压  
VOUT(max) = 6VUCC24636 的最高转换器输出工作电压  
VVPC_EN = 0.45V:同步整流器使能电压  
VVPC(max) = 2.2VVPC 的最高线性工作电压  
NPS = 15:变压器一次侧绕组与二次侧绕组匝数比  
RatioVPC_VSC = 4.15:电流模拟器增益 KVPC/KVSC  
tVPC_BLK:保证同步整流器正常工作的最少 VPC 脉冲  
12.2 文档支持  
12.2.1 相关文档ꢀ  
相关文档请参见以下部分:  
《使用 UCC24636EVM 二次侧同步整流器控制器二极管替代产品演示板》(文献编号:SLUUBE7)  
UCC24636 设计计算器》(文献编号:SLUC604)  
UCC24630 具有超低待机电流的同步整流控制器》(文献编号:SLUSC82)  
UCC28740 具有光电耦合器反馈的恒压、恒流反激控制器(文献编号:SLUSBF3)  
12.3 商标  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
30  
版权 © 2016, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
UCC24636DBVR  
UCC24636DBVT  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
DBV  
DBV  
6
6
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
U636  
U636  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

UCC24636DBVT

具有超低待机电流的同步整流器控制器 | DBV | 6 | -40 to 125
TI

UCC24650

用于快速瞬态初级侧调节的 200V 唤醒监控器
TI

UCC24650DBVR

用于快速瞬态初级侧调节的 200V 唤醒监控器 | DBV | 5 | -40 to 125
TI

UCC24650DBVT

用于快速瞬态初级侧调节的 200V 唤醒监控器 | DBV | 5 | -40 to 125
TI

UCC25230

12-V to 100-V Input, 0.2-A Output Switching Converter
TI

UCC25230DRMR

12-V to 100-V Input, 0.2-A Output Switching Converter
TI

UCC25230DRMT

12-V to 100-V Input, 0.2-A Output Switching Converter
TI

UCC25230_14

12-V to 100-V Input, 0.2-A Output Switching Converter
TI

UCC2540

HIGH EFFICIENCY SECONDARY SIDE SYNCHRONOUS BUCK PWM CONTROLLER
TI

UCC2540PWP

HIGH EFFICIENCY SECONDARY SIDE SYNCHRONOUS BUCK PWM CONTROLLER
TI

UCC2540PWPG4

3.5A SWITCHING CONTROLLER, 1000kHz SWITCHING FREQ-MAX, PDSO20, GREEN, PLASTIC, HTSSOP-20
TI

UCC2540PWPR

High Efficiency Secondary Side Synchronous Buck PWM Controller 20-HTSSOP -40 to 85
TI