UCC27201A-Q1 [TI]

具有 8V UVLO 和负电压处理能力的汽车类 3A、120V 半桥栅极驱动器;
UCC27201A-Q1
型号: UCC27201A-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 8V UVLO 和负电压处理能力的汽车类 3A、120V 半桥栅极驱动器

栅极驱动 驱动器
文件: 总31页 (文件大小:1830K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
UCC27201A-Q1  
ZHCSDP7 MAY 2015  
UCC27201A-Q1 120V 3A 峰值电流的高频高侧/低侧驱动器  
1 特性  
3 说明  
1
符合汽车应用要求  
具有符合 AEC-Q100 的下列结果:  
UCC27201A-Q1 高频 N 沟道 MOSFET 驱动器由  
120V 自举二极管和高侧/低侧驱动器组成,其中高侧/  
低侧驱动器配有独立输入,可最大限度提高控制灵活  
性。 这可在半桥式、全桥式、两开关正激式和有源箝  
位正激式转换器中提供N沟道 MOSFET 控制。 低端和  
高端栅极驱动器是独立控制的,并在彼此的接通和关断  
之间实现了至 1ns 的匹配。 UCC27201A-Q1 基于常  
见的 UCC27200 UCC27201 驱动器,但提供了一  
些增强功能。 UCC27201A-Q1 HS 引脚最高能够承  
-18V 电压,这使得其在电源噪声环境下的性能得到  
了改善。  
器件温度等级 1-40°C 140°C 的环境运行  
温度范围  
器件人体模型 (HBM) 分类等级 1C  
器件充电器件模型 (CDM) 分类等级 C3  
HS 引脚具备 -18V 的负电压处理能力  
可驱动两个采用高侧/低侧配置的 N 沟道金属氧化  
物半导体场效应晶体管 (MOSFET)  
最大启动电压:120V  
最大 VDD 电压:20V  
片载0.65V VF0.6Ω RD 自举二极管  
工作频率高于 1MHz  
由于在芯片上集成了一个自举二极管,因此无需采用外  
部分立式二极管。 为高端和低端驱动器提供了欠压闭  
锁功能,如果驱动电压低于规定的门限,则强制输出为  
低电平。  
20ns 传播延迟时间  
3A 吸收,3A 供电输出电流  
8ns 上升时间和 7ns 下降时间(采用 1000pF 负载  
时)  
UCC27201A-Q1 具有 TTL 兼容阈值,并且采用带有散  
热焊盘的 8 引脚 SOIC 封装。  
1ns 延迟匹配  
用于高端和低端驱动器的欠压闭锁功能  
器件信息(1)  
采用 8 引脚 PowerPad™ 小尺寸集成电路 (SOIC)-  
8 (DDA) 封装  
器件型号  
封装  
封装尺寸(标称值)  
UCC27201A-Q1  
DDA (8)  
4.89mm × 3.90mm  
2 应用  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
辅助反相器  
简化的应用示意图  
功率传输电路的 DC-DC 转换器  
开关模式电源  
+12V  
+100V  
电机控制  
SECONDARY  
SIDE  
CIRCUIT  
VDD  
HB  
半桥式应用和全桥式转换器  
两开关正激式转换器  
有源箝位正激式转换器  
高电压同步降压型转换器  
D 类音频放大器  
HI  
DRIVE  
HI  
HO  
HS  
PWM  
CONTROLLER  
LI  
LO  
DRIVE  
LO  
UCC27201A  
VSS  
ISOLATION  
AND  
FEEDBACK  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLUSC72  
 
 
 
UCC27201A-Q1  
ZHCSDP7 MAY 2015  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 10  
7.4 Device Functional Modes........................................ 11  
Application and Implementation ........................ 12  
8.1 Application Information............................................ 12  
8.2 Typical Application .................................................. 12  
Power Supply Recommendations...................... 18  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Switching Characteristics.......................................... 6  
6.7 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
8
9
10 Layout................................................................... 19  
10.1 Layout Guidelines ................................................. 19  
10.2 Layout Example .................................................... 19  
11 器件和文档支持 ..................................................... 20  
11.1 文档支持................................................................ 20  
11.2 ....................................................................... 20  
11.3 静电放电警告......................................................... 20  
11.4 术语表 ................................................................... 20  
12 机械、封装和可订购信息....................................... 20  
7
4 修订历史记录  
日期  
修订版本  
注释  
2015 3 月  
*
首次发布。  
2
Copyright © 2015, Texas Instruments Incorporated  
 
UCC27201A-Q1  
www.ti.com.cn  
ZHCSDP7 MAY 2015  
5 Pin Configuration and Functions  
8-Pin SOIC-8 Power Pad  
Package DDA  
(Top View)  
1
2
3
4
8
7
6
5
LO  
VDD  
HB  
Exposed  
Thermal  
Die Pad  
VSS  
LI  
HO  
HS  
HI  
Pin VSS and the exposed thermal die pad are internally connected.  
Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
DDA  
High-side bootstrap supply. The bootstrap diode is on-chip but the external  
bootstrap capacitor is required. Connect positive side of the bootstrap capacitor to  
this pin. Typical range of HB bypass capacitor is 0.022 μF to 0.1 μF, the value is  
dependant on the gate charge of the high-side MOSFET however.  
HB  
2
P
HI  
5
3
I
High-side input.  
HO  
O
High-side output. Connect to the gate of the high-side power MOSFET.  
High-side source connection. Connect to source of high-side power MOSFET.  
Connect negative side of bootstrap capacitor to this pin.  
HS  
4
P
LI  
6
8
-
I
O
-
Low-side input.  
LO  
N/C  
Low-side output. Connect to the gate of the low-side power MOSFET.  
No connection. Pins labeled N/C have no connection.  
Connect to a large thermal mass trace or GND plane to dramatically improve  
thermal performance.  
PowerPAD™  
Pad(2)  
G
Positive supply to the lower gate driver. De-couple this pin to VSS (GND). Typical  
decoupling capacitor range is 0.22 μF to 1.0 μF.  
VDD  
VSS  
1
7
P
G
Negative supply terminal for the device which is generally grounded.  
(1) P = Power, G = Ground, I = Input, O = Output, I/O = Input/Output  
(2) Pin VSS and the exposed thermal die pad are internally connected on the DDA package. Electrically referenced to VSS (GND).  
Copyright © 2015, Texas Instruments Incorporated  
3
UCC27201A-Q1  
ZHCSDP7 MAY 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted). All voltages are with respect to VSS  
(1)  
PARAMETER  
Supply voltage range(2)  
Input voltages on LI and HI  
DC  
MIN  
-0.3  
MAX  
20  
UNIT  
VDD  
VHI, VLI  
-0.3  
20  
-0.3  
VDD + 0.3  
VDD + 0.3  
VHB + 0.3  
VLO  
Output voltage on LO  
Output voltage on HO  
Voltage on HS  
Repetitive pulse <100 ns(3)  
-2  
DC  
VHS – 0.3  
VHO  
V
VHB + 0.3,  
(VHB - VHS <20)  
Repetitive pulse <100 ns(3)  
VHS - 2  
DC  
-1  
120  
120  
120  
20  
VHS  
VHB  
Repetitive pulse <100 ns(3)  
-18  
-0.3  
-0.3  
Voltage on HB  
Voltage on HB-HS  
Operating virtual  
junction temperature  
TJ  
-40  
-65  
+150  
+150  
+300  
Tstg  
Storage temperature  
°C  
W
Lead temperature  
(soldering, 10 sec.)  
Power dissipation at TA  
= 25°C (DDA package)  
2.7  
(4)  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to Vss. Currents are positive into, negative out of the specified terminal.  
(3) Values are verified by characterization and are not production tested.  
(4) This data was taken using the JEDEC proposed high-K test PCB. See Thermal Information for details.  
6.2 ESD Ratings  
VALUE  
±1000  
±1500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
8
NOM  
MAX  
17  
UNIT  
VDD  
VHS  
Supply voltage range  
Voltage on HS  
12  
-1  
105  
110  
V
Voltage on HS, (repetitive pulse <100 ns)  
-15  
VHB  
VHS + 8,  
VDD –1  
VHS + 17,  
115  
Voltage on HB  
Vsr  
TJ  
Voltage slew rate on HS  
50  
V / ns  
°C  
Operating junction temperature range  
-40  
+140  
4
Copyright © 2015, Texas Instruments Incorporated  
UCC27201A-Q1  
www.ti.com.cn  
ZHCSDP7 MAY 2015  
6.4 Thermal Information  
DDA  
(SOIC-8)  
THERMAL METRIC  
UNITS  
8 PINS  
40.5  
49.0  
10.2  
3.1  
θJA  
Junction-to-ambient thermal resistance  
θJCtop  
θJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
9.7  
θJCbot  
1.5  
6.5 Electrical Characteristics  
over operating free-air temperature range, VDD = VHB = 12 V, VHS = VSS = 0 V, No load on LO or HO, TA = TJ = -40°C to  
+140°C, (unless otherwise noted)  
PARAMETER  
SUPPLY CURRENTS  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
IDD  
VDD quiescent current  
VLI = VHI = 0  
0.4  
3.8  
0.8  
IDDO  
IHB  
VDD operating current  
f = 500 kHz, CLOAD = 0  
VLI = VHI = 0 V  
5.5  
mA  
0.8  
Boot voltage quiescent current  
Boot voltage operating current  
HB to VSS quiescent current  
HB to VSS operating current  
0.4  
IHBO  
IHBS  
IHBSO  
INPUT  
VHIT  
VLIT  
f = 500 kHz, CLOAD = 0  
VHS = VHB = 110 V  
f = 500 kHz, CLOAD = 0  
2.5  
4
0.0005  
0.1  
1
uA  
mA  
Input voltage threshold  
Input voltage threshold  
Input voltage Hysteresis  
Input pulldown resistance  
1.7  
1.6  
2.5  
0.8  
100  
6.2  
VIHYS  
RIN  
100  
200  
mV  
350  
7.8  
7.2  
kΩ  
UNDERVOLTAGE PROTECTION (UVLO)  
VDD rising threshold  
7.1  
0.5  
6.7  
0.4  
VDD threshold hysteresis  
VHB rising threshold  
V
5.8  
VHB threshold hysteresis  
BOOTSTRAP DIODE  
VF  
Low-current forward voltage  
High-current forward voltage  
I VDD - HB = 100 μA  
0.65  
0.85  
0.85  
1.1  
V
VFI  
I VDD - HB = 100 mA  
I VDD - HB = 100 mA and 80  
mA  
RD  
Dynamic resistance, ΔVF/ΔI  
0.6  
1.0  
LO GATE DRIVER  
VLOL Low level output voltage  
ILO = 100 mA  
0.18  
0.25  
0.4  
0.4  
ILO = -100 mA, VLOH = VDD  
VLO  
-
TJ = -40 to 125°C  
TJ = -40 to 140°C  
V
A
VLOH  
High level output voltage  
ILO = -100 mA, VLOH = VDD  
VLO  
-
0.25  
0.42  
Peak pull-up current  
VLO = 0 V  
3
3
Peak pull-down current  
VLO = 12 V  
Copyright © 2015, Texas Instruments Incorporated  
5
UCC27201A-Q1  
ZHCSDP7 MAY 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range, VDD = VHB = 12 V, VHS = VSS = 0 V, No load on LO or HO, TA = TJ = -40°C to  
+140°C, (unless otherwise noted)  
PARAMETER  
HO GATE DRIVER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VHOL  
Low level output voltage  
IHO = 100 mA  
0.18  
0.25  
0.4  
IHO = -100 mA, VHOH = VHB  
VHO  
-
-
TJ = -40 to 125°C  
TJ = -40 to 140°C  
0.4  
V
VHOH  
High level output voltage  
IHO = -100 mA, VHOH = VHB  
VHO  
0.25  
0.42  
Peak pull-up current  
VHO = 0 V  
3
3
A
Peak pull-down current  
VHO = 12 V  
6.6 Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX UNIT  
PROPAGATION DELAYS  
TJ = -40 to 125°C  
TJ = -40 to 140°C  
TJ = -40 to 125°C  
TJ = -40 to 140°C  
TJ = -40 to 125°C  
TJ = -40 to 140°C  
TJ = -40 to 125°C  
TJ = -40 to 140°C  
CLOAD = 0  
CLOAD = 0  
CLOAD = 0  
CLOAD = 0  
CLOAD = 0  
CLOAD = 0  
CLOAD = 0  
CLOAD = 0  
20  
20  
20  
20  
20  
20  
20  
20  
45  
50  
45  
tDLFF  
VLI falling to VLO falling  
tDHFF VHI falling to VHO falling  
tDLRR VLI rising to VLO rising  
50  
ns  
45  
50  
45  
50  
tDHRR VHI rising to VHO rising  
DELAY MATCHING  
tMON  
LI ON, HI OFF  
1
1
7
ns  
7
tMOFF LI OFF, HI ON  
OUTPUT RISE AND FALL TIME  
tR  
tF  
tR  
tF  
LO, HO  
CLOAD = 1000 pF  
CLOAD = 1000 pF  
CLOAD = 0.1 μF  
CLOAD = 0.1 μF  
8
7
ns  
LO, HO  
LO, HO (3 V to 9 V)  
LO, HO (3 V to 9 V)  
0.35  
0.3  
0.6  
us  
0.6  
MISCELLANEOUS  
Minimum input pulse width that changes the output  
Bootstrap diode turn-off time  
50  
20  
ns  
IF = 20 mA, IREV = 0.5 A(1) (2)  
(1) Typical values for TA = 25°C  
(2) IF: Forward current applied to bootstrap diode, IREV: Reverse current applied to bootstrap diode.  
LI  
Input  
HI  
(HI, LI)  
TDLRR, TDHRR  
LO  
Output  
(HO, LO)  
TDLFF, TDHFF  
HO  
TMON  
TMOFF  
Figure 1. Timing Requirements  
6
Copyright © 2015, Texas Instruments Incorporated  
UCC27201A-Q1  
www.ti.com.cn  
ZHCSDP7 MAY 2015  
6.7 Typical Characteristics  
10.0  
10.0  
150oC  
25oC  
150oC  
125oC  
125oC  
1.0  
1.0  
-40oC  
25oC  
-40oC  
0.1  
0.1  
10  
100  
Frequency - kHz  
1000  
10  
100  
1000  
Frequency - kHz  
VDD = 12 V  
No Load on Outputs  
HB = 12 V  
No Load on Outputs  
Figure 2. IDD Operating Current vs Frequency  
Figure 3. Boot Voltage Operating Current  
vs Frequency  
1.0  
2.0  
1.8  
Rising  
0.1  
150oC  
Falling  
1.6  
1.4  
25oC  
0.01  
1.2  
1.0  
125oC  
-40oC  
0.001  
10  
100  
1000  
8
10  
12  
14  
16  
18  
20  
Frequency - kHz  
VDD - Supply Voltage - V  
HB = 12 V  
No Load on Outputs  
T = 25°C  
Figure 4. HB TO VSS Operating Current  
vs Frequency  
Figure 5. Input Threshold vs Supply Voltage  
2.0  
0.45  
0.40  
1.8  
1.6  
0.35  
VDD = VHB = 16 V  
Rising  
0.30  
VDD = VHB = 12 V  
0.25  
Falling  
VDD = VHB = 8 V  
0.20  
1.4  
0.15  
0.10  
1.2  
1.0  
0.05  
VDD = VHB = 20 V  
0.0  
-50  
-25  
0
25  
50  
75  
100 125 150  
-50  
-25  
0
25  
50  
75  
100 125 150  
TA - Temperature - o  
C
TA - Temperature - o  
C
ILO = IHO = -100 mA  
VDD = VHB = 16 V  
VDD = 12 V  
Figure 6. Input Threshold vs Temperature  
Figure 7. LO and HO High Level Output Voltage  
vs Temperature  
Copyright © 2015, Texas Instruments Incorporated  
7
UCC27201A-Q1  
ZHCSDP7 MAY 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
0.45  
7.8  
VDD = VHB = 16 V  
0.40  
7.6  
7.4  
0.35  
VDD = VHB = 12 V  
VDD Rising Threshold  
0.30  
0.25  
0.20  
0.15  
0.10  
7.2  
7.0  
VDD = VHB = 8 V  
6.8  
6.6  
HB Rising Threshold  
6.4  
6.2  
6.0  
VDD = VHB = 20 V  
0.05  
0.0  
5.8  
-50  
-25  
0
25  
50  
75  
100 125 150  
-50  
-25  
0
25  
50  
75  
100 125 150  
TA - Temperature - o  
C
TA - Temperature - o  
C
ILO = IHO = 100 mA  
Figure 9. Undervoltage Lockout Threshold  
Figure 8. LO and HO Low Level Output Voltage  
vs Temperature  
vs Temperature  
36  
0.8  
0.7  
34  
32  
30  
0.6  
VDD UVLO Hysteresis  
28  
26  
0.5  
0.4  
24  
TDLFF  
22  
TDLRR  
0.3  
0.2  
0.1  
0
HB UVLO Hysteresis  
20  
18  
TDHFF  
16  
TDHRR  
14  
-50  
-25  
0
25  
50  
75  
100 125 150  
TA - Temperature - o  
C
-50  
-25  
0
25  
50  
75  
100 125 150  
TA - Temperature - o  
C
VDD = VHB = 12 V  
Figure 11. Propagation Delays vs Temperature  
Figure 10. Undervoltage Lockout Threshold Hysteresis  
vs Temperature  
26  
7
6
24  
5
4
LI Falling  
UCC27200TMOFF  
22  
LI Rising  
3
2
UCC27201TMOFF  
UCC27200TMON  
UCC27201TMON  
20  
18  
HI Rising  
1
0
HI Falling  
14  
8
10  
12  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100 125 150  
VDD = VHB - Supply Voltage - V  
TA - Temperature - ?  
C
T = 25°C  
VDD = VHB = 12 V  
Figure 12. Propagation Delay vs Supply Voltage  
Figure 13. Delay Matching vs Temperature  
8
Copyright © 2015, Texas Instruments Incorporated  
 
UCC27201A-Q1  
www.ti.com.cn  
ZHCSDP7 MAY 2015  
Typical Characteristics (continued)  
3.5  
100.0  
10.0  
3.0  
2.5  
2.0  
Pull-Down Current  
Pull-Up Current  
1.0  
0.1  
1.5  
1.0  
0.01  
0.5  
0
0.001  
0
2
4
6
8
10  
12  
0.5  
0.6  
0.7  
0.8  
0.9  
VLO, VHO - Output Voltage - V  
Diode Voltage - V  
VDD = VHB = 12 V  
Figure 15. Diode Current vs Diode Voltage  
Figure 14. Output Current vs Output Voltage  
700  
600  
500  
400  
IHB  
300  
200  
100  
IDD  
0
0
4
8
12  
16  
20  
VDD, VHB - Supply Voltage - V  
Inputs Low  
T = 25°C  
Figure 16. Quiescent Current vs Supply Voltage  
Copyright © 2015, Texas Instruments Incorporated  
9
UCC27201A-Q1  
ZHCSDP7 MAY 2015  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The UCC27201A-Q1 is a high-side/low-side driver. The high-side and low-side each have independent inputs  
which allow maximum flexibility of input control signals in the application. The boot diode for the high-side driver  
bias supply is internal to the UCC27201A-Q1. The UCC27201-Q1 inputs are TTL-compatible. The high-side  
driver is referenced to the switch node (HS) which is typically the source pin of the high side MOSFET and drain  
pin of the low-side MOSFET. The low-side driver is referenced to VSS which is typically ground. The functions  
contained are the input stages, UVLO protection, level shift, boot diode, and output driver stages.  
7.2 Functional Block Diagram  
2
HB  
UVLO  
3
4
HO  
HS  
LEVEL  
SHIFT  
5
1
HI  
VDD  
UVLO  
LO  
8
7
6
VSS  
LI  
7.3 Feature Description  
7.3.1 Input Stages  
The input stages provide the interface to the PWM output signals. The input stages of the UCC27201A-Q1  
incorporate an open drain configuration to provide the lower input thresholds. The input impedance is 200 kΩ  
nominal and input capacitance is approximately 4 pF. The 200 kis a pull-down resistance to VSS (ground).  
The logic level compatible input provides a rising threshold of 1.7 V and a falling threshold of 1.6 V.  
7.3.1.1 UVLO (Under Voltage Lockout)  
The bias supplies for the high-side and low-side drivers have UVLO protection. VDD as well as VHB to VHS  
differential voltages are monitored. The VDD UVLO disables both drivers when VDD is below the specified  
threshold. The rising VDD threshold is 7.1 V with 0.5-V hysteresis. The VHB UVLO disables only the high-side  
driver when the VHB to VHS differential voltage is below the specified threshold. The VHB UVLO rising threshold  
is 6.7 V with 0.4-V hysteresis.  
7.3.1.2 Level Shift  
The level shift circuit is the interface from the high-side input to the high-side driver stage which is referenced to  
the switch node (HS). The level shift allows control of the HO output referenced to the HS pin and provides  
excellent delay matching with the low-side driver.  
10  
Copyright © 2015, Texas Instruments Incorporated  
 
UCC27201A-Q1  
www.ti.com.cn  
ZHCSDP7 MAY 2015  
Feature Description (continued)  
7.3.1.3 Boot Diode  
The boot diode necessary to generate the high-side bias is included in the UCC27201A-Q1 driver. The diode  
anode is connected to VDD and cathode connected to VHB. With the VHB capacitor connected to HB and the  
HS pins, the VHB capacitor charge is refreshed every switching cycle when HS transitions to ground. The boot  
diode provides fast recovery times, low diode resistance, and voltage rating margin to allow for efficient and  
reliable operation.  
7.3.1.4 Output Stages  
The output stages are the interface to the power MOSFETs in the power train. High slew rate, low resistance and  
high peak current capability of both output drivers allow for efficient switching of the power MOSFETs. The low-  
side output stage is referenced from VDD to VSS and the high-side is referenced from VHB to VHS.  
7.4 Device Functional Modes  
The device operates in normal mode and UVLO mode. See UVLO (Under Voltage Lockout) for more information  
on UVLO operation mode. In normal mode, the output stage is dependent on the states of the HI and LI pins.  
Table 1. Device Logic Table  
HI PIN  
LI PIN  
HO(1)  
LO(2)  
L
L
L
H
L
L
L
L
H
L
H
H
H
H
H
H
(1) HO is measured with respect to HS.  
(2) LO is measured with respect to VSS.  
Copyright © 2015, Texas Instruments Incorporated  
11  
UCC27201A-Q1  
ZHCSDP7 MAY 2015  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
To effect fast switching of power devices and reduce associated switching power losses, a powerful gate driver is  
employed between the PWM output of controllers and the gates of the power semiconductor devices. Also, gate  
drivers are indispensable when it is impossible for the PWM controller to directly drive the gates of the switching  
devices. With the advent of digital power, this situation will be often encountered because the PWM signal from  
the digital controller is often a 3.3-V logic signal which cannot effectively turn on a power switch. Level shifting  
circuitry is needed to boost the 3.3-V signal to the gate-drive voltage (such as 12 V) in order to fully turn on the  
power device and minimize conduction losses. Traditional buffer drive circuits based on NPN/PNP bipolar  
transistors in totem-pole arrangement, being emitter follower configurations, prove inadequate with digital power  
because they lack level-shifting capability. Gate drivers effectively combine both the level-shifting and buffer-drive  
functions. Gate drivers also find other needs such as minimizing the effect of high-frequency switching noise by  
locating the high-current driver physically close to the power switch, driving gate-drive transformers and  
controlling floating power-device gates, reducing power dissipation and thermal stress in controllers by moving  
gate charge power losses from the controller into the driver.  
8.2 Typical Application  
An open loop half-bridge converter was used to calculate performance in an actual application.  
+
+
+
Figure 17. Open Loop Half-Bridge Converter  
12  
Copyright © 2015, Texas Instruments Incorporated  
 
UCC27201A-Q1  
www.ti.com.cn  
ZHCSDP7 MAY 2015  
8.2.1 Design Requirements  
Table 2. UCC27201A-Q1 Design Requirements  
DESIGN PARAMETER  
EXAMPLE VALUE  
Supply Voltage, VDD  
Voltage on HS, VHS  
Voltage on HB, VHB  
Output  
12 V  
0 V to 100 V  
12 V to 112 V  
4 V, 20 A  
Frequency  
200 kHz  
8.2.2 Detailed Design Procedure  
8.2.2.1 Switching the MOSFETs  
Achieving optimum drive performance at high frequency efficiently requires special attention to layout and  
minimizing parasitic inductances. Care must be taken at the driver die and package level as well as the PCB  
layout to reduce parasitic inductances as much as possible. Figure 18 shows the main parasitic inductance  
elements and current flow paths during the turn ON and OFF of the MOSFET by charging and discharging its  
CGS capacitance.  
L bond wire  
L trace  
L pin  
VDD  
1
8
7
Cvdd  
I SOURCE  
Rsource  
L trace  
L pin  
L bond wire  
Driver  
Output  
Stage  
Rg  
LO  
Rsink  
I sink  
Cgs  
L pin  
Vss  
L bond wire  
L trace  
L trace  
Figure 18. MOSFET Drive Paths and Circuit Parasitics  
Copyright © 2015, Texas Instruments Incorporated  
13  
 
UCC27201A-Q1  
ZHCSDP7 MAY 2015  
www.ti.com.cn  
The ISOURCE current charges the CGS gate capacitor and the ISINK current discharges it. The rise and fall time of  
the voltage across the gate to source defines how quickly the MOSFET can be switched. Based on actual  
measurements, the analytical curves in Figure 19 and Figure 20 indicate the output voltage and current of the  
drivers during the discharge of the load capacitor. Figure 19 shows voltage and current as a function of time.  
Figure 20 indicates the relationship of voltage and current during fast switching. These figures demonstrate the  
actual switching process and limitations due to parasitic inductances.  
12  
11  
10  
9
12  
11  
10  
9
Voltage  
Current  
8
7
8
6
7
5
6
4
3
5
2
4
1
3
0
2
1
2
1
3
0
4
1
5
0
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
2
t (ns)  
3
2
1
0
1
2
3
4
5
LO Current (A)  
Figure 20. Turn-Off Voltage and Current Switching  
Diagram  
Figure 19. Turn-Off Voltage and Current vs Time  
Turning off the MOSFET needs to be achieved as fast as possible to minimize switching losses. For this reason,  
the UCC27201A-Q1 driver is designed for high peak currents and low output resistance. The sink capability is  
specified as 0.18 V at 100-mA dc current implying 1.8-RDS(on). With 12-V drive voltage, no parasitic inductance  
and a linear resistance, one would expect initial sink current amplitude of 6.7 A for both high-side and low-side  
drivers. Assuming a pure R-C discharge circuit of the gate capacitor, one would expect the voltage and current  
waveforms to be exponential. Due to the parasitic inductances and non-linear resistance of the driver  
MOSFET’S, the actual waveforms have some ringing and the peak-sink current of the drivers is approximately  
3.3 A as shown in Figure 14. The overall parasitic inductance of the drive circuit is estimated at 4 nH. The  
internal parasitic inductance of the SOIC-8 package is estimated to be 2 nH including bond wires and leads.  
14  
Copyright © 2015, Texas Instruments Incorporated  
 
UCC27201A-Q1  
www.ti.com.cn  
ZHCSDP7 MAY 2015  
Actual measured waveforms are shown in Figure 21 and Figure 22. As shown, the typical rise time of 8 ns and  
fall time of 7 ns is conservatively rated.  
UCC27200A  
UCC27200A  
Figure 21. VLO and VHO Rise Time, 1-nF Load, 5 ns/Div  
Figure 22. VLO and VHO Fall Time, 1-nF Load, 5-ns/Div  
8.2.2.2 Dynamic Switching of the MOSFETs  
The true behavior of MOSFETS presents a dynamic capacitive load primarily at the gate to source threshold  
voltage. Using the turn off case as the example, when the gate to source threshold voltage is reached the drain  
voltage starts rising, the drain to gate parasitic capacitance couples charge into the gate resulting in the turn off  
plateau. The relatively low threshold voltages of many MOSFETS and the increased charge that has to be  
removed (Miller charge) makes good driver performance necessary for efficient switching. An open loop half  
bridge power converter was utilized to evaluate performance in actual applications. The schematic of the half-  
bridge converter is shown in Figure 17. The turn off waveforms of the UCC27201A-Q1 driving two MOSFETs in  
parallel is shown in Figure 23 and Figure 24.  
UCC27200A  
UCC27200A  
Figure 24. VHO Fall Time in Half-Bridge Converter  
Figure 23. VLO Fall Time in Half-Bridge Converter  
Copyright © 2015, Texas Instruments Incorporated  
15  
 
 
UCC27201A-Q1  
ZHCSDP7 MAY 2015  
www.ti.com.cn  
8.2.2.3 Delay Matching and Narrow Pulse Widths  
The total delays encountered in the PWM, driver and power stage need to be considered for a number of  
reasons, primarily delay in current limit response. Also to be considered are differences in delays between the  
drivers which can lead to various concerns depending on the topology. The sync-buck topology switching  
requires careful selection of dead-time between the high- and low-side switches to avoid 1) cross conduction and  
2) excessive body diode conduction. Bridge topologies can be affected by a resulting volt-sec imbalance on the  
transformer if there is imbalance in the high and low side pulse widths in a steady state condition.  
Narrow pulse width performance is an important consideration when transient and short circuit conditions are  
encountered. Although there may be relatively long steady state PWM output-driver-MOSFET signals, very  
narrow pulses may be encountered in 1) soft start, 2) large load transients, and 3) short circuit conditions.  
The UCC27201A-Q1 driver offers excellent performance regarding high and low-side driver delay matching and  
narrow pulse width performance. The delay matching waveforms are shown in Figure 25 and Figure 26. The  
UCC27201A-Q1 driver narrow pulse performance is shown in Figure 27 and Figure 28.  
Figure 25. VLO and VHO Rising Edge Delay Matching  
Figure 26. VLO and VHO Falling Edge Delay Matching  
Figure 27. 20-ns Input Pulse Delay Matching  
Figure 28. 10-ns Input Pulse Delay Matching  
16  
Copyright © 2015, Texas Instruments Incorporated  
 
UCC27201A-Q1  
www.ti.com.cn  
ZHCSDP7 MAY 2015  
8.2.2.4 Boot Diode Performance  
The UCC27201A-Q1 driver incorporates the bootstrap diode necessary to generate the high side bias internally.  
The characteristics of this diode are important to achieve efficient, reliable operation. The dc characteristics to  
consider are VF and dynamic resistance. A low VF and high dynamic resistance results in a high forward voltage  
during charging of the bootstrap capacitor. The UCC27201A-Q1 has a boot diode rated at 0.65-V VF and  
dynamic resistance of 0.6 for reliable charge transfer to the bootstrap capacitor. The dynamic characteristics to  
consider are diode recovery time and stored charge. Diode recovery times that are specified with no conditions  
can be misleading. Diode recovery times at no forward current (IF) can be noticeably less than with forward  
current applied. The UCC27201A-Q1 boot diode recovery is specified at 20 ns at IF = 20 mA, IREV = 0.5 A. At 0  
mA IF, the reverse recovery time is 15 ns.  
Another less obvious consideration is how the stored charge of the diode is affected by applied voltage. On every  
switching transition when the HS node transitions from low to high, charge is removed from the boot capacitor to  
charge the capacitance of the reverse biased diode. This is a portion of the driver power losses and reduces the  
voltage on the HB capacitor. At higher applied voltages, the stored charge of the UCC27201A-Q1 PN diode is  
often less than a comparable Schottky diode.  
8.2.3 Application Curves  
UCC27200A  
UCC27200A  
Figure 30. VHO Fall Time in Half-Bridge Converter  
Figure 29. VLO Fall Time in Half-Bridge Converter  
Copyright © 2015, Texas Instruments Incorporated  
17  
UCC27201A-Q1  
ZHCSDP7 MAY 2015  
www.ti.com.cn  
9 Power Supply Recommendations  
The bias supply voltage range for which the device is rated to operate is from 8 V to 17 V. The lower end of this  
range is governed by the internal undervoltage-lockout (UVLO) protection feature on the VDD pin supply circuit  
blocks. Whenever the driver is in UVLO condition when the VDD pin voltage is below the V(ON) supply start  
threshold, this feature holds the output low, regardless of the status of the inputs. The upper end of this range is  
driven by the 20-V absolute maximum voltage rating of the VDD pin of the device (which is a stress rating).  
Keeping a 3-V margin to allow for transient voltage spikes, the maximum recommended voltage for the VDD pin  
is 17 V. The UVLO protection feature also involves a hysteresis function. This means that when the VDD pin bias  
voltage has exceeded the threshold voltage and device begins to operate, and if the voltage drops, then the  
device continues to deliver normal functionality unless the voltage drop exceeds the hysteresis specification  
VDD(hys).Therefore, ensuring that, while operating at or near the 8-V range, the voltage ripple on the auxiliary  
power supply output is smaller than the hysteresis specification of the device is important to avoid triggering  
device shutdown. During system shutdown, the device operation continues until the VDD pin voltage has  
dropped below the V(OFF) threshold which must be accounted for while evaluating system shutdown timing  
design requirements. Likewise, at system startup, the device does not begin operation until the VDD pin voltage  
has exceeded above the V(ON) threshold. The quiescent current consumed by the internal circuit blocks of the  
device is supplied through the VDD pin. Although this fact is well known, recognizing that the charge for source  
current pulses delivered by the HO pin is also supplied through the same VDD pin is important. As a result, every  
time a current is sourced out of the HO pin a corresponding current pulse is delivered into the device through the  
VDD pin. Thus ensuring that a local bypass capacitor is provided between the VDD and GND pins and located  
as close to the device as possible for the purpose of decoupling is important. A low ESR, ceramic surface mount  
capacitor is a must. TI recommends using a capacitor in the range 0.22 uF to 4.7 uF between VDD and GND. In  
a similar manner, the current pulses delivered by the LO pin are sourced from the HB pin. Therefore a 0.022-uF  
to 0.1-uF local decoupling capacitor is recommended between the HB and HS pins.  
18  
Copyright © 2015, Texas Instruments Incorporated  
UCC27201A-Q1  
www.ti.com.cn  
ZHCSDP7 MAY 2015  
10 Layout  
10.1 Layout Guidelines  
To improve the switching characteristics and efficiency of a design, the following layout rules should be followed.  
Locate the driver as close as possible to the MOSFETs.  
Locate the VDD and VHB (bootstrap) capacitors as close as possible to the driver.  
Pay close attention to the GND trace. Use the thermal pad of the DDA package as GND by connecting it to  
the VSS pin (GND). Note: The GND trace from the driver goes directly to the source of the MOSFET but  
should not be in the high current path of the MOSFET(S) drain or source current.  
Use similar rules for the HS node as for GND for the high side driver.  
Use wide traces for LO and HO closely following the associated GND or HS traces. 60 mil to 100 mil width is  
preferable where possible.  
Use as least two or more vias if the driver outputs or SW node needs to be routed from one layer to another.  
For GND the number of vias needs to be a consideration of the thermal pad requirements as well as parasitic  
inductance.  
Avoid LI and HI (driver input) going close to the HS node or any other high dV/dT traces that can induce  
significant noise into the relatively high impedance leads.  
Keep in mind that a poor layout can cause a significant drop in efficiency versus a good PCB layout and can  
even lead to decreased reliability of the whole system.  
10.2 Layout Example  
Figure 31. Example Component Placement  
版权 © 2015, Texas Instruments Incorporated  
19  
UCC27201A-Q1  
ZHCSDP7 MAY 2015  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
更多信息,请参见以下文档:  
1. QFN/SON PCB 连接应用报告》(文献编号:SLUA271)  
2. PowerPAD™ 散热增强型封装》(文献编号:SLMA002)  
3. PowerPAD™ 速成》(文献编号:SLMA004)  
11.2 商标  
PowerPad is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.4 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
20  
版权 © 2015, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2015, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
UCC27201AQDDARQ1  
UCC27201AQDMKRQ1  
ACTIVE SO PowerPAD  
DDA  
DMK  
8
2500 RoHS & Green  
2500 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
201AQ1  
ACTIVE  
VSON  
10  
NIPDAU  
UCC  
27201AQ  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
DDA 8  
PowerPADTM SOIC - 1.7 mm max height  
PLASTIC SMALL OUTLINE  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4202561/G  
PACKAGE OUTLINE  
DMK0010A  
VSON - 1 mm max height  
SCALE 3.000  
PLASTIC SMALL OUTLINE - NO LEAD  
4.1  
3.9  
A
B
PIN 1 INDEX AREA  
4.1  
3.9  
C
1 MAX  
SEATING PLANE  
0.08 C  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
0.05  
0.00  
2.6±0.1  
5
6
2X  
3.2  
3±0.1  
8X 0.8  
1
10  
0.35  
0.25  
0.1  
10X  
0.5  
0.3  
10X  
PIN 1 ID  
(OPTIONAL)  
C A  
C
B
0.05  
4222146/A 08/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DMK0010A  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(2.6)  
10X (0.6)  
SYMM  
1
10  
10X (0.3)  
(1.25)  
SYMM  
(3)  
8X (0.8)  
6
5
(1.05)  
(
0.2) VIA  
TYP  
(R0.05) TYP  
(3.8)  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222146/A 08/2015  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DMK0010A  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
10X (0.6)  
METAL  
TYP  
1
(0.68)  
10  
10X (0.3)  
(0.76)  
SYMM  
8X (0.8)  
4X  
(1.31)  
5
6
4X (1.15)  
(R0.05) TYP  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
77% PRINTED SOLDER COVERAGE BY AREA  
SCALE:20X  
4222146/A 08/2015  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

UCC27201AD

120-V Boot, 3-A Peak, High Frequency, High-Side/Low-Side Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC27201ADDA

120-V Boot, 3-A Peak, High Frequency, High-Side/Low-Side Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC27201ADDAR

120-V Boot, 3-A Peak, High Frequency, High-Side/Low-Side Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC27201ADPRR

120-V Boot, 3-A Peak, High Frequency, High-Side/Low-Side Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC27201ADPRT

120-V Boot, 3-A Peak, High Frequency, High-Side/Low-Side Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC27201ADR

120-V Boot, 3-A Peak, High Frequency, High-Side/Low-Side Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC27201ADRC

IC 3 A HALF BRIDGE BASED PRPHL DRVR, PDSO9, 3 X 3 MM, SON-9, Peripheral Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC27201ADRCR

120-V Boot, 3-A Peak, High Frequency, High-Side/Low-Side Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC27201ADRCT

120-V Boot, 3-A Peak, High Frequency, High-Side/Low-Side Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC27201ADRM

120-V Boot, 3-A Peak, High Frequency, High-Side/Low-Side Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC27201ADRMR

120-V Boot, 3-A Peak, High Frequency, High-Side/Low-Side Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC27201ADRMT

120-V Boot, 3-A Peak, High Frequency, High-Side/Low-Side Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI