UCC28634D [TI]

具有 PSR、峰值功率模式、可调节 CC 限制和频率抖动功能的高功率反激式控制器 | D | 7 | -40 to 125;
UCC28634D
型号: UCC28634D
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 PSR、峰值功率模式、可调节 CC 限制和频率抖动功能的高功率反激式控制器 | D | 7 | -40 to 125

控制器 开关 光电二极管
文件: 总86页 (文件大小:3650K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
UCC2863x 高功率反激式控制器  
具有初级侧稳压和峰值功率模式  
1 特性  
3 说明  
1
高功率初级侧 CV/CC 稳压  
UCC2863x 适用于高功率初级侧稳压反激式变换器。  
此器件能够以 CCM DCM 模式运行,适用于 具有  
宽功率范围 的应用。峰值功率模式使得瞬态峰值功率  
能够达到标称额定值的 200%,峰值电流只增加  
25%,最大限度地增加了变压器利用率。  
连续传导模式 (CCM) 和断续传导模式 (DCM) 运行  
内置 700V 启动电流源  
有源 X 电容器放电(UCC28630 UCC28633)  
可调节恒定电流 (CC) 模式限制(UCC28630 除  
外)  
变压器偏置绕组被用来感测输出电压以实现稳压,并用  
于低损耗输入电压感测。采用了先进的取样技术,可支  
CCM 运行,并在 100W 及以上功率范围内实现无  
光耦合器设计的出色输出电压稳压性能。  
高栅极驱动电流,1A 源电流和 2A 灌电流  
针对系统待机功率小于 30mW 的低功率模式  
业界一流的轻负载 (10%) 效率 >85%  
PSR 设计不包含光耦合器 - 可达到 CM 隔离和浪涌  
的高要求  
高压电流源可实现快速和高效启动。部署了先进的轻负  
载模式,可减少控制器和系统在无负载和轻负载状态下  
的功率消耗。这些模式支持潜在的系统设计,以满足  
30mW 无负载功耗对高达 30W 标称功率和 60W 峰值  
功率电源设计的需要。  
用于开环反馈故障条件下独立间接输出过压的 VDD  
OVP  
针对瞬态过载的峰值功率模式  
外部 NTC 的关断引脚接口  
保护:过压、过流、过热、过载计时器  
(UCC28630)、交流线路 UV、欠压和引脚保护  
按照设计,此器件易于使用并整合了多种 特性, 可实  
现多种设计。设计包含大量的保护 特性 以简化系统设  
计。  
频率抖动以轻松符合 EMI 标准(UCC28632 除  
外)  
使用 UCC2863x 并借助 WEBENCH® Power  
请参阅表格1《器件比较表》以了解各器件间的具体差  
异。  
Designer 创建定制设计方案  
2 应用  
器件信息  
器件型号  
UCC28630  
UCC28631  
UCC28632  
UCC28633  
UCC28634  
封装  
封装尺寸  
针对笔记本电脑、游戏机和打印机的交流-直流适配  
针对工业、打印机、大型家电和 LCD 显示器的开  
放式结构开关模式电源 (SMPS)  
SOIC (7)  
4.90mm x 3.90mm  
针对 10W 65W 标称功率的高能效交流-直流电  
源,(具有高达 200% 的瞬态峰值功率)  
简化电路原理图  
典型应用测得的稳压  
21  
VOUT  
VAC  
20.5  
20  
EMC  
Filter  
19.5  
19  
+5% Limit  
115V/60 Hz  
230V/50 Hz  
œ5% Limit  
± 1% Typical  
18.5  
18  
1
2
3
4
VSENSE  
SD  
HV  
8
0
10  
20  
30  
40  
50  
60  
70  
UCC28630  
to  
CS  
VDD  
6
5
Output Power (W)  
C001  
GND  
DRV  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLUSBW3  
 
 
 
 
 
 
 
 
 
 
 
 
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 52  
Applications and Implementation ...................... 53  
9.1 Application Information............................................ 53  
9.2 Typical Application ................................................. 53  
9.3 Dos and Don'ts........................................................ 73  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 3  
Device Comparison Table..................................... 5  
Pin Configuration and Functions......................... 5  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings.............................................................. 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 7  
7.5 Electrical Characteristics........................................... 8  
7.6 Typical Characteristics............................................ 10  
Detailed Description ............................................ 13  
8.1 Overview ................................................................. 13  
8.2 Functional Block Diagram ....................................... 14  
8.3 Feature Description................................................. 15  
9
10 Power Supply Recommendations ..................... 73  
11 Layout................................................................... 74  
11.1 Layout Guidelines ................................................. 74  
11.2 Layout Example .................................................... 75  
12 器件和文档支持 ..................................................... 76  
12.1 ....................................................................... 76  
12.2 静电放电警告......................................................... 76  
12.3 Glossary................................................................ 76  
12.4 器件支持................................................................ 76  
12.5 文档支持................................................................ 76  
13 机械、封装和可订购信息....................................... 77  
8
2
版权 © 2014–2017, Texas Instruments Incorporated  
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
4 修订历史记录  
Changes from Revision C (March 2015) to Revision D  
Page  
已添加 UCC28634 初始发行版。............................................................................................................................................ 1  
已删除 删除了文本适用于 65W 标称功率设计”...................................................................................................................... 1  
已添加 添加了文本“PSR 设计不包含光耦合器 - 可达到 CM 隔离和浪涌的高要求” ................................................................ 1  
已添加 添加了文本用于开环反馈故障条件下独立间接输出过压的 VDD OVP” ...................................................................... 1  
已添加 Webench 链接......................................................................................................................................................... 1  
已添加 添加了文本请参阅《器件比较表》以了解各器件间的具体差异” ............................................................................... 1  
已添加 向器件信息表中添加了 UCC28634.......................................................................................................................... 1  
Added UCC28634 to the Device Comparison Table.............................................................................................................. 5  
Added UCC28634 to Thermal Information ............................................................................................................................ 7  
Added UCC28634 to Electrical Characteristics...................................................................................................................... 8  
Added UCC28634 to Electrical Characteristics...................................................................................................................... 8  
Changed picture to represent added UCC28634 ................................................................................................................ 10  
Added UCC28634 ............................................................................................................................................................... 13  
Added UCC28634 ............................................................................................................................................................... 15  
Added UCC28634 ............................................................................................................................................................... 16  
Changed to correct picture link ............................................................................................................................................ 19  
Changed to fix equation typo ............................................................................................................................................... 21  
Added UCC28634 ............................................................................................................................................................... 41  
Changed to correct typo ...................................................................................................................................................... 41  
Changed to correct typo, changed from 4.7 to 47 ............................................................................................................... 41  
Added paragraph to clarify the fault protection. .................................................................................................................. 41  
Added UCC28634 ............................................................................................................................................................... 42  
Added text "For UCC28634, all pin-faults are non-latching." .............................................................................................. 43  
Added UCC28634 to the table ............................................................................................................................................ 52  
Changed equation to fix typo ............................................................................................................................................... 67  
Changes from Revision B (March 2014) to Revision C  
Page  
Changed "No" to "Yes" in Device Comparison Table for Part# UCC28633D, "ACTIVE-X CAPACITOR DISCHARGE"  
column .................................................................................................................................................................................... 5  
Changed "Handling Ratings" table to "ESD Ratings" table. Moved Storage Temperature and Lead Temperature to  
Abs Max Ratings table. .......................................................................................................................................................... 6  
Revised Figure 40 ............................................................................................................................................................... 47  
Changes from Revision A (January 2014) to Revision B  
Page  
已添加 向数据表中添加了 UCC28631UCC28632 UCC28633 器件。............................................................................ 1  
已添加 添加了 UCC28630 UCC28633 的有源 X 电容器放电功能参考。 .......................................................................... 1  
已添加 添加了可调节恒定电流 (CC) 模式限制项目符号...................................................................................................... 1  
已添加 添加了 UCC28630(仅限)的过载计时器参考。........................................................................................................ 1  
已添加 添加了频率抖动以轻松符合 EMI 标准(UCC28632 除外)。 .................................................................................... 1  
已添加 向器件信息部分中添加了 UCC28631DUCC28632D UCC28633D................................................................. 1  
Added Device Comparison Table........................................................................................................................................... 5  
Added UCC28632 Frequency dither range exception. .......................................................................................................... 8  
Added UCC28632 Dither repetition period exception. ........................................................................................................... 8  
版权 © 2014–2017, Texas Instruments Incorporated  
3
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
Added UCC28633 Wake-up level (rising) exception. ............................................................................................................. 8  
Added UCC28633 SD VWAKE(rise) vs. Temperature exception............................................................................................... 12  
Added text to the, "The controller operates in either DCM and CCM..." paragraph. .......................................................... 13  
Changed the "Supply the device bias power during latched fault mode" bullet................................................................... 15  
Added UCC28630 and UCC28633 only exception to the "AC sense input for X-capacitor discharge detect" bullet. ......... 15  
Changed HV Pin Connection diagram. ............................................................................................................................... 15  
Added sentence, "In the UCC28631 and the UCC28632, the HV pin can connect to either the AC or DC side of the  
bridge.".................................................................................................................................................................................. 16  
Added VIN(avg) definition. ................................................................................................................................................... 16  
Added (UCC28630 and UCC28633 only) to the Active X-Capacitor Discharge section...................................................... 19  
Added UCC28633 to the Improved Performance with UCC28630 section.......................................................................... 20  
Added UCC28631, UCC28632 and the UCC28633 IOUT(lim) adjustment note. .................................................................... 37  
Added UCC28630 only note to the Primary-Side Overload Timer section. ......................................................................... 38  
Added UCC28630 only note added to the Overload Timer Adjustment section. ................................................................ 40  
Added CC-Mode IOUT(lim) Adjustment section. ...................................................................................................................... 41  
Added UCC28631, UCC28632 and the UCC28633 to the Fault Sources and Associated Responses table. .................... 42  
Added The fault response (latching or auto recovery) depends on the device variant, per Table 4. ................................. 44  
Added The fault response (latching or recovery) depends on the device variant, per Table 4. ......................................... 44  
Added UCC28633 exception to the External SD Pin Wake Input section. .......................................................................... 45  
Added External Wake Input at VSENSE Pin (UCC28633 Only) section.............................................................................. 46  
Added UCC28632 exception to the Frequency Dither For EMI section............................................................................... 51  
Added External Wake Pulse Calculation at VSENSE Pin (UCC28633 Only) section.......................................................... 66  
Changes from Original (January 2014) to Revision A  
Page  
已更改 将销售状态从产品预览改为量产数据。....................................................................................................................... 1  
4
Copyright © 2014–2017, Texas Instruments Incorporated  
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
5 Device Comparison Table  
Table 1. Device Comparison Table  
FEATURES  
ACTIVE-X  
CAPACITOR  
DISCHARGE  
ORDER NUMBER  
OVERLOAD  
TIMER  
ADJUSTABLE  
CC LIMIT  
FREQUENCY  
DITHER  
SECONDARY-  
SIDE WAKE UP  
UCC28630D  
UCC28631D  
UCC28632D  
UCC28633D  
UCC28634D  
Yes  
No  
Yes  
No  
No  
No  
No  
No  
Yes  
Yes  
No  
SD Pin  
SD Pin  
Yes  
Yes  
Yes  
Yes  
No  
SD Pin  
Yes  
No  
Yes  
Yes  
VSENSE Pin  
SD Pin  
6 Pin Configuration and Functions  
7-Pin SOIC  
Package D  
(Top View)  
VSENSE  
1
2
3
4
8
HV  
SD  
CS  
6
5
VDD  
DRV  
GND  
PIN Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
CS  
NO.  
3
I
Current sense input  
DRV  
GND  
HV  
5
O
G
P
I
Output drive pin for the external flyback MOSFET  
Ground reference connection for all signals  
4
8
High-voltage connection to the internal high-voltage start-up current source  
SD  
2
Latching fault shutdown input pin. May be connected to an external temperature sensor  
Bias supply input pin to the device. Decoupled with a 1-µF ceramic bypass capacitor,  
connect directly across pins 6-4. Connect an additional hold-up capacitor charged from the  
transformer auxiliary bias winding to this pin.  
VDD  
6
1
P
I
Sense pin for the flyback transformer bias and sense winding for output feedback regulation,  
output OVP, and input voltage sense/UV protection  
VSENSE  
Copyright © 2014–2017, Texas Instruments Incorporated  
5
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings(1)  
over operating junction temperature range (unless otherwise noted)  
MIN  
MAX  
700  
20  
UNIT  
Start-up pin voltage  
Bias supply voltage  
HV  
VDD  
Current sense input  
voltage  
CS  
–0.3  
1.5  
V
VSENSE  
SD  
–0.3  
–0.3  
–40  
-65  
VDD  
VDD  
125  
All other input pins  
Operating junction temperature range, TJ  
Storage temperature, Tstg  
125  
°C  
Lead temperature  
260  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. Exposure to absolute-  
maximum-rated conditions for extended periods may affect device reliability. These are stress ratings only and functional operation of  
the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. All voltages  
are with respect to GND. These ratings apply over the junction operating temperature ranges unless otherwise noted.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(2)  
±2000  
V(ESD)  
Electrostatic discharge(1)  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(3)  
±500  
(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges  
into the device.  
(2) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions. Pins listed as ±2000 V may actually have higher performance.  
(3) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions. Pins listed as ±500 V may actually have higher performance.  
7.3 Recommended Operating Conditions  
over operating junction temperature range (unless otherwise noted)  
MIN  
0
NOM  
MAX  
1.0  
UNIT  
V
CS input  
All other inputs (except HV, CS)  
SD pin external capacitance  
0
VDD  
1
0
nF  
RHV, external resistor on HV pin, see Figure 15  
RP, external pull-up resistor on VSENSE pin, see Figure 21  
180  
3.8  
200  
3.9  
220  
4.0  
kΩ  
6
Copyright © 2014–2017, Texas Instruments Incorporated  
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
7.4 Thermal Information  
UCC28630  
D
UCC28631  
D
THERMAL METRIC(1)  
UNIT  
7 PINS  
128.5  
57.3  
7 PINS  
128.5  
57.3  
θJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
θJCtop  
θJB  
83.4  
83.4  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
12.3  
12.3  
ψJB  
82.1  
82.1  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
UCC28632  
D
UCC28633  
D
UCC28634  
D
THERMAL METRIC(1)  
UNIT  
7 PINS  
128.5  
57.3  
7 PINS  
128.5  
57.3  
7 PINS  
128.5  
57.3  
θJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
θJCtop  
θJB  
83.4  
83.4  
83.4  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
12.3  
12.3  
12.3  
ψJB  
82.1  
82.1  
82.1  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
Copyright © 2014–2017, Texas Instruments Incorporated  
7
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
7.5 Electrical Characteristics  
over operating junction temperature range (unless otherwise noted) and VDD = 12 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
START-UP CURRENT SOURCE  
VDD pin short-circuit charging  
current  
IVDD0  
IVDD1  
ILEAK  
VDD = 0.2 V, VHV = 100 V  
VDD = 11.9 V, VHV = 100 V  
0.6  
1.1  
0.9  
4.0  
0.1  
1.2  
7.6  
0.5  
mA  
mA  
μA  
VDD pin final charging current  
VDD = 18 V, VHV = 100 V HV,  
current source off, TA = 25°C  
HV current source leakage current  
SUPPLY VOLTAGE MONITORING  
VDD(start)  
VDD start-up voltage  
VDD increasing  
13.00  
7.3  
14.75  
8.0  
16.50  
8.5  
V
V
VDD minimum operating voltage  
after start-up  
VDD(stop)  
VDD decreasing after start-up  
VDD(hyst)  
VDD(reset)  
VDD start – VDD stop level  
VDD reset restart level  
6.5  
5.0  
V
V
3.5  
6.5  
VDD increasing after start-up,  
UCC28630, UCC28631, UCC28632,  
UCC28633  
16.5  
17.5  
18.3  
V
VDD(ovp)  
VDD over-voltage protection level  
VDD increasing after start-up,  
UCC28634 only  
14.0  
6.0  
14.85  
9.0  
15.55  
13.0  
110  
V
(1)  
Supply current during normal  
operation  
VSENSE = 0.45 V, CS = 0 V See  
CLOAD = 700 pF on DRV  
IDD(run)  
mA  
μA  
Supply current during sleep mode,  
between switching pulses  
VSENSE = 8.0 V, VCS = 1.0 V, light-  
load mode at 200 Hz, TA = 25°C  
IDD(sleep)  
90  
OSCILLATOR  
fSW(max)  
fSW(min)  
DMAX  
Maximum switching frequency  
VSENSE = 0.45 V, VCS = 0 V  
110  
120  
0.20  
70%  
600  
130  
kHz  
kHz  
VSENSE = 8.0 V, VCS = 1.0 V, light-  
load mode  
Minimum switching frequency  
Maximum Duty Cycle  
Minimum On time  
0.18  
0.22  
VSENSE = 0.45 V, VCS = 0 V  
VSENSE = 8.0 V, VCS = 1.0 V, light-  
load mode  
tON(min)  
550  
650  
ns  
fSW(dith)  
tDITH  
Frequency dither range  
Dither repetition period  
Except UCC28632  
Except UCC28632  
± 6.7%  
6.0  
ms  
SHUTDOWN (SD) PIN (EXTERNAL FAULT INPUT)(2)  
(2) (3) (4)  
IPULLUP  
Internal pull-up current source  
See  
See  
,
,
185  
3.2  
210  
3.5  
235  
3.8  
µA  
V
(2) (3)  
,
,
(4) , UCC28630,  
UCC28631, UCC28632,UCC28633  
VTRIP(rise)  
Fault ok level (rising)  
(2) (3)  
See  
See  
See  
See  
,
,
(4) , UCC28634 only  
2.2  
1.7  
2.5  
2.00  
1.5  
2.8  
2.3  
V
V
(2) (3) (4)  
VTRIP(fall)  
Fault trip level (falling)  
,
,
(2) (3) (4)  
VTRIP(hyst)  
,
,
,
V
(2) (3)  
VWAKE(rise) Wake-up level (rising)  
tWAKE Wake delay time  
(1) CLOAD = 700 pF included on DRV pin.  
,
(4)Except UCC28633  
1.8  
2.2  
2.6  
V
Delay to first DRV pulse  
10  
µs  
(2) The SD pin functions as an NTC input pin (with internal pull-up) during normal operation. The internal pull-up is clamped to 4 V. At start-  
up, the external temperature sensor (NTC) must be cool enough that the SD pin pulls up above the VTRIP(rise) start level. After start-up, if  
this pin is pulled below VTRIP(fall) level, this activates external over-temperature shut-down.  
(3) During low power modes (when FSW < FSMP(max)), the internal SD pin pull-up is disabled, and the pin functions as a transient wake-up  
input. In this case, if the pin is raised above VWAKE(rise) level, the device wakes from low power sleep mode (rather than waiting for the  
scheduled timer-based wake). This is useful for applications that require a response to load transients from zero or near-zero load,  
where a wake-up signal can be appropriately coupled to the SD pin from the secondary-side.  
(4) A decoupling capacitor on the SD pin should not be required; if used, it must not exceed 1 nF.  
8
Copyright © 2014–2017, Texas Instruments Incorporated  
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
Electrical Characteristics (continued)  
over operating junction temperature range (unless otherwise noted) and VDD = 12 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VSENSE Pin (MAGNETIC SENSE)  
Required positive voltage at  
VSENSE pin during off-time (at  
25°C)  
Internal output voltage sense  
reference level  
VOUT(ref)  
7.425  
7.500  
7.575  
V
tOUT(smp)  
VOUT(ovp)  
Vsense sample delay for VOUT  
Measured w.r.t. DRV falling edge  
1.7  
µs  
Internal output voltage sense OVP  
level  
Measured w.r.t. regulation level,  
tracking  
120%  
CURRENT SENSE (CS) Pin  
VCS(max)  
VCS(min)  
VSLOPE  
Peak CS pin voltage level  
At maximum modulator demand  
At minimum modulator demand  
800  
172  
30  
mV  
mV  
Peak CS pin voltage level  
Slope compensation ramp  
mV/µs  
OVER TEMPERATURE PROTECTION  
Thermal protection shutdown  
temperature  
Default internal setting, latch-off  
protection  
TEMPTRIP  
125  
°C  
°C  
TEMPHYST Thermal protection hysteresis  
10  
GATE DRIVE OUTPUT (DRV)  
ROH  
ROL  
High level source resistance  
Low level sink resistance  
IOH = 100 mA  
IOL = –100 mA  
22  
35  
Ω
Ω
1.2  
2.5  
Copyright © 2014–2017, Texas Instruments Incorporated  
9
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
7.6 Typical Characteristics  
1
0.995  
0.99  
4
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3
0.985  
0.98  
0.975  
0.97  
0.965  
0.96  
0.955  
0.95  
0
50  
100  
150  
0
50  
100  
150  
œ50  
œ50  
Temperature (°C)  
Temperature (°C)  
C002  
C003  
Figure 1. IVDD0 Charging Current vs. Temperature  
Figure 2. IVDD1 Charging Current vs. Temperature  
12  
14.9  
11.5  
11  
10.5  
10  
9.5  
9
14.85  
14.8  
14.75  
14.7  
8.5  
8
14.65  
14.6  
7.5  
7
0
50  
100  
150  
0
50  
100  
150  
œ50  
œ50  
Temperature (°C)  
Temperature (°C)  
C004  
C005  
Figure 3. IDD(run) Current vs. Temperature  
Figure 4. VDD(start) Threshold vs. Temperature  
8.2  
8.15  
8.1  
1.036  
1.03  
1.024  
1.018  
1.012  
1.006  
1
8.05  
8
7.95  
7.9  
0.994  
0.988  
0.982  
0.976  
0.97  
7.85  
7.8  
7.75  
7.7  
0
50  
100  
150  
œ50  
-50  
0
50  
100  
150  
Temperature (°C)  
C006  
Temperature (oC)  
D001  
Figure 5. VDD(stop) Threshold vs. Temperature  
Figure 6. Normalized VDD(ovp) Threshold vs. Temperature  
10  
Copyright © 2014–2017, Texas Instruments Incorporated  
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
Typical Characteristics (continued)  
5
4.95  
4.9  
7.6  
7.58  
7.56  
7.54  
7.52  
7.5  
4.85  
4.8  
4.75  
4.7  
7.48  
7.46  
7.44  
7.42  
7.4  
4.65  
4.6  
4.55  
4.5  
0
50  
100  
150  
0
50  
100  
150  
œ50  
œ50  
œ50  
œ50  
Temperature (°C)  
Temperature (°C)  
C008  
C009  
Figure 7. VDD(reset) Threshold vs. Temperature  
Figure 8. VOUT(ref) vs. Temperature  
122  
121  
120  
119  
118  
117  
116  
115  
205  
204  
203  
202  
201  
200  
199  
198  
197  
196  
195  
0
50  
100  
150  
0
50  
100  
150  
œ50  
Temperature (°C)  
Temperature (°C)  
C010  
C011  
Figure 9. FSW(max) vs. Temperature  
Figure 10. FSW(min) vs. Temperature  
1.02  
1.015  
1.01  
1.005  
1
212  
211  
210  
209  
208  
207  
0.995  
0.99  
0.985  
0.98  
0
50  
100  
150  
0
50  
100  
150  
œ50  
Temperature (°C)  
Temperature (°C)  
C012  
C013  
Figure 11. DRV Programming Current Measure vs.  
Temperature  
Figure 12. SD Pull-Up vs. Temperature  
Copyright © 2014–2017, Texas Instruments Incorporated  
11  
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
2.04  
2.25  
2.23  
2.21  
2.19  
2.17  
2.15  
2.02  
2
1.98  
1.96  
1.94  
1.92  
1.9  
0
50  
100  
150  
0
50  
100  
150  
œ50  
œ50  
Temperature (°C)  
Temperature (°C)  
C014  
C015  
Figure 13. SD VTRIP(fall) vs. Temperature  
Figure 14. SD VWAKE(rise) vs. Temperature  
(except UCC28633)  
12  
Copyright © 2014–2017, Texas Instruments Incorporated  
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
8 Detailed Description  
8.1 Overview  
The UCC28630, UCC28631, UCC28633, UCC28633 and UCC28634 family of devices are highly-integrated,  
primary-side-regulated (PSR) flyback controllers. The device supports magnetically-sensed output voltage  
regulation via the transformer bias winding. This feature eliminates the need for a secondary-side reference,  
error amplifier and opto-isolator. The device employs an advanced internal control algorithm that offers accurate  
static output voltage regulation against line and load. The fixed-point, magnetic-sampling scheme allows  
operation in both continuous conduction mode (CCM) and discontinuous conduction mode (DCM). Additionally,  
the device achieves accurate constant-current (CC) control of the output current limit using only primary-side,  
current sensing. Uniquely, this CC function operates seamlessly as the operating mode changes between DCM  
and CCM operation.  
The controller includes an internal, high-voltage (HV) start-up current-source, and employs low-power sleep  
modes and switching frequency reduction, to improve light-load efficiency and standby power. The device  
typically achieves standby power levels between 0.05% and 0.1% of peak output power.  
The controller operates in either DCM and CCM, using a mix of peak current-mode PWM (AM) and switching-  
frequency modulation (FM) schemes. The control approach improves performance (efficiency, size and cost) and  
can reduce transformer size and cost by allowing operation in CCM with FM during peak overload conditions.  
Extensive protection features are incorporated, including output overvoltage protection (OVP), bias rail  
overvoltage and undervoltage (OV/UV), active X-capacitor discharge, line undervoltage and brownout protection,  
overcurrent overload timer, open- and short-circuit pin protections, peak current adjustment with line and  
frequency dither for system EMI reduction. The various devices in the UCC2863x family offer a different mix of  
features to suit a wide range of applications and requirements.  
Copyright © 2014–2017, Texas Instruments Incorporated  
13  
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
8.2 Functional Block Diagram  
+
VREF x 120%  
OVP Fault  
VREF  
tSMP1  
CV Demand  
+
+
Voltage Loop  
Compensation  
VO  
tSW  
VO Sample  
tSMP2  
Min  
Demand  
FM + AM  
Modulator  
ILIM x VO  
8
VSENSE  
1
2
3
4
HV  
PLIM  
Sleep Timer  
Current Loop  
Compensation  
IPK(dem)  
VIN  
PIN Compute  
PIN=(VIN x ISW(MID))x(tON/tSW  
VIN Sample  
CC Demand  
OCP Fault  
)
PIN  
n
Timing and  
Trigger  
Generation  
tSMP,n  
tON(min)  
tON(max)  
/
Overload Timer  
tSW  
tON  
ISW(mid)  
tSW  
tON  
VO  
VAC(min)  
+
Line UV Fault  
SD Fault  
Line UV Fault  
SD Fault  
SD  
JFET Control  
Fault Filtering and  
Status Monitor  
OVP Fault  
OCP Fault  
+
VDD OV Fault  
VDD UV Fault  
Start-Up and  
Bias Control  
PWM Enable  
tSMP4  
VTRIP(sd)  
IDD(LIMIT)  
and  
IHV(MEAS)  
Over-Temp Fault  
X-Cap Fault  
tSMP3  
Isw  
Sample  
VDD OV Fault  
VDD UV Fault  
VVDD(ov)  
+
+
CS  
VDD  
6
JFET Control  
IHV(meas)  
X-Cap Fault  
X-Cap Discharge  
Detect  
VDD  
Internal  
Temp  
VVDD(uv)  
Sensor  
PWM Enable  
Q
Over-Temp Fault  
+
tSW  
VTRIP(TEMP)  
S
GND  
5
DRV  
+
tON  
R
IPK(dem)  
PWM  
Comparator  
tON(max)  
tON(min)  
14  
Copyright © 2014–2017, Texas Instruments Incorporated  
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
8.3 Feature Description  
The application designer requires some key device internal parameters in order to calculate the required power  
stage components and values for a given design specification. Table 7 summarizes the key parameters.  
8.3.1 High-Voltage Current Source Start-Up Operation  
The controller includes a switched, high-voltage, current source on the HV pin to allow fast start-up, and  
eliminates the static power dissipation in a conventional resistive start-up approach. This feature reduces standby  
power consumption.  
The HV pin has three major functions:  
Supply the device start-up current  
Supply the device bias power during latched fault mode  
AC sense input for X-capacitor discharge detect (UCC28630 and UCC28633 only)  
The UCC28630 and UCC28633 input supply to the HV start-up pin must be connected to the AC side of the  
bridge rectifier as shown in Figure 15, in order to support X-capacitor discharge. More details are given in Active  
X-Capacitor Discharge (UCC28630 and UCC28633 only), below. Connection to the AC side of the bridge also  
allows faster detection of AC mains removal under latched fault conditions, allowing prompt reset of latched  
faults for fast restart.  
EMC  
Filter  
EMC  
Filter  
VAC  
VAC  
RHV  
1
2
3
4
VSENSE  
SD  
HV  
8
1
2
3
4
VSENSE  
SD  
HV  
8
RHV  
UCC2863X  
UCC2863X  
CS  
VDD  
6
5
CS  
VDD  
6
5
GND  
DRV  
GND  
DRV  
(a) AC-side  
(b) DC-side  
Figure 15. HV Pin Connection: (a) AC-side, (b) DC-side (UCC28631, UCC28632 and UCC28634 only)  
Copyright © 2014–2017, Texas Instruments Incorporated  
15  
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
Feature Description (continued)  
In the UCC28631, UCC28632 and UCC28634, the HV pin can connect to either the AC or DC side of the bridge.  
The addition of the 200-kΩ external HV resistance (required for X-capacitor discharge sensing) limits the  
available charging current for the external bias supply input capacitor. However, for typical values of between 22  
µF and 33 µF of input capacitance, start-up bias times of less than 1.5 s are achievable at 90 VAC. Start-up time  
can be estimated using Equation 1.  
6
:
;
). °∂ß  
¥
34!24 = 2(6 × #6$$ × ¨ÆF  
G
6
F 6$$ ≥¥°≤¥_≠°∏  
: ;  
:
;
). °∂ß  
where  
ꢁ × ꢁ  
¾
6).(°∂ßꢀ = 62-3 ×  
N
for AC connection and VIN(avg) = VRMS x 2 for DC connection  
(1)  
For 90 VAC, if CVDD = 22 µF and worst case VDD(start_max) = 16.5 V, then tSTART is 1.002 s.  
Figure 16 illustrates the start-up behavior of the controller. The HV current source has built-in short-circuit  
protection that limits the initial charge current out of the bias voltage pin until the bias voltage reaches VDD(sc)  
.
This limits the power dissipated in the HV current source in the event of a short circuit on the VDD pin.  
Thereafter, the HV current source switches to full available current. The controller remains in a low-power, start-  
up mode until the bias voltage reaches VDD(start), after which the HV current source is turned off and the controller  
initiates a start-up sequence.  
16  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
Feature Description (continued)  
The bias voltage decays during the start-up sequence at a rate dependent on the size of the energy storage  
capacitor connected to the VDD pin. The VDD storage capacitor must be sized appropriately to ensure adequate  
energy storage to supply both the controller bias power and MOSFET drive power during start-up, until the VDD  
rail can be supplied through the transformer bias winding. If the bias voltage falls below VDD(stop) (due to bias  
winding fault or an inadequate VDD storage capacitance), the controller stops switching, and transitions into low-  
power mode for a time delay of tRESET(long), or until the bias voltage falls to the VDD(reset) level, whichever is  
shorter. See VDD Capacitor Selection for required VDD capacitor sizing. Once the time delay elapses, the bias  
voltage rapidly discharges to the VDD(reset) level, followed by turn-on of the internal HV current source, and a  
normal restart attempt follows.  
VDD charge current is limited for  
VDD < 1.0 V (Short circuit protection)  
VDD(start)  
VDD(stop)  
Rectified bias winding voltage increases with  
soft-start, must exceed falling level on bias  
capacitor before reaching VDD(stop) threshold  
Controller OFF  
Controller ON  
HV Current Source OFF  
HV Current Source ON  
Device Start Up  
Normal Operation  
Soft Start  
Figure 16. Normal Start-Up Sequence,  
(assuming VAC > UV start threshold)  
Copyright © 2014–2017, Texas Instruments Incorporated  
17  
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
Feature Description (continued)  
8.3.2 AC Input UVLO / Brownout Protection  
At start-up, once the VDD pin has reached the VDD(start) level, the internal start-up current source is turned off.  
The controller tests the voltage across the bulk capacitor to determine if the level is high enough to allow the  
power stage to start, if it has exceeded the rising ACON level. Because there is no load across the bulk capacitor  
at this stage, the bulk voltage can be used as a proxy for the peak of the AC line. In order to measure the bulk  
voltage in a low-loss fashion, the controller generates a sequence of three exploratory switching pulses at a  
frequency of fSW(uv), at minimum peak-current demand level VCS(min) to avoid audible noise, and to deliver  
minimum energy to the output of the power stage.  
Based on the magnetic sampling information determined via the bias winding during these switching pulses, if  
the output voltage is greater than the output overvoltage threshold, the pulsing stops immediately, and the  
controller transitions into latched-fault mode. If, however, there is no overvoltage condition detected at the output,  
the pulse-set completes. If the sensed line voltage is above the line ACON start threshold, then the controller  
starts up normally, and begins to generate the PWM drive pulses that charge and regulate the output voltage.  
Alternatively, if the sensed bulk level is below the ACON threshold, then the controller enters low power mode for  
the reset period (tRESET(short)). It then depletes the VDD rail to the VDD(reset) level. At this point, the start-up  
sequence repeats, and the device generates another set of exploratory switching pulses. This sequence repeats  
indefinitely until the AC input is increased to a sufficient level that the bulk voltage exceeds the ACON level.  
VAC(on) threshold  
VBULK  
VAC rectified  
VDD(start)  
VDD(stop)  
VDD  
tRESET(short)  
VDD(reset)  
DRV Terminal  
Line UV check  
exploratory pulses  
Line UV check  
exploratory pulses  
Normal PWM  
Apply AC  
tONUV(max) at fSW(uv)  
tONUV(max) at fSW(uv)  
Normal PWM soft-  
start  
Figure 17. AC Input UVLO Detection and Start Up  
Once started, the controller regularly monitors the bulk capacitor voltage. Because the ripple on the bulk  
capacitor depends on the load level, the device determines the maximum bulk level every 11 ms (approprite for  
minimum AC frequency of 47 Hz), so the AC peak can be determined. The controller provides input undervoltage  
protection based on the sensed AC peak level. Once the peak drops below the ACOFF level for the delay period  
(tUV(delay)), the PWM switching halts, and the controller enters low-power mode for the reset period (tRESET(short)).  
The device then discharges the bias voltage to the VDD(reset) level, followed by a restart sequence. The controller  
cycles through the ACON, monitoring (detailed above) indefinitely until the AC input again rises above the ACON  
level.  
18  
Copyright © 2014–2017, Texas Instruments Incorporated  
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
Feature Description (continued)  
8.3.3 Active X-Capacitor Discharge (UCC28630 and UCC28633 only)  
Safety standards such as EN60950 require that any X-capacitors in EMC filters on the AC side of the bridge  
rectifier quickly discharge to a safe level when AC is disconnected. This discharge requirement ensures that any  
high-voltage level present at the pins of the AC plug does not present an electric shock hazard. The standards  
require that the voltage across the X-capacitor decay with a maximum time constant of 1 second. Typically, this  
requirement is achieved by including a resistive discharge element in parallel with the X-capacitor. However, this  
resistance causes a continuous power dissipation that impacts the standby power performance. The power  
dissipation in the discharge resistors depends on the X-capacitor value. Assuming that the discharge resistor  
meets the 1-second time-constant requirement, (in other words, the R-C product is 1 second) the dissipation is  
described in Equation 2.  
0 = 62 × #8  
8
!#  
(2)  
Thus at 230 VAC, the discharge resistor causes 5.3-mW dissipation for every 100 nF of X-capacitance – for a  
typical 470-nF X-capacitor value, that causes 25 mW to be lost in the discharge resistors.  
The safety standard does not mandate that the X-capacitor is fully discharged to zero within one second. It  
simply requires the discharge rate to exhibit a 1-s time constant. Figure 18 shows the discharge characteristic  
(for a 1-s discharge time constant) versus time, for disconnection at the peak of 90 VAC, 115 VAC, 230 VAC and  
264 VAC. For AC inputs above 115 VAC, with 1-s discharge time constant, the voltage does not drop below the  
Safety-Extra-Low-Voltage (SELV) 60-V level until 1 s or longer. In fact, at 264 VAC, 1.83 seconds elapse before  
reaching 60 V.  
400  
V_SELV  
350  
300  
250  
200  
150  
100  
50  
Xcap_90  
Xcap_115  
Xcap_230  
Xcap_264  
0
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4  
Time (s)  
C016  
Figure 18. X-Capacitor Discharge with 1-s Time Constant, for Various Voltages  
Copyright © 2014–2017, Texas Instruments Incorporated  
19  
 
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
Feature Description (continued)  
8.3.3.1 Improved Performance with UCC28630 and UCC28633  
In order to reduce standby power and eliminate the standing loss associated with the conventional discharge  
resistors, the UCC28630 and the UCC28633 devices incorporate active X-capacitor discharge circuitry. This  
circuit periodically monitors the voltage across the X-capacitor to detect any possible DC-condition (which would  
indicate that AC mains disconnection has occurred), and then discharges the voltage across the X-capacitor  
using the internal HV current source. The X-capacitor discharge function discharges the X-capacitor to the SELV  
60-V level in 1 s (as long as the design considerations discussed in this section are followed).  
The device internally monitors the current into the HV pin to determine if the voltage across the X-capacitor in the  
EMI filter has a sufficient AC ripple component. If insufficient AC content is detected, then a DC condition is  
internally flagged. This causes the controller to enter low-power mode for the reset period (tRESET(short)), followed  
by bias voltage discharge to the reset level (VDD(reset)) , and then the start-up HV current source turns on again to  
effectively discharge the X-capacitor by transferring charge to the VDD reservoir capacitor.  
Because the device monitors the HV pin to detect a DC condition on the X-capacitor, the system cannot operate  
with DC input to the HV pin. Instead, the HV pin must be connected to an AC source only. The device interprets  
any DC input on the HV pin as DC across the X-capacitor, indicating an AC-disconnect event. This causes a  
repeating cycle of start-up and shutdown. The device requires an external 200-kΩ of resistance on the HV pin, to  
limit the current to a level below the saturation point of the internal HV current source. This limit produces a HV  
input current that is approximately proportional to AC line, so that the AC content can be sensed.  
The size of the X-capacitor that can be discharged depends on the VDD energy storage capacitor. Assuming the  
worst case, a maximum X-capacitor disconnect voltage could be at the peak of 264 VRMS, and assuming that it  
should be discharged down to 60-V SELV level, the minimum allowed VDD capacitor can be sized based on the  
worst case VDD(reset) and VDD(start) levels as described in Equation 3.  
6!# ∞´; F 6  
ꢀ7ꢀ F ꢁ0  
1ꢀ.0 F ꢁ.5  
:
3%,6  
#
6$$  
R #8 × F  
G = #8 × l  
p = #8 × (4ꢂ.15)  
6$$ ≥¥°≤¥ _≠©Æ ; F 6  
:
:
;
$$ ≤•≥•¥ _≠°∏  
(3)  
For example, for a 330-nF X-capacitor value, the required VDD capacitor is 15.9 µF, so a 22-µF capacitor  
suffices.  
: ;  
R 330 Æ& × 48.15 = 15.9 J&  
#
6$$  
(4)  
In order to reduce the power consumption from the high voltage AC line, the device pulses current into the HV  
pin at a low frequency with very low duty-cycle. The HV current source on-time (tON(HV)) , repeats at intervals of  
tSMP(HV). Moreover, the pulsing occurs in bursts, with a time delay between bursts. The sampling occurs in bursts  
of 21, at intervals of tSMP(HV), with a wait time of tWAIT(HV) between bursts. This reduces the effective average duty-  
cycle to a very low value (approximately 0.2%), and minimizes the overhead of X-capacitor sampling current and  
device bias consumption overhead to approximately 2 mW of extra standby consumption at high-line 230 VAC  
.
The device enables the X-capacitor monitor in latched fault mode, and in light-load regions where the power level  
is below PLL(%), as a percentage of the nominal rated level. Above the PLL(%) level, the X-capacitor monitor is  
disabled. At this load level the bulk capacitor discharges at a rate that is sufficient to also discharge the X-  
capacitor, which appears in parallel with the bulk capacitor once the bulk voltage drops far enough to forward  
bias the bridge rectifier diodes. In this case ensure that the bulk capacitance value is not too large for the power  
level desired, which in-turn ensures that the bulk capacitor discharge rate is fast enough to discharge the X-  
capacitor to meet the 1-s discharge target. This can be calculated in Equation 5.  
0./- × 0  
2 l  
,,% p ×¥8#!0(§©≥)  
D
#
"5,+  
Q
k6!#(∞´)2 F 63ꢀ,62o  
(5)  
20  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
Feature Description (continued)  
Assuming a worst case AC disconnect at the peak at 264 VRMS (373 VPK), and a requirement to discharge to  
SELV level of 60 V in tXCAP(dis) of 1 s, for a PNOM of 65 W at 87% efficiency, this is calculated in Equation 6.  
:
;
6ꢀ × 0.12ꢀ  
2 × d  
h × 1  
0.87  
#
"5,+  
Q
Lsuz J&  
2
2
:
;
373 F 60  
(6)  
Once the bulk capacitance value is chosen, also ensure that when the bulk capacitor has been discharged down  
to the line UV ACOFF threshold, that it continues to discharge to an acceptable level during the line UV  
persistence delay time (tUV(delay)) as shown in Equation 7.  
PNOM ì PLL%  
2ì  
ì t  
÷
UV(delay )  
«
CBULK  
Ç
2ì ACOFF2 - V  
2
SELV  
(7)  
(8)  
Again, taking the example above:  
:
;
6ꢀ × 0.12ꢀ  
2 × l  
p × 0.04  
0.87  
#"5,+ Q  
Lswv J&  
2
2
:
;
2 × 6ꢀ F 60  
Once the first constraint is satisfied, the second one is also automatically met.  
Figure 19. X-Capacitor Discharge Activation, at 230 VAC, No Load  
(red = X-capacitor, blue = bulk-capacitor, both 100 V/div)  
Copyright © 2014–2017, Texas Instruments Incorporated  
21  
 
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
Feature Description (continued)  
Figure 20. X-Capacitor Decay Rate Without Active Discharge  
(time constant dominated by 20-MΩ probe impedance)  
(red = X-capacitor, blue = bulk-capacitor, both 100 V/div)  
22  
Copyright © 2014–2017, Texas Instruments Incorporated  
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
Feature Description (continued)  
8.3.4 Magnetic Input and Output Voltage Sensing  
A sense winding on the transformer is used to measure the input voltage and output voltage of the power stage.  
This winding is typically the converter bias winding. The sense winding should be interfaced to the VSENSE pin  
as shown in Figure 21. This interface requires that the voltage across the winding be scaled with a resistor  
divider RA / RB, and then offset with a switched, pull-up resistor RP (in series with a diode) connected to the gate  
drive pin DRV.  
5
DRV  
VF  
RA  
RB  
RP  
NB  
VSENSE  
1
Figure 21. VSENSE Pin Interface Arrangement  
During the off-time portion of the switching cycle (also referred to as the flyback interval), the resistor divider (RB /  
(RA + RB)) scales the positive voltage swing at the VSENSE pin for output voltage regulation, as shown in  
Figure 22. During this interval, since the DRV output is low, the diode in series with RP is reverse-biased, and so  
RP is out-of-circuit.  
VO x (NB/NS)  
RA  
VSENSE = VO x K1  
GND  
NB  
VO x K1  
VIN x (NB/NP)  
RB  
Figure 22. VOUT Sense Using the Positive Swing on the Sense Winding  
Copyright © 2014–2017, Texas Instruments Incorporated  
23  
 
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
Feature Description (continued)  
During the on-time portion of the switching cycle, when the DRV pin goes high (should swing very close to the  
value at the VDD pin), the switched pull-up RP allows the negative swing on the winding to be level-shifted  
positive, and thus also be sensed at the VSENSE pin, as shown in Figure 23. In this way the bias winding may  
be used to sense both line input voltage and output voltage.  
NOTE  
The input voltage sensed by the transformer bias winding is actually the voltage across  
the bulk capacitor, not the AC input voltage, because the bulk capacitor voltage appears  
across the primary winding when the flyback switch turns on  
Uses of the sensed bulk and output voltages:  
Input AC mains UVLO  
Input brownout  
Line-dependent peak-current adjustment  
Accurate output-current regulation  
Output-voltage regulation  
Output over-voltage protection (OVP)  
5
DRV  
VF  
RP  
VO x (NB/NS)  
RA  
RB  
GND  
NB  
VDRV œ VF œ VIN x K2  
VIN x (NB/NP)  
VVSENSE = VDRV œ VF œ VIN x K2  
Figure 23. Line Input Sense by Offsetting the Negative Swing on the Sense Winding  
In order to protect the VSENSE pin from excessive negative current in the event of a manufacturing fault (such  
as an open circuit on RP), use a series limiting resistor and clamping diode on the VSENSE pin. Combine the  
clamping diode and DRV pull-up diode into a single-package common-cathode diode to reduce the component  
count of the system. This is illustrated in Figure 24.  
RP  
BAV70  
RA  
100  
1
2
3
4
VSENSE  
SD  
HV  
8
UCC28630  
CS  
RB  
VDD  
6
5
NB  
GND  
DRV  
Figure 24. VSENSE Pin Protection and Interface to Bias Winding  
24  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
Feature Description (continued)  
The device continually adjusts the input voltage sample delay, measuring the sample half-way through the on-  
time interval, to ensure the cleanest signal. The device uses same mid-point sample trigger when measuring the  
main MOSFET switch current (ISW). Sampling MOSFET switch current in the middle of the on-time automatically  
measures the average current during the on-time, ISW(on_avg), which is required for the current limit and overload  
timer block.  
The output voltage sample point is always time relative to the turn-off instant. Internally, the device uses the CS  
pin to determine the cycle end, rather than the PWM falling edge on the DRV pin. The device bases this  
determination on the instant that the MOSFET switch current drops below the demanded peak current level  
(IPEAK ) at the peak current mode comparator. Some delay always occurs from the falling edge on DRV to the  
point when the external power MOSFET turns off. This internal timing method ensures a more accurate measure  
of ISW(on_avg), and also ensures that the output voltage sample point is not measured too early, before the leakage  
ringing has subsided. The effect of the gate turn-off delay and the adjustment of the output voltage sample point  
is illustrated in Figure 25.  
IPK(dem)  
Gate turn-off delay  
Current Sense  
PWM Comparator  
PWM drive  
FET Gate  
VO sample  
delay  
Bias Winding  
Time  
Figure 25. VOUT Sample Adjust for External Gate Delay  
Copyright © 2014–2017, Texas Instruments Incorporated  
25  
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
Feature Description (continued)  
The sampling of the input voltage and output voltage signals on the bias winding must be synchronized to the on-  
time and off-time flyback intervals respectively, because the signals occur during only those intervals in the  
switching cycle. Typical waveforms and timing are illustrated in Figure 26.  
More conventional knee-point detection schemes, where the sample is measured at the end of the flyback  
interval when the secondary-side current has decayed to zero, inherently always operate in discontinuous  
conduction mode (DCM). However, the fixed sample-point scheme used on the UCC2863x has the advantages  
of being able to operate in regions of fixed frequency, and being able to operate in continuous conduction mode  
(CCM). Fixed sample-point schemes conventionally suffer poorer regulation than knee-point schemes, because  
there is always current flowing at the sample instant. This current produces a sensing error as a result of the  
voltage drop produced across the secondary-side resistance and leakage inductance. This parasitic voltage drop  
varies with output voltage, line and load, thus influencing the regulation. The UCC2863x devices uses a novel  
internal compensation scheme to adjust for this parasitic voltage drop, and can deliver excellent static line and  
load regulation, even when operating heavily in CCM.  
DRV  
VIN Sample  
VIN sample  
delay  
VO sample  
delay  
VO sample  
Sense Winding  
Primary Current  
Secondary Current  
Time  
Figure 26. VIN and VOUT Sample Trigger Timing  
26  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
Feature Description (continued)  
8.3.5 Fixed-Point Magnetic Sense Sampling Error Sources  
To support operation in CCM, and allow operation at fixed frequency over a large percentage of the load range,  
the UCC2863x uses fixed-point sampling rather than knee-point detection. When conventionally used, fixed-point  
sampling typically suffers from poorer regulation performance. This poor performance results from the voltage  
drops across the secondary-side parasitic resistance RSEC, and the secondary-side leakage inductance from  
secondary-side to bias LLK(sec_bias), as a consequence of the fact that current remains flowing on the secondary-  
side when the device measures the output voltage. As shown in Figure 27, the secondary-side pin voltage that  
gets reflected to the bias winding is detailed in Equation 9.  
63%# = 6/54 + 62%#4 + 62(≥•£) F6 : ; + 62# •≥≤  
: ;  
, ¨•°´  
(9)  
Equation 9 can be expanded and rearranged into Equation 10.  
,
63%# = 6/54 × l1 F ,+(≥•£ ¢©°≥ )p + 62%#4 + )3%# × k23%# + 2# •≥≤;o F k),/!$ × 2# •≥≤;o  
:
:
,
3%#  
(10)  
VRECT  
+
-
+
+
+
VBIAS  
COUT  
VSEC  
-
-
ILOAD  
-
VO  
ISEC  
VR(sec)  
+
RSEC  
+
VRC(esr)  
RC(esr)  
+
-
VLEAK  
LLEAK(sec_bias)  
-
-
Figure 27. Secondary-Side Pin Voltage Contributors with Secondary-Side Current Flow  
Copyright © 2014–2017, Texas Instruments Incorporated  
27  
 
 
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
Feature Description (continued)  
Many elements contribute errors to the sensed secondary-side pin voltage, when measured across the bias  
winding:  
VL(leak): Negative voltage drop across the sec-bias leakage inductance LLK(sec_bias); assuming constant  
regulated output voltage, this voltage drop is fixed constant offset, because VOUT/LSEC is constant as long as  
the output is in regulation.  
VRECT: Positive voltage drop across the output rectifier (assuming use of a conventional diode). This voltage  
drop varies with load current and temperature. However, a constant nominal voltage drop can usually be  
used, because the increasing forward voltage drop with increasing load current is largely cancelled by the  
decrease in forward drop as a result of the temperature rise that results.  
VR(sec): This is the drop across the secondary-side winding resistance. This value depends on loading, and  
varies in proportion to the primary peak current demand that is set by the modulator.  
VRC(esr): This is the drop across the output capacitor equivalent series resistance (esr). This value depends on  
the difference between the secondary-side winding current and the DC load current being drawn.  
Typically, the peak secondary-side winding current ISEC is many times larger than the load current, and the  
secondary-side winding resistance is typically larger than the output capacitor esr. Thus, the last term in  
Equation 10 involving ILOAD can typically be neglected.  
The leakage inductance and secondary-side rectifier terms represent quasi-constant offset terms, so do not  
affect regulation to a significant extent. Thus, the quasi-constant offset terms can be accounted for in the  
calculation of the required scaling resistors to produce the desired setpoint voltage.  
The remaining term that dominates the regulation error in Equation 10 is the drop across the secondary-side  
winding resistance and capacitor esr at the sample instant, {ISEC x(RSEC + RC(esr))}. The controller internally  
adjusts the control loop reference in proportion to the primary peak current demand in order to null the ISEC  
related error term in the sampled bias winding voltage. Since the peak secondary-side current ISEC(pk) is the  
primary peak current IPRI(pk) scaled by the transformer turns ratio, the internal control loop reference effectively  
varies in approximate proportion to ISEC, resulting in dramatically improved regulation performance.  
This improved regulation performance allows the use of primary-side regulation in a wider range of applications,  
and at unprecedented power levels, operating in both CCM and DCM.  
28  
Copyright © 2014–2017, Texas Instruments Incorporated  
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
Feature Description (continued)  
8.3.6 Magnetic Sense Resistor Network Calculations  
Because the device uses the VSENSE pin to measure both VOUT and VIN of the power stage, it is important to  
calculate the resistor values correctly. The step-by-step design process is outlined in this section.  
8.3.6.1 Step 1  
Depending on the power level, choice of transformer size, and required trade-offs between primary MOSFET and  
secondary-side rectifier ratings, the transformer turns NP, NS and NB will be chosen first. The controller can  
support a wide range of turns ratios.  
5
1
DRV  
VF  
RP  
RA  
NB  
VSENSE  
RB2  
RB1  
Figure 28. Practical Magnetic Sense Setup with Extra Resistor RB2 for Setpoint Fine Adjust  
8.3.6.2 Step 2  
Once NP, and NB are known, the required value of RA in Figure 28 is calculated using Equation 11.  
.
2! = 20 × l "p × +,).%  
.
0
(11)  
In this equation, the internal controller gain KLINE is 49.25 (see Table 7 for key internal controller parameters),  
and the internal gains are designed for a fixed value for RP, (i.e. RP MUST be 3.9 kΩ).  
Copyright © 2014–2017, Texas Instruments Incorporated  
29  
 
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
Feature Description (continued)  
8.3.6.3 Step 3  
Once NS, target VOUT, output rectifier drop VRECT, and the secondary-side-to-bias leakage inductance LLK(sec_bias)  
are known, the required value for RB can be calculated. Referring to Equation 10, LLK(sec_bias) can be  
approximated as a percentage of the secondary-side-referred magnetizing inductance LSEC. (See Magnetic  
Sense Resistor Network Selection for details).  
2!  
2" =  
.
.
k6/54 × k1 F %,,+ ≥•£ _¢©°≥ ;o 62ꢁ#4o × @ "A  
:
3
L
F 1M  
6/54 ≤•¶  
:
;
(12)  
In this case, RB may need to be empirically adjusted to achieve the required exact output set-point, especially if  
VRECT varies or is not known precisely. For this reason, it is recommended that RB should be implemented on the  
system PCB as two parallel resistors RB1 and RB2 as shown in Figure 28, to allow easier fine-tuning of set-point.  
For set-point tuning, only RB should be adjusted. RA should never be adjusted, because to do so would affect the  
line sense gain and introduce errors into the line voltage measurement.  
8.3.6.4 Step 4  
Verify that the equivalent Thevenin resistance RTH of the RA/RB combination falls in the required range of 10 kΩ  
to 20 kΩ.  
2! × 2"  
2! + 2"  
10 ´3 O 24( < ꢀ0 ´3  
24(  
=
(13)  
(14)  
If the Thevenin resistance is outside of that range, then the original choice of turns ratio must be adjusted, and  
design steps repeated until a valid value for RTH is determined. This is unlikely to occur in practice, unless an  
extreme turns ratio is chosen. If RTH is outside this range, it triggers the VSENSE pin open or short pin-check at  
start-up.  
30  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
Feature Description (continued)  
8.3.7 Magnetic Sensing: Power Stage Design Constraints  
Because the controller employs fixed-point sampling for output voltage sensing, there are some transformer  
design constraints that must be observed. The minimum magnetizing volt-seconds during the on-time interval  
occurs at the minimum CS pin voltage, VCS(min), under light-load conditions. This minimum should be the case at  
all line voltages, because the controller compensates for line-dependent peak-current overshoot during turn-off  
delay. The choice of transformer turns ratio, transformer inductance (LPRI), and current sense resistance (RCS  
)
must ensure that the corresponding reset volt-seconds during the flyback interval are sufficient that a valid output  
sample is available at the sample point, tOUT(smp). This constraint is summarized in Equation 15.  
6
2#3  
.
1
:
;
#3 ≠©Æ  
3
Q
×
×
: ;  
6/54 + 62%#4  
,
02)  
¥
.
0
:
;
/54 ≥≠∞  
where  
VRECT is the voltage drop across the output rectifier  
(15)  
Additionally, the device requires a minimum on-time, tON(min) , to ensure enough time for the system input voltage  
(VIN) and switch current (ISW ) to be measured. To meet the minimum on-time requirement at maximum line, and  
minimum load, the ratio of current sense resistance (RCS) to transformer inductance (LPRI) must meet the  
constraint shown in Equation 16.  
6#3 ≠©Æ  
2#3  
1
:
;
Q
×
,
02)  
6
¥
:
;
:
/. ≠©Æ  
;
). ∞´ _≠°∏  
(16)  
Equation 15 or Equation 16 sets the limit for the ratio of RCS to LPRI, but both need to be verified. See Typical  
Application for more details.  
Copyright © 2014–2017, Texas Instruments Incorporated  
31  
 
 
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
Feature Description (continued)  
8.3.8 Magnetic Sense Voltage Control Loop  
Because the output voltage feedback is inherently a sampled signal obtained from the bias winding, the internal  
voltage control loop is most naturally implemented digitally. The internal control loop implements the equivalent  
of a PID loop in digital form. Because the output can be sampled only at certain intervals in each switching cycle,  
the sample rate is naturally tied to the switching frequency, and the sample rate increases with increasing  
frequency. However, the device clamps the sample rate at a normalized maximum rate, fSMP(max). But because  
the device must always synchronize to the next available switching cycle to obtain a new sample of the output  
voltage, the effective sample rate varies somewhat around this value.  
The digital control loop compensator block diagram is shown in Figure 29. A new sample of output voltage is  
supplied to the compensator at the normalized maximum clock rate (fSMP(max)) , or fSW, whichever is lower. An  
updated output voltage demand signal, yk, is produced at the same clock rate. This voltage loop demand  
represents the required operating point on the modulator curves to keep the output voltage in regulation. The  
modulator sets the appropriate switching frequency and peak current demand depending on the load power.  
tSMP  
Error ek  
Output yk  
VO  
-
To fSW and  
IPK(dem) Modulator  
Voltage Loop PID  
Compensator  
1
VO Sample  
VSENSE  
+
VREF(adj)  
+
KR(sec)  
IPK(dem)  
VREF  
+
Figure 29. Digital Voltage Control Loop Simplified Block Diagram  
The control loop PID gain factors are internally fixed values, optimized for flyback power stages in the range  
between 20 W and 130 W. The loop is designed to work with magnetizing inductance values in the range  
between 200 µH and 1500 µH. Assuming that the output capacitance value is chosen based on required ripple  
current rating, then loop stability is not a problem. Adding extra output capacitance does not degrade the loop  
performance and the resulting extra output hold-up improves transient response.  
The Typical Application section includes gain-phase measurements taken using the 65-W UCC28630EVM-572  
evaluation module.  
32  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
Feature Description (continued)  
8.3.9 Peak Current Mode Control  
The controller operates in peak current mode. The primary-side switch (MOSFET) current is sensed by a shunt  
resistor (RCS1) connected in series with the source of the FET as shown in Figure 30. The voltage that is  
developed across the sense resistor is connected to the CS pin of the controller. The device uses the current  
sense signal at the CS pin to terminate the PWM pulse according to the peak current demand of the modulator.  
The device automatically applies slope compensation as soon as the duty cycle of the DRV pin pulse exceeds  
50%. This compensation provides stable operation up to maximum DRV duty cycle. The device applies this slope  
compensation as a downslope on the demand signal at the PWM comparator, so is not measureable at the CS  
pin. The device synchronizes the slope compensation signal to the PWM and is active only between 50% and  
70% duty cycle, as shown in Figure 31.  
Normal operating range for the CS pin is between 0 mV and 800 mV. The RCS1 resistor should be scaled such  
that the peak current at maximum peak load and minimum bulk capacitor voltage produces a signal of  
approximately 800 mV peak at the CS pin. This resistor value is calculated in conjunction with the calculation of  
the required primary magnetizing inductance, as outlined in Notebook Adapter, 19.5 V, 65 W, section.  
1
2
3
4
VSENSE  
SD  
HV  
8
UCC28630  
CS  
VDD  
6
5
CCS  
DRV  
GND  
RCS2  
RCS1  
Figure 30. Primary-Side Current Sensing  
Copyright © 2014–2017, Texas Instruments Incorporated  
33  
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
Feature Description (continued)  
A nominal 100 ns of filtering that is internal to the CS pin helps filter the leading turn-on spike of current.  
Depending on PCB layout, an RC filter (RCS2 and CCS) may be required on the CS pin as shown in Figure 30 to  
filter noise and spikes. The capacitor CCS should be positioned as close as possible to pins 3 and 4 and tracked  
directly to the pins. Series resistor RCS2 should also be located close to pin 3 to minimize noise pick-up. RCS2  
value should not exceed 20 kΩ, because a larger value could be detected as a possible open circuit on the CS  
pin during the start-up pin-fault checks. The R-C filter time constant should not be excessive (timing between 100  
ns and 200 ns is typical). Otherwise the filter reduces the measured peak current, and allows greater actual peak  
current to flow versus the modulator demand level. Such effects force the regulation loop to reduce the switching  
frequency to compensate, and at highest line, no load, this can lead to regulation difficulties if the control loop  
attempts to drop the frequency so far that it reaches the fMIN limit.  
50%  
70%  
100 mVPP  
Peak Current Demand  
With Slope Compensation  
30 mV/s  
PWM Clock at 60 kHz  
Figure 31. Peak Current Demand with Slope Compensating Downslope  
34  
Copyright © 2014–2017, Texas Instruments Incorporated  
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
Feature Description (continued)  
8.3.10 IPEAK Adjust vs. Line  
The controller applies a line-dependent reduction in the peak-current demand to correct for the current overshoot  
due to the PWM and gate drive propagation delay, with the aim of delivering a constant peak current versus line  
at a given power level. This maintains approximately constant switching frequency versus line for a given power  
level (until the operation enters into CCM), improves regulation, reduces audio noise, and allows lower standby  
power at high line. If not corrected, the current overshoot could become significant at high line, where the  
inductor current di/dt is higher. This overshoot would cause a pronounced increase in transferred power per  
switching cycle at high line, because power is proportional to IPK2. The effect of the delay on the peak-current  
overshoot is illustrated in Figure 32.  
VBULK  
Frequency and  
Peak Current  
Modulator  
LPRI  
RG(off)  
IPK(dem) adjust  
vs. VBULK  
VBULK  
DRV  
RG(on)  
Gate  
Driver  
S
R
Q
Q
5
+
CS  
LEBs  
Filter  
3
RCS1  
CCS  
RCS2  
IPK overshoot  
IPK overshoot  
IPK(dem)  
IPK(adj)  
Propagation delay  
Propagation delay  
Low line  
High line  
Figure 32. Peak-Current Demand Adjustment vs VBULK to Correct Prop Delay Overshoot  
For different power stage designs, the combination of primary magnetizing inductance LPRI, current sense  
resistance RCS and external MOSFET gate turn-off delay tOFF(ext), must be verified against Equation 17, to ensure  
that the internal peak-current compensation gain range is satisfied. The KLINE(adj) factor should be within the  
range indicated. If the external turn-off delay is too long, then the internal IPEAK adjustment factor is too low, and  
the adjustment at high line is not able to achieve the required level of over-shoot compensation. As noted  
previously, this could result in regulation difficulties at no-load, and may cause poor line and load regulation, or  
require an increase in output pre-load power.  
2#3  
+
= F  
× k¥02/0 ß°¥• ꢀ ¥  
;oG P str J °Æ§ < uwrJ  
/&& •∏¥  
:
;
:
;
:
,).% °§™  
,
02)  
where  
where tPROP(gate) is the internal controller gate-drive turn-off propagation delay, given in Table 7.  
(17)  
35  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
Feature Description (continued)  
8.3.11 Primary-Side Constant-Current Limit (CC Mode)  
In addition to the peak-current mode PWM function, the device also uses sensed current at the CS pin to  
estimate the secondary-side load current. The device samples the CS pin voltage and measures it in the middle  
of the on-time, which is effectively the average switch current during the on time, ISW(avg_on). This measurement  
scheme is the case during both DCM and CCM operational modes. The average switch current during the on  
time is scaled by the PWM duty cycle to give the IIN(avg) of the power stage. The power stage input power, PIN,  
can then be estimated as the product of (VIN x IIN(avg)). The CC mode operation regulates PIN to track (IOUT(lim)  
VOUT), if PIN increases to reach PIN(lim), thereby achieving a regulated constant current as shown in Equation 18.  
6/54 × )/54 ¨©≠  
x
:
;
0 = 6 × )). °∂ß  
=
= 0). ¨©≠  
:
:
;
;
).  
).  
D
(18)  
6 × )). °∂ß ; × D  
0). ¨©≠ ; × D  
:
).  
:
)
=
=
= )/54 ¨©≠  
:
;
/54  
6/54  
6/54  
(19)  
tSMP1  
VO  
PLIM  
VO Sample  
ILIM x VO  
To fSW and  
IPK(dem) Modulator  
+
Output iyk  
Error  
iek  
Current loop  
PI compensator  
VSENSE  
1
VIN  
-
PIN Compute  
VIN Sample  
P=(VIN x ISW(MID))x(tON/tSW  
)
PIN  
tSMP2  
tON  
tSW  
tSMP3  
ISW(mid)  
ISW  
Sample  
3
CS  
Figure 33. Digital Current Control Loop Simplified Block Diagram  
36  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
Feature Description (continued)  
Assuming that the power stage efficiency does not change significantly with operating point, by regulating the  
input power in inverse proportion to output voltage, this regulates output current. This achieves a brick-wall CC  
characteristic, where the output current is regulated as the input voltage changes and as the output voltage rolls  
off, regardless of power stage operating mode (CCM or DCM). The CC mode protection eliminates the  
characteristic load current tail-out that is typically seen with peak-current mode control as output voltage  
collapses and operation goes deeper into CCM mode.  
NOTE  
As the output voltage decreases in CC mode, the VDD level also decreases. If the  
overload is severe, the drop in output voltage causes VDD to drop below the VDD(stop) UV  
level. This drop causes a shutdown for tRESET(long), as given in Table 7, followed by a  
restart attempt.  
The constant-current mode output current limit level (IOUT(lim)) is a function of both the RCS1 resistor and the  
transformer turns ratio. The device uses an internal reference and gain for the CC loop, KCC1 and KCC2, that set  
the CC IOUT(lim) point as a function of the chosen turns ratio, output voltage and current sense resistance as  
shown in Equation 20.  
1
2#31  
.
+
##1  
0
)
=
;
×
×
:
/54 ¨©≠  
.
.
3
0
+
##ꢀꢁ6/54 ×  
.
3
(20)  
For the UCC28631, UCC28632 and the UCC28633 devices, the IOUT(lim) can be adjusted to be a percentage of  
the maximum value calculated by equation Equation 20. see CC-Mode IOUT(lim) Adjustment for more details.  
Copyright © 2014–2017, Texas Instruments Incorporated  
37  
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
Feature Description (continued)  
8.3.12 Primary-Side Overload Timer (UCC28630 only)  
The internal overload timer in the UCC28630 uses the same output load current measurement that is used by  
the CC loop. This measurement tracks the power stage thermal stress, and protects the power stage against  
output overload. If the output is overloaded for too long such that the power stage would be over-stressed, then  
the PWM shuts down, and enters low-power mode for a time period of tRESET(long); thereafter the device  
discharges VDD to the VDD(reset) level and initiates a hiccup mode restart.  
The overload timer operates by taking an estimate of output current, squaring it (assuming the power stage  
losses are dominated by resistive I2 losses) to produce (K x I2OUT), where K is a scaling gain factor. The overload  
timer is constantly running at every load level, and accumulates at a rate dependent on the difference between  
(K x I2OUT) and the previous level of the timer. If (K x I2OUT) is greater than the previous timer level, the timer level  
continues to increase; if (K x I2OUT) is less than the previous timer level, then the timer level decreases. At any  
steady load, the overload timer level eventually settles at a level proportional to I2OUT. Because the overload  
timer level adjusts at a rate dependent on the difference between (K xI2OUT) and the previous level, the timer  
initially reacts faster to larger differences, but over time settles exponentially at a level proportional to (K x I2OUT).  
As shown in Figure 34, in both the first and second examples, the initial steady load allows the timer to integrate  
and settle at a level proportional to the load. The margin to the over-load trip level depends on the historical  
loading, lower prior average loading results in greater future over-load capability, and vice versa. The rate at  
which the timer reacts to different load steps is set by the chosen time constant (or response rate) per Table 2.  
The overload timer can cope with pulsed loads and loads with a complex waveform. Because the rate of  
increase and decrease also depends on the load change from the previous load, it also times out faster for  
bigger overloads, or allows a smaller overload to run for much longer. The overload timer operates in both  
normal CV mode and overload CC mode, or a dynamic mix of both modes.  
38  
Copyright © 2014–2017, Texas Instruments Incorporated  
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
Feature Description (continued)  
PPEAK  
PTRIP  
Load Power  
Overload Timer Value  
Overload Trip Point  
Time  
Example 1: Operation at PRATED continuously; small load  
increase after long time œ causes overload timer to trip  
PPEAK  
PTRIP  
Load Power  
Overload Timer Value  
Overload Trip Point  
Time  
Example 2: Operation at low power continuously; step to peak load  
causes fastest overload timer ramp-up rate to trip level  
PPEAK  
PTRIP  
Load Power  
Overload  
Timer Value  
Overload Trip Point  
Time  
Example 3: Operation at low power continuously; repeated short-pulse steps to  
peak load œ excessive duty cycle causes eventual overload timer trip  
Figure 34. Overload Timer Example Waveforms Under Various Load Scenarios  
tSMP1  
VO  
PLIM(cc)  
VO Sample  
ILIM x VO  
Overload  
Signal  
To Fault  
Mgmt Block  
2
X2  
Block  
Overload Timer  
Integrator  
PIN  
+
VSENSE  
1
+
CC/CV Mode  
Detect Switch  
VIN  
-
PIN Compute  
P=(VIN x ISW(MID)x(tON/tSW  
VIN Sample  
)
PMEAS(cv)  
2
PTRIP  
tSMP2  
tSW  
tSMP3  
tON  
ISW(MID)  
ISW  
Sample  
3
CS  
Figure 35. Overload Timer Block Diagram  
Copyright © 2014–2017, Texas Instruments Incorporated  
39  
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
Feature Description (continued)  
8.3.13 Overload Timer Adjustment (UCC28630 only)  
The UCC28630 overload timer trip level and time constant are both selectable from a defined list of  
combinations. The user can select the overload timer trip level as a percentage of the rated continuous nominal  
power, PNOM (see Figure 41), and the timer response speed. The available choices are detailed in Table 2.  
Table 2. Overload Timer Adjustment  
RPROG PROGRAMMING RESISTOR (k)  
TIMER CONTINUOUS OPERATION  
PTRIP/PNOM (%)  
TIME CONSTANT AT 200% of PNOM OR IN  
CC MODE (ms)  
(E96 series values)  
Open, or > 47  
20.0  
160  
160  
160  
135  
135  
135  
110  
110  
110  
1000  
500  
12.7  
150  
9.31  
1000  
500  
7.32  
6.04  
150  
5.11  
1000  
500  
4.42  
3.92  
150  
The desired pull-down resistance on the DRV pin sets the required overload parameters, as shown in Figure 36.  
The controller measures the resistance value on the DRV pin at start-up using a low-level test voltage (400 mV  
to ensure it is well below the lowest possible power MOSFET gate threshold voltage) and sensing the current  
that flows. Thus, based on the resistance RPROG, the required set of timer parameters can be chosen.  
1
2
3
4
VSENSE  
SD  
HV  
8
UCC28630  
CS  
VDD  
6
5
GND  
DRV  
RPROG  
Figure 36. Overload Timer Setting Adjustment  
(with programming pull-down resistor on DRV pin)  
To ensure that the sensed current does not sit close to an interval boundary, the resistor values listed in Table 2  
(or the closest value possible) should be used. These recommended resistor values position the test current in  
the center of each interval.  
40  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
8.3.14 CC-Mode IOUT(lim) Adjustment  
For the UCC28631, UCC28632, UCC28633 and UCC28634, the pull-down programming resistor on the DRV  
pin, as shown in Figure 36, sets the desired CC-Mode limit. The available CC-Mode levels are listed in Table 3,  
where the CC limit is given as a percentage of the maximum allowed value from Equation 20.  
Table 3. CC-Mode Levels  
RPROG (kΩ)  
Open or > 47  
20  
CC LIMIT  
100%  
90%  
12.7  
80%  
9.31  
75%  
7.32  
70%  
6.04  
65%  
5.11  
60%  
4.43  
55%  
3.92  
50%  
8.3.15 Fault Protections  
The controller has several built-in fault protections. Most faults are subject to internal persistence filtering to avoid  
false-tripping due to noise or spurious glitches from external events. When a fault is detected and persists for the  
corresponding filter delay time, the device terminates and disables the PWM drive signal. No PWM activity  
occurs if the fault (pin faults for example) is detected at start-up . Table 4 lists all fault sources, persistence  
delays and the associated response (latching or auto-restart).  
In the case of auto-restart (sometimes called hiccup-mode) faults, the device enters low-power mode for a time  
period of tRESET(long) (or tRESET(short) in the case of AC line UV fault and X-capacitor discharge), then discharges  
the VDD pin to the VDD(reset) level, followed by a restart attempt. The device continues in a repeating shutdown-  
delay-restart loop until the fault is removed. Once the fault clears, the controller restarts automatically, there is no  
need to remove and re-apply AC input voltage to the system.  
Latching faults do not allow any PWM restart attempts until the AC input voltage is removed. In this case the  
controller enters low-power mode. During low-power mode, the device regulates the VDD pin between two levels  
VDD(latch_hi) and VDD(latch_lo), as given in Table 7, using the start-up HV current source. This regulation keeps the  
controller biased to maintain the latched fault condition as long as AC voltage is present at the input. When the  
device loses AC input voltage during latched-fault mode, the controller resets, and restarts when the AC input is  
re-applied.  
If there is an open-feedback fault due to an open or short on the VSENSE pin or associated external resistor  
divider on the aux winding, the output voltage is protected against an over-voltage condition. If the open-  
feedback fault occurs before power-up, the fault will be detected by VSENSE pin- fault protection (see next  
section 9.3.16), and the controller will not generate any PWM drive signal. This prevents any possible output OV  
due to this open-feedback fault condition. If the open-feedback occurs after power-up, when the power stage is  
already operating, the open-feedback condition can cause Vout to increase. In this case, the VDD level will also  
increase in proportion to Vout (they will track based on the Flyback transformer turns ratio). When the VDD rail  
reaches the VDD(ovp) protection threshold, the PWM will be disabled, and the controller will go to fault mode, as  
described above. The VDD(ovp) protection is used as an indirect back-up OV protection mechanism for the main  
output under running open-feedback fault conditions. The level of output OV depends on the ratio of the normal  
VDD regulation level to the VDD(ovp) level. Note that UCC28630/1/2/3 use VDD(ovp) trip level of 17.5 V nominal,  
whereas the UCC28634 uses a lower VDD(ovp) of 14.85 V nominal, to ensure a lower/tighter level of output OV  
under VSENSE open-feedback conditions. As a result, the user must be careful to choose the number of turns in  
the transformer aux winding to ensure that the normal VDD regulation is below the VDD(ovp) protection level, to  
avoid false-triggering of the VDD(ovp) protection.  
Copyright © 2014–2017, Texas Instruments Incorporated  
41  
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
Table 4. Fault Sources and Associated Responses  
RESPONSE  
FILTER  
DELAY TIME  
UCC28631,  
UCC28632,  
UCC28633  
FAULT TYPE  
TYPICAL CAUSE  
UCC28630  
UCC28634  
Excessive transformer leakage; system board  
fault  
(1)  
VDD OV  
VDD UV  
125 μs  
Latching  
Auto-restart  
Auto-restart  
(1)  
Insufficient VDD capacitor; system board fault  
125 μs  
Auto-restart  
Auto-restart  
Latching  
Auto-restart  
Auto-restart  
Auto-restart  
Auto-restart  
Auto-restart  
Auto-restart  
Auto-restart  
Auto-restart  
AC brownout AC voltage removal or extended dip  
40 ms  
(1)  
OverTemp  
SD pin low  
Internal TJ(max) reached  
125 μs  
(1)  
External NTC over-temperature event  
125 μs  
Latching  
Programmable  
Overload timer Excessive load power for too long  
Auto-restart  
Latching  
N/A  
N/A  
(2)  
System board fault; system output voltage  
Output OV  
(1)  
125 μs  
Auto-restart  
Auto-restart  
back-driven excessively  
(3)  
VSENSE pin Short or open detected at start-up  
No filter  
Latching  
Latching  
Latching  
Latching  
Latching  
Latching  
Latching  
Latching  
Auto-restart  
Auto-restart  
Auto-restart  
Auto-restart  
(3)  
DRV pin  
CS pin  
Short detected at start-up  
No filter  
(3)  
Short or open detected at start-up  
No filter  
(3)  
Internal fault Internal chip diagnostics fault detected  
No filter  
(1) The filter delay time is either 125 μs or 2 PWM periods, whichever is longer.  
(2) The overload timer delay can be programmed as shown in Table 2.  
(3) Because these faults are only identified before PWM commences, noise filtering is not required.  
42  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
8.3.16 Pin-Fault Detection and Protection  
The controller includes protection against most practical pin faults. These faults include open pins, pins shorted  
to adjacent pins, pins shorted to GND and pins shorted to VDD. The device performs pin fault checking at start-  
up, before the PWM is enabled. Table 5 summarizes the response to pin faults. Most faults cause either a  
latched shut-down, or failure to start-up. For UCC28634, all pin-faults are non-latching.  
A short-circuit from the HV pin (pin 8) to the VDD pin (pin 6) is unlikely to occur, because pin 7 is not included in  
the package. The HV pin and tracking requires additional PCB spacing in any event to meet creepage  
requirements. However, if such a fault does occur, the device continues to charge the VDD capacitor through the  
HV pin external series resistor, and the power supply starts up and appears to operate normally. But because the  
HV and VDD pins are shorted, the internal HV current source cannot switch-out the external HV resistor, so it  
always dissipates power. This condition results in a large increase in no-load standby power. A 200-kΩ external  
HV resistor, dissipates 66 mW at 115 VAC, and 265 mW at 230 VAC. At load levels where the X-capacitor  
discharge function is operational, the short to VDD appears to be an AC-disconnect event, and causes the  
device to cycle on and off.  
Table 5. Pin Faults and Associated Responses  
PINS  
OPEN  
ADJACENT SHORT  
GND SHORT  
VDD SHORT  
NAME  
VSENSE  
SD  
NO.  
1
Latched fault  
Normal operation  
Latched fault  
Latched fault  
Latched fault  
Latched fault  
Latched fault  
Latched fault  
Latched fault  
Latched fault  
N/A  
No start-up  
Latched fault  
No start-up  
No start-up  
2
CS  
3
GND  
4
Device fails, power supply  
damaged  
DRV  
VDD  
no pin  
HV  
5
6
7
8
Hiccup fault  
No start-up  
N/A  
No start-up  
No start-up  
N/A  
Latched fault  
No start-up  
N/A  
No start-up  
N/A  
N/A  
No start-up  
N/A  
No start-up  
Fault not detected/Hiccup  
fault  
Copyright © 2014–2017, Texas Instruments Incorporated  
43  
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
8.3.17 Over-Temperature Protection  
The controller has built-in thermal protection. If the controller junction enters an over-temperature condition, the  
controller shuts down. The fault response (latching or auto recovery) depends on the device variant, per Table 4.  
There is 10°C hysteresis in the over-temperature trip point, the controller only restarts if the junction temperature  
has dropped by at least 10°C below the trip level.  
8.3.18 External Fault Input  
An external fault input signal may be applied to the controller SD (shutdown) pin. This signal forces the controller  
into fault mode. To trigger the fault, the voltage on this pin should be pulled below the fault trip threshold. A  
typical application is shown in Figure 37, where this pin is used to shut down the controller in the event of an  
over-temperature event as detected by a NTC (negative temperature coefficient) thermistor. The device pulls up  
the SD pin internally using a current source. As temperature rises, the external NTC resistance decreases,  
reducing the voltage on the pin. When the pin voltage drops to the fault trip threshold, the controller enters fault  
mode. The fault response (latching or recovery) depends on the device variant, per Table 4.  
VSENSE  
HV  
4V5  
210 mA  
UCC28630  
1
8
SD  
2
Over  
Temperature  
RADJ  
VDD  
DRV  
CS  
+
6
5
3
NTC  
R1 at 25°C  
R2 at TTRIP  
to  
+
2.0 V  
GND  
4
Figure 37. Fault Interface to SD Pin  
The required trip resistance can be calculated from the internal trip voltage and pull-up current source. Nominally,  
this is 9.5 kΩ. Choose the NTC should so that it can achieve this value of resistance at the desired hot-spot trip  
temperature. If the NTC resistance is too low at the required trip temperature, connect a standard chip resistor in  
series to bring the total resistance up to 9.5 kΩ.  
The device internally filters the SD pin with persistence delay as listed in Table 4. An external filter capacitor is  
not normally necessary. However, if an application uses an external filter capacitor, the value should be limited to  
1 nF maximum. A larger value may impact the useful life of the controller.  
44  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
8.3.19 External SD Pin Wake Input (except UCC28633)  
During low-power modes (when fSW < fSMP(max)), the device disables the internal pull-up on the SD pin. This  
action allows the pin voltage to fall to GND, and the SD pin then functions as a transient wake-up input. In this  
case, if the pin rises above the wake threshold while the device is in low-power sleep mode, the device wakes  
and starts PWM pulses immediately. This feature is useful for applications that require a faster response to load  
transients from zero or near-zero load, where a wake-up signal can be appropriately coupled to the SD pin from  
the secondary side.  
Figure 38 describes a typical secondary-side wake circuit and coupling of the wake signal to the controller on the  
primary side. This circuit uses a TL103W component which is an integrated reference plus two op-amps in a  
convenient SOIC-8 package. Both op-amps are connected to the same internal 2.5-V TL431 type reference, with  
a 3-resistor divider chain allowing each op-amp to monitor a different level. The upper op-amp output is low as  
long as the device is regulating the output voltage normally. If a sufficiently large load transient occurs while the  
primary-side controller is in sleep mode, the output voltage drops below a transient wake level. The upper op-  
amp output goes high, driving current through the low-cost wake signal opto-coupler. On the primary side, the  
wake opto-coupler pulls up the SD pin above the wake threshold and forces PWM switching as a reaction to the  
load transient.  
The lower op-amp section monitors the output voltage and its output goes low only when the output voltage is  
above a minimum enable threshold for the secondary-side wake-up monitor. This action is necessary so that  
under certain conditions, such as a start-up sequence or short-circuit condition (when the output voltage is  
already below the transient wake level) that the secondary-side circuit does not continually drive the wake opto-  
coupler, which could activate an SD pin fault during pin-fault checking at start-up.  
VOUT  
RPULLUP  
HV  
VSENSE  
LED  
8
1
2
3
4
UCC28630  
TL103W  
SD  
Wake-up  
signal  
+
+
+
VDD  
DRV  
CS  
+
2.2 V  
6
to  
2.5 V  
GND  
5
Figure 38. Typical Secondary-Side Voltage Monitor and Wake-Up Circuit for Interfacing to the SD Pin  
Copyright © 2014–2017, Texas Instruments Incorporated  
45  
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
8.3.20 External Wake Input at VSENSE Pin (UCC28633 Only)  
The UCC28633 device variant supports fast PSR transient response via the VSENSE pin. When the loop  
demand drives the modulator frequency below approximately fSMP(max), the controller enters a low-power sleep  
mode for a portion of the switching cycle. The sleep interval varies, depending on the switching frequency  
commanded. The sleep interval is longer for lower switching frequency, and longest at fSW(min). For conventional  
PSR controllers, if a load transient occurs during this sleep interval, the controller will not react until the next  
timed wake-up, during which the output voltage can drop significantly, depending on the size of the load step and  
the amount of output capacitance.  
The UCC28633 can respond to fast transient wake signal coupled to the VSENSE pin. If the wake signal  
exceeds an internal pin threshold VSENSE(wake) while the controller is in sleep mode, the sleep interval is  
terminated and PWM activity commences within a typical delay time of tWAKE. This dramatically improves the  
response to heavy load transients from zero load, or very light load. If the switching frequency is above fSMP(max)  
,
the controller never enters sleep mode, so wake response on the VSENSE pin never enabled. The  
commencement of any sleep interval in the controller is delayed until the resonant ringing on the VENSE pin has  
decreased below the VSENSE(wake) threshold for at least 2 µs. Once the ringing has decreased, the wake response  
is enabled, and the sleep interval commences.  
VOUT  
EMC  
Filter  
UCC24650  
VAC  
WAKE VDD  
5
1
GND  
2
UCC28633  
VSENSE  
1
2
3
4
HV  
8
SD  
to  
CS  
VDD  
DRV  
6
5
GND  
Figure 39. UCC24650 Secondary-Side Voltage Monitor and Wake-Up Circuit  
46  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
The wake signal at the VSENSE pin can be generated using a secondary side low power voltage monitor such  
as UCC24650, as shown in Figure 39. Further details can be found in the datasheet for UCC24650. This  
secondary-side monitor uses the switching activity on the secondary winding to trigger refresh of an internal  
sample-and-hold circuit to measure and record the system output voltage at the VDD pin. Thereafter, if the actual  
output voltage, sensed at the VDD pin, drops by ΔWAKE% (see UCC24650 detailed datasheet specifications) of  
the previously sampled value, the WAKE pin is internally pulled low through a current-limited open-drain switch.  
As shown in Figure 39, the main output rectifier diode is positioned at the return side of the secondary winding,  
so that the GND-referenced UCC24650 WAKE function can be deployed. In effect, the WAKE pin shorts out the  
rectifier diode for a short interval (see UCC24650 detailed datasheet specifications), to draw some current from  
the output capacitor through the transformer secondary winding. This sets up a low-level pulse of current that  
then rings resonantly in the power circuit magnetizing inductance and parasitic capacitance. The ringing causes  
a similar ringing voltage waveform on all transformer windings, including the bias/sense winding, which interfaces  
to the VSENSE pin. If the initial pulse of current drawn by the secondary WAKE pin is sufficient, then the ringing  
voltage at the VSENSE pin is large enough to exceed the VSENSE(wake) threshold.  
The UCC24650 datasheet Application Information section includes details of how to estimate the amplitude of  
the wake-pulse ringing at the WAKE pin. In some cases, especially at higher rated output power, the transformer  
magnetizing inductance is lower, while the total switch node capacitance tends to be higher. This reduces the  
transformer impedance, and can also result in reduced wake pulse amplitude. In these cases, the UCC24650  
WAKE pin output can be augmented with an external PNP circuit Q1, R1 and R2, as shown in Figure 40. In this  
case, when the WAKE pin pulls low, Q1 turns on, and draws more current through the secondary winding. A  
current limiting resistor R1 is recommended in series with either collector or emitter. Effectively R1 swamps the  
UCC24650 internal WAKE pin resistance, RWAKE. A pull-up resistor R2 from base to emitter is also required, to  
ensure that the WAKE pin is adequately pulled up/down during normal switching activity to properly trigger the  
internal sample and hold on the VDD pin. The external PNP device Q1 must have at least the same voltage  
rating as the main rectifier diode.  
VOUT  
EMC  
Filter  
VAC  
R2  
R1  
Q1  
UCC24650  
WAKE VDD  
5
1
GND  
2
UCC28633  
1 VSENSE  
SD  
HV 8  
2
to  
3 CS  
VDD 6  
DRV 5  
4 GND  
Figure 40. Augmented UCC24650 Secondary-Side Voltage Monitor and Wake-Up Circuit  
Copyright © 2014–2017, Texas Instruments Incorporated  
47  
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
8.3.21 Mode Control and Switching Frequency Modulation  
The flyback controller supports applications that require a wide range of operating power levels. This range can  
include effectively zero output power in standby conditions, up to a maximum rated continuous power, and then  
beyond this, to a mode of peak operating power for a limited time. The modulator operates in multiple modes to  
support these power requirements in an efficient way. In some regions, the modulator operates in AM mode at  
fixed frequency, where the device adjusts the amplitude of the peak current to regulate the output. In other  
regions, the modulator operates in FM mode at fixed peak current, where the device adjusts the switching  
frequency to regulate the output. By adjusting only peak current or frequency, (depending on operating region)  
the control loop smoothly regulates the power flow of the power stage. The shape of the modulator gain curve  
helps counteract the increasing power stage gain as load is decreased.  
In the high-power region of the modulator, the device adjusts both peak current and frequency together, to allow  
higher power delivery with a modest increase in peak current. In this high-power region, the power stage typically  
transitions into continuous-conduction mode (CCM), particularly at low line. The combination of up to 2×  
frequency increase and 1.25× peak current increase in CCM allows up to 2× peak power delivery capability for a  
given transformer size. Figure 41 provides details regarding the modulator peak current (in mV at the CS pin)  
and switching frequency variation vs power demand level. The frequency adjusts from a minimum of 200 Hz up  
to a maximum of 120 kHz. The peak-current sense voltage at the CS pin varies from 172 mV to 800 mV. Table 6  
summarizes the modulator breakpoints and corresponding percentage power levels.  
800  
150  
640  
120  
Frequency  
(kHz)  
VCS(pk)  
(mV)  
400  
60  
30  
170  
0
0.2  
0%  
P0  
12.5%  
P1  
30%  
P2  
45%  
P3  
70%  
P4  
100%  
P5  
Control Loop  
Demand Level  
Approximate  
Power Level  
0.025%  
PNOM  
3.5%  
PNOM  
20%  
PNOM  
40%  
PNOM  
100%  
PNOM  
>=200%  
PNOM  
Figure 41. Modulator Modes and Frequency Variations with Power Level  
48  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
For no load and very light loads (P0 to P1 region) the modulator operates in a pulse frequency modulation (PFM)  
mode. In PFM mode, the device maintains a constant peak current in the transformer magnetizing inductance, so  
that the energy transferred in each switching cycle is fixed. The magnetic sensing, fixed-point sampling scheme  
requires that the device always imposes a minimum peak current. This minimum peak-current demand naturally  
results in a minimum transformer magnetizing volt-second product that the device maintains across the input line  
voltage range. Ensuring a minimum on-time magnetizing volt-seconds also ensures a balancing volt-second  
flyback interval, during which the device guarantees the availability of the output voltage sample. Magnetic  
Sensing: Power Stage Design Constraints outlines the transformer design constraints necessary to comply with  
the minimum on-time and minimum required volt-seconds.  
In the P0 to P1 region, the energy transfer per switching cycle is maximized, which in turn minimizes the switching  
frequency and associated switching and drive losses, to improve efficiency. However, due to concerns about  
audible noise in this region, the peak current VCS(min) in this region is limited to 22% of the peak VCS(max) at the  
maximum demand level. This peak-current derating maintains the transformer peak flux density to 22% of the  
peak, to minimize transformer-induced audible noise. Assuming a maximum peak flux density of typically 300 mT  
at highest peak current, this derating sets the peak flux level at approximately 65 mT in the light-load region.  
Empirically, this flux level greatly reduces magnetic audible noise for a variety of power levels and transformer  
designs. In this region, the use of sleep modes (where most of the device internal blocks are powered down in  
between switching cycles) minimizes the controller power consumption. Minimizing controller power consumption  
helps reduce total standby power consumption, and also greatly eases the bias design constraints.  
For higher loads above P1 (P1 to P2 region), the device fixes the modulator frequency at a low value above the  
audible range, while the peak switch current ramps up from the minimum level, to deliver the increased output  
power. Maintaining a fixed low-switching frequency while ramping peak current, minimizes switching losses to  
provide good light-load efficiency.  
For higher loads above P2 (P2 to P3 region), the device maintains a constant peak-switch current, while the  
modulator frequency ramps to its nominal operating value. The normal heavy load (between 40% and 100% of  
rated) operating power range lies between P3 and P4. In this region the device maintains a constant switching  
frequency at the nominal value fSW(nom), and the peak switch current ramps to achieve increased output power.  
Fixed-frequency operation at nominal operating power results in consistent EMI and transient load step  
performance.  
Table 6. Frequency and Peak-Current Modulator Operating Ranges and Breakpoints  
MODULATOR  
BREAKPOINT  
DEMAND LEVEL APPROXIMATE  
VCS PEAK  
FREQUENCY fSW  
(kHz)  
(%)  
POWER  
LEVEL % of  
PNOM  
(mV)  
PO0  
PO1  
PO2  
PO3  
PO4  
PO5  
0
12.5  
30  
0.025  
3.5  
172  
172  
400  
400  
640  
800  
VCS(min)  
VCS(min)  
VCS(nom)  
VCS(nom)  
VCS(bcm)  
VCS(max)  
0.200  
30  
fSW(min)  
fSW(LL)  
20  
30  
fSW(LL)  
45  
40  
60  
fSW(nom)  
fSW(nom)  
fSW(max)  
70  
100  
> 200  
60  
100  
120  
Copyright © 2014–2017, Texas Instruments Incorporated  
49  
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
The peak-power range lies between P4 and P5. In this region the transformer can operate in CCM depending on  
loading and line voltage. By increasing the frequency appropriately, higher average input current can be  
processed for the same peak current, so the transformer size does not need to increase substantially for a high-  
rated transient peak power. The modulator does, however, also increase the peak current in this region of  
operation, requiring a modest increase in transformer size, but this allows a larger transient peak power to be  
delivered. The modulator control loop adjusts both the frequency and peak current according to the power  
demand so that the increased frequency and peak current meets the load demand.  
Figure 42 shows the modulator gain curve, specifically the non-linear modulator gain vs load. At very light loads,  
the modulator gain remains low, to help counteract the effect of the higher power stage gain as the load  
resistance increases. This low gain helps stabilize the magnetic regulation loop in the light load territory, where  
the output voltage sample rate drops with decreasing switching frequency. At heavier loads, the modulator gain  
progressively and smoothly increases to help improve transient response. When the switching frequency  
increases above the maximum magnetic sense sample rate (fSMP(max)), the magnetic sense voltage control  
sample rate is clamped.  
>=200%  
PNOM  
100 V  
380 V  
75 V  
100%  
PNOM  
Linear Gain  
DCM  
Operation Up  
to Prated  
Peak Power Region  
œ DCM/CCM  
Operation (Line  
dependent)  
Control Loop  
Demand Level  
0%  
25%  
70%  
100%  
50%  
Approximate  
Power Level  
0.025%  
PNOM  
14%  
PNOM  
47%  
PNOM  
100%  
PNOM  
>=200%  
PNOM  
Figure 42. Modulator Gain Curves vs Bulk Capacitor Voltage  
50  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
8.3.22 Frequency Dither For EMI (except UCC28632)  
To help ease EMI compliance of the system, the device dithers the switching frequency over time. This dithering  
of frequency is active only above the light-load region threshold (PLL(%)) point on the modulator curve. In the light  
load regions, frequency dither is disabled. The frequency dither follows a repeating pattern, in the sequence:  
{(fNOM), (fNOM + 6.7%), (fNOM + 6.7%), fNOM), (fNOM – 6.7%), (fNOM – 6.7%), (fNOM), . . . .}  
The controller dwells at each frequency for 1 ms. The pattern repeats every 6 ms, as shown graphically in  
Figure 43.  
NOTE  
The device always dithers frequency between 6.7% and –6.7% at every operating point in  
the modulator. The dither frequency delta is not an absolute delta, it scales with actual  
operating frequency, depending on the exact operating point value.  
(fNOM + 6.7%)  
6 ms  
fNOM  
(fNOM - 6.7%)  
Figure 43. Frequency Dither Pattern Details  
In order to balance the power flow and reduce and output ripple as a consequence of frequency dithering, the  
device automatically adjusts peak-current demand in inverse-proportion to the square-root of the frequency dither  
deviation. Thus, since the power flow (in DCM) is given by (½ × L × I2 × fSW), this balances the power flow, and  
cancels the output ripple as a consequence of frequency dithering.  
Copyright © 2014–2017, Texas Instruments Incorporated  
51  
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Device Internal Key Parameters  
The application designer requires some key device internal parameters in order to calculate the required power  
stage components and values for a given design specification . Table 7 summarizes the key parameters.  
Table 7. Key Internal Device Parameters  
PARAMETER  
DESCRIPTION  
VALUE  
80  
UNIT  
VAC  
VAC  
VAC  
VAC  
ms  
Minimum AC mains input RMS voltage to allow initial start-up, or restart, UCC28630,  
UCC28631, UCC28632, UCC28633  
ACON  
Minimum AC mains input RMS voltage to allow initial start-up, or restart, UCC28634  
68  
Minimum AC mains input RMS voltage below which PWM stops, UCC28630,  
UCC28631, UCC28632, UCC28633  
65  
ACOFF  
Minimum AC mains input RMS voltage below which PWM stops, UCC28634  
58  
Delay time for which AC mains must remain below ACOFF level to disable PWM, i.e.  
brownout delay time  
tUV(delay)  
40  
Delay time in sleep mode before restart is initiated – applies to ACUV, X-capacitor  
discharge responses  
tRESET(short)  
tRESET(long)  
fSW(uv)  
500  
1,000  
15  
ms  
ms  
kHz  
µs  
Delay time in sleep mode before restart is initiated – applies to all other auto-restart  
faults  
Switching frequency used during initial 3-cycle exploratory pulses for ACON detection  
at start-up  
Maximum on-time used during initial 3-cycle exploratory pulses for ACON detection at  
start-up  
tON(max_uv)  
2.3  
KLINE  
Device internal line sense gain factor  
49.25  
44.5  
69.5  
16  
KCC1  
Device internal CC mode gain factor  
KCC2  
Device internal CC mode offset factor  
fSMP(max)  
VDD(latch_hi)  
VDD(latch_lo)  
tON(hv)  
Maximum magnetic sense sample rate; in effect when fSW > fSMP(max)  
Upper VDD regulation level during latched fault mode  
Lower VDD regulation level during latched fault mode  
HV current source on-time during X-capacitor sampling  
HV current source sample repetition rate during X-capacitor sample burst  
HV current source wait-time between X-capacitor sampling bursts  
Light-load region threshold as % of PNOM  
kHz  
V
10  
8
V
20  
µs  
ms  
ms  
tSMP(hv)  
1
tWAIT(hv)  
PLL(%)  
200  
12.5%  
1.0  
100  
3
VDD(sc)  
VDD short-circuit threshold below which charging current is limited  
Internal PWM comparator + latch + gate driver aggregate delay  
Internal start-up initialization delay  
V
ns  
ms  
V
tPROP(gate)  
tSTART(del)  
VSENSE(wake)  
VSENSE pin wake threshold for fast transient response (UCC28633 only)  
0.8  
52  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
9 Applications and Implementation  
9.1 Application Information  
The UCC2863x device is a highly integrated primary-side-regulated (PSR) flyback controller, supporting  
magnetically-sensed output voltage regulation via the transformer bias winding. This sensing eliminates the need  
for a secondary-side reference, error amplifier and opto-isolator for output voltage regulation. The device delivers  
accurate output voltage static load and line regulation, and accurate control of the output constant-current limit.  
The fixed-point magnetic sampling scheme allows operation in both continuous conduction mode (CCM) and  
discontinuous conduction mode (DCM). The combination of the sampling scheme and high current gate driver  
source and sink capability, makes this device ideal for high power flyback converters up to 100 W and beyond.  
The modulator adjusts both frequency and peak current in different load regions to maximize efficiency  
throughout the operating range. The control approach improves performance (efficiency, size and cost) and can  
reduce transformer size and cost by allowing operation in CCM with FM during peak overload conditions. The  
modulator supports peak-to-average transient overload power up to 200% of the nominal average rating.  
9.2 Typical Application  
9.2.1 Notebook Adapter, 19.5 V, 65 W  
This design example describes the PWR572 EVM design and outlines the design steps required to design a  
constant-voltage, constant-current flyback converter for a 19.5-V/65-W notebook adapter. For all equations and  
design steps, refer to Table 7 for definitions and values of key internal device parameters that are relevant for  
calculations of external component values.  
Copyright © 2014–2017, Texas Instruments Incorporated  
53  
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
Typical Application (continued)  
9.2.2 UCC28630 Application Schematic  
5
4
3
2
2
3
° t  
~
~
2
3
2
3
1
4
2
1
Figure 44. Typical Application Circuit for 19.5-V / 65-W Adapter  
54  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
Typical Application (continued)  
9.2.3 Design Requirements  
Table 8. Design Requirements  
DESIGN PARAMETER  
TARGET VALUE  
Output voltage  
19.5 V  
Rated (continuous) output power  
Peak (transient) output power  
Peak (transient) output power duration  
Input AC voltage range  
65 W  
130 W  
2 ms  
88 VRMS to 264 VRMS  
88%  
Typical efficiency  
Minimum bulk voltage at 88 VAC/47 Hz and rated (continuous) output power  
82 V  
9.2.4 Detailed Design Procedure  
9.2.4.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the UCC2863x device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
9.2.4.2 Input Bulk Capacitance and Minimum Bulk Voltage  
The required bulk capacitance value depends on the target minimum bulk capacitor ripple voltage at minimum  
AC input line, minimum line frequency and on the power level of interest. As a way of estimating, use 1.5-μF to  
2-μF per Watt of rated, continuous power to achieve approximately 70 V to 80 V minimum at 88 VRMS input. This  
case indicates a required bulk capacitance of between approximately 100 μF and 130 μF. Alternatively, the  
required capacitance may be explicitly calculated for a specific set of requirements using Equation 21.  
6"5,+ ≠©Æ  
0/54  
D
1
:
;
× Lꢀ.ꢁꢂ × ≥©Æ-1  
F
GM  
N
2 × 6  
¾
:
;
!# ≠©Æ  
#
"5,+  
=
k2 × 6!2# ≠©Æ ; F 62  
o × ¶,)ꢃ% ≠©Æ  
: ;  
:
:
;
"5,+ ≠©Æ  
(21)  
Using the parameters in Table 8, this calculates a required CBULK of 130 μF.  
To help reduce differential mode (DM) emissions for conducted EMC compliance, the bulk capacitance has been  
split into two separate capacitors C5 and C7 in Figure 44, with a small DM choke L2 inserted between the  
capacitors. The total resulting capacitance of 127 μF is close to the required minimum requirement per  
Equation 21, and the design results in a small decrease in the actual bulk capacitor minimum ripple voltage.  
Next, verify that the choice of bulk capacitance satisfies the X-capacitor discharge constraints for rate of  
discharge by the load when X-capacitor sampling is inactive, per Equation 5. The bulk capacitance should be  
less than the value calculated by Equation 22.  
Copyright © 2014–2017, Texas Instruments Incorporated  
55  
 
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
0
2 @ ./-A× 0,,(%) × ¥$ꢀ3  
:
;
2 ꢂꢃ × ꢄꢅ12ꢃ × 1  
D
#"5,+ Q  
=
Lsux J&  
ꢆ7ꢆ F ꢂꢄ2  
2
2
k6!# ∞´ F 6 2o  
:
;
:
;
3ꢁ,6  
(22)  
56  
Copyright © 2014–2017, Texas Instruments Incorporated  
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
9.2.4.3 Transformer Turn Ratio  
Choose the transformer primary-to-secondary-side turns ratio based on the allowed voltage stress for the output  
rectifier, or the primary MOSFET. For 19.5-V charger designs, it is valid to choose a turns ratio that allows the  
use of a more efficient 100-V Schottky rectifier.  
6!# ∞´_≠°∏  
.
.
:
;
0
=
:
;
k62%6 ≤°¥•§ ; × ꢀ$•≤°¥©Æßo F 6/54 + 62%#4  
3
:
(23)  
For a good Schottky diode with 100-V reverse rating, VREV(rated), the rectifier forward voltage drop, VRECT, can be  
expected to be in the range of 0.4 V to 0.5 V at 3 A to 5 A, at practical operating temperatures in the region of  
100°C. Allowing an 85% derating on the rectifier reverse voltage stress, Equation 23 indicates a required turns  
ratio of 5.734 for a maximum AC peak voltage of 373 V (264 VRMS).  
Choose the bias winding turns ratio to set the nominal bias voltage for the device VDD pin. Use an initial  
VBIAS(target) of 12 V.  
6")!3 ¥°≤ß•¥ ; + 6  
.
.
:
&
"
=
:
;
6/54 + 62%#4  
3
where  
VF is the forward voltage drop of the rectifier on the bias winding.  
(24)  
For a typical 0.7-V bias-diode drop, this equation calculates to 0.6366.  
When the transformer size and type are chosen, the actual turns values can be calculated. Because the turns  
need to be rounded to integer values, the actual turns ratios achieved deviates from these targets. Check the  
final ratios to ensure that the secondary-side Schottky rectifier stress and the bias winding nominal level are  
acceptable. Adjust the specific turns counts to meet the target ratios.  
9.2.4.4 Transformer Magnetizing Inductance  
Match the power stage design to the modulator curves by ensuring that the boundary conduction mode (BCM –  
boundary of operation between DCM and CCM) point coincides with the minimum bulk-capacitor voltage at  
minimum line, at rated output power. This choice results in DCM operation at all line voltages for all loads up to  
continuous rated load, and minimizes power loss and EMC impacts due to output rectifier reverse recovery  
during CCM operation. This design choice allows operation to extend into the CCM region of operation as  
required to deliver the transient peak load.  
To achieve this design target, the required primary magnetizing inductance, LPRI is calculated from Equation 25.  
In this equation, the value of FSW(nom) is 60 kHz, taken from the modulator curve region P3 to P4, in Table 6. The  
value of VBULK(min) is the value that occurs with the actual used bulk capacitance of 127 μF.  
1
,
02)  
=
0
1
:
1
ꢀ × @ 2!4%$A × L  
M × ¶37 ÆØ≠  
:
;
.
0
3
D
6"5,+ ≠©Æ  
;
:
;
× 6/5462%#4  
.
(25)  
This calculates a value of 257 μH. Round the value to 260 μH.  
Copyright © 2014–2017, Texas Instruments Incorporated  
57  
 
 
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
9.2.4.5 Current Sense Resistor RCS  
In addition to choosing LPRI value to map the rated power to the target BCM point at minimum bulk voltage,  
choose the RCS value according to Equation 26. This calculation ensures that the resulting peak current, in  
conjunction with the chosen value of magnetizing inductance, and the 60-kHz modulator frequency, delivers the  
required input power to meet the rated output load power, at minimum bulk voltage ripple.  
6#3 ¢£≠  
:
;
2#3  
=
0
1
: ;  
1
ꢀ × @ 2!4%$A × L  
M
.
0
3
D
6"5,+ ≠©Æ  
:
;
× 6/54 62%#4  
.
where  
VCS(bcm) is the modulator peak-current sense level at point P4 (640 mV)  
(26)  
This equation calculates a value of 207 mΩ. Use the nearest standard E24 value of 200 mΩ.  
9.2.4.6 Transformer Constraint Verification  
As outlined in Magnetic Sensing: Power Stage Design Constraints, there are constraints on the ratio of RCS/LPRI  
to ensure the design is consistent with the required volt-seconds for output sampling at minimum load, and with  
the controller tON(min) at high line. Per Equation 15 and Equation 16, limit the ratio of RCS/LPRI  
.
6#3 ≠©Æ  
2#3  
.
1
17ꢀ ≠6  
säy J≥  
ꢂꢃ  
1
:
;
3
Q
×
×
=
×
×
{rr  
:
;
:
;
,
02)  
¥
.
0
6/54 + 62%#4  
19ꢄꢅ 6 + ꢆꢄꢃ 6  
:
;
/54 ≥≠∞  
(27)  
(28)  
and,  
6#3 ≠©Æ  
2#3  
1
6
17ꢀ ≠6  
ꢁ7ꢁ 6 × ꢂꢃꢄ J≥  
:
;
;
Q
×
=
yyr  
,
02)  
¥
:
;
:
/. ≠©Æ  
). ∞´ _≠°∏  
In this case, the ratio equates to 769, so both constraints are met.  
58  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
9.2.4.7 Transformer Selection and Design  
After determining the value of current sense resistor RCS, determine the maximum peak current at maximum  
demand point on the modulator. Accommodate for the IPEAK adjustment for frequency dithering. Use this value  
when calculating the margin for core saturation. In this case, IPK(sat) calculates to 4.13 A.  
6#3 ≠°∏ × 1ꢀꢁ.7%  
¾
:
;
)
=
;
:
0+ ≥°¥  
2#3  
(29)  
In subsequent calculations of required primary turns etc, the average maximum peak current, IPK(max) , during the  
frequency dither period should be used, which calculates to 4.0 A.  
6#3 ≠°∏  
:
;
)
=
;
:
0+ ≠°∏  
2#3  
(30)  
Knowing IPK(max), LPRI and the turns ratio, the choice of transformer size and core shape and type dictates the  
required number of primary, secondary and bias turns, and the size of the air-gap. Various trade-offs, design  
preferences, and transformer design targets (size, cost, target losses, etc.) influence the specific choice of  
transformer core in any given design.  
In the case of the UCC28630EVM-572 (PWR572 EVM), core area-product geometry was used to choose the  
minimum core size available to meet the power level. The core geometry factor Kg is a figure-of-merit that  
reflects the core power capability, in terms of its physical size, shape and design. It combines the core effective  
cross-sectional area, Ae, winding window area, Aw, and the mean length per turn (MLT) of wire around the core.  
!
2 × !7  
-,4  
+' =  
(31)  
Estimate the required design core geometry, KG(des), using the required transformer inductance LPRI, maximum  
peak current IPK(max), allowed maximum core flux density Bmax and a target copper loss budget, PCU  
.
,
02)  
× )0+ ≥°¥ × )4/4 × O#5  
:
;
+
=
;
:
' §•≥  
"
≠°∏  
× +5 × 0  
#5  
where  
ρcu is the resistivity of Copper (approximately 1.7 × 10-8 Ωm at room temperature, 2.2 × 10-8 Ωm at 100°C),  
Ku is a winding window utilization factor that accounts for the percentage of the window that is occupied by  
Copper  
(32)  
Ku can often be as low as 25%, due to the fill factor (gaps between wires), wire insulation (especially for triple-  
insulated wire), and the need for insulating tapes and EMC shielding layers. The estimate of the required core  
geometry needs an estimate of the aggregate total winding current ITOT. The analysis models the flyback  
transformer primary and secondary windings as a single lumped non-isolated inductor (such as a single winding  
buck inductor), only for the purpose of sizing the required core winding window to achieve the target copper loss.  
In this case, the secondary-side current amplitude reflects to the primary side so that aggregate total primary  
current. ITOT can be estimated in Equation 33.  
§
§
ꢁ%#W  
§
§
W ꢀ )0+ ×  
)4/4 = )0+  
×
3
3
where  
d is the primary on-time duty cycle  
dSEC is the secondary-side flyback period duty cycle  
(33)  
At rated power and minimum bulk capacitor voltage, the inductance LPRI has been chosen to achieve boundary-  
mode conduction, therefore the duty cycle is given in Equation 34.  
.
0
.
3
:
;
× 6/54 + 62%#4  
§ =  
.
0
.
3
:
;
G
F6"5,ꢀ ≠©Æ  
+
;
× 6/54 + 62%#4  
:
(34)  
(35)  
and  
§3%# = 1F§  
Copyright © 2014–2017, Texas Instruments Incorporated  
59  
 
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
At the boundary conduction point, the primary peak current IPK is at the level set by the modulator, VCS(bcm). So  
from Equation 33, ITOT becomes Equation 36.  
Í
Î
Î
Î
Ï
Ð
Ñ
Ñ
Ñ
Ò
.
0
:
;
× 6/54+62%#4  
6#3 ¢£≠  
6"5,ꢁ ≠©Æ  
.
3
:
;
:
;
)
=
×
+
4/4  
ª
©
ꢀ2  
¾
.
.
.
0
#3  
0
:
;
:
;
G
F6"5,ꢁ ≠©Æ  
+
× 6/54+62%#4  
G
F6"5,ꢁ ≠©Æ +  
;
× 6/54+62%#4  
:
;
:
.
3
3
(36)  
Equation 36 calculates ITOT as 2.6 A. Thus the required design KG(des), assuming KU of 25%, Bmax of 315 mT and  
a target of 1-W copper loss, is shown in Equation 37.  
txr J(2 × 4.132 × 2.62 × 2.2 × 10-8  
+
=
;
:
' §•≥  
0.3152 × 0.25 × 1.0  
(37)  
Equation 37 indicates that this design requires a core size and shape with a KG of more than 6.9 × 10-12. A  
review of commonly used cores indicated that the RM10/I core set meets this requirement. With Ae of 96.6 mm2,  
Aw of 44.2 mm2 and mean length per turn (MLT) of 52 mm, KG(RM10) is 7.9 × 10–12, giving some margin over the  
design target.  
(96.6 × 10ꢀ6)× (44.ꢁ × 10ꢀ6)  
+
=
;
= 7.93ꢁ × 10ꢀ1ꢁ  
:
' 2-10  
(5ꢁ × 10ꢀ3)  
(38)  
With the chosen core, the actual primary, secondary-side and bias turns can be calculated. The required primary  
turns depend on the allowed Bmax. For most power ferrites, a value in the region of 315 mT is commonly used.  
,
02) × )0+ ≠°∏  
txr J × 4ꢀꢁ  
ꢁꢀ315 × 96ꢀ6 J  
: ;  
.0 =  
=
= 34ꢀ18  
"
≠°∏  
× !•  
(39)  
Round NP to 34. Now the required secondary-side turns can be calculated, using the previously calculated turns  
ratio per Equation 23.  
.
5ꢀ7ꢁ4  
0
.3 =  
= 5ꢀ9ꢁ  
(40)  
Again, NS is rounded to 6. Due to the integer rounding of the turns count, ensure that the actual turns ratio is  
within 5% of original target (if outside this range, secondary-side rectifier or primary MOSFET stress may be too  
high).  
.
0
.
5ꢀ7ꢁ4  
3
= 98ꢀ8%  
(41)  
(42)  
From Equation 24, the required bias turns can be calculated using Equation 42.  
6")!3 ¥°≤ß•¥ ; + 6  
1ꢀ + 0ꢁ7  
:
&
." =  
× .3 =  
× ꢄ = ꢅꢁ8ꢀ  
:
;
6/54 + 62%#4  
19ꢁꢂ + 0ꢁꢃꢂ  
Again, NB is rounded to 4. The effect of integer scaling in the turns is verified by calculating the expected bias  
voltage versus target.  
.
.
"
:
;
: ;  
F 6 = 19ꢀꢁ + 0ꢀꢂꢁ × F 0ꢀ7 = 1ꢄꢀꢃ 6  
&
6")!3 = 6/54 + 62%#4  
×
3
(43)  
The VBIAS target was 12 V, so this is acceptable.  
The required core inductance factor, AL, to achieve the target inductance can be calculated as in Equation 44.  
The transformer manufacturer uses this factor to gap the core center leg.  
,
txrJ  
34ꢀ  
02)  
!, =  
=
= ꢀꢀ5 Æ(  
.
0
(44)  
60  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
 
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
Finally, calculate the required air-gap length lg, based on the required inductance and the core geometry.  
.
0
2 × J× !#%.4ꢁ%  
¨
¨ß =  
F
,
0ꢁ)  
J≤  
where  
μ0 is the permittivity of free-air  
μr is the relative permeability of the chosen core ferrite material  
ACENTRE is the cross-sectional area of the core center leg  
lm is the core average magnetic path length  
(45)  
For the RM10/I core in 3C95 material (chosen for low core loss over a wide temperature range), the required air-  
gap length is calaulated using Equation 46.  
342 × vN × 10-7 × 93.3 J 44.6 ≠  
¨ß =  
F
L wsv J≠  
txr J  
5500  
(46)  
Typically, the air-gap calculation in Equation 45 underestimates lg, due to flux fringing in the air-gap. The fringing  
causes the affective area of the air-gap Ag to be somewhat larger than the ferrite core center leg ACENTRE  
,
depending on the gap length. This difference requires an increase in the required air-gap length to get the  
required inductance, which results in a further increase in fringing. However use Equation 45 to determine an  
initial value for lg, which can then be used to estimate Ag. For round centre legs, the increase in effective area  
within the gap can be estimated empirically from Equation 47  
¨
0ꢁ51ꢂ  
10ꢁ9  
ß
!ß = !#%.42% × F1+  
G
L {uäu J × l1+  
p = 10ꢀꢁ31 ≠≠ꢀ  
$
#%.42%  
where  
DCENTRE is the center leg diameter  
(47)  
(For more information about this subject, download the paper Inductor and Flyback Transformer Design, Lloyd  
Dixon, TI Power Supply Design Seminar SLUP127).  
Because Equation 45 assumes that Ag equals ACENTRE, it must be modified using Equation 48.  
2
.
0
× J× !ß  
!
!
¨
G F l ≠  
J≤  
¨ß =F  
×
ßp  
,
0ꢁ)  
(48)  
(49)  
Re-iterating the air-gap calculation in Equation 49 .  
342 × vN × 10F7 × 102.31 J  
44.6 ≠ 102.31 J  
G F l p L wxuär J≠  
¨ß = F  
×
260 J  
5500  
96.6 J  
Typically, after the second iteration above in Equation 48, the estimated air-gap is very close to the required  
value. Further iterations can be made, but should not be necessary.  
Copyright © 2014–2017, Texas Instruments Incorporated  
61  
 
 
 
 
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
9.2.4.8 Slope Compensation Verification  
After choosing the current sense resistor, transformer inductance and transformer turns ratio, verify the required  
slope compensation against the fixed internal slope compensation. The worst case slope compensation  
requirement always occurs at the highest duty cycle operating point (at minimum bulk voltage level).  
For stability, the slope compensation should be at least 50% of the difference between the inductor up-slope and  
down-slope. [reference Bob Mammano TI Power Supply Design Seminar paper, 2001, SLUP173]. For a flyback  
converter, the difference in slopes in CCM is equal the operating duty cycle multiplied by the inductor current  
down-slope value. For example, for 50% dBULK(min) at minimum bulk capacitor voltage, the required slope  
compensation ramp is 25% of the inductor current down-slope.  
As listed in Table 8, the specified peak-load transient is 130 W for 2 ms. In a worst case, peak transient timing  
with respect to the AC phase, the VBULK minimum level dips to 65 V. This corresponds to a duty cycle of  
approximately 63.5% according to Equation 50.  
.
0
:
;
× 6/54 62%#4  
¤
:
;
ꢁꢂ ꢃ × 19ꢄ9ꢅ  
.
3
§
=
;
=
= ꢃꢁꢄꢅꢆ  
:
"5,+ ≠©Æ  
:
¤
:
;;  
ꢃꢅ ꢀ ꢁꢂ ꢃ × 19ꢄ9ꢅ  
.
.
0
:
;
G
F6"5,+ ≠©Æ  
;
× 6/54 62%#4  
:
3
(50)  
(51)  
The required slope compensation ramp is calculated at 63.5% duty cycle.  
.
3
:
;
× 6/ꢀ4 62ꢃ#4  
¤
ꢇꢉ ꢆ × 19ꢅ95  
.
6#3 (≥¨Ø∞• ) = 50% × §"ꢀ,+ ≠©Æ ; × 2#3 × n  
r= 0ꢅ5 × 0ꢅꢆꢇ5 × 0ꢅꢈ × F  
G = ꢈ7ꢅꢆ ≠6ꢊJ≥  
:
,
ꢁ2ꢄ  
txr J  
This value is within the 30 mV/μs of internal slope compensation provided by the controller.  
9.2.4.9 Power MOSFET and Output Rectifier Selection  
The initial design target proposed the use of a 100-V Schottky rectifier. The secondary-side reverse voltage  
stress can be verified using the final transformer design sh own in Equation 52.  
.
ꢁꢂ  
3
:
;
=
62%#4 ≤•∂ ; = l × 6!# ∞´_≠°∏ ;p + 6/54 + 62%#4  
× ꢁ7ꢁ + 19ꢃ9ꢄ = 8ꢄꢃ8 6  
:
:
.
0
(52)  
The value derived from Equation 52 is close to the original design target of 85 V.  
For 65-W load, the average DC output current is 3.35 A for 19.5-V output. However, to reduce losses, a much  
higher current rated diode is typically used, to yield a much lower forward voltage drop VRECT. As shown in  
Figure 44, a 30-A rated diode D7 is used in this case, with a forward drop of approximately 0.45 V at 3.5 A,  
100°C.  
For the primary-side MOSFET, the peak voltage stress can be estimated using Equation 53.  
.
.
ꢀꢁ  
0
:
;
6$3 ≠°∏ ; = 6  
+
;
!# ∞´ _≠°∏  
× 6/54 + 62%#4 = ꢀ7ꢀ +  
× 19ꢃ9ꢄ = ꢁ8ꢂ 6  
:
:
3
(53)  
An allowance of at least 100 V must be added to this figure to account for the leakage inductance spike at turn-  
off. This voltage spike depends on the transformer implementation and the amount of leakage inductance, as  
well as the specific design of the snubber. A more aggressive snubber may reduce the voltage spike, but at the  
expense of higher losses in the snubber. A voltage rating of at least 600 V is recommended for the power  
MOSFET to allow for leakage.  
The MOSFET rms current at low line, rated load, can be estimated using Equation 54.  
.
0
.
3
:
;
× 6/54 + 62%#4  
6#3 ¢£≠  
ꢂꢃꢄꢅ  
:
;
)
=
;
×
=
× ¾ꢂꢃꢇ8 = 1ꢃꢅ1 !  
:
02) ≤≠≥  
ª
ꢀ2  
¾
®ꢂꢃꢆ  
¾
.
.
#3  
0
:
;
G
F6"5,ꢁ ≠©Æ  
+
;
× 6/54 + 62%#4  
:
3
(54)  
As can be seen in Figure 44, the chosen MOSFET Q1 is a 13-A, 600-V device.  
62  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
 
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
9.2.4.10 Output Capacitor Selection  
Select the output capacitor value on the basis of one of the following, depending on which one is the limiting  
factor:  
Required ripple current rating to absorb the high secondary-side peak current  
Required esr to achieve a target peak-peak ripple voltage  
Required holdup capacitance to achieve target minimum output voltage for a specified load transient from no  
load when the device is switching at fSW(min)  
For flyback converters, ripple current rating often dictates the output capacitance value. The required ripple  
current rating can be calculated from Equation 55.  
3
3
3
3
3
3
3
3
3
3
3
3
Ç
È
È
È
Ê
Ë
Ë
Ë
6#3 ¢£≠  
6"5,+ ≠©Æ  
.
:
;
:
;
0
)
=
;
×
×
F )/54  
:
#!0 ≤≠≥  
2#3  
.
3
ª
.
0
: ;  
× 6/54 62%#4 Gq  
ꢀ × m6"5,+ ≠©Æ F  
:
;
.
3
É
Ì
ã
(55)  
At rated 65-W load, ICAP(rms) = 5.9 ARMS. Capacitors C11 and C13 in Figure 43 are chosen to meet this ripple  
requirement, (each capacitor has a 2.5-A minimum rating at 105°C). Total output capacitance is 1360 μF.  
9.2.4.11 Calculation of CC Mode Limit Point  
Calculate the expected output constant-current (CC) limit point from Equation 20. As previously noted, KCC1 is  
44.5 and KCC1 is 69.5. Thus, IOUT(lim) in this case is approximately calculated in Equation 56.  
1
2#3  
.
+
1
ꢂꢃꢀ  
ꢄꢅ  
ꢅꢅꢃꢇ  
0
##1  
)
=
;
×
×
=
×
×
= 7ꢃꢂ !  
:
/54 ¨©≠  
.
3
ꢄꢅ  
.
3
0
.
+
6/54  
×
ꢆ9ꢃꢇ ꢁ @19ꢃꢇ ×  
A
##ꢀ  
(56)  
Copyright © 2014–2017, Texas Instruments Incorporated  
63  
 
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
9.2.4.12 VDD Capacitor Selection  
Size the VDD capacitor to supply sufficient IDD(run) current to the device during initial start-up, and also during the  
charging phase of the main output capacitors. During the charging phase the bias winding on the transformer  
must supply the bias power. When VDD reaches the VDD(start) threshold, the device consumes IDD(run) for tSTART(del)  
before the PWM switching commences. Thereafter, the bias current is the device current plus the MOSFET gate  
current. The VDD capacitor must support this higher level of current until the output is sufficiently charged that  
the bias winding rail has increased above the VDD(stop) level.  
Calculate the required bias capacitance from the total bias charge associated with the device run current during  
the tSTART(del) phase, plus the device run current during the output charge phase, plus the primary MOSFET gate  
charge current during the output charge phase. The time taken for the output charge phase to reach a sufficient  
level to supply the bias can be calculated from the size of the output capacitor, target output regulation voltage,  
and the difference between the available CC mode current limit and the maximum load current (assuming that  
the output capacitor has to be charged whilst also supplying full rated load current). Assume that the MOSFET is  
switched at 60 kHz throughout the charging phase.  
Combining these into one equation, the required VDD capacitor can be calculated as shown in Equation 57.  
6$$ ≥¥Ø∞ _≠°∏  
6/54 × #/54  
:
k)$$ ≤µÆ ; × ¥  
;o + k)$$ ≤µÆ ; + &37 ÆØ≠ ; × 1ß ¥Ø¥ ;o × l  
p × l  
;p  
:
:
:
:
:
34!24 §•¨  
)
; F )/ ≠°∏  
6")!3 ÆØ≠  
:
:
;
:
;
/54 ¨©≠  
#
6$$  
=
c6$$ ≥¥°≤¥ _≠©Æ ; F 6  
;g  
:
:
$$ ≥¥Ø∞ _≠°∏  
(57)  
This can be re-written with the explicit device values substituted:  
6/54 × #/54  
8.ꢁ  
6")!ꢂ JKI  
;
:
;
8≠ × 3≠ +k8≠ + ꢀ0 ´ × 1ß PKP ;o × l  
p × l  
p
:
)
; F )/ I=T  
:
: ;  
:
/54 HEI  
#
=
6$$  
:
;
ꢃ3.0 F 8.ꢁ  
(58)  
(59)  
For this EVM design, the MOSFET Qg(tot) is 30 nC, VBIAS(nom) is 12.6 V. IO(max) is 3.35 A, so this equates to:  
19.5 × suxrJ  
7.0 F 3.35  
8.5  
12.ꢀ  
:
;
:
;
8≠ × 3≠ + 8≠ + ꢀ0 ´ × 30Æ × @  
A × @  
A
#
6$$  
=
L sxär J&  
:
;
13.0 F 8.5  
Choose the next higher standard value, 22 μF.  
Verify that the bias capacitance is sufficient to absorb all the X-capacitor energy when it has to be discharged,  
per Equation 3. From Figure 44, the value of X-capacitor is 330 nF.  
6!# ∞´; F 6  
ꢀ7ꢀ F ꢁ0  
1ꢀ F ꢁ.5  
:
3%,6  
#6$$ R #8 × F  
G = ꢀꢀ0 Æ& × l  
p = 15.9 J&  
6$$ ≥¥°≤¥ _≠©Æ ; F 6  
:
:
;
$$ ≤•≥•¥ _≠°∏  
(60)  
64  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
9.2.4.13 Magnetic Sense Resistor Network Selection  
The required values for the magnetic sense divider network are calculated from Equation 11 and Equation 12.  
For the RM10/I transformer used in the PWR572 EVM, the secondary-side to bias leakage inductance was  
measured and found to be approximately 4%. This figure can be reasonably estimated as the ratio of the  
inductance value measured across the secondary-side pins with the bias pins shorted together (primary winding  
should remain open-circuit), to the inductance value measured across the secondary-side pins with all other  
windings open:  
,
:
;
3ꢀ# ¢©°≥ _≥®Ø≤¥  
%,,+ ≥•£ _¢©°≥  
=
;
:
,
:
;
3ꢀ# ¢©°≥ _Ø∞•Æ  
(61)  
RA is calculated as shown in Equation 62.  
.
.
4
34  
2! = 20 × l "p × +,).% = 3ꢀ9 ´3 × l p × 49ꢀꢁ5 = ꢁꢁꢀ597 ´3  
0
(62)  
The nearest standard E96 value 22.6 kΩ is selected. RB may then be calculated to set VOUT at 19.5 V.  
2! ꢂꢂꢃꢄ ´3  
k6/54 × k1 F %,,+ ≥•£ _¢©°≥ ;o 62ꢁ#4o × @ "W  
2" =  
=
= ꢇꢂꢃ10 ´3  
.
:
:
;
;
: ¤ ;  
19ꢃꢅ × 1 F 0ꢃ0ꢆ ꢀ 0ꢃꢆꢅ × ꢆ ꢄ  
A
:
l
F 1p  
.
3
7ꢃꢅ0  
L
F 1M  
6/54 ≤•¶  
:
;
(63)  
The nearest E96 value is 32.4 kΩ, which could be used, but results in some set-point regulation error. As shown  
in Figure 44, the setpoint may be fine-tuned by using two parallel resistors for RB. In this case use values of 39  
kΩ and 180 kΩ, to give a net equivalent of 32.05 kΩ, very close to the target value in Equation 63.  
Note that the pull-up diode to DRV pin should be a standard switching signal diode such as BAS21 or similar.  
The reverse recovery of the diode should be 100 ns or less. A slow-recovery diode clamps the VSENSE pin low  
for an initial portion of the flyback interval, and may impair or prevent the ability to take a valid output voltage  
sample.  
9.2.4.14 Output LED Pre-Load Resistor Calculation  
As shown in Figure 44, the output power good LED1 and series resistor R18 form an output pre-load or minimum  
load. This pre-load is necessary in order to maintain regulation at no load, or when the power converter output is  
disconnected from the load system. Magnetic regulation relies on sensing the output voltage during switching  
cycles, so it is necessary to maintain a certain minimum switching frequency fSW(min) in order to continue sensing  
the output voltage. However, generating switching cycles at fSW(min) transfers energy to the output, which requires  
some load on the secondary-side to absorb this energy and prevent the output capacitors from being charged out  
of regulation. The minimum energy transferred at fSW(min) depends on the choice of magnetizing inductance LPRI  
and current sense resistor RCS  
.
6#3 ≠©Æ  
ꢀ.1ꢃꢁ  
ꢀ.ꢁ  
:
002%,/!$ ≠©Æ ; = ꢀ.5 × ,02)× l  
;p × ¶37 ≠©Æ ; = ꢀ.5 × ꢁꢂꢀ J( × l  
p × ꢁꢀꢀ = 19.ꢁꢄ ≠7  
:
:
2#3  
(64)  
In order to ensure that the control loop operates at a frequency above the minimum switching frequency, fSW(min)  
(to ensure that the loop has adjustment range up/down as required to maintain regulation), the recommended  
minimum pre-load is at least twice the value calculated in Equation 64.  
The required value of R18 can then be calculated, assuming a forward voltage drop of 1.8 V for the LED:  
6/54F 6/54 × 6,%$ 19.ꢁF 19.ꢁ × 1.8  
2,%$  
=
=
= 8.97 ´3  
ꢀ × 0:  
ꢀ × 19.ꢀ3≠  
;
∞≤•¨Ø°§ _≠©Æ  
(65)  
Use the next lower E24 value of 8.2 kΩ. For a design without an LED, a pre-load resistor of similar value is still  
required across the output voltage.  
Copyright © 2014–2017, Texas Instruments Incorporated  
65  
 
 
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
9.2.5 External Wake Pulse Calculation at VSENSE Pin (UCC28633 Only)  
The typical application circuit of Figure 39 may be redrawn as a simplified equivalent circuit as shown in  
Figure 45. In this equivalent circuit, the capacitor CP is the total parasitic capacitance (MOSFET Coss, transformer  
capacitance, etc), and resistance RWAKE is the effective internal resistance of the UCC24650 WAKE pin to GND  
pin when the internal WAKE pull-down is active (see UCC24650 detailed datasheet specifications).  
If all the elements on the primary and secondary of the transformer are referred to the bias winding, this can be  
further simplified as in Figure 46.  
NP  
VOUT  
LP  
NS  
VBULK  
RWAKE  
RT  
CP  
NB  
VSENSE  
RB  
Figure 45. Simplified Equivalent Circuit of Wake Event with UCC24650  
(NB/NS) x RWAKE  
RT  
(NB/NP)2 x LP  
+
(NB/NP)2 x CP  
(NB/NS) x VOUT  
VSENSE  
œ
RB  
ZLC(bias)  
Figure 46. Bias-Referred Simplified Equivalent Circuit of Wake Event with UCC24650  
66  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
Thus, knowing LP and CP, the power stage impedance ZLC(bias) (reflected to the bias winding) may be calculated  
from Equation 66, and the effective wake resistance can be referred to the bias winding using Equation 67. The  
wake pulse amplitude can be calculated from Equation 68. If CP is not known, it can be measured by observing  
the resonant ring period at the primary drain node, TRES, and calculating CP from Equation 69. Worst case values  
should be used to estimate the worst case minimum wake pulse amplitude at the VSENSE pin. It should also be  
noted that any filter cap on the VSENSE pin (including internal parasitic pin capacitance) adds an RC filter in  
conjunction with the Thevenin resistance of the VSENSE divider, RT, RB; this delays and further attenuate the  
wake pulse amplitude. Additionally, the internal wake comparator requires some over-drive to trip, and exhibits  
propagation delay that depends on the amount of overdrive. So some margin should be allowed in the wake  
pulse amplitude to ensure that the minimum wake pulse can adequately overdrive the internal wake comparator.  
A margin of at least 20% over the threshold VSENSE(wake) is recommended.  
2
.
0$  
02  
<
= ¨ 2 × l  
p
.%(>E=O )  
%
2
(66)  
(67)  
(68)  
(69)  
2
0$  
49#-'(>E=O ) = 49#-' × l  
p
0
5
<
4$  
0$  
p × l8176 × (1 F ¿9#-'%) × p × F  
.%(>E=O )  
8
= l  
G
5'05'_9#-'(LG )  
4# + 4$  
0
5
<.%(>E=O ) + 49#-'(>E=O )  
2
6
2è  
1
%2 = l NAO p ×  
.
2
If the worst case wake pulse amplitude is too low, then the UCC24650 WAKE output can be augmented with an  
external PNP circuit Q1, R1 and R2, as shown in Figure 40. This circuit reduces the effective wake resistance to  
ground, so that a larger proportion of the output voltage appears across the transformer secondary pins when the  
UCC24650 WAKE activates.  
Using the UCC28630EVM-572, (TI Literature Number SLUUAX9) circuit parameters from Figure 44, the nominal  
wake pulse amplitude at the VSENSE pin can be estimated. Of course, the rectifying diode D7 in Figure 44  
would need to be relocated to return end of the secondary winding (pins 10, 11) to allow UCC24650 to be  
deployed.  
From observation of the DCM ringing period, the period TRES was found to be 1.138 μs. From Equation 69, CP is  
estimated:  
2
2
6
1
1.138ä  
2è  
1
260ä  
%2 = l NAOp × = l  
2è  
p ×  
= 126 L(  
.
2
(70)  
From Equation 66, the power circuit impedance is:  
2
2
.
%
0$  
02  
260ä  
126L  
4
2
<
= ¨ × l p = ¨  
× l p = 19.9  
34  
W
.%(>E=O )  
2
(71)  
The WAKE pin resistance RWAKE can be determined form the UCC24650 datasheet; for now a nominal value of  
400 Ω is assumed. Referred to the bias winding (scaled by (NB/NS)2), this becomes 178 Ω. Similarly ΔWAKE% can  
be determined from the UCC24650 datasheet; for now, a value of 97% is assumed. From Equation 68, the wake  
pulse amplitude can be calculated:  
«
÷
÷
ZLC  
’ ≈  
RB  
NB  
NS  
(
bias  
)
÷ ∆  
÷
÷
VSENSE  
=
=
ì VOUT  
ì
(
1- DW AKE%  
)
ì
ì
WAKE ( pk )  
÷ ∆  
RA + RB  
ZLC ) + RW AKE  
( (  
«
◊ «  
bias  
bias  
)
32.05  
4
6
19.9  
19.9 +178  
«
’ ≈  
ì 19.5ì97% ì  
’ ≈  
ì
= 0.743V  
÷ ∆  
÷ ∆  
÷
22.6 + 32.05  
◊ «  
◊ «  
(72)  
In this case, the VSENSE wake pulse amplitude would be insufficient to trip the internal wake comparator. If the  
power stage had higher LP, or lower CP, a larger wake pulse would be produced.  
Copyright © 2014–2017, Texas Instruments Incorporated  
67  
 
 
 
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
Alternatively, the effective wake resistance RWAKE may be reduced by adding the PNP circuit per Figure 40. This  
has been verified using Q1 = FMMTA92 PNP transistor, R1= 100 Ω and R2 = 2.2 kΩ. A wake pulse amplitude of  
almost 2 VPK was produced at the VSENSE pin, giving generous margin to the internal threshold VSENSE(wake)  
The observed waveforms are shown in Figure 47 for a worst case 0% to 100% (65 W) load transient (where the  
PWM is at FMIN). The PWM is re-activated when VOUT has dropped by ~3%, rather waiting for the next timed  
wake-up (~5 ms later).  
.
Figure 48 shows a zoomed waveform of the wake pulsing ringing as measured on the bias winding. It can be  
seen that the peak level is approximately 3 VPK, which would produce a pulse of approximately 1.8 V at the  
VSENSE pin (scaled by VSENSE divider resistors RT and RB). As noted in Test and Debug Recommendations,  
the VSENSE pin should never be directly probed, doing so affects the regulation setpoint.  
Figure 47. Observed Output Voltage (Ch3) and Bias Winding (Ch4)  
(showing wake event generated by UCC24650)  
Figure 48. Zoom In of Wake-Pulse Ringing  
(observed across bias winding (ChB) generated by UCC24650)  
68  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
9.2.6 Energy Star Average Efficiency and Standby Power  
Table 9 summarize the standby power, and Table 10 summarizes the average efficiency performance of the  
UCC28630EVM-572, (TI Literature Number SLUUAX9).  
Table 9. Standby Power Performance  
STANDBY POWER  
115 VAC (mW)  
230 VAC (mW)  
57  
60  
Table 10. Average Efficiency Performance  
AVERAGE EFFICIENCY (INCLUDING OUTPUT 76-mΩ CABLE DROP)  
LOAD LEVEL (%)  
25 (16.25 W)  
50 (32.5 W)  
75 (48.75 W)  
100 (65 W)  
115 VAC (%)  
89.44  
230 VAC (%)  
89.26  
88.98  
89.38  
88.24  
89.10  
87.59  
88.73  
Average  
88.6  
89.1  
Copyright © 2014–2017, Texas Instruments Incorporated  
69  
 
 
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
9.2.7 Application Performance Plots  
Figure 49. Start-Up from 90-VAC, 3.35-A CC Load  
Figure 50. Start-Up from 230-VAC, 3.35-A CC Load  
Figure 51. Output Rise-Time, 90-VAC, 3.35-A CC Load  
Figure 52. Output Rise-Time, 230-VAC, 3.35 A CC Load  
70  
Copyright © 2014–2017, Texas Instruments Incorporated  
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
90  
85  
80  
75  
70  
65  
115 VAC  
230 VAC  
115 VAC  
230 VAC  
80  
0
10  
20  
30  
40  
50  
60  
70  
0
1
2
3
4
5
6
7
8
Load Power (W)  
Load Power (W)  
C017  
C018  
Figure 53. Efficiency vs. Load/Line  
(cable drop included)  
Figure 54. Zoom Light-Load Efficiency vs. Load/Line  
(cable drop included)  
20  
19.9  
19.8  
19.7  
19.6  
19.5  
19.4  
19.3  
19.2  
19.1  
20  
90 V/50 Hz  
100 V/60 Hz  
19.8  
120 V/60 Hz  
143 V/63 Hz  
200 V/47 Hz  
230 V/50 Hz  
269 V/63 Hz  
19.6  
19.4  
19.2  
19  
90 V/50 Hz  
100 V/60 Hz  
120 V/60 Hz  
143 V/63 Hz  
200 V/47 Hz  
230 V/50 Hz  
269 V/63 Hz  
18.8  
18.6  
19  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
Output Power (W)  
Output Power (W)  
C019  
C020  
Figure 55. Output Voltage Regulation vs. Line/Load  
(without cable drop)  
Figure 56. Output Voltage Regulation vs. Line/Load  
(with cable drop included)  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
90 V/50 Hz  
100 V/60 Hz  
120 V/60 Hz  
143 V/63 Hz  
200 V/47 Hz  
230 V/50 Hz  
269 V/63 Hz  
0
2
4
6
8
10  
Output Current (A)  
C021  
Figure 57. CC Mode Regulation vs. Line  
Figure 58. Transient Step 5% to 50% Load, 115 VAC  
Copyright © 2014–2017, Texas Instruments Incorporated  
71  
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
Figure 59. Transient Step 50% to 100% Load, 115 VAC  
Figure 60. Transient Step 10% to 90% Load, 115 VAC  
35  
30  
0
50  
40  
0
Gain  
Gain  
œ30  
œ30  
Phase  
Phase  
25  
œ60  
œ60  
30  
20  
œ90  
œ90  
15  
œ120  
œ150  
œ180  
œ210  
œ240  
œ270  
œ300  
œ330  
œ360  
20  
œ120  
œ150  
œ180  
œ210  
œ240  
œ270  
œ300  
œ330  
œ360  
10  
10  
5
0
0
œ5  
œ10  
œ20  
œ30  
œ40  
œ10  
œ15  
œ20  
œ25  
10  
100  
Frequency (Hz)  
1000  
10  
100  
Frequency (Hz)  
1000  
C022  
C023  
Figure 61. Measured Control Loop Gain/Phase at 300 VDC  
,
Figure 62. Measured Control Loop Gain/Phase at 300 VDC  
,
Full Load 3.35 A  
Light Load 0.2 A  
72  
Copyright © 2014–2017, Texas Instruments Incorporated  
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
9.3 Dos and Don'ts  
9.3.1 Test and Debug Recommendations  
One important precaution must be noted during test and debug. Do not probe the VSENSE pin with an  
oscilloscope probe, meter or differential probe. Doing so adds excessive capacitance to the pin, delaying the pin  
rise-time, and causing the regulated system output voltage to increase.  
10 Power Supply Recommendations  
The VDD power pin for the device requires the placement of low-esr noise-decoupling capacitance as directly as  
possible from the VDD pin to the GND pin. Ceramic capacitors with stable dielectric characteristics over  
temperature are recommended, such as X7R or better. Depending on the operating temperature range of the  
application, X5R may be acceptable, but the drop in capacitance value at high temperature and with applied DC-  
bias may not be tolerable. Avoid dielectrics with poor temperature-stability. (such Y5V, Z5U)  
The recommended decoupling capacitors are a 1-μF 1206-sized 50-V X7R capacitor, ideally with (but not  
essential) a second smaller parallel 100-nF 0603-sized 50-V X7R capacitor. Higher voltage rating parts can also  
be used. The use of 25-V rated parts is not recommended, due to the reduction in effective capacitance value  
with applied DC bias.  
In parallel with the ceramic noise-decoupling capacitor(s), a larger-capacitance energy storage capacitor is also  
required, per Equation 58. This energy-storage capacitor does not require low esr, and does not necessarily  
need to be located close to the device.  
Copyright © 2014–2017, Texas Instruments Incorporated  
73  
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
11.1.1 HV Pin  
This pin is connected to the rectified AC input, and as such requires appropriate separation to other PCB  
traces to meet the application requirements for functional isolation;  
This pin must have 200 kΩ of external resistance to allow the line voltage to be sensed for the X-capacitor  
discharge block. At least two series resistors should be used to reduce the voltage across the pins of each  
resistor, with each resistor rated for at least 200 V;  
The connection to the resistors that feed the HV pin should have separate dedicated rectifying diodes from  
the AC input lines, to avoid the DC filtering that the bulk capacitor provides after the main diode bridge; the  
lower section of the main diode bridge can be shared by the device and the power stage;  
A filtering or noise-decoupling capacitor is not recommended, such a capacitor will degrade the X-capacitor  
sampling ability to distinguish AC from DC input.  
11.1.2 VDD Pin  
A 1-µF ceramic decoupling capacitor is recommended, placed as close as possible between the VDD pin and  
GND, tracked directly to both pins.  
11.1.3 VSENSE Pin  
The tracking and layout of the VSENSE pin and connecting components is critical to minimizing noise pick-up  
and interference in the magnetic sensing block. (See Figure 63 for suggested component placement and  
tracking). Reduce the total surface area of traces on the VSENSE net to a minimum.  
Because the resistance values of RA and RB are relatively high to minimize power dissipation, the high  
impedance makes the VSENSE pin potentially noise-sensitive. To minimize noise pick-up, locate resistors RA  
and RB as close as possible to the VSENSE pin, with RB in particular placed as directly as possible between  
VSENSE and GND pins;  
Depending on layout, a small noise filter capacitor may be useful on the VSENSE pin, such as C15 shown in  
Figure 44. Connect this capacitor as directly as possible between the VSENSE and GND pins. Choose the  
value of this capacitor as small as possible, and no greater than 10 pF. A larger value significantly delays the  
voltage rise-time at the pin, and affects the regulation set-point;  
In case of possible board faults that can pull the VSENSE pin below GND (such as R7 shorted), in order to  
protect the pin and limit possible negative current out of the pin, a series resistor R4 (as shown in Figure 44)  
and clamping diode from GND are recommended. Maintain the value of R4 between 100 Ω and 500 Ω. A  
larger value may affect regulation and line sense accuracy.  
For correct line sense operation, the switched pull-up R10 and D4 must be added. The value of R10 must be  
3.9 kΩ to match the internal device gain. The switched pull-up diode and the GND clamping diode can be  
combined into a dual-diode common-cathode package, such as D4 as shown in Figure 44.  
11.1.4 CS Pin  
A small, external filter capacitor is recommended on the CS pin. Track the filter capacitor as directly as  
possible from the CS to GND pin.  
Referring to Figure 44, a series resistor such as R5 is typically connected between the current sensing  
resistor R16 and the CS pin to form an R-C filter. A filter time constant between 100 ns and 200 ns is  
recommended. If the filter time constant is made too large, the filtering causes the transformer peak current to  
exceed the control loop demand level, which affects regulation and standby power. Place resistor R5 as close  
as possible to the CS pin.  
Reduce the total surface area of traces on the CS net to a minimum.  
74  
Copyright © 2014–2017, Texas Instruments Incorporated  
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
Layout Guidelines (continued)  
11.1.5 SD Pin  
Referring to Figure 44, the SD pin is connected to a temperature-sensing NTC RT1 in series with an adjust  
resistor R6. The NTC can be tracked to the required hot-spot location, or it can be wired with flying leads to  
the required hotspot.  
Track the RT1 return to GND as directly as possible back to the GND pin of the device. RT1 should not be  
connected to a power GND track or plane, in order to minimize error in the trip level.  
The device internally filters the SD pin, so an external filter capacitor is not usually required. If the application  
design requires an external capacitor, limit the value to 1 nF maximum.  
11.1.6 DRV Pin  
The DRV pin has high internal sink/source current capability. An external gate resistor is recommended. The  
value depends on the choice of power MOSFET, efficiency and EMI considerations.  
As shown in Figure 44 an anti-parallel path formed by D5 and R13 are placed across the gate resistor R11 to  
allow turn-on and turn-off of the MOSFET to be independently adjusted.  
A pull-down resistor (such as R15 in this example) on the gate of the external MOSFET is recommended to  
prevent the MOSFET gate from floating on if there is an open circuit error in the gate drive path. The value of  
R15 also affects the overload timer settings, so carefully choose the value of R15 according to Table 2.  
Ensure that the noisy gate drive traces are routed away from the sensitive VSENSE pin and CS pin traces.  
11.1.7 GND Pin  
Connect decoupling and noise filter capacitors, as well as sensing resistors directly to the GND pin in a star-  
point fashion, ensuring that the current-carrying power tracks (such as the gate drive return) are track  
separately to avoid noise and ground-drops that could affect the analogue signal integrity.  
11.2 Layout Example  
w!  
Ço .ias  
ꢀinding  
UCC28630  
~100 Q  
ë{ꢃb{ꢃ  
Ië  
w.2  
w.1  
G10 pC  
{5  
ꢂ{  
ë55  
5wë  
G120 pC  
100 nC  
1 µC  
3ꢁ9 lQ  
Db5  
Ço 5wë  
pin  
Wumper/  
link  
Ço ꢂ{  
resistor  
Figure 63. Recommended PCB Layout for Single-Sided Assembly  
版权 © 2014–2017, Texas Instruments Incorporated  
75  
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
www.ti.com.cn  
12 器件和文档支持  
12.1 商标  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.2 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.3 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12.4 器件支持  
12.4.1 开发支持  
12.4.1.1 使用 WEBENCH® 工具创建定制设计  
请单击此处,借助 WEBENCH® 电源设计器并使用 UCC2863x 器件创建定制设计方案。  
1. 首先键入输入电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化关键参数设计,如效率、封装和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他解决方案进行比较。  
WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案导出至常用 CAD 格式  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com/WEBENCH。  
12.5 文档支持  
12.5.1 相关文档  
UCC28630EVM-57265W  
SLUSAX9)  
标称功率,130W  
峰值功率,初级侧稳压适配器模块》  
德州仪器文献编号  
12.5.1.1 相关链接  
下面的表格列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的  
快速链接。  
11. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具和软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
UCC28630  
UCC28631  
UCC28632  
UCC28633  
76  
版权 © 2014–2017, Texas Instruments Incorporated  
UCC28630, UCC28631  
UCC28632, UCC28633, UCC28634  
www.ti.com.cn  
ZHCSC62D MARCH 2014REVISED DECEMBER 2017  
13 机械、封装和可订购信息  
以下页中包括机械封装、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。数据如有变更,恕不另  
行通知和修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航。  
版权 © 2014–2017, Texas Instruments Incorporated  
77  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
UCC28630D  
UCC28630DR  
UCC28631D  
UCC28631DR  
UCC28632D  
UCC28632DR  
UCC28633D  
UCC28633DR  
UCC28634D  
UCC28634DR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
D
D
D
D
D
D
7
7
7
7
7
7
7
7
7
7
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
U28630  
2500 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
U28630  
U28631  
U28631  
U28632  
U28632  
U28633  
U28633  
U28634  
U28634  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
UCC28630DR  
UCC28631DR  
UCC28632DR  
UCC28633DR  
UCC28634DR  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
D
7
7
7
7
7
2500  
2500  
2500  
2500  
2500  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
6.4  
6.4  
6.4  
6.4  
6.4  
5.2  
5.2  
5.2  
5.2  
5.2  
2.1  
2.1  
2.1  
2.1  
2.1  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
UCC28630DR  
UCC28631DR  
UCC28632DR  
UCC28633DR  
UCC28634DR  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
D
7
7
7
7
7
2500  
2500  
2500  
2500  
2500  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
35.0  
35.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
UCC28630D  
UCC28631D  
UCC28632D  
UCC28633D  
UCC28634D  
D
D
D
D
D
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
7
7
7
7
7
75  
75  
75  
75  
75  
506.6  
506.6  
506.6  
506.6  
506.6  
8
8
8
8
8
3940  
3940  
3940  
3940  
3940  
4.32  
4.32  
4.32  
4.32  
4.32  
Pack Materials-Page 3  
PACKAGE OUTLINE  
D0007A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
8
1
.100  
[2.54]  
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X .050  
[1.27]  
4
5
7X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4220728/A 01/2018  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0007A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
7X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
7X (.024)  
[0.6]  
(.100 )  
[2.54]  
SYMM  
5
4
4X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
ALL AROUND  
.0028 MIN  
[0.07]  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4220728/A 01/2018  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0007A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
7X (.061 )  
[1.55]  
SYMM  
1
8
7X (.024)  
[0.6]  
(.100 )  
[2.54]  
SYMM  
5
4
4X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4220728/A 01/2018  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

UCC28634DR

具有 PSR、峰值功率模式、可调节 CC 限制和频率抖动功能的高功率反激式控制器 | D | 7 | -40 to 125
TI

UCC28700

Constant-Voltage, Constant-Current Controller With Primary-Side Regulation
TI

UCC28700-Q1

Constant-Voltage, Constant-Current Controller With Primary-Side Regulation
TI

UCC28700-Q1_15

Constant-Voltage, Constant-Current Controller With Primary-Side Regulation
TI

UCC28700DBVR

Constant-Voltage, Constant-Current Controller With Primary-Side Regulation
TI

UCC28700DBVT

Constant-Voltage, Constant-Current Controller With Primary-Side Regulation
TI

UCC28700QDBVRQ1

Constant-Voltage, Constant-Current Controller With Primary-Side Regulation
TI

UCC28700_14

Constant-Voltage, Constant-Current Controller With Primary-Side Regulation
TI

UCC28701

Constant-Voltage, Constant-Current Controller With Primary-Side Regulation
TI

UCC28701D

Analog IC
ETC

UCC28701DBVR

Constant-Voltage, Constant-Current Controller With Primary-Side Regulation
TI

UCC28701DBVT

Constant-Voltage, Constant-Current Controller With Primary-Side Regulation
TI